WorldWideScience

Sample records for non-ventilated bulk storage

  1. Identification and characterisation of factors affecting losses in the large-scale, non-ventilated bulk storage of wood chips and development of best storage practices

    Energy Technology Data Exchange (ETDEWEB)

    Garstang, J.; Weekes, A.; Poulter, R.; Bartlett, D.

    2002-07-01

    The report describes the findings of a study to determine the factors affecting the commercial storage of wood chips for biomass power generation in the UK. The UK's first such plant in North Yorkshire uses a mixture of forestry residues and short rotation coppice (SRC) willow, where problems with the stored fuel highlighted the need to determine best storage practices. Two wood chip piles were built (one with willow chip and the other with wood chips from board leaf forestry residues) and monitored (moisture, temperature, chemical composition, spore numbers and species, heat and air flows, bulk density, etc). Local weather data was also obtained. Recommendations for future storage practices are made.

  2. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  3. Winterization strategies for bulk storage of pickles

    Science.gov (United States)

    Cucumbers are commercially fermented and stored in bulk in outdoor open top fiberglass tanks. During winter, snow and ice accumulates around and on top of tanks influencing heat transfer in an unpredictable manner, often compromising the fruit quality. This study evaluates the performance of inexpen...

  4. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  5. Cost and size estimates for an electrochemical bulk energy storage concept

    Science.gov (United States)

    Warshay, M.; Wright, L. O.

    1975-01-01

    Preliminary capital cost and size estimates were made for an electrochemical bulk energy storage concept for a redox-flow-cell system. Preliminary calculations showed that the redox-flow-cell system has great promise as a bulk energy storage system for power load leveling. The size of the system was estimated to be less than 2 percent of the size of a comparable pumped hydroelectric storage plant.

  6. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  7. The Cost and Benefit of Bulk Energy Storage in the Arizona Power Transmission System

    Science.gov (United States)

    Ruggiero, John

    This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

  8. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    Science.gov (United States)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  9. 19 CFR 19.31 - Bulk wheat of different classes and grades not to be commingled in storage.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bulk wheat of different classes and grades not to... CONTROL OF MERCHANDISE THEREIN Space Bonded for the Storage of Wheat § 19.31 Bulk wheat of different classes and grades not to be commingled in storage. All wheat shall be stored by class and grade...

  10. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  11. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  12. Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge

    Institute of Scientific and Technical Information of China (English)

    Qinxue Wen; Zhiqiang Chen; Changyong Wang; Nanqi Ren

    2012-01-01

    Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response.Although kinetic selection based on storage response should bring about a predominance of floc-formers,a bulking sludge with storage response comparable to well-settled sludge was steadily established.An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1),however,due to the consequent increased feast/famine ratio,the performance of SBR #1,in terms of both the maximum PHB (polyhydroxybutyrate) cell content and △PHB,was lower than that of SBR #2.SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation.The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X.hr) and 0.18 Cmol Ac/(Cmol PHB.hr),respectively,resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase.A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB.hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation.The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge.Furthermore,the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.

  13. Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2008-08-01

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to ensure preservation were low enough so that stored cucumbers could be converted to the finished product without the need to wash out and discard excess acid or preservative. Since no thermal process was required, this method of preservation would be applicable for storing cucumbers in bulk containers. Acid tolerant pathogens died off in less than 24 h with the pH, acetic acid, and sodium benzoate concentrations required to assure the microbial stability of cucumbers stored at 30 degrees C. Potassium sorbate as a preservative in this application was not effective. Yeast growth was observed when sulfite was used as a preservative.

  14. Efficient method for storage of long conveyor belts passages inside the bulk containers

    Directory of Open Access Journals (Sweden)

    Maria ŁUSZCZKIEWICZ-PIĄTEK

    2011-01-01

    Full Text Available The paper introduces the family of the algorithms designed to improve the process of winding up the long conveyor belt passages on reels located inside the bulk containers, used for i.e. rail transport. The proposed method provides the convenient storage technique of the long belt passages , enabling their transport on the standardized rail wagons. Presented solution also addresses the problems related with binding the smaller belt passages, such as shorter life span in comparison to the single-part belt. Moreover, the presented work contains not only the details of the two algorithms representative for the proposed method, but also the outlook of the system of the automatic control required for the successful application of the proposed technique.

  15. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk...

  16. INTRODUCTION SCADA-SYSTEM TRACE MODE IN THE MANUFACTURING PROCESSES BASED ON THE BULK STORAGE OF FLOUR

    Directory of Open Access Journals (Sweden)

    M. M. Blagoveshchenskaya

    2015-01-01

    Full Text Available The article presents a model of quality management processes, including milling enterprises using SCADA-systems. It is shown that the flour production in Russia is an important part of agriculture, because it ensures the production of staple food of people flour. Storing flour is an integral and important part of the overall process of making bread and bakery products. If stored properly the processes occurring at the same time in the flour, to a certain extent generally improve its quality. Ultimately, however, depending on the storage conditions for each meal reacts to different binning and consequently the quality of the finished product. In this regard, in the article the importance and necessity of the use of modern information technology in the production process. Presents the architecture of SCADA-system Trace Mode 5.0, internal and external software interfaces for data exchange, the editors for the implementation of individual controls, the functionality of the system to solve strategic problems in the milling, features Trace Mode 5.0 from other popular SCADA-systems. Developed software and hardware system based on SCADA-system Trace Mode 5 to process bulk storage of flour, to choose the best programming languages controllers and interfaces in the system. The basic levels of the control system for controlling the bulk storage of flour. It has been shown that quality management in the company provides collection, processing and analysis of information on the state of material flows and processes at all their stages.

  17. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  18. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  19. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  20. Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review

    Directory of Open Access Journals (Sweden)

    Leonor Pássaro

    2016-11-01

    Full Text Available Abstract Background Pneumonia is one of the leading hospital-acquired infections worldwide and has an important impact. Although preventive measures for ventilator-associated pneumonia (VAP are well known, less is known about appropriate measures for prevention of hospital-acquired pneumonia (HAP. Aim The purpose of this narrative review is to provide an overview of the current standards for preventing HAP in non-ventilated adult patients. Methods A search of the literature up to May 2015 was conducted using Medline for guidelines published by national professional societies or professional medical associations. In addition, a comprehensive search for the following preventive measures was performed: hand hygiene, oral care, bed position, mobilization, diagnosis and treatment of dysphagia, aspiration prevention, viral infections and stress bleeding prophylaxis. Findings Regarding international guidelines, several measures were recommended for VAP, whilst no specific recommendations for HAP prevention in non-ventilated patients are available. There is reasonable evidence available that oral care is associated with a reduction in HAP. Early mobilization interventions, swift diagnosis and treatment of dysphagia, and multimodal programmes for the prevention of nosocomial influenza cross-infection, have a positive impact on HAP reduction. The impact of bed position and stress bleeding prophylaxis remains uncertain. Systematic antibiotic prophylaxis for HAP prevention should be avoided. Conclusion Scant literature and little guidance is available for the prevention of HAP among non-ventilated adult patients. In addition, the criteria used for the diagnosis of HAP and the populations targeted in the studies selected are heterogeneous. Oral care was the most studied measure and was commonly associated with a decrease in HAP rate, although a broad range of interventions are proposed. No robust evidence is available for other measures. Further high

  1. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Science.gov (United States)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  2. Dismantlement and removal of Old Hydrofracture Facility bulk storage bins and water tank, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Old Hydrofracture Facility (OHF), located at Oak Ridge National Laboratory (ORNL), was constructed in 1963 to allow experimentation and operations with an integrated solid storage, mixing, and grout injection facility. During its operation, OHF blended liquid low-level waste with grout and used a hydrofracture process to pump the waste into a deep low-permeable shale formation. Since the OHF Facility was taken out of service in 1980, the four bulk storage bins located adjacent to Building 7852 had deteriorated to the point that they were a serious safety hazard. The ORNL Surveillance and Maintenance Program requested and received permission from the US Department of Energy to dismantle the bins as a maintenance action and send the free-released metal to an approved scrap metal vendor. A 25,000-gal stainless steel water tank located at the OHF site was included in the scope. A fixed-price subcontract was signed with Allied Technology Group, Inc., to remove the four bulk storage bins and water tank to a staging area where certified Health Physics personnel could survey, segregate, package, and send the radiologically clean scrap metal to an approved scrap metal vendor. All radiologically contaminated metal and metal that could not be surveyed was packaged and staged for later disposal. Permissible personnel exposure limits were not exceeded, no injuries were incurred, and no health and safety violations occurred throughout the duration of the project. Upon completion of the dismantlement, the project had generated 53,660 lb of clean scrap metal (see Appendix D). This resulted in $3,410 of revenue generated and a cost avoidance of an estimated $100,000 in waste disposal fees.

  3. Thermodynamically destabilized hydride formation in "bulk" Mg-AlTi multilayers for hydrogen storage.

    Science.gov (United States)

    Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin; Zahiri, Beniamin; Tan, XueHai; Danaie, Mohsen; Botton, Gianluigi; Mitlin, David

    2013-10-21

    Thermodynamic destabilization of MgH2 formation through interfacial interactions in free-standing Mg-AlTi multilayers of overall "bulk" (0.5 μm) dimensions with a hydrogen capacity of up to 5.5 wt% is demonstrated. The interfacial energies of Mg-AlTi and Mg-Ti (examined as a baseline) are calculated to be 0.81 and 0.44 J m(-2). The enhanced interfacial energy of AlTi opens the possibility of creating ultrathin alloy interlayers that provide further thermodynamic improvements in metal hydrides.

  4. A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy

    Energy Technology Data Exchange (ETDEWEB)

    Post, R F

    2009-09-24

    Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing

  5. Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a focus on compressed air storage (CAES)

    Science.gov (United States)

    Safaei Mohamadabadi, Hossein

    Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost

  6. The Analytical Objective Hysteresis Model (AnOHM v1.0: methodology to determine bulk storage heat flux coefficients

    Directory of Open Access Journals (Sweden)

    T. Sun

    2017-07-01

    Full Text Available The net storage heat flux (ΔQS is important in the urban surface energy balance (SEB but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQS and net all-wave radiation (Q∗ has been captured in the Objective Hysteresis Model (OHM parameterization of ΔQS. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model. A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation. The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQS flux well (RMSE values of ∼ 30 W m−2. The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

  7. An integrated approach to risk-based remediation of a former bulk fuel storage facility adjacent a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, L.; Hers, I. [Golder Associates Ltd., Vancouver, BC (Canada)

    2006-07-01

    An integrated approach to risk-based remediation of a former bulk fuel storage facility adjacent to a marine environment was discussed. The presentation provided an introduction and illustration to the site location and history, located close to Skagway, Alaska and northwestern British Columbia. The site investigation and conceptual model were also presented. The remedial approach was also described with reference to a risk-based action approach, remedial objectives, soil vapour extraction (SVE)-bioventing, and air sparging-biosparging. The objectives were to minimize potential exposure to aquatic receptors by minimizing non-aqueous phase liquids (NAPL) mobility and dissolved transport of petroleum hydrocarbons. Groundwater modeling to assess the attenuation rate and to determine remedial targets was also discussed. Model validation and results of groundwater modeling as well as remediation system details and performance were then provided. It was determined that significant attenuation is occurring and that effective mass removal and concentrations have been decreasing over time. It was demonstrated that risk-based remedial goals and hydrogeology can change with land use/development. tabs., figs.

  8. The Analytical Objective Hysteresis Model (AnOHM v1.0): methodology to determine bulk storage heat flux coefficients

    Science.gov (United States)

    Sun, Ting; Wang, Zhi-Hua; Oechel, Walter C.; Grimmond, Sue

    2017-07-01

    The net storage heat flux (ΔQS) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQS and net all-wave radiation (Q∗) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQS. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection-diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQS flux well (RMSE values of ˜ 30 W m-2). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

  9. Short communication: effect of storage and preservation on total bacterial counts determined by automated flow cytometry in bulk tank goat milk.

    Science.gov (United States)

    Sierra, D; Sánchez, A; Contreras, A; Luengo, C; Corrales, J C; de la Fe, C; Guirao, I; Morales, C T; Gonzalo, C

    2009-10-01

    This study was designed to evaluate the effects of different storage conditions on total bacterial count (TBC) determinations made in goat bulk tank milk using an automated flow cytometry method. The storage conditions tested were storage temperature (refrigeration at 4 and 10 degrees C or freezing at -20 degrees C), the use of a preservative (no preservative, NP; azidiol, AZ; or bronopol, BR), and the age of the milk samples for each analytical condition (storage times at 4 degrees C: from 0 h to 5 d for NP; and from 0 h to 22 d for AZ and BR; storage times at 10 degrees C: from 24 h to 2 d for NP and from 24 h to 22 for AZ and BR; storage times at -20 degrees C: from 24 h to 22 d for NP, AZ, and BR). Significant effects on individual bacterial count (IBC) variation were shown by the bulk tank milk sample, preservative, storage temperature, interaction preservative x storage temperature, and milk age within the interaction preservative x storage temperature. In preserved samples, the highest IBC were obtained for AZ and the lowest counts were obtained in samples preserved with BR. Because of the variation in IBC recorded in BR-preserved samples, we recommend that BR should not be used for TBC determinations using the automated flow cytometry method. The NP samples stored at 4 and 10 degrees C showed significantly higher IBC at 24 h postcollection, also invalidating these analytical conditions for TBC analyses. The practical implications of our findings are that goat milk samples preserved with AZ and stored at 10 or 4 degrees C are appropriate for TBC by the BactoScan flow cytometry method for up to 24 h and 11 d postcollection, respectively.

  10. Speed of collapse of the non-ventilated lung during single-lung ventilation for thoracoscopic surgery: the effect of transient increases in pleural pressure on the venting of gas from the non-ventilated lung.

    Science.gov (United States)

    Pfitzner, J; Peacock, M J; Harris, R J

    2001-10-01

    A study of 10 anaesthetised patients placed in the lateral position for thoracoscopic surgery assessed whether transient increases in pleural pressure on the side of the non-ventilated lung might increase the speed at which gas vents from that lung. The transient increases in pleural pressure were generated by the mediastinal displacement that occurs with each inspiratory phase of positive pressure ventilation of the dependent lung. When combined with a unidirectional valve allowing gas to flow out of the non-ventilated lung, and a second valve allowing ambient airflow into, but not out of, the thoracic cavity via an initial thoracoscopy access site, this mediastinal displacement could conceivably serve to 'pump' gas out of the non-ventilated lung. Using the four different combinations of valve inclusion or omission, the volume of gas that vented from the non-ventilated lung into a measuring spirometer was recorded during a 120-s measurement sequence. It was found that the speed of venting was not increased by the transient increases in pleural pressure, and that in all but one of a total of 34 measurement sequences, venting had ceased by the end of the sequence. Gas venting was a mean (SD) of 85.5 (11.9)% complete in 25 s (five breaths), and 96.6 (6.1)% complete in 60 s. This prompt partial lung collapse very likely reflected the passive elastic recoil of the lung, while the failure of transient increases in pleural pressure to result in ongoing venting of gas was probably a consequence of airways closure as the lung collapsed. It is concluded that techniques that aim to speed lung collapse by increasing pleural pressure are unlikely to be effective.

  11. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Renato Seligman

    2013-06-01

    Full Text Available OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP caused by multidrug-resistant (MDR bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1% were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763. Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527. Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002. CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP.

  12. Multi-Fluid Geo-Energy Systems for Bulk and Thermal Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    Science.gov (United States)

    Buscheck, T. A.; Randolph, J.; Saar, M. O.; Hao, Y.; Sun, Y.; Bielicki, J. M.

    2014-12-01

    Integrating renewable energy sources into electricity grids requires advances in bulk and thermal energy storage technologies, which are currently expensive and have limited capacity. We present an approach that uses the huge fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources. CO2 captured from fossil-energy systems and N2 separated from air are injected into permeable formations to store pressure, generate artesian flow of brine, and provide additional working fluids. These enable efficient fluid recirculation, heat extraction, and power conversion, while adding operational flexibility. Our approach can also store and dispatch thermal energy, which can be used to levelize concentrating solar power and mitigate variability of wind and solar power. This may allow low-carbon, base-load power to operate at full capacity, with the stored excess energy being available to addresss diurnal and seasonal mismatches between supply and demand. Concentric rings of horizontal injection and production wells are used to create a hydraulic divide to store pressure, CO2, N2, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Supercritical CO2 and N2 function as cushion gases to provide enormous pressure-storage capacity. Injecting CO2 and N2 displaces large quantities of brine, reducing the use of fresh water. Geologic CO2 storage is a crucial option for reducing CO2 emissions, but valuable uses for CO2 are needed to justify capture costs. The initial "charging" of our system requires permanently isolating large volumes of CO2 from the atmosphere and thus creates a market for its disposal. Our approach is designed for locations where a permeable

  13. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    Science.gov (United States)

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry.

  14. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  15. Making the most of gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Raybould, R.H.

    1978-03-01

    This paper discusses diurnal storage. It discusses the amount of storage needed for practical operation of a bulk supply system, and ways of reducing this amount. The relation between storage and input capacity is also examined.

  16. A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Miroslav Čekon

    2017-06-01

    Full Text Available A new solar façade concept based on transparent insulation and a selective absorber is proposed, tested and compared with conventional insulation and a non-selective type of absorber, respectively. The presented study focuses on an experimental non-ventilated solar type of façade exposed to solar radiation both in the laboratory and in outdoor tests. Due to the high solar absorbance level of the façade, high- and low-emissivity contributions were primarily analysed. All of the implemented materials were contrasted from the thermal and optical point of view. An analysis was made of both thermodynamic and steady state procedures affecting the proposed solar façade concept. Experimental full scale tests on real building components were additionally involved during summer monitoring. An indicator of the temperature response generated by solar radiation exposure demonstrates the outdoor performance of the façade is closely related to overheating phenomena. From the thermal point of view, the proposed transparent insulation and selective absorber concept corresponds to the performance of conventional thermal insulation of identical material thickness; however, the non-selective prototype only provides 50% thermal performance. The results of the solar-based experiments show that with a small-scale experimental prototype, approximately no significant difference is measured when compared with a non-selective absorber type. The only difference was achieved at the maximum of 2.5 K, when the lower temperature was obtained in the solar selective concept. At the full-scale outdoor mode, the results indicate a maximum of 3.0 K difference, however the lower temperature achieves a non-selective approach. This solar façade can actively contribute to the thermal performance of building components during periods of heating.

  17. Proceedings of the technical program, powder and bulk solids handling and processing

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    A total of 56 papers were presented under the following headings: solids storage and silos; pneumatic conveying; particle size enlargement; particle separation; particle characterization; mechanical handling of bulk solids; bulk solids process control; hazards and safety aspects; fluidization and fluid particle technology; coal handling and storage; and bulk solids processing. 8 papers have been abstracted separately.

  18. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  19. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  20. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  1. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  2. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk... some of these provisions, it may not be necessary to determine the PCB concentration or...

  3. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  4. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  5. Auctioning Bulk Mobile Messages

    NARCIS (Netherlands)

    S. Meij (Simon); L-F. Pau (Louis-François); H.W.G.M. van Heck (Eric)

    2003-01-01

    textabstractThe search for enablers of continued growth of SMS traffic, as well as the take-off of the more diversified MMS message contents, open up for enterprises the potential of bulk use of mobile messaging , instead of essentially one-by-one use. In parallel, such enterprises or value added

  6. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  7. Performance and applications of quench melt-growth bulk magnets

    Science.gov (United States)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  8. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  9. Bulk density - RTD results and status of the standardisation

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, T.; Hartmann, H. [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe - TFZ, Straubing (Germany); Daugbjerg Jensen, P. [Royal Veterinary and Agricultural University, Vejle (Denmark). Danish Centre for Forest, Landscape and Planning - DFLRI; Temmerman, M.; Rabier, F. [CRA, Gembloux (Belgium). Department Genie Rural; Jirjis, R.; Burvall, J. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Department of Bioenergy; Hersener, J.L. [Ingenieurbuero HERSENER, Wiesendangen (Switzerland); Rathbauer, J. [Bundesanstalt fuer Landtechnik - BLT, Wieselburg (Austria)

    2004-07-01

    Bulk density is an important property for determining storage and transportation room demands and for volume based payment of biofuels. It is also used for calculation of the energy density. Furthermore, bulk density influences the readings from many physical principles for rapid moisture content determination (e. g. microwave reflection method, time domain reflectometric or capacitive sensors [6]). Although bulk density is mostly regarded as an easily determinable parameter, the applied national and international standard methods are highly inconsistent in practice [1, 4, 8]. The goal of the here presented research was therefore to provide a sound knowledge basis for bulk density determination, which shall be used in the ongoing process of European biofuel standardisation. In particular the research focus was to determine the - effect of container size and shape in respect of different biofuels, - effect of shock impact and the - effect of moisture content (as received) on measured bulk density (dry basis). (orig.)

  10. Effect of dexmedetomidine on damage to non-ventilated lung in patients undergoing one-lung ventilation%右美托咪定对单肺通气患者非通气侧肺损伤的影响

    Institute of Scientific and Technical Information of China (English)

    张伟; 张加强; 孟凡民; 张卫

    2015-01-01

    Objective To investigate the effect of dexmedetomidine on the damage to the nonventilated lung in the patients undergoing one-lung ventilation (OLV).Methods Forty patients of both sexes, aged 18-64 yr, with body mass index of 18-25 kg/m2, of American Society of Anesthesiologists physical status Ⅱ or Ⅲ, scheduled for elective radical surgery for lung cancer under general anesthesia, were randomly divided into either control group (group C) or dexmedetomidine group (group D) with 20 in each group.After induction of anesthesia, the patients were tracheally intubated and mechanically ventilated.After correct positioning was confirmed by fiberoptic bronchoscopy, dexmedetomidine was infused for 20 min as a dose of 0.5 μg/kg, followed by an infusion of 0.5 μg · kg-1 · h-1 until the moment of tumor resection.The equal volume of normal saline was given in group C.Immediately after the beginning of OLV, at 60 min of OLV, and immediately after the end of OLV, the specimens of normal lung tissues around the tumor were obtained for microscopic examination of pathologic changes which were scored, and for determination of the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and heme oxygenase-1 (HO-1) by Western blot.Results Compared with group C, the pathological score was significantly decreased on the non-ventilated side immediately after the end of OLV, and the expression of HIF-1α and HO-1 in the lung tissues on the non-ventilated side was up-regulated in group D (P<0.05).Conclusion Dexmedetomidine can mitigate the damage to the non-ventilated lung in the patients undergoing OLV, and the mechanism is associated with up-regulated expression of HIF-1α and HO-1.%目的 探讨右美托咪定对单肺通气患者非通气侧肺损伤的影响.方法 择期全麻下行胸腔镜下肺癌根治术的患者40例,性别不限,年龄18 ~ 64岁,体重指数18~ 25 kg/m2,ASA分级Ⅱ或Ⅲ级,采用随机数字表法分为2组(n=20):对照组(C组)和右美托咪

  11. 19 CFR 151.44 - Storage tanks.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore...

  12. Essays on Port, Container, and Bulk Chemical Logistics Optimization

    NARCIS (Netherlands)

    E. van Asperen (Eelco)

    2009-01-01

    textabstractThe essays in this thesis are concerned with two main themes in port logistics. The first theme is the coordination of transport arrivals with the distribution processes and the use of storage facilities. We study this for both containerized and bulk chemical transport. The second theme

  13. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  14. Explosive bulk charge

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  15. The Incredible Bulk

    CERN Document Server

    Fukushima, Keita; Kumar, Jason; Sandick, Pearl; Yamamoto, Takahiro

    2014-01-01

    Recent experimental results from the LHC have placed strong constraints on the masses of colored superpartners. The MSSM parameter space is also constrained by the measurement of the Higgs boson mass, and the requirement that the relic density of lightest neutralinos be consistent with observations. Although large regions of the MSSM parameter space can be excluded by these combined bounds, leptophilic versions of the MSSM can survive these constraints. In this paper we consider a scenario in which the requirements of minimal flavor violation, vanishing $CP$-violation, and mass universality are relaxed, specifically focusing on scenarios with light sleptons. We find a large region of parameter space, analogous to the original bulk region, for which the lightest neutralino is a thermal relic with an abundance consistent with that of dark matter. We find that these leptophilic models are constrained by measurements of the magnetic and electric dipole moments of the electron and muon, and that these models have ...

  16. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  17. Constructing Social Networks From Secondary Storage With Bulk Analysis Tools

    Science.gov (United States)

    2016-06-01

    in Figure 5.2, where there were four main characters in this particular scenario. The characters were CEO Pat McGoo, IT administrator Terry Johnson...and two patent researchers Jo Smith and Charlie Brown [31]. 43 Figure 5.1: Component from UBNIST1: UBNIST1 is a drive from the Realis- tic Data Corpus

  18. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  19. Energy-Efficient Devices for Transporting and Feeding Bulk Materials in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Ishkov Alexander

    2016-01-01

    Full Text Available Only in the construction industry millions of tons of bulk materials that need to be transported to the place of processing, storing and evenly or dosed feeding are recycled annually. Decreasing the costs of these processes will significantly reduce the cost of the finished product. The article presents a review of studies conducted in the field of storage, transport and feed bulk materials, and it describes the innovative design of energy-efficient disc vibrating feeder bulk materials.

  20. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  1. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johan B.C.; Khatib, Mohammed G.; Koelmans, Wabe W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data chan

  2. Atomic storage

    CERN Multimedia

    Ricadela, A

    2003-01-01

    IBM is supplying CERN, the European Organization for Nuclear Research, with its Storage Tank file system virtualization software, 20 terabytes of storage capacity, and services under a three-year deal to build computer systems that will support the Large Hadron Collider accelerator (1 paragraph).

  3. Pumped storage plants. Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, Peter [RWE Power AG, Essen (Germany). Dept. for Electrical and Mechanical Engineering; Gruber, Karl Heinz; Kunsch, Andreas [VERBUND Hydro Power AG, Vienna (Austria); Haaheim, Jon Ulrik [Statkraft Energi AS, Oslo (Norway); Sistenich, Hans-Peter; Thoeni, Hans-Rudolf

    2011-07-01

    Pumped storage plants (PSP) enable the storage of energy with rated capacities of order of GW at a single site. Reservoirs allow charging and discharging times of at least hours, sometimes days or even up to several weeks. Short ramp-up times permit the participation in the secondary reserve market as a standing reserve. For bulk energy storage, PSP reach the lowest, specific costs. In the EU27 countries, Norway and Switzerland, a total of 44 GW of pumped storage capacity is installed. The utilisation of PSP strongly correlates with the amount of conventional generation capacity, rather than with topographical options. (orig.)

  4. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  5. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  6. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ookie Ma, Kerry Cheung

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  7. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-04-01

    Contrary to other claims, we argue that, bulk viscosity associated with the interactions of nonrelativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic particles. 13 refs., 1 fig.

  8. Hydrogen transport and storage in engineered microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G. [Lawrence Livermore National Lab., CA (United States); Hendricks, C. [W.J. Schafer Associates, Livermore, CA (United States)

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  9. Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  10. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  11. Looking for a bulk point

    CERN Document Server

    Maldacena, Juan; Zhiboedov, Alexander

    2015-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  12. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  13. 46 CFR 153.935a - Storage of cargo samples.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Storage of cargo samples. 153.935a Section 153.935a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... § 153.935a Storage of cargo samples. (a) The master shall make sure that any cargo samples are stored...

  14. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  15. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  16. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  17. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  18. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  19. The Universe With Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  20. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  1. Cosmic bulk viscosity through backreaction

    CERN Document Server

    Barbosa, Rodrigo M; Zimdahl, Winfried; Piattella, Oliver F

    2015-01-01

    We consider an effective viscous pressure as the result of a backreaction of inhomogeneities within Buchert's formalism. The use of an effective metric with a time-dependent curvature radius allows us to calculate the luminosity distance of the backreaction model. This quantity is different from its counterpart for a "conventional" spatially flat bulk viscous fluid universe. Both expressions are tested against the SNIa data of the Union2.1 sample with only marginally different results.

  2. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  3. Storage and flow of solids. Bulletin No. 123; Vol. 53, No. 26, November 1964

    Energy Technology Data Exchange (ETDEWEB)

    Jenike, A.W.

    1976-11-01

    Information is presented on: the concepts of flowability of bulk solids and of channels and the flow-no flow postulate; equipment and procedures for testing the flow of bulk solids; and bulk flow equipment design. This information should be sufficient to enable the engineer to design storage plants and flow channels for unobstructed bulk flow. Only an outline of the theory of flow is included. (LCL)

  4. New approaches to hydrogen storage.

    Science.gov (United States)

    Graetz, Jason

    2009-01-01

    The emergence of a Hydrogen Economy will require the development of new media capable of safely storing hydrogen in a compact and light weight package. Metal hydrides and complex hydrides, where hydrogen is chemically bonded to the metal atoms in the bulk, offer some hope of overcoming the challenges associated with hydrogen storage. The objective is to find a material with a high volumetric and gravimetric hydrogen density that can also meet the unique demands of a low temperature automotive fuel cell. Currently, there is considerable effort to develop new materials with tunable thermodynamic and kinetic properties. This tutorial review provides an overview of the different types of metal hydrides and complex hydrides being investigated for on-board (reversible) and off-board (non-reversible) hydrogen storage along with a few new approaches to improving the hydrogenation-dehydrogenation properties.

  5. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Womac, Alvin [Genera Energy LLC, Vonore, TN (United States); Groothuis, Mitch [Genera Energy LLC, Vonore, TN (United States); Westover, Tyler [Genera Energy LLC, Vonore, TN (United States); Phanphanich, Manunya [Genera Energy LLC, Vonore, TN (United States); Webb, Erin [Genera Energy LLC, Vonore, TN (United States); Sokhansanj, Shahab [Genera Energy LLC, Vonore, TN (United States); Turhollow, Anthony [Genera Energy LLC, Vonore, TN (United States)

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  6. Bulk Moisture and Salinity Sensor

    Science.gov (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  7. Toughness of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shantanu V. Madge

    2015-07-01

    Full Text Available Bulk metallic glasses (BMGs have desirable properties like high strength and low modulus, but their toughness can show much variation, depending on the kind of test as well as alloy chemistry. This article reviews the type of toughness tests commonly performed and the factors influencing the data obtained. It appears that even the less-tough metallic glasses are tougher than oxide glasses. The current theories describing the links between toughness and material parameters, including elastic constants and alloy chemistry (ordering in the glass, are discussed. Based on the current literature, a few important issues for further work are identified.

  8. Spatial Information Storage

    Directory of Open Access Journals (Sweden)

    Vladimir Markelov

    2013-01-01

    Full Text Available The article describes the spatial information storage, shows the features of spatial information and of such storage systems formation. Requirements for information storage technologies and for the data management in storage systems are determined. Cartographic information storage and updating features are shown. The article proves that intelligent solutions are the most efficient means of working with large amounts of spatial data.

  9. 40 CFR 264.314 - Special requirements for bulk and containerized liquids.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE.... (a) The placement of bulk or non-containerized liquid hazardous waste or hazardous waste containing...) The placement of any liquid which is not a hazardous waste in a landfill is prohibited unless the...

  10. Biomarker for Glycogen Storage Diseases

    Science.gov (United States)

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  11. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  12. Grain bulk density measurement based on wireless network

    Directory of Open Access Journals (Sweden)

    Wu Fangming

    2017-01-01

    Full Text Available To know the accurate quantity of stored grain, grain density sensors must be used to measure the grain’s bulk density. However, multi-sensors should be inserted into the storage facility, to quickly collect data during the inventory checking of stored grain. In this study, the ZigBee and Wi-Fi coexistence network’s ability to transmit data collected by density sensors was investigated. A system consisting of six sensor nodes, six router nodes, one gateway and one Android Pad was assembled to measure the grain’s bulk density and calculate its quantity. The CC2530 chip with ZigBee technology was considered as the core of the information processing, and wireless nodes detection in sensor, and router nodes. ZigBee worked in difference signal channel with Wi-Fi to avoid interferences and connected with Wi-Fi module by UART serial communications interfaces in gateway. The Android Pad received the measured data through the gateway and processed this data to calculate quantity. The system enabled multi-point and real-time parameter detection inside the grain storage. Results show that the system has characteristics of good expansibility, networking flexibility and convenience.

  13. New fermions in the bulk

    CERN Document Server

    de Brito, K P S

    2016-01-01

    Spinor fields on 5-dimensional Lorentzian manifolds are classified, according to the geometric Fierz identities that involve their bilinear covariants. Based upon this classification that generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are, hence, found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density, through the truncated exterior bundle. In order to accomplish a realisation of these new spinors, a Killing vector field is constructed on the horizon of 5-dimensional Kerr black holes. This Killing vector field is shown to reach the time-like Killing vector field at the spatial infinity, through a current 1-form density, constructed with the derived new spinor fields. The current density is, moreover, expressed as the f\\"unfbein components, assuming a condensed for...

  14. New fermions in the bulk

    Science.gov (United States)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  15. Nanofluidics, from bulk to interfaces.

    Science.gov (United States)

    Bocquet, Lydéric; Charlaix, Elisabeth

    2010-03-01

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does 'nanofluidics' deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).

  16. The Effect of Bulk Depth and Irradiation Time on the Surface Hardness and Degree of Cure of Bulk-Fill Composites

    Directory of Open Access Journals (Sweden)

    Farahat F

    2016-09-01

    Full Text Available Statement of Problem: For many years, application of the composite restoration with a thickness less than 2 mm for achieving the minimum polymerization contraction and stress has been accepted as a principle. But through the recent development in dental material a group of resin based composites (RBCs called Bulk Fill is introduced whose producers claim the possibility of achieving a good restoration in bulks with depths of 4 or even 5 mm. Objectives: To evaluate the effect of irradiation times and bulk depths on the degree of cure (DC of a bulk fill composite and compare it with the universal type. Materials and Methods: This study was conducted on two groups of dental RBCs including Tetric N Ceram Bulk Fill and Tetric N Ceram Universal. The composite samples were prepared in Teflon moulds with a diameter of 5 mm and height of 2, 4 and 6 mm. Then, half of the samples in each depth were cured from the upper side of the mould for 20s by LED light curing unit. The irradiation time for other specimens was 40s. After 24 hours of storage in distilled water, the microhardness of the top and bottom of the samples was measured using a Future Tech (Japan- Model FM 700 Vickers hardness testing machine. Data were analyzed statistically using the one and multi way ANOVAand Tukey’s test (p = 0.050. Results: The DC of Tetric N Ceram Bulk Fill in defined irradiation time and bulk depth was significantly more than the universal type (p < 0.001. Also, the DC of both composites studied was significantly (p < 0.001 reduced by increasing the bulk depths. Increasing the curing time from 20 to 40 seconds had a marginally significant effect (p ≤ 0.040 on the DC of both bulk fill and universal studied RBC samples. Conclusions: The DC of the investigated bulk fill composite was better than the universal type in all the irradiation times and bulk depths. The studied universal and bulk fill RBCs had an appropriate DC at the 2 and 4 mm bulk depths respectively and

  17. Soy protein isolate molecular level contributions to bulk adhesive properties

    Science.gov (United States)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  18. Carrier Bulk-Lifetime Measurements

    Directory of Open Access Journals (Sweden)

    M. Solcansky

    2012-01-01

    Full Text Available For the measurement of the minority carrier bulk-lifetime the characterization method MW-PCD is used, where the result of measurement is the effective carrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surface passivation. This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Various solutions are tested on silicon wafers for their consequent comparison. The main purpose is to find optimal solution, which suits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibility of a perfect cleaning of a passivating solution remains from a silicon surface, so that the parameters of a measured silicon wafer will not worsen and there will not be any contamination of the other wafers series in the production after a repetitive return of the measured wafer into the production process. The cleaning process itself is also a subject of a development.

  19. Determination of te spontaneous ignition temperature of bulk materials. Simple to handle possibility for the practice; Bestimmung der Selbstentzuendungstemperatur von Schuettguetern. Einfach handhabbarer Weg fuer die Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Kimpel, Sebastian; Horn, Joerg; Franke, Juergen [consilab Gesellschaft fuer Anlagensicherheit mbH, Frankfurt am Main (Germany)

    2012-06-15

    Bulk materials are widely used in industry. Bulk materials come up not only in mining (coal), in agriculture (flour) and food industry (coffee), but also in the pharmaceutical industry for example in the production of specialty chemicals and pigments. Mass-produced goods in tonnages are produced, processed, transported and stored. Due to the poor heat transfer in the bulks the relatively large storage volumes are especially critical in view of a possible self-ignition.

  20. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  1. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  2. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  3. Hyperon bulk viscosity in strong magnetic fields

    CERN Document Server

    Sinha, Monika

    2008-01-01

    We study bulk viscosity in neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and the direct Urca (dUrca) process are calculated here. In the presence of a strong magnetic field, bulk viscosity coefficients are enhanced when protons, electrons and muons are populated in their respective zeroth Landau levels compared with the field free cases. The enhancement of bulk viscosity coefficient is larger for the dUrca case.

  4. 27 CFR 20.191 - Bulk articles.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  5. Bulk equations of motion from CFT correlators

    CERN Document Server

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  6. Bulk equations of motion from CFT correlators

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy,Lehman College, City University of New York, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Physics and Astronomy,Lehman College, City University of New York, Bronx NY 10468 (United States); Physics Department,City College, City University of New York, New York NY 10031 (United States); Department of Mathematics and Physics,University of Haifa at Oranim, Kiryat Tivon 36006 (Israel)

    2015-09-10

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  7. Storage and flood routing

    Science.gov (United States)

    Carter, R.W.; Godfrey, R.G.

    1960-01-01

    The basic equations used in flood routing are developed from the law of continuity. In each method the assumptions are discussed to enable the user to select an appropriate technique. In the stage-storage method the storage is related to the mean gage height in the reach under consideration. In the discharge-storage method the storage is determined, from weighted values of inflow and outflow discharge. In the reservoir-storage method the storage is considered as a function of outflow discharge alone. A detailed example is given for each method to illustrate that particular technique.

  8. Massive Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Dan Feng; Hai Jin

    2006-01-01

    To accommodate the explosively increasing amount of data in many areas such as scientific computing and e-Business, physical storage devices and control components have been separated from traditional computing systems to become a scalable, intelligent storage subsystem that, when appropriately designed, should provide transparent storage interface, effective data allocation, flexible and efficient storage management, and other impressive features. The design goals and desirable features of such a storage subsystem include high performance, high scalability, high availability, high reliability and high security. Extensive research has been conducted in this field by researchers all over the world, yet many issues still remain open and challenging. This paper studies five different online massive storage systems and one offline storage system that we have developed with the research grant support from China. The storage pool with multiple network-attached RAIDs avoids expensive store-and-forward data copying between the server and storage system, improving data transfer rate by a factor of 2-3 over a traditional disk array. Two types of high performance distributed storage systems for local-area network storage are introduced in the paper. One of them is the Virtual Interface Storage Architecture (VISA) where VI as a communication protocol replaces the TCP/IP protocol in the system. VISA's performance is shown to achieve better than that of IP SAN by designing and implementing the vSCSI (VI-attached SCSI) protocol to support SCSI commands in the VI network. The other is a fault-tolerant parallel virtual file system that is designed and implemented to provide high I/O performance and high reliability. A global distributed storage system for wide-area network storage is discussed in detail in the paper, where a Storage Service Provider is added to provide storage service and plays the role of user agent for the storage system. Object based Storage Systems not only

  9. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  10. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study

    NARCIS (Netherlands)

    Wagemans, R.W.P.; van Lenthe, J.H.|info:eu-repo/dai/nl/068417942; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; van Dillen, A.J.|info:eu-repo/dai/nl/111157625; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2005-01-01

    Magnesium hydride is cheap and contains 7.7 wt % hydrogen, making it one of the most attractive hydrogen storage materials. However, thermodynamics dictate that hydrogen desorption from bulk magnesium hydride only takes place at or above 300 degrees C, which is a major impediment for practical

  11. A new type of rapid and simple coal and other bulk commodities inventory system based on two-dimensional laser scanner

    Science.gov (United States)

    Liang, Qianqian; Xu, Wenhai; Ma, Qisheng; Yang, Deshan; Zhang, Wang; Fu, Ying

    2016-10-01

    The acceleration of large coal base construction needs the modern management technology of heap storage as a guarantee. And the inventory of coal and other bulk commodities is an important aspect in the modern management technology of heap storage. Therefore, a rapid, accurate and simple method to measure the volume and quality of coal heaps for scientific management, economic benefit evaluation and storage evaluation of heap storage is very important which has a significant application value. In this paper, we introduce the structural features, working principle and application status of a new type portable heap bulk inventory system. Actual measurements have been carried out in the coal base located in Huanghua port, Tianjin and Qinhuangdao. The measurement results indicate that the system can measure the volume of bulk commodities efficiently, quickly and accurately, and it has extensive application prospects.

  12. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  13. First cloud-based service for analyzing storage tank data

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    Most commercial storage tanks are unmonitored and require manual processes to verify conditions, remediate issues or request servicing. New Boundary Technologies has developed an off-the-shelf solution that eliminates several manual processes. Its TankVista Internet service was launched as the first cloud-based service for continuously monitoring and analyzing the conditions and storage levels of commercial storage tanks, bins, silos and other containers. TankVista takes data from storage tank sensors and translates it into graphics and maps that industry can use to drive new efficiencies in storage tank management. A bulk oil distributor can leverage TankVista to remotely and continuously monitor its own storage tanks as well as those of its clients. TankVista monitors tank level, temperature, pressure, humidity and other storage criteria in order to know exactly when and where to replenish supplies. Rather than re-filling tanks at about 50 per cent capacity, a bulk oil distributor can wait until usage levels dictate more efficient re-filling. The monitoring takes place without manual intervention. TankVista complements the iDigi Tank, which has the unique ability to wirelessly connect dispersed and remote tank assets, and get this information through drop-in wireless mesh technology to the cloud without requiring onsite Internet access. 1 fig.

  14. Thermal energy storage

    Science.gov (United States)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  15. Pit Water Storage Ottrupgaard

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    The pit water storage, a seasonal thermal storage, was built in 1993 with floating lid and hybrid clay-polymer for pit lining. The storage was leaking severe and solutions were to be found. In the paper solutions for pit lining and floating lids are discussed, cost estimations given and coming...

  16. Pit Water Storage Ottrupgaard

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    The pit water storage, a seasonal thermal storage, was built in 1993 with floating lid and hybrid clay-polymer for pit lining. The storage was leaking severe and solutions were to be found. In the paper solutions for pit lining and floating lids are discussed, cost estimations given and coming...

  17. Holographic representation of local bulk operators

    CERN Document Server

    Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2006-01-01

    The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.

  18. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  19. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  20. Proceedings of the technical program: powder and bulk solids handling and processing

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Papers are presented on the topic of powder and bulk solids handling under the following subject headings: computer applications; particle characterization; fluidization and fluid-particle technology; belt conveyors; pneumatic conveying; solids storage; particle size enlargement; flow metering and process monitoring and control; mechanical handling; solids processing; mixing and handling; separation technologies; solids feeding systems; particle rheology and solids systems flow; system safety considerations; size reduction. Relevant papers have been abstracted separately.

  1. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    OpenAIRE

    Keliu Wu; Zhangxin Chen; Xiangfang Li; Xiaohu Dong

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the met...

  2. Cloud storage for dummies

    CERN Document Server

    Xu, Linda; Loughlin, Tanya

    2010-01-01

    Understand cloud computing and save your organization time and money! Cloud computing is taking IT by storm, but what is it and what are the benefits to your organization? Hitachi Data Systems' Cloud Storage For Dummies provides all the answers, With this book, you discover a clear explanation of cloud storage, and tips for how to choose the right type of cloud storage for your organization's needs. You also find out how cloud storage can free up valuable IT resources, saving time and money. Cloud Storage For Dummies presents useful information on setting up a

  3. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  4. Measuring Bulk Flows in Large Scale Surveys

    CERN Document Server

    Feldman, H A; Feldman, Hume A.; Watkins, Richard

    1993-01-01

    We follow a formalism presented by Kaiser to calculate the variance of bulk flows in large scale surveys. We apply the formalism to a mock survey of Abell clusters \\'a la Lauer \\& Postman and find the variance in the expected bulk velocities in a universe with CDM, MDM and IRAS--QDOT power spectra. We calculate the velocity variance as a function of the 1--D velocity dispersion of the clusters and the size of the survey.

  5. The Bulk Multicore Architecture for Improved Programmability

    Science.gov (United States)

    2009-12-01

    algorithm, forcing the same order of chunk commits as in the recording step. This design, which we call PicoLog , typically incurs a performance cost... PicoLog . Data-race detection at production- run speed. The Bulk Multicore can support an efficient data-race detec- tor based on the “happens-before...Bulk Multicore (a), with a possible OrderOnly execution log (b) and PicoLog execution log (c). contributed articles DECEMBER 2009 | VOL. 52

  6. Vibration-Induced Conductivity Fluctuation Measurement for Soil Bulk Density Analysis

    CERN Document Server

    Kishne, Andrea Sz; Chang, Hung-Chih; Kish, Laszlo B

    2007-01-01

    Soil bulk density affects water storage, water and nutrient movement, and plant root activity in the soil profile. Its measurement is difficult in field conditions. Vibration-induced conductivity fluctuation was investigated to quantify soil bulk density with possible field applications in the future. The AC electrical conductivity of soil was measured using a pair of blade-like electrodes while exposing the soil to periodic vibration. The blades were positioned longitudinally and transversally to the direction of the induced vibration to enable the calculation of a normalized index. The normalized index was expected to provide data independent from the vibration strength and to reduce the effect of soil salinity and water content. The experiment was conducted on natural and salinized fine sand at two moisture conditions and four bulk densities. The blade-shaped electrodes improved electrode-soil contact compared to cylindrical electrodes, and thereby, reduced measurement noise. Simulations on a simplified re...

  7. Carbon diffusion in bulk hcp zirconium: A multi-scale approach

    Science.gov (United States)

    Xu, Y.; Roques, J.; Domain, C.; Simoni, E.

    2016-05-01

    In the framework of the geological repository of the used fuel claddings of pressurized water reactor, carbon behavior in bulk zirconium is studied by periodic Density Functional Theory calculations. The C interstitial sites were investigated and it was found that there are two possible carbon interstitial sites: a distorted basal tetragonal site and an octahedral site. There are four types of possible atomic jumps between them. After calculating the migration energies, the attempt frequencies and the jump probabilities for each possible migration path, kinetic Monte Carlo (KMC) simulations were performed to simulate carbon diffusion at the macroscopic scale. The results show that carbon diffusion in pure Zr bulk is extremely limited at the storage temperature (50 °C). Since there are defects in Zr bulk, in a second step, the effect of atomic vacancy was studied and it was proved that vacancies cannot increase carbon diffusion.

  8. Prospects for Detecting a Cosmic Bulk Flow

    Science.gov (United States)

    Rose, Benjamin; Garnavich, Peter M.; Mathews, Grant James

    2015-01-01

    The ΛCDM model is based upon a homogeneous, isotropic space-time leading to uniform expansion with random peculiar velocities caused by local gravitation perturbations. The Cosmic Microwave Background (CMB) radiation evidences a significant dipole moment in the frame of the Local Group. This motion is usually explained with the Local Group's motion relative to the background Hubble expansion. An alternative explanation, however, is that the dipole moment is the result of horizon-scale curvature remaining from the birth of space-time, possibly a result of quantum entanglement with another universe. This would appear as a single velocity (a bulk flow) added to all points in space. These two explanations differ observationally on cosmic distance scales (z > 0.1). There have been many differing attempts to detect a bulk flow, many with no detectable bulk flow but some with a bulk flow velocity as large as 1000 km/s. Here we report on a technique based upon minimizing the scatter around the expected cosine distribution of the Hubble redshift residuals with respect to angular distance on the sky. That is, the algorithm searches for a directional dependence of Hubble residuals. We find results consistent with most other bulk flow detections at z Type Ia Supernovae to be ~0.01, whereas the current error (~0.2.) is more than an order of magnitude too large for the detection of bulk flow beyond z~0.05.

  9. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  10. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-10-19

    ... nonsubstantive changes, however, to correct grammar, internal paragraph references, and a temperature conversion... means the English version of the ``International Maritime Solid Bulk Cargoes Code'' published by...

  11. Into the Bulk: A Covariant Approach

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "lightcone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic RG flow, this new definition of bulk depth makes contact with coarse-graining over both large distances ...

  12. Atomic Storage States

    Institute of Scientific and Technical Information of China (English)

    汪凯戈; 朱诗尧

    2002-01-01

    We present a complete description of atomic storage states which may appear in the electromagnetically induced transparency (EIT). The result shows that the spatial coherence has been included in the atomic collective operators and the atomic storage states. In some limits, a set of multimode atomic storage states has been established in correspondence with the multimode Fock states of the electromagnetic field. This gives a better understanding of the fact that, in BIT, the optical coherent information can be preserved and recovered.

  13. Spacecraft Energy Storage Systems

    OpenAIRE

    Robinson, Wilf; Hanks, James; Spina, Len; Havenhill, Doug; Gisler, Gary; Ginter, Steve; Brault, Sharon

    1997-01-01

    Flywheel Energy Storage Systems represent an exciting alternative to traditional battery storage systems used to power satellites during periods of eclipse. The increasing demand for reliable communication and data access is driving explosive growth in the number of satellite systems being developed as well as their performance requirements. Power on orbit is the key to this performance, and batteries are becoming increasingly unattractive as an energy storage media. Flywheel systems offer ve...

  14. A diphoton resonance from bulk RS

    Science.gov (United States)

    Csáki, Csaba; Randall, Lisa

    2016-07-01

    Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  15. A stereoscopic look into the bulk

    Science.gov (United States)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1 /N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields.

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  17. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  18. Bulk fields from the boundary OPE

    CERN Document Server

    Guica, Monica

    2016-01-01

    Previous work has established an equality between the geodesic integral of a free bulk field in AdS and the contribution of the conformal descendants of its dual CFT primary operator to the OPE of two other operators inserted at the endpoints of the geodesic. Working in the context of AdS$_3$/CFT$_2$, we extend this relation to include all $1/N$ corrections to the bulk field obtained by dressing it with i) a $U(1)$ current and ii) the CFT stress tensor, and argue it equals the contribution of the Ka\\v{c}-Moody/the Virasoro block to the respective boundary OPE. This equality holds for a particular framing of the bulk field to the boundary that involves a split Wilson line.

  19. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    This paper is devoted to the analytical and numerical study of isotropic elastic composites made of three or more isotropic phases. The ranges of their effective bulk and shear moduli are restricted by the Hashin-Shtrikman-Walpole (HSW) bounds. For two-phase composites, these bounds are attainable......, that is, there exist composites with extreme bulk and shear moduli. For multiphase composites, they may or may not be attainable depending on phase moduli and volume fractions. Sufficient conditions of attainability of the bounds and various previously known and new types of optimal composites...... are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...

  20. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  1. A Diphoton Resonance from Bulk RS

    CERN Document Server

    Csaki, Csaba

    2016-01-01

    Recent LHC data hints at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to Higges and to any other Standard Model particles are so far too low to be detected. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. We argue that if the state is a scalar, some form of sequestering is likely to be necessary to naturally explain the suppressed scalar-Higgs interactions. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.

  2. Spherically symmetric brane spacetime with bulk gravity

    Science.gov (United States)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2015-01-01

    Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.

  3. Effect of penehyclidine hydrochloride on damage to non-ventilated lung in pediatric patients undergoing one-lung ventilation%盐酸戊乙奎醚对单肺通气患儿非通气侧肺损伤的影响

    Institute of Scientific and Technical Information of China (English)

    张震; 徐刚; 邓巧荣; 卢锡华; 李喜龙; 崔亚萍; 杨宝锋

    2016-01-01

    Objective To evaluate the effect of penehyclidine hydrochloride on the damage to the non-ventilated lung in the pediatric patients undergoing one-lung ventilation (OLV).Methods One hundred and twenty pediatric patients of both sexes,aged 2-6 yr,with body mass index of 17-24 kg/m2,of American Society of Anesthesiologists physical status Ⅰ or lⅡ and New York Heart Association class Ⅰ or Ⅱ,undergoing elective lobectomy performed via video-assisted thoracoscope,were randomly divided into 2 groups (n=60 each) using a random number table:control group (group C) and penehyclidine hydrochloride group (group P).At 10 rmin before anesthesia induction,penehyclidine hydrochloride 0.05 mg/kg was injected intravenously in group P,and the equal volume of normal saline was given in group C.At 5 min after drug intervention (T0),immediately after onset of OLV (T1),at 60 min of OLV (T2),immediately after the end of OLV (T3),at the end of surgery (T4),and at 24 h after surgery (T5),venous blood samples were collected for determination of serum tumor necrosis factor-alpha (TNF-o),interleukin-6 (IL-6) and IL-8 concentrations by enzyme-linked immunosorbent assay.The specimens of normal lung tissues around the lung lobe to be resected were obtained at T1 and T3 for determination of the injured alveolus count (with a light microscope) and cell apoptosis (using TUNEL) and for examination of the ultrastructure of epithelial cells (with a transmission electron microscope).The injured alveolus rate (IAR) and apoptosis index (AI) were calculated.Results Compared to the value at T0,the IAR and AI were significantly increased at T3,the serum TNF-α,IL-6 and IL-8 concentrations were significantly increased at T2-5 (P<0.05),and the pathological changes were obvious in the two groups.Compared to group C,the IAR and AI were significantly decreased at T3,the serum TNF-α,IL-6 and IL-8 concentrations were significantly decreased at T2-5 (P<0.05),and the pathological changes were

  4. The Effects Of Ultrasonic Application For The Microbiological Quality Of Bulk Cooking Oil

    Directory of Open Access Journals (Sweden)

    Wisnu Istanto

    2015-08-01

    Full Text Available Radiation is one of natural phenomenon that often discussed in light atomic reaction nuclear application and electromagnetic wave especially in gamma ray X ray and UV light. Commonly we usually think that they are negative deadly and dangerous for living creatures. Radiaton may be correlated with thermal phenomenon but this reasearch was applied to get audio phenomenon and radiation especially ultrasonic radiation. Sound is a particle of vibration that propagates through medium and transmitted as longitudinal wave in which the displacement of the medium is parallel to the propagation of the wave. Radiation is the emission of waves in all directions in space by vibratory sources transducers form small balls or knob 234 this study were irradiating exposing to bulk cooking oils. The bulk cooking oil was treated by the ultrasonic exposure 1.5 hours and 3 hours and 24-hour incubation that it showed no aerobic colony. And besides the untreated bulk cooking oil showed a few aerobic colonies. And also the untreated used bulk cooking oil showed more some aerobic colonies. The research results shows that ultrasonic exposure at 48 kHz for 1.5 hours can enhance the microbiological quality of bulk cooking oil for 10 day storage.

  5. Making bulk-conductive glass microchannel plates

    Science.gov (United States)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  6. "Work-Hardenable" ductile bulk metallic glass.

    Science.gov (United States)

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  7. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  8. Towards a Reconstruction of General Bulk Metrics

    CERN Document Server

    Engelhardt, Netta

    2016-01-01

    We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices - "light-cone cuts" - of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.

  9. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  10. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  11. Mesoporous nanocrystalline film architecture for capacitive storage devices

    Science.gov (United States)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John; Brezesinski, Torsten; Gruner, George

    2017-05-16

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).

  12. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  13. Energy Storage Economics

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation provides an overview on energy storage economics including recent market trends, battery terminology and concepts, value streams, challenges, and an example of how photovoltaics and storage can be used to lower demand charges. It also provides an overview of the REopt Lite web tool inputs and outputs.

  14. Thermal storage heaters

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, K.H.; Broadbent, J.T.

    1991-02-27

    A storage heater, providing heat by radiation, comprises an internal circuit for the passage of heated air. The heater comprises: a heat storage core, comprising heat storage rods heated by resistance wiring, and an air space around the rods, the air space forming an inner pathway of circuit; heat insulation around the core; and outer pathways adjacent outer walls of the heater. A damper is arranged at the top of the inner and outer pathways to control the communication between. The damper may be movably supported on a support part by robust bi-metallic strips wound with heater wires to control the bending of the strips. The storage heater may be supplied in kit form for the purchaser to assemble and to this end the heat storage rods may comprise particulate material poured into tubes, or liftable core units. Further heat insulation may be selectively positioned in the outer pathways to provide an even heat distribution. (author).

  15. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  16. Seasonal thermal energy storage

    Science.gov (United States)

    Allen, R. D.; Kannberg, L. D.; Raymond, J. R.

    1984-05-01

    Seasonal thermal energy storage (STES) using heat or cold available from surplus, waste, climatic, or cogeneration sources show great promise to reduce peak demand, reduce electric utility load problems, and contribute to establishing favorable economics for district heating and cooling systems. Heated and chilled water can be injected, stored, and recovered from aquifers. Geologic materials are good thermal insulators, and potentially suitable aquifers are distributed throughout the United States. Potential energy sources for use in an aquifer thermal energy storage system include solar heat, power plant cogeneration, winter chill, and industrial waste heat source. Topics covered include: (1) the U.S. Department of Energy seasonal thermal energy storage program; (2) aquifer thermal energy storage technology; (3) alternative STES technology; (4) foreign studies in seasonal thermal energy storage; and (5) economic assessment.

  17. Storage resource manager

    Energy Technology Data Exchange (ETDEWEB)

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  18. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  19. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    2005-01-01

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  20. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane she...

  1. THE OPTIMIZATION OF PLUSH YARNS BULKING PROCESS

    Directory of Open Access Journals (Sweden)

    VINEREANU Adam

    2014-05-01

    Full Text Available This paper presents the experiments that were conducted on the installation of continuous bulking and thermofixing “SUPERBA” type TVP-2S for optimization of the plush yarns bulking process. There were considered plush yarns Nm 6.5/2, made of the fibrous blend of 50% indigenous wool sort 41 and 50% PES. In the first stage, it performs a thermal treatment with a turboprevaporizer at a temperature lower than thermofixing temperature, at atmospheric pressure, such that the plush yarns - deposed in a freely state on a belt conveyor - are uniformly bulking and contracting. It was followed the mathematical modeling procedure, working with a factorial program, rotatable central composite type, and two independent variables. After analyzing the parameters that have a direct influence on the bulking degree, there were selected the pre-vaporization temperature (coded x1,oC and the velocity of belt inside pre-vaporizer (coded x 2, m/min. As for the dependent variable, it was chosen the plush yarn diameter (coded y, mm. There were found the coordinates of the optimal point, and then this pair of values was verified in practice. These coordinates are: x1optim= 90oC and x 2optim= 6.5 m/min. The conclusion is that the goal was accomplished: it was obtained a good cover degree f or double-plush carpets by reducing the number of tufts per unit surface.

  2. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...

  3. Bulk viscosity effects on ultrasonic thermoacoustic instability

    Science.gov (United States)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2016-11-01

    We have carried out unstructured fully-compressible Navier-Stokes simulations of a minimal-unit traveling-wave ultrasonic thermoacoustic device in looped configuration. The model comprises a thermoacoustic stack with 85% porosity and a tapered area change to suppress the fundamental standing-wave mode. A bulk viscosity model, which accounts for vibrational and rotational molecular relaxation effects, is derived and implemented via direct modification of the viscous stress tensor, τij ≡ 2 μSij +λ/2 μ ∂uk/∂xk δij , where the bulk viscosity is defined by μb ≡ λ +2/3 μ . The effective bulk viscosity coefficient accurately captures acoustic absorption from low to high ultrasonic frequencies and matches experimental wave attenuation rates across five decades. Using pressure-based similitude, the model was downscaled from total length L = 2 . 58 m to 0 . 0258 m, corresponding to the frequency range f = 242 - 24200 Hz, revealing the effects of bulk viscosity and direct modification of the thermodynamic pressure. Simulations are carried out to limit cycle and exhibit growth rates consistent with linear stability analyses, based on Rott's theory.

  4. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization...

  5. A Stereoscopic Look into the Bulk

    CERN Document Server

    Czech, Bartlomiej; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-01-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space--the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow ...

  6. Fluctuating brane in a dilatonic bulk

    CERN Document Server

    Brax, P; Rodríguez-Martinez, M; Brax, Philippe; Langlois, David; Rodriguez-Martinez, Maria

    2003-01-01

    We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar field whose potential is exponential. After studying various cosmological behaviours for the homogeneous background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding branes.

  7. Charging Graphene for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  8. Meteoroid Bulk Density and Ceplecha Types

    Science.gov (United States)

    Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.

    2017-01-01

    The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates

  9. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin.

    Science.gov (United States)

    Jang, J-H; Park, S-H; Hwang, I-N

    2015-01-01

    The aim of this study was to evaluate the polymerization behavior and depth of cure (DOC) of recently introduced resin composites for posterior use: highly filled flowable composite and composites for bulk fill. A highly filled flowable (G-aenial Universal Flo [GUF]), two bulk-fill flowables (Surefil SDR Flow [SDR] and Venus Bulk fill [VBF]), and a bulk-fill nonflowable composite (Tetric N-Ceram Bulk fill [TBF]) were compared with two conventional composites (Tetric Flow [TF], Filtek Supreme Ultra [FS]). Linear polymerization shrinkage and polymerization shrinkage stress were each measured with custom-made devices. To evaluate DOC, the composite specimen was prepared using a mold with a hole of 4 mm depth and 4 mm internal diameter. The hole was bulk filled with each of the six composites and light cured for 20 seconds, followed by 24 hours of water storage. The surface hardness was measured on the top and the bottom using a Vickers microhardness (HV) indenter. The linear polymerization shrinkage of the composite specimens after photo-initiation decreased in the following order: TF and GUF > VBF > SDR > FS and TBF (pcomposite groups decreased in the following order: GUF > TF and VBF > SDR > FS and TBF (pflowable (GUF) revealed limitations in polymerization shrinkage and DOC. Bulk-fill flowables (SDR and VBF) were properly cured in 4-mm bulk, but they shrank more than the conventional nonflowable composite. A bulk-fill nonflowable (TBF) showed comparable shrinkage to the conventional nonflowable composite, but it was not sufficiently cured in the 4-mm bulk.

  10. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  11. Comparing marginal microleakage of three Bulk Fill composites in Class II cavities using confocal microscope: An in vitro study

    Directory of Open Access Journals (Sweden)

    Manne Udaya Swapna

    2015-01-01

    Full Text Available Aim: This study aims to evaluate and compare microleakage at the occlusal wall and cervical wall in Class II cavities restored with one SonicFill Bulk Fill composite and two conventional Bulk Fill composites. Materials and Methods: Thirty freshly extracted teeth were divided into three groups of 10 teeth each. Standardized Class II cavities were made on the mesial and distal surfaces of each tooth and restored using SonicFill Bulk Fill composite and two conventional Bulk Fill composites, Tetric Evo Ceram, and X-tra fil. After storage, thermocycling and immersion in 0.6% rhodamine dye solution specimens were sectioned and evaluated for microleakage at the occlusal and cervical walls using confocal microscope. Statistical Analysis Used: Kruskal-Wallis test, Wilcoxon Signed-Rank test and Mann-Whitney U-test. Results: The results demonstrated that in the occlusal wall and cervical wall, SonicFill Bulk Fill composite, showed significantly less marginal microleakage than the other groups. Conclusion: Based on the results of this study, SonicFill Bulk Fill composite showed less microleakage than the other conventional Bulk Fill composites.

  12. Prediction and improvement of the solid particles transfer rate for the bulk handing system design of offshore drilling vessels

    Directory of Open Access Journals (Sweden)

    Mincheol Ryu

    2015-11-01

    Full Text Available Numerous experiments with a scaled pilot facility were carried out to compare the relative bulk transfer performance of three special devices for applications to drilling systems. The pipe diameter for bulk transportation was 3 in., which corresponds to around half of the actual system dimensions. Two different pressures, 3 and 4 bar, were considered to check the relative performance under different pressure conditions at a bulk storage tank. And to make a practical estimation method of the bulk transfer rate at the early design stages of the bulk handling system, a series of experiments were conducted for real scaled bulk handing systems of two drilling vessels. The pressure drops at each pipe element as well as the bulk transfer rates were measured under different operating conditions. Using the measured results, the friction factor for each pipe element was calculated and a procedure for transfer rate estimation was developed. Compared to the measured transfer rate results for other drilling vessels, the estimated transfer rates were within a maximum 15% error bound.

  13. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled...

  14. Bulk solitary waves in elastic solids

    Science.gov (United States)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  15. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  16. Aflatoxins & Safe Storage

    Directory of Open Access Journals (Sweden)

    Philippe eVillers

    2014-04-01

    Full Text Available The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb before versus after multi-month storage of such crops as maize, rice and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field versus after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described.

  17. Storage, transportation, and atomization of CWF for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Grimanis, M.P.; Breault, R.W. (TECOGEN, Inc., Waltham, MA (United States)); Smit, F.J.; Jha, M.C. (AMAX Research and Development Center, Golden, CO (United States))

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  18. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  19. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  20. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  1. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  2. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  3. Tiered Storage For LHC

    CERN Document Server

    CERN. Geneva; Hanushevsky, Andrew

    2012-01-01

    For more than a year, the ATLAS Western Tier 2 (WT2) at SLAC National Accelerator has been successfully operating a two tiered storage system based on Xrootd's flexible cross-cluster data placement framework, the File Residency Manager. The architecture allows WT2 to provide both, high performance storage at the higher tier to ATLAS analysis jobs, as well as large, low cost disk capacity at the lower tier. Data automatically moves between the two storage tiers based on the needs of analysis jobs and is completely transparent to the jobs.

  4. Energy Storage Criteria Handbook.

    Science.gov (United States)

    1982-10-01

    using latent heat storage , as are the more elaborate simulation methods such as TRNSYS . I 0 S 168 7.6 Symbols Used Main Symbols Cp heat capacity in Btu... Storage Purpose Review chapter 7, read section 14.1.1, and for more precise calcula- tions, refer to DOE-I or TRNSYS . A simpler method of analyzing...with sensible heat storage . An analysis method such as TRNSYS , DOE-I or f-Chart would be used to estimate the system performance. System performance

  5. Delayed Instantiation Bulk Operations for Management of Distributed, Object-Based Storage Systems

    Science.gov (United States)

    2009-08-01

    emulate NVRAM , and this area serves as a staging area for dirty data. This model follows that of high-performance production systems that actually...contain NVRAM (with data persistence across reboots) for staging dirty data [26, 54]. The NFS server considers data stably stored once a write oper

  6. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  7. Hydrogen in Bulk Metallic Glasses: Storage Potential and Effects on Structure

    Science.gov (United States)

    2007-11-02

    we do not have at Brown University. We however located one such piece of equipment at HRL Laboratories in Malibu, CA and Dr. John Vajo from HRL has...hydrogenation kinetics was examined. For this, as previously mentioned, specimens were shipped to Dr. John Vajo of HRL Laboratories in Malibu, CA. The...and W.L. Johnson, Jour. Appl. Phys., 78, 6514 (1995). 32. S.C. Glade , J.F. Loffler, S. Bossuyt and W.L. Johnson, Jour. Appl. Phys., 89, 1573 (2001). 33. W.L. Johnson, private communications.

  8. Bulk locality and boundary creating operators

    Science.gov (United States)

    Nakayama, Yu; Ooguri, Hirosi

    2015-10-01

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary di-latation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  9. Bulk Locality and Boundary Creating Operators

    CERN Document Server

    Nakayama, Yu

    2015-01-01

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  10. Bulk locality and boundary creating operators

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2015-10-19

    We formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary dilatation obey free field equations in AdS and that incorporating bulk interactions require their superpositions. We also comment on the recent proposals by Kabat et al., and by H. Verlinde.

  11. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  13. Portable design rules for bulk CMOS

    Science.gov (United States)

    Griswold, T. W.

    1982-01-01

    It is pointed out that for the past several years, one school of IC designers has used a simplified set of nMOS geometric design rules (GDR) which is 'portable', in that it can be used by many different nMOS manufacturers. The present investigation is concerned with a preliminary set of design rules for bulk CMOS which has been verified for simple test structures. The GDR are defined in terms of Caltech Intermediate Form (CIF), which is a geometry-description language that defines simple geometrical objects in layers. The layers are abstractions of physical mask layers. The design rules do not presume the existence of any particular design methodology. Attention is given to p-well and n-well CMOS processes, bulk CMOS and CMOS-SOS, CMOS geometric rules, and a description of the advantages of CMOS technology.

  14. Fully antisymmetrised dynamics for bulk fermion systems

    CERN Document Server

    Vantournhout, Klaas

    2011-01-01

    The neutron star's crust and mantel are typical examples of non-uniform bulk systems with spacial localisations. When modelling such systems at low temperatures, as is the case in the crust, one has to work with antisymmetrised many-body states to get the correct fermion behaviour. Fermionic molecular dynamics, which works with an antisymmetrised product of localised wave packets, should be an appropriate choice. Implementing periodic boundary conditions into the fermionic molecular dynamics formalism would allow the study of the neutron star's crust as a bulk quantum system. Unfortunately, the antisymmetrisation is a non-local entanglement which reaches far out of the periodically repeated unit cell. In this proceeding, we give a brief overview how periodic boundary conditions and fermionic molecular dynamics can be combined without truncating the long-range many-body correlation induced by the antisymmetry of the many-body state.

  15. Large bulk Micromegas detectors for TPC applications

    CERN Document Server

    Anvar, S; Boyer, M; Beucher, J; Calvet, D; Colas, P; De La Broise, X; Delagnes, E; Delbart, A; Druillole, F; Emery, S; Giganti, C; Giomataris, I; Mazzucato, E; Monmarthe, E; Nizery, F; Pierre, F; Ritou, J L; Sarrat, A; Zito, M; Catanesi, M G; Radicioni, E; De Oliveira, R; Blondel, A; Di Marco, M; Ferrere, D; Perrin, E; Ravonel, M; Jover, G; Lux, T; Rodriguez, A Y; Sanchez, F; Cervera, A; Hansen, C; Monfregola, L

    2009-01-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors () and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved.

  16. Bulk micromegas detectors for large TPC applications

    CERN Document Server

    Bouchez, J; Cavata, Ch; Colas, P; De La Broise, X; Delbart, A; Giganon, Arnaud; Giomataris, Ioanis; Graffin, P; Mols, J Ph; Pierre, F; Ritou, J L; Sarrat, A; Virique, E; Zito, M; Radicioni, E; De Oliveira, R; Dumarchez, J; Abgrall, N; Bene, P; Blondel, A; Cervera-Villanueva, Anselmo; Ferrère, D; Maschiocchi, F; Perrin, E; Richeux, J P; Schroeter, R; Jover, G; Lux,; Rodriguez, A Y; Sánchez, F

    2007-01-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved.

  17. Effective pure states for bulk quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Chuang, I.; Laflamme, R.

    1997-11-01

    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.

  18. Modeling direct interband tunneling. I. Bulk semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  19. Towards a reconstruction of general bulk metrics

    Science.gov (United States)

    Engelhardt, Netta; Horowitz, Gary T.

    2017-01-01

    We prove that the metric of a general holographic spacetime can be reconstructed (up to an overall conformal factor) from distinguished spatial slices—‘light-cone cuts’—of the conformal boundary. Our prescription is covariant and applies to bulk points in causal contact with the boundary. Furthermore, we describe a procedure for determining the light-cone cuts corresponding to bulk points in the causal wedge of the boundary in terms of the divergences of correlators in the dual field theory. Possible extensions for determining the conformal factor and including the cuts of points outside of the causal wedge are discussed. We also comment on implications for subregion/subregion duality.

  20. Metal reduction at bulk chemical filtration

    Science.gov (United States)

    Umeda, Toru; Daikoku, Shusaku; Tsuzuki, Shuichi; Murakami, Tetsuya

    2017-03-01

    OK73 thinner and cyclohexanone, both of which were spiked with metals were passed through Nylon 6,6 filter, varying flow rate, which include the conditions of both point-of-use and bulk filtrations. The influent and effluent metal concentrations were measured using ICP-MS for metal removal efficiency of the filtration. As a result, removal efficiency for some metals descended depending on the flow rate, while others maintained. Slower flow rate is recommended to maintain low metal concentration in bulk filtration based on the result. Metals in cyclohexanone were reduced at higher efficiency than in OK73 thinner, agrees with a metal removal model of hydrophilic adsorbent in organic solvent, evidenced in our previous paper. Further, metal reduction on 300 mm φ Si wafer after coating organic solvents with Nylon 6,6 filtration was evidenced with TREX analysis.

  1. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  2. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  3. Dissolution of bulk specimens of silicon nitride

    Science.gov (United States)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  4. Raman characterization of bulk ferromagnetic nanostructured graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)

    2012-08-15

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  5. On bulk viscosity and moduli decay

    OpenAIRE

    M. Laine

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on whic...

  6. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of bulk viscosity on cosmological evolution

    CERN Document Server

    Pimentel, L O; Pimentel, L O; Diaz-Rivera, L M

    1994-01-01

    Abstract:The effect of bulk viscisity on the evolution of the homogeneous and isotropic cosmological models is considered. Solutions are found, with a barotropic equation of state, and a viscosity coefficient that is proportional to a power of the energy density of the universe. For flat space, power law expansions, related to extended inflation are found as well as exponential solutions, related to old inflation; also a solution with expansion that is an exponential of an exponential of the time is found.

  9. Modeling of Microimprinting of Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    Ming CHENG; John A. Wert

    2006-01-01

    A finite element analysis (FEA) model has been developed to analyze microimprinting of bulk metallic glasses (BMG) near the glass transition temperature (Tg). The results reveal an approximately universal imprinting response for BMG, independent of surface feature length scale. The scale-independent nature of BMG imprinting derives from the flow characteristics of BMG in the temperature range above Tg. It also shows that the lubrication condition has a mild influence on BMG imprinting in the temperature range above Tg.

  10. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    Science.gov (United States)

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (pflowable composites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (pflowable composites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  11. Wet storage integrity update

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  12. Memory mass storage

    CERN Document Server

    Campardo, Giovanni; Iaculo, Massimo

    2011-01-01

    Covering all the fundamental storage technologies such as semiconductor, magnetic, optical and uncommon, this volume details their core characteristics. In addition, it includes an overview of the 'biological memory' of the human brain and its organization.

  13. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  14. Storage: Asset or albatross?

    Energy Technology Data Exchange (ETDEWEB)

    Peldner, P.J. [Tejas Power Corp., Houston, TX (United States)

    1994-12-31

    Development of storage was originally intended to: act as a surrogate for transportation capacity and capture seasonal commodity differentials. Historically, storage was developed by the pipeline companies as a means to minimize capital expenditures in terms of long haul transportation. By building storage, gas could be transported to the market are and stored using available transportation capacity when load requirements were down in the summer, then withdrawn during the winter season without requiring additional transportation capacity to be built. With the advent of deregulation, gas prices were no longer fixed with respect to time. Due to the seasonal demand of gas, there developed a fairly predictable and very consistent corresponding seasonality to the pricing of natural gas. With this phenomenon, seasonal storage developed an added local distribution companies.

  15. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  16. Underground pumped hydroelectric storage

    Science.gov (United States)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  17. Bulk viscous cosmology in early Universe

    Indian Academy of Sciences (India)

    C P Singh

    2008-07-01

    The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein's field equations are solved by using `gamma-law' equation of state = ( - 1)ρ, where the adiabatic parameter gamma () depends on the scale factor of the model. The `gamma' function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

  18. Pseudo-Riemannian Universe from Euclidean bulk

    CERN Document Server

    Vasilić, Milovan

    2015-01-01

    I develop the idea that our world is a brane-like object embedded in Euclidean bulk. In its ground state, the brane constituent matter is assumed to be homogeneous and isotropic, and of negligible influence on the bulk geometry. No action functional is initially specified. Instead, the brane dynamics is derived from the universally valid stress-energy conservation equations. The present work studies the cosmology of a $3$-sphere in the $5$-dimensional Euclidean bulk. It is shown that the conventional equation of state $p=\\alpha\\rho$ is universal in the sector of small energy densities, and so is the resulting brane dynamics. The inequality $\\alpha<0$ is found to be a necessary condition for the existence of a stable ground state of the Universe. It is demonstrated that the generic braneworld physics rules out the Big Bang cosmology, and in that matter, any cosmology of finite lifetime. I also demonstrate that stable brane vibrations satisfy Klein-Gordon-like equation with an effective metric of Minkowski s...

  19. Molecular imprinting of bulk, microporous silica

    Science.gov (United States)

    Katz, Alexander; Davis, Mark E.

    2000-01-01

    Molecular imprinting aims to create solid materials containing chemical functionalities that are spatially organized by covalent or non-covalent interactions with imprint (or template) molecules during the synthesis process. Subsequent removal of the imprint molecules leaves behind designed sites for the recognition of small molecules, making the material ideally suited for applications such as separations, chemical sensing and catalysis. Until now, the molecular imprinting of bulk polymers and polymer and silica surfaces has been reported, but the extension of these methods to a wider range of materials remains problematic. For example, the formation of substrate-specific cavities within bulk silica, while conceptually straightforward, has been difficult to accomplish experimentally. Here we describe the imprinting of bulk amorphous silicas with single aromatic rings carrying up to three 3-aminopropyltriethoxysilane side groups; this generates and occupies microporosity and attaches functional organic groups to the pore walls in a controlled fashion. The triethoxysilane part of the molecules' side groups is incorporated into the silica framework during sol-gel synthesis, and subsequent removal of the aromatic core creates a cavity with spatially organized aminopropyl groups covalently anchored to the pore walls. We find that the imprinted silicas act as shape-selective base catalysts. Our strategy can be extended to imprint other functional groups, which should give access to a wide range of functionalized materials.

  20. Bulk Higgs with a heavy diphoton signal

    Science.gov (United States)

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2017-02-01

    We consider scenarios of warped extra dimensions with all matter fields in the bulk and in which both the hierarchy and the flavor puzzles of the Standard Model are addressed. Inspired by the puzzling excess of diphoton events at 750 GeV reported in the early LHC Run II data (since then understood as a statistical excess), we consider here the general question as to whether the simplest extra-dimensional extension of the Standard Model Higgs sector, i.e., a five-dimensional bulk Higgs doublet, can lead to an intermediate mass resonance (between 500 GeV and 1.5 TeV) of which the first signature would be the presence of diphoton events. This surprising phenomenology can happen if the resonance is the lightest C P -odd state coming from the Higgs sector. No new matter content is required, the only new ingredient being the presence of (positive) brane localized kinetic terms associated to the five-dimensional bulk Higgs (which reduce the mass of the C P -odd states). Production and decay of this resonance can naturally give rise to observable diphoton signals, keeping dijet production under control, with very low ZZ and WW signals and with a highly reduced top pair production in an important region of parameter space. We use the 750 GeV excess as an example case scenario.

  1. Bulk Rashba Semiconductors and Related Quantum Phenomena.

    Science.gov (United States)

    Bahramy, Mohammad Saeed; Ogawa, Naoki

    2017-03-29

    Bithmuth tellurohalides BiTeX (X = Cl, Br and I) are model examples of bulk Rashba semiconductors, exhibiting a giant Rashba-type spin splitting among their both valence and conduction bands. Extensive spectroscopic and transport experiments combined with the state-of-the-art first-principles calculations have revealed many unique quantum phenomena emerging from the bulk Rashba effect in these systems. The novel features such as the exotic inter- and intra-band optical transitions, enhanced magneto-optical response, divergent orbital dia-/para-magnetic susceptibility and helical spin textures with a nontrivial Berry's phase in the momentum space are among the salient discoveries, all arising from this effect. Also, it is theoretically proposed and indications have been experimentally reported that bulk Rashba semiconductors such as BiTeI have the capability of becoming a topological insulator under the application of a hydrostatic pressure. Here, we overview these studies and show that BiTeX are an ideal platform to explore the next aspects of quantum matter, which could ultimately be utilized to create spintronic devices with novel functionalities.

  2. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  3. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  4. Storage of cell lines.

    Science.gov (United States)

    Parker, Katharine A

    2011-01-01

    The successful storage of cell lines depends upon many factors, including the condition of the cells to be frozen and the experience of the operator. Attempting to freeze down unhealthy, contaminated or poorly labelled cells can have huge implications for a research laboratory. This chapter outlines the importance of good record keeping, vigilant monitoring, aseptic technique, and high-quality reagents in the successful storage and downstream propagation of cell lines.

  5. Cryptographic Cloud Storage

    Science.gov (United States)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  6. Electrochemical Energy Storage Branch

    Science.gov (United States)

    1985-01-01

    The activities of the Electrochemical Energy Storage Branch are highlighted, including the Technology Base Research and the Exploratory Technology Development and Testing projects within the Electrochemical Energy Storage Program for the 1984 fiscal year. General Headquarters activities are presented first; and then, a summary of the Director Controlled Milestones, followed by other major accomplishments. A listing of the workshops and seminars held during the year is also included.

  7. Distributed Storage Allocation Problems

    OpenAIRE

    Leong, Derek; Dimakis, Alexandros G.; Ho, Tracey

    2009-01-01

    We investigate the problem of using several storage nodes to store a data object, subject to an aggregate storage budget or redundancy constraint. It is challenging to find the optimal allocation that maximizes the probability of successful recovery by the data collector because of the large space of possible symmetric and nonsymmetric allocations, and the nonconvexity of the problem. For the special case of probability-l recovery, we show that the optimal allocatio...

  8. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study

    OpenAIRE

    Wagemans, R.W.P.; van Lenthe, J.H.; de Jongh, P.E.; van Dillen, A.J.; de Jong, K. P.

    2005-01-01

    Magnesium hydride is cheap and contains 7.7 wt % hydrogen, making it one of the most attractive hydrogen storage materials. However, thermodynamics dictate that hydrogen desorption from bulk magnesium hydride only takes place at or above 300 degrees C, which is a major impediment for practical application. A few results in the literature, related to disordered materials and very thin layers, indicate that lower desorption temperatures are possible. We systematically investigated the effect of...

  9. Secure Storage Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  10. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite.

    Science.gov (United States)

    Theobaldo, Jéssica Dias; Aguiar, Flávio Henrique Baggio; Pini, Núbia Inocencya Pavesi; Lima, Débora Alves Nunes Leite; Liporoni, Priscila Christiane Suzy; Catelan, Anderson

    2017-01-01

    The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC), microhardness (KHN), plasticization (P), and depth of polymerization (DP) of a bulk fill composite. Forty disc-shaped samples (n = 5) of a bulk fill composite were prepared (5 × 4 mm thick) and randomly divided into 4 groups according to light-curing unit (quartz-tungsten-halogen [QTH] or light-emitting diode [LED]) and preheating temperature (23 or 54 °C). A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey's test (α = 0.05). Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill. Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated.

  11. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  12. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    Science.gov (United States)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  13. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Uranaka, T.; Tsuji, K. [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  14. Present status of bulk high temperature superconductors; Baruku koonchodendotai kaihatsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masato [Superconductivity Research Laboratory, Tokyo (Japan). Division 3

    1999-03-25

    Recent advancement in materials processing enabled us to grow large single-grain bulk RE-Ba-Cu-O superconductors (RE: rate earth elements) with high critical current densities. These superconductors can exhibit a large electromagnetic force with the interaction of external magnetic fields. Various devices have been developed by utilizing such a force: magnetic bearings, flywheels for energy storage, load transport, hysteresis motors, and several levitation devices. A large magnetic field can also be trapped by bulk superconductors, which can function as a quasi-permanent magnet. Trapped field values have already reached 10 T, thus leading to many novel applications of high trapped field magnets. The final target will be a second-generation Maglev train. (author)

  15. Entropy, pricing and productivity of pumped-storage

    Science.gov (United States)

    Karakatsanis, Georgios; Tyralis, Hristos; Tzouka, Katerina

    2016-04-01

    Pumped-storage constitutes today a mature method of bulk electricity storage in the form of hydropower. This bulk electricity storability upgrades the economic value of hydropower as it may mitigate -or even neutralize- stochastic effects deriving from various geophysical and socioeconomic factors, which produce numerous load balance inefficiencies due to increased uncertainty. Pumped-storage further holds a key role for unifying intermittent renewable (i.e. wind, solar) units with controllable non-renewable (i.e. nuclear, coal) fuel electricity generation plants into integrated energy systems. We develop a set of indicators for the measurement of performance of pumped-storage, in terms of the latter's energy and financial contribution to the energy system. More specifically, we use the concept of entropy in order to examine: (1) the statistical features -and correlations- of the energy system's intermittent components and (2) the statistical features of electricity demand prediction deviations. In this way, the macroeconomics of pumped-storage emerges naturally from its statistical features (Karakatsanis et al. 2014). In addition, these findings are combined to actual daily loads. Hence, not only the amount of energy harvested from the pumped-storage component is expected to be important, but the harvesting time as well, as the intraday price of electricity varies significantly. Additionally, the structure of the pumped-storage market proves to be a significant factor as well for the system's energy and financial performance (Paine et al. 2014). According to the above, we aim at postulating a set of general rules on the productivity of pumped-storage for (integrated) energy systems. Keywords: pumped-storage, storability, economic value of hydropower, stochastic effects, uncertainty, energy systems, entropy, intraday electricity price, productivity References 1. Karakatsanis, Georgios et al. (2014), Entropy, pricing and macroeconomics of pumped-storage systems

  16. A multidisciplinary combinatorial approach for tuning promising hydrogen storage materials towards automotive applications.

    Science.gov (United States)

    Amieiro-Fonseca, A; Ellis, S R; Nuttall, C J; Hayden, B E; Guerin, S; Purdy, G; Soulié, J P; Callear, S K; Culligan, S D; David, W I F; Edwards, P P; Jones, M O; Johnson, S R; Pohl, A H

    2011-01-01

    HyStorM is a multidisciplinary hydrogen-storage project aiming to synthesise and tune materials hydrogen storage properties for automotive applications. Firstly, unique high-throughput combinatorial thin-film technologies are used to screen materials' hydrogen storage properties. Then promising thin-film candidate compositions are synthesised and examined in the bulk. In this paper, we report on our results within the ternary compositions Mg-Ti-B and Ca-Ti-B. Primary screening of the Mg-Ti-B ternary identified a high capacity hotspot corresponding to Mg0.36Ti0.06B0.58, with 10.6 wt% H2 capacity. Partial reversibility has been observed for this material in the thin-film. Bulk Ti-doped Mg(BH4)2 composites show rehydrogenation to MgH2 under the conditions used. The synthesised thin-film Ca-Ti-B ternary showed only low hydrogen storage capacities. In the bulk, Ti-doping experiments on Ca(BH4)2 demonstrated reversible storage capacities up to 5.9 wt% H2. Further characterisation experiments are required to decipher the role of the Ti-dopant in these systems in both films and in the bulk.

  17. Long-term storage of irradiated potatoes for processing use, 4. Suitable storage conditions and potato chips processing test

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Shohei; Umeda, Keiji; Kameyama, Kenji

    1984-03-01

    In order to develop suitable storage conditions in potatoes for processing use, non-irradiated and irradiated potatoes var. Norin No. 1 were stored in containers and in bulk. The contents of reducing sugars were determined and the properties of potato chips were analysed. Reconditioning at 10 deg C and RH 90 % for 4 weeks during an early period of dormancy lowered the content of reducing sugars remarkably in both the non-irradiated and irradiated potatoes which were either stored in containers or in bulk. The optimum conditions for the storage of potatoes were 8 deg C and RH 90 %, which enabled the potatoes to retain their hardness while the content reducing sugars decreased. The potatoes stored under the above conditions gave chips with a fairly good color. In contrast, the non-irradiated potatoes stored for a period of 6 months or longer sprouted and aged, resulting in chips with unsatisfactory color. It was found necessary to use potatoes with low contents of both amino acids and reducing sugars to avoid the browning of chips. Bulk storage which was found to be effective for air circulation through potatoes caused creeping phenomenon. (author).

  18. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  19. Storage basin and their geotechnical challenges; Speicherbecken und ihre geotechnischen Herausforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Messerklinger, Sophie [Poeyry Energy AG, Zuerich (Switzerland)

    2012-11-01

    The contribution under consideration focuses on three topics being relevant for storage basins with bulk dams as a border: (1) The earthquake safety and the evidence by block sliding; (2) the erosion safety and dimensioning of critical filter materials; (3) the storage room density and possible approach based on two concepts. Design examples or recent events of damage are presented in order to demonstrate the relevance of the topics.

  20. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  1. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  2. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  3. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  4. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  5. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Daniel E. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Hubble Parameter in Bulk Viscous Cosmology

    CERN Document Server

    Tawfik, A; Wahba, M

    2009-01-01

    We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.

  8. Fabrication of Porous Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Keqiang QIU; Yinglei REN

    2005-01-01

    An open-cell porous bulk metallic glass (BMG)with a diameter of at least 6 mm was fabricated by using an U-turn quartz tube and infiltration casting aroundsoluble NaCl placeholders. The pore formation and glassy structure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the pores or cells are connected to each other and the specimenis composed of a mostly glassy phase.This paper provides a suitable method for fabrication of porous BMG and BMG with larger size in diameter.

  9. Bulk metamaterials: Design, fabrication and characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Alabastri, Alessandro

    2009-01-01

    Bulk metamaterials claim a lot of attention worldwide. We report about our activity and advances in design, fabrication and characterization of metal-dielectric composites with three-dimensional lattices. The nomenclature of designs exhibiting negative index behaviour in the near infrared includes...... the generic family of so-called nested structures. Such designs allow keeping the cubic symmetry of the unit cell along with the electric and magnetic responses showed by different parts in separate. For extraction of effective parameters we employ homemade wave propagation retrieving method free from...

  10. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  11. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes

    2014-01-01

    loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...

  12. New Class of Plastic Bulk Metallic Glass

    Science.gov (United States)

    Chen, L. Y.; Fu, Z. D.; Zhang, G. Q.; Hao, X. P.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Franz, H.; Liu, Y. G.; Xie, H. S.; Zhang, S. L.; Wang, B. Y.; Zeng, Y. W.; Jiang, J. Z.

    2008-02-01

    An intrinsic plastic Cu45Zr46Al7Ti2 bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  13. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  14. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  15. Binary Cu-Zr Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Mei-Bo; ZHAO De-Qian; PAN Ming-Xiang; WANG Wei-Hua

    2004-01-01

    @@ We report that bulk metallic glasses (BMGs) can be produced up to 2 mm by a copper mould casting in Cux Zr1-x binary alloy with a wide glass forming composition range (45 < x < 60 at.%). We find that the formation mechanism for the binary Cu-Zr binary BMG-forming alloy is obviously different from that of the intensively studied multicomponent BMGs. Our results demonstrate that the criteria for the multicomponent alloys with composition near deep eutectic and strong liquid behaviour are no longer the major concern for designing BMGs.

  16. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  17. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Lipinska, Kris [PI; Hemmers, Oliver

    2013-02-17

    directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  18. Storage duration effect on deformation recovery of repacked alginates

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2009-09-01

    Full Text Available Background: Manufacturers supply alginate impression materials as a powder that is packaged in bulk and in individual container. Some Indonesian dental suppliers often repackage the bulk alginate into individual plastic packages which are not tied tightly and stored in the display room without air conditioner. It is known that critical factors to the shelf life of alginate includer avoidance of moisture contamination which may lead to premature setting of the alginate and avoidance of high temperature which may cause depolymerization of the alginate. Purpose: The aim of this study was to determine storage duration effect of repacked alginates on deformation recovery. Methods: Two brands of alginates (Tulip®TU, and Aroma Fine DF III®AF were repacked into 120 plastic containers. The samples were stored in room condition (temperature 29° C ± 1° C, relative humidity 60% ± 10% for 1, 2, 3, 4 and 5 weeks. The alginates setting time and recovery from deformation were measured according to the ANSI/ADA specification number 18 (ISO 1563. result: The results revealed that there was decreased setting time during 5 weeks but there was slight decreased in deformation recovery after 3 weeks storage. The ANOVA showed there was no significant difference of alginates deformation recovery among the storage times (p > 0.05. Conclusion: Storage duration of repacked alginates in plastic containers during 5 weeks in room condition do not influence the alginate deformation recovery.

  19. Improved metal hydride technology for the storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Ramachandran, S. [Energy Conversion Devices, Inc., Troy, MI (United States)] [and others

    1995-09-01

    Low cost, high density storage of hydrogen will remove the most serious barrier to large-scale utilization of hydrogen as a non-polluting, zero-emission fuel. An important challenge for the practical use of Mg-based, high capacity hydrogen storage alloys has been the development of a low-cost, bulk production technique. Two difficulties in preparation of Mg-based alloys are the immiscibility of Mg with many transition metals and the relatively high volatility of Mg compared to many transition metals. These factors preclude the use of conventional induction melting techniques for the Mg-based alloy preparation. A mechanical alloying technique, in which Mg immiscibility and volatility do not present a problem, was developed and shows great promise for production of Mg-based alloys. A number of Mg-based alloys were prepared via modified induction melting and mechanical alloying methods. The alloys were tested for gas phase hydrogen storage properties, composition, structure and morphology. The mechanically alloyed samples are multi-component, multi-phase, highly disordered materials in their as-prepared state. These unoptimized alloys have shown reversible H-storage capacity of more than 5 wt.% hydrogen. After 2000 absorption/desorption cycles, the alloys show no decline in storage capacity or desorption kinetics. The alloys have also demonstrated resistance to CH{sub 4} and CO poisoning in preliminary testing. Upon annealing, with an increase in crystallinity, the H-storage capacity decreases, indicating the importance of disorder.

  20. Constructing local bulk observables in interacting AdS/CFT

    CERN Document Server

    Kabat, Daniel; Lowe, David A

    2011-01-01

    Local operators in the bulk of AdS can be represented as smeared operators in the dual CFT. We show how to construct these bulk observables by requiring that the bulk operators commute at spacelike separation. This extends our previous work by taking interactions into account. Large-N factorization plays a key role in the construction. We show diagrammatically how this procedure is related to bulk Feynman diagrams.

  1. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.; Hassenzahl, William V. (, - Advanced Energy Analysis, Piedmont, CA)

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  2. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation......, along with protocols for using the encoding scheme in practice. Protocols for cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not delete their data illegitimately. Current solutions, e.g., based...

  3. Evolution of clustered storage

    CERN Document Server

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  4. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  5. A Batch Feeder for Inhomogeneous Bulk Materials

    Science.gov (United States)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  6. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  7. Enhancing bulk superconductivity by engineering granular materials

    Science.gov (United States)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  8. Bulk nanocrystalline Al prepared by cryomilling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bulk nanocrystalline Al was fabricated by mechanically milling at cryogenic temperature (cryomilling) and then by hot pressing in vacuum. By using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), the microstructure evolution of the material during cryomilling and consolidation was investigated. With increasing the milling time, the grain size decreased sharply and reduced to 42 nm when cryomilled for 12 h. The grains had grown up, and the columnar grain was formed under the hot pressing and extrusion compared with the cryomilled powders. The grain size of as-extruded specimen was approximately 300-500 nm. The reason of high thermal stability of this bulk was attributed primarily to the Zener pinning from the grain boundary of the AlN arising from cryomilling and the solute drag of the impurity. Tensile tests show that the strength of nanocrystalline Al is enhanced with decreasing grain size. The ultimate tensile strength and tensile elongation were 173 MPa and 17.5%, respectively. It appears that the measured high strength in the cryomilled Al is related to a grain-size effect, dispersion strengthening, and dislocation strengthening.

  9. Substantial bulk photovoltaic effect enhancement via nanolayering.

    Science.gov (United States)

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.

  10. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  11. 30 CFR 56.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 56.6802 Section 56.6802... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has been removed. Before welding...

  12. 30 CFR 57.6802 - Bulk delivery vehicles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bulk delivery vehicles. 57.6802 Section 57.6802...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle until the vehicle has been washed down and all explosive material has...

  13. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  14. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.

    Science.gov (United States)

    Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab

    2010-01-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

  15. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  16. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  17. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... Bulk MSDS Material Safety Data Sheet NCB National Cargo Bureau NEPA National Environmental Policy Act... material safety data sheet (MSDS) address some portions of proposed Sec. 148.60. We agree with the comment... in the form of an MSDS. e. One comment observed that, as proposed in the 1994 NPRM, Sec. 148.60(d...

  19. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all - perform

  20. Abstract Storage Devices

    CERN Document Server

    Koenig, Robert; Tessaro, Stefano

    2007-01-01

    A quantum storage device differs radically from a conventional physical storage device. Its state can be set to any value in a certain (infinite) state space, but in general every possible read operation yields only partial information about the stored state. The purpose of this paper is to initiate the study of a combinatorial abstraction, called abstract storage device (ASD), which models deterministic storage devices with the property that only partial information about the state can be read, but that there is a degree of freedom as to which partial information should be retrieved. This concept leads to a number of interesting problems which we address, like the reduction of one device to another device, the equivalence of devices, direct products of devices, as well as the factorization of a device into primitive devices. We prove that every ASD has an equivalent ASD with minimal number of states and of possible read operations. Also, we prove that the reducibility problem for ASD's is NP-complete, that t...

  1. NGLW RCRA Storage Study

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  2. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  3. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  4. Systems, distribution and storage

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmakis, A.; Nygaard Rasmussen, C.; Pensini, A.; Marra, F.; Guang Ya Yang

    2012-11-15

    Energy storage is as yet somewhat unprofitable due to its high capital costs and the immaturity of the technology. However, it shows great promise because of its expected ability to cut costs, deal with issues of excess energy supply from intermittent renewable sources, and capture profits from price arbitrage in electricity and heat markets. (LN)

  5. Costs of Archival Storage

    DEFF Research Database (Denmark)

    Nielsen, Anders Bo; Thirifays, Alex; Kejser, Ulla Bøgvad

    2012-01-01

    This paper presents an analysis of the cost of archival storage. The study is part of a project conducted by The Danish National Archives, The Royal Library, and The State and University Library to develop a generic cost model for digital preservation (CMDP). The purposes of the study were...

  6. Storage to Energy Calculator

    NARCIS (Netherlands)

    Taal, A.; Makkes, M.X.; Grosso, P.

    2014-01-01

    Computational and storage tasks can nowadays be offloaded among data centers, in order to optimize costs and or performance. We set out to investigate what are the environmental effects, namely the total CO2 emission, of such offloading. We built models for the various components present in these of

  7. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  8. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  9. Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping

    Directory of Open Access Journals (Sweden)

    Yusianto .

    2014-08-01

    Full Text Available Harvesting and pulping process of coffee cherry in the same day is inaccesible. Storage of coffee cherry before pulping was carried out incorrectly. Some storage treatments before pulping of Arabica coffee cherry had been examined at Indonesian Coffee and Cocoa Research Institute using Arabica coffee cherries from Andungsari Experimental Garden, Bondowoso, East Java. Treatments of the experiment were method and period of cherry storage. Methods of coffee cherry storage were put in plastic sacks; immerse in water, without water replacement; and immerse in water with daily water replacement. Period of coffee cherry storage were 0, 1, 2, 3, 4, 5, 6, and 7 days. After storage treatments, the coffee cherries were pulped, fermented, washed, sundried, and dehulled. The experiment were carried out using randomized block design with three replications. Observation of coffee cherry during storage periods was done on the physical and temperature. Observation of the green coffee were done on the color dan bulk density. The green coffee were roasted at medium roast level for sensory analysis. Observation of roasting profile were out-turn, bulk density and pH of roasted coffee. Sensory analysis used Specialty Coffee Association of America method. Methods and period of cherry storage before pulping significanly influence on the cherry color, parchment color, green coffee color, and the flavor profile of Arabica coffee. Color of dry parchment changed to be red-brown becouse of cherry immersed in water for two days or more. In plastic sacks, Arabica coffee cherry may be stored only for two days, but underwater with or without water replacement, should be not more than five days. Green and sensory quality of Arabica coffee will be deteriorated after five days storage underwater. Coffee cherry storage immerse in water with daily replacing water may improve sensory quality of Arabica coffee.Key word: Arabica coffe, storage, pulping, flavor, physical

  10. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  11. Silo Storage Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  12. A route to transparent bulk metals

    KAUST Repository

    Schwingenschlögl, Udo

    2012-07-23

    Hypothetical compounds based on a sapphire host are investigated with respect to their structural as well as electronic features. The results are obtained by electronic structure calculations within density functional theory and the generalized gradient approximation. A quarter of the Al atoms in Al 2O 3 is replaced by a 4d transition metal M ion, with d 0 to d 9 electronic configuration. We perform structure optimizations for all the compounds and analyze the electronic states. Due to the sizeable band gap of the Al 2O 3 host, we can identify promising candidates for transparent bulk metals. We explain the mechanisms leading to this combination of materials properties. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combustion of bulk titanium in oxygen

    Science.gov (United States)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  14. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  15. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  16. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-07-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  17. Organoboron polymers for photovoltaic bulk heterojunctions.

    Science.gov (United States)

    Cataldo, Sebastiano; Fabiano, Simone; Ferrante, Francesco; Previti, Francesco; Patanè, Salvatore; Pignataro, Bruno

    2010-07-15

    We report on the application of three-coordinate organoboron polymers, inherently strong electron acceptors, in flexible photovoltaic (PV) cells. Poly[(1,4-divinylenephenylene)(2,4,6-triisopropylphenylborane)] (PDB) has been blended with poly(3-hexylthiophene-2,5-diyl) (P3HT) to form a thin film bulk heterojunction (BHJ) on PET/ITO substrates. Morphology may be modulated to give a high percentage of domains (10-20 nm in size) allowing exciton separation. The photoelectric properties of the BHJs in devices with aluminium back electrodes were imaged by light beam induced current (LBIC) and light beam induced voltage (LBIV) techniques. Open circuit voltages, short circuit currents and overall external quantum efficiencies obtained are among the highest reported for all-polymer PV cells.

  18. New optical technique for bulk magnetostriction measurement

    CERN Document Server

    Samata, H; Uchida, T; Abe, S

    2000-01-01

    A new optical technique was applied to the measurement of magnetostriction in bulk samples. This technique utilizes an optical fiber bundle, AC-modulated light and lock-in detection. Deformation of the sample is determined from the ratio of the incident and reflected light intensities. Noise due to the instability of the light source is eliminated by obtaining the ratio of the incident and reflected light intensities, and the noise caused in the detector circuit can be reduced by lock-in detection. The performance of this method was characterized with a series of measurements using a gold film and crystal disks of pure iron and nickel. This technique offers a resolution of 0.5 nm and is sensitive enough to measure magnetostriction as small as 5x10 sup - sup 7 in 1 mm thick samples.

  19. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  20. On bulk viscosity and moduli decay

    CERN Document Server

    Laine, M

    2010-01-01

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, futhermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form.

  1. Bulk semiconducting scintillator device for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  2. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram...... range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  3. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  4. Bulk heterojunction solar cells of three polythienothiophenes

    Directory of Open Access Journals (Sweden)

    Elif Alturk Parlak

    2015-06-01

    Full Text Available Semiconducting conjugated copolymers poly(3-phenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh, poly(3-(4-methoxyphenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-OMe and poly(3-(4-N,N-dimethylaminophenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-N(CH 3 2, which were synthesized previously through Suzuki coupling method, were fabricated for solar cell applications. The devices had a structure of glass/ITO/PEDOT:PSS/polymer:PC61BM/Al. Bulk heterojunction photovoltaic cells were prepared as blends of PTTPh, PTTPh-OMe, PTTPh-N(CH 3 2 and PC61BM in a 1:1 ratio, which delivered power conversion efficiencies of 0.43%, 0.039% and 0.027%, respectively, without addition of additives or device optimization.

  5. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    Ernst Helmut Brandt

    2006-01-01

    The properties of the ideal periodic vortex lattice in bulk superconductors and in films of any thickness can be calculated from Ginzburg-Landau theory by an iteration method using Fourier series. The London theory yields general analytic expressions for the magnetic field and energy of arbitrary arrangements of straight or curved vortex lines. The elasticity of the vortex lattice is highly nonlocal. The magnetic response of superconductors of realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  6. Charm mass effects in bulk channel correlations

    CERN Document Server

    Burnier, Y

    2013-01-01

    The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.

  7. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  8. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R.; Yang, Fan

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  9. Holographic dictionary and defects in the bulk

    Science.gov (United States)

    Khramtsov, Mikhail

    2016-10-01

    We study the holographic dual of the AdS3 spacetime with a conical defect. We calculate the boundary two-point correlator using the holographic Gubser-Klebanov-Polyakov/Witten dictionary for a scalar field in the bulk. We consider the general case, when the conical defect breaks conformal symmetry at the boundary. The results are compared with previous studies based on the geodesic approximation. They are in good agreement for short correlators, and main discrepancy comes in the region of long correlations. It is shown that in the case when the spacetime is the AdS3/ℤN orbifold, both methods give the same result which also produces the result expected from the orbifold CFT.

  10. Anisotropy of transport in bulk Rashba metals

    Science.gov (United States)

    Brosco, Valentina; Grimaldi, Claudio

    2017-05-01

    The recent experimental discovery of three-dimensional (3D) materials hosting a strong Rashba spin-orbit coupling calls for the theoretical investigation of their transport properties. Here we study the zero-temperature dc conductivity of a 3D Rashba metal in the presence of static diluted impurities. We show that, at variance with the two-dimensional case, in 3D systems, spin-orbit coupling affects dc charge transport in all density regimes. We find in particular that the effect of spin-orbit interaction strongly depends on the direction of the current, and we show that this yields strongly anisotropic transport characteristics. In the dominant spin-orbit coupling regime where only the lowest band is occupied, the conductivity anisotropy is governed entirely by the anomalous component of the renormalized current. We propose that measurements of the conductivity anisotropy in bulk Rashba metals may give a direct experimental assessment of the spin-orbit strength.

  11. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  12. Moisture storage parameters of porous building materials as time-dependent properties

    Science.gov (United States)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    Three different types of bricks and two different types of sandstones are studied in terms of measurement moisture storage parameters for over-hygroscopic moisture area using pressure plate device. For researched materials, basic physical properties as bulk density, matrix density and total open porosity are determined. From the obtained data of moisture storage measurement, the water retention curves and curves of degree of saturation in dependence on suction pressure are constructed. Water retention curve (also called suction curve, capillary potential curve, capillary-pressure function and capillary-moisture relationship) is the basic material property used in models for simulation of moisture storage in porous building materials.

  13. Assessment of bioburden encapsulated in bulk materials

    Science.gov (United States)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  14. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  15. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  16. Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models

    Science.gov (United States)

    Qiao, J. C.; Pelletier, J. M.

    2012-08-01

    The mechanical relaxation behavior in a Zr55Cu30Ni5Al10 bulk metallic glass is investigated by dynamic mechanical analysis in both temperature and frequency domains. Master curves can be obtained for the storage modulus G' and for the loss modulus G'', confirming the validity of the time-temperature superposition principle. Different models are discussed to describe the main (α) relaxation, e.g., Debye model, Havriliak-Negami (HN) model, Kohlrausch-Williams-Watt (KWW) model, and quasi-point defects (QPDs) model. The main relaxation in bulk metallic glass cannot be described using a single relaxation time. The HN model, the KWW model, and the QPD theory can be used to fit the data of mechanical spectroscopy experiments. However, unlike the HN model and the KWW model, some physical parameters are introduced in QPD model, i.e., atomic mobility and correlation factor, giving, therefore, a new physical approach to understand the mechanical relaxation in bulk metallic glasses.

  17. Evaluation of the Radiopacities of Bulk-fill Restoratives Using Two Digital Radiography Systems.

    Science.gov (United States)

    Yasa, E; Yasa, B; Aglarci, O S; Ertas, E T

    2015-01-01

    This study investigated the radiopacity values of bulk-fill restoratives by using two digital radiography systems. Nine bulk-fill restoratives and a conventional composite were used in the study. Six disc-shaped specimens were prepared from each of these materials, three each at thicknesses of 1 mm and 2 mm, and tooth slices with these same thicknesses were obtained. As a control, an aluminum step wedge varying in thickness from 0.5 to 10 mm in was used. Three specimens of each of the materials, together with the tooth slice and the aluminum step wedge, were placed over a complementary metal oxide semiconductor (CMOS) sensor and a storage photostimulable phosphor (PPS) plate system and exposed using a dental x-ray unit. The images were analyzed using a software program to measure the mean gray values (MGVs). Five measurements were obtained from each of the restorative materials, the enamel, the dentin, and the stepwedge. The MGVs were converted to the equivalent aluminum thicknesses. Three-way analysis of variance (ANOVA) was used to determine the significance of the differences among the groups. A Tukey test was applied for pairwise comparisons (psystem showed significantly higher radiopacity values than the PSP system. In conclusion, all investigated bulk-fill restoratives passed the International Organization for Standardization and American National Standard Institute/American Dental Association requirements for radiopacity values when evaluated with the two digital radiography systems.

  18. Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries

    Science.gov (United States)

    Farokh Niaei, Amir H.; Hussain, Tanveer; Hankel, Marlies; Searles, Debra J.

    2017-03-01

    We present the results of a density functional theory study of sodium storage and mobility on graphdiyne (GDY) and consider the applicability of GDY intercalated with sodium (Na) as an anode material for rechargeable batteries. The maximum capacity, energy barriers for Na diffusion throughout the layers, and expansion of the layers due to Na insertion are determined. The calculations indicate that Na intercalates within the GDY bulk layers with a capacity of NaC5.14 without expansion (316 mA h g-1) and NaC2.57 with expansion of 28% (497 mA h g-1). The energy barrier for movement of Na in the slit pore formed by two GDY bulk layers is found to be 0.82 eV for bulk GDY with an AB-2 stacking, and the barrier for movement through a GDY sheet is found to be 0.12 eV. The barrier for movement in the slit pore formed by sheets becomes even lower for AB-3 stacking, with values of 0.68 and 0.40 eV found for different pathways. Movement from one GDY sheet to another for the AB-3 stacking also has a moderate energy of 0.37 eV. Therefore, GDY intercalated with Na is proposed to have potential as an anode material for rechargeable batteries.

  19. Distributed storage in the plane

    NARCIS (Netherlands)

    Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper

    2013-01-01

    We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can

  20. Distributed storage in the plane

    NARCIS (Netherlands)

    Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper

    2014-01-01

    We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can

  1. Distributed storage in the plane

    NARCIS (Netherlands)

    Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper

    2013-01-01

    We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can

  2. Distributed storage in the plane

    NARCIS (Netherlands)

    Altman, Eitan; Avrachenkov, Konstatin; Goseling, Jasper

    2014-01-01

    We consider storage devices located in the plane according to a general point process and specialize the results for the homogeneous Poisson process. A large data file is stored at the storage devices, which have limited storage capabilities. Hence, they can only store parts of the data. Clients can

  3. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  4. PC-Cluster based Storage System Architecture for Cloud Storage

    CERN Document Server

    Yee, Tin Tin

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

  5. Storage Area Networks and The High Performance Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, H; Graf, O; Fitzgerald, K; Watson, R W

    2002-03-04

    The High Performance Storage System (HPSS) is a mature Hierarchical Storage Management (HSM) system that was developed around a network-centered architecture, with client access to storage provided through third-party controls. Because of this design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to provide cost effective, large-scale storage systems and high performance global file access for clients. Key attributes of SAN file systems are found in HPSS today, and more complete SAN file system capabilities are being added. This paper traces the HPSS storage network architecture from the original implementation using HIPPI and IPI-3 technology, through today's local area network (LAN) capabilities, and to SAN file system capabilities now in development. At each stage, HPSS capabilities are compared with capabilities generally accepted today as characteristic of storage area networks and SAN file systems.

  6. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast at tempe......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  7. Nano-storage wires.

    Science.gov (United States)

    Lee, Dong Jun; Kim, Eunji; Kim, Daesan; Park, Juhun; Hong, Seunghun

    2013-08-27

    We report the development of "nano-storage wires" (NSWs), which can store chemical species and release them at a desired moment via external electrical stimuli. Here, using the electrodeposition process through an anodized aluminum oxide template, we fabricated multisegmented nanowires composed of a polypyrrole segment containing adenosine triphosphate (ATP) molecules, a ferromagnetic nickel segment, and a conductive gold segment. Upon the application of a negative bias voltage, the NSWs released ATP molecules for the control of motor protein activities. Furthermore, NSWs can be printed onto various substrates including flexible or three-dimensional structured substrates by direct writing or magnetic manipulation strategies to build versatile chemical storage devices. Since our strategy provides a means to store and release chemical species in a controlled manner, it should open up various applications such as drug delivery systems and biochips for the controlled release of chemicals.

  8. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  9. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

  10. Seed storage oil mobilization.

    Science.gov (United States)

    Graham, Ian A

    2008-01-01

    Storage oil mobilization starts with the onset of seed germination. Oil bodies packed with triacylglycerol (TAG) exist in close proximity with glyoxysomes, the single membrane-bound organelles that house most of the biochemical machinery required to convert fatty acids derived from TAG to 4-carbon compounds. The 4-carbon compounds in turn are converted to soluble sugars that are used to fuel seedling growth. Biochemical analysis over the last 50 years has identified the main pathways involved in this process, including beta-oxidation, the glyoxylate cycle, and gluconeogenesis. In the last few years molecular genetic dissection of the overall process in the model oilseed species Arabidopsis has provided new insight into its complexity, particularly with respect to the specific role played by individual enzymatic steps and the subcellular compartmentalization of the glyoxylate cycle. Both abscisic acid (ABA) and sugars inhibit storage oil mobilization and a substantial degree of the control appears to operate at the transcriptional level.

  11. Nanostructured conductive polymers for advanced energy storage.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-07

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.

  12. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  13. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  14. dCache,a Distributed Storage Data Cahing System

    Institute of Scientific and Technical Information of China (English)

    MichaelErns; CharlesWaldman; 等

    2001-01-01

    This article is about a piece of middle ware,allowing to convert a dump tape based Tertiary Storage System into a multi petabyte random access device with thousands of channels.Using typical caching mechanisms,the software optimizes the access to the underlying Storage System and makes better use of possibly expensive drives and robots or allows to integrate cheap and slow devices without introducing unacceptable performance degadation.In addition,using the standard NFS2 protocol,the dCache provides a unique view into the storage repository,hiding the physical location of the file data,cached or tape only.Bulk data transfer is supported through the kerberized FTP protocol and a C-API,providing the posix file access semantics,Dataset staging and disk space management is performed invisibly to the data clients.The project is a DESY,Fermilab joint effort to overcome limitations in the usage of tertiary storage resources common to many HEP labs.The distributed cache nodes may range from high performance SGI machines to commodity CERN Linux-IDE like file server models.Different cache nodes are assumed to have different affinities to particular storage groups or file sets.Affinities may be defined manually or are calculated by the dCache based on topology considerations.Cache nodes may have different disk space management policies to match the large variety of applications from raw data to user analysis data pools.

  15. Joining the petabyte club with direct attached storage

    Science.gov (United States)

    Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan

    2011-12-01

    Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and - due to the possibility to make use of the latest technology early - density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.

  16. Maui energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  17. Scalable cloud without dedicated storage

    Science.gov (United States)

    Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.

    2015-05-01

    We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.

  18. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  19. A CFT Perspective on Gravitational Dressing and Bulk Locality

    CERN Document Server

    Lewkowycz, Aitor; Verlinde, Herman

    2016-01-01

    We revisit the construction of local bulk operators in AdS/CFT with special focus on gravitational dressing and its consequences for bulk locality. Specializing to 2+1-dimensions, we investigate these issues via the proposed identification between bulk operators and cross-cap boundary states. We obtain explicit expressions for correlation functions of bulk fields with boundary stress tensor insertions, and find that they are free of non-local branch cuts but do have non-local poles. We recover the HKLL recipe for restoring bulk locality for interacting fields as the outcome of a natural CFT crossing condition. We show that, in a suitable gauge, the cross-cap states solve the bulk wave equation for general background geometries, and satisfy a conformal Ward identity analogous to a soft graviton theorem, Virasoro symmetry, the large N conformal bootstrap and the uniformization theorem all play a key role in our derivations.

  20. Bulk Glassy Alloys: Historical Development and Current Research

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2015-06-01

    Full Text Available This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.

  1. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  2. Finsler geometric perspective on the bulk flow in the universe

    CERN Document Server

    Cahng, Zhe; Wang, Sai

    2013-01-01

    Astronomical observations showed that there exists a bulk flow with peculiar velocities in the universe, which contradicts with the (\\Lambda)CDM model. The bulk flow reveals that the observational universe is anisotropic at large scales. In this paper, we propose a "wind" scenario to the bulk flow. Under the influence of the "wind", the spacetime metric could become a Finsler structure. By resolving the null geodesic equation, we obtain the modified luminosity distance, which has a dipolar form at the leading order. Thus, the "wind" describes well the bulk flow. In addition, we perform a least-(\\chi^2) fit to the data of type Ia supernovae (SNe Ia) in the Union2.1 compilation. The peculiar velocity of the bulk flow has an upper limit (v_{bulk}\\lesssim 4000 \\rm{km/s}), which is compatible with all the existing observational values.

  3. Material Profile Influences in Bulk-Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  4. Failure Prediction in Bulk Metal Forming Process

    Directory of Open Access Journals (Sweden)

    Ameen Topa

    2014-01-01

    Full Text Available An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE and smooth particle hydrodynamics (SPH formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation. However ALE method was able to pinpoint the location of the flaws.

  5. On methods of estimating cosmological bulk flows

    CERN Document Server

    Nusser, Adi

    2015-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, $\\bf B$, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of $\\bf B$ as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring $\\bf B$ for either of these definitions which coincide only for a constant velocity field. We focus on the Wiener Filtering (WF, Hoffman et al. 2015) and the Constrained Minimum Variance (CMV,Feldman et al. 2010) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute $\\bf B$ in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer $\\bf B$ directly from the observed velocities for the second definition of $\\bf B$. The WF ...

  6. Fault current limiter using bulk oxides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M. [Schneider Electric, Grenoble (France). Usine A3; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R

    1998-08-01

    We study the limitation possibilities of bulk Bi high T{sub c} materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.) 11 refs.

  7. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  8. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  9. Bulk viscous cosmology: statefinder and entropy

    CERN Document Server

    He, X

    2006-01-01

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...

  10. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  11. Thermodynamic properties of bulk and confined water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Università di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ≃ 225 K). The second, T{sup *} ∼ 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient α{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  12. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  13. Holographic Optical Data Storage

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  14. Bulk Extractor 1.4 User’s Manual

    Science.gov (United States)

    2013-08-01

    51 12 Related Reading 52 Appendices 54 A Output of bulk_extractor Help Command 54 v 1 Introduction 1.1 Overview of bulk_extractor bulk_extractor is a...10485760 Threads: 4 All data are read ; waiting for threads to finish... Time elapsed waiting for 1 thread to finish: (timeout in 60 min .) Time elapsed...anything but a[A-Z] = A to Z[A\\-Z]= A, Z, or hyphen (!)[A-Zaeiou] = capitalsor lowercase vowels [.+*?\\

  15. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  16. Locality, bulk equations of motion and the conformal bootstrap

    CERN Document Server

    Kabat, Daniel

    2016-01-01

    We develop an approach to construct local bulk operators in a CFT to order 1/N^2. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the "bulk bootstrap." We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions deter...

  17. Preliminary study of superconducting bulk magnets for Maglev

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  18. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  19. Advance Resource Provisioning in Bulk Data Scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improve the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.

  20. Bulk Vitrification Castable Refractory Block Protection Study

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  1. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  2. Silicon bulk micromachined hybrid dimensional artifact.

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  3. Color Stability of the Bulk-Fill Composite Resins with Different Thickness in Response to Coffee/Water Immersion

    Directory of Open Access Journals (Sweden)

    Sayna Shamszadeh

    2016-01-01

    Full Text Available We aimed to evaluate the color stability of bulk-fill and conventional composite resin with respect to thickness and storage media. Twenty specimens of a conventional composite resin (6 mm diameter and 2 mm thick and 40 specimens of the bulk-fill Tetric EvoCeram composite resin at two different thicknesses (6 mm diameter and 2 mm thick or 4 mm thick, n=20 were prepared. The specimens were stored in distilled water during the study period (28 d. Half of the specimens were remained in distilled water and the other half were immersed in coffee solution 20 min/d and kept in distilled water between the cycles. Color changes (ΔE were measured using the CIE L⁎a⁎b⁎ color space and a digital imaging system at 1, 7, 14, and 28 days of storage. Data were analyzed using Two-way ANOVA and Tukey’s HSD post hoc test (P conventional; P<0.001. Coffee exhibited significantly more staining susceptibility than that of distilled water (P<0.001. There was greater color changes with increasing the increment thickness, which was significant at 14 (P<0.001 and 28 d (P<0.01. Color change of bulk-fill composite resin was greater than that of the conventional one after coffee staining and is also a function of increment thicknesses.

  4. Pseudocapacitors for Energy Storage

    Science.gov (United States)

    Venkataraman, Anuradha

    Fluctuation in the demand for electrical power and the intermittent nature of the supply of energy from renewable sources like solar and wind have made the need for energy storage a dire necessity. Current storage technologies like batteries and supercapacitors fall short either in terms of power output or in their ability to store sufficient energy. Pseudocapacitors combine features of both and offer an alternative to stabilize the power supply. They possess high rates of charge and discharge and are capable of storing much more energy in comparison to a supercapacitor. In the quest for solutions that are economical and feasible, we have investigated Prussian Blue in aqueous electrolytes for its use as a pseudocapacitor. Two different active materials based on Prussian Blue were prepared; one that has just Prussian Blue and the other that contains a mixture of Prussian Blue and carbon nanotubes (CNTs). Four electrolytes differing in the valence of the cation were employed for the study. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrodes. Our experiments have shown specific capacitances of Prussian Blue electrodes in the range of 140-720 F/g and that of Prussian Blue-CNT electrodes in the range of ˜52 F/g. The remarkable capacity of charge storage in Prussian Blue electrodes is attributed to its electrochemical activity ensuring surface redox and its tunnel-like structure allowing ease of entry and exit for ions like Potassium. Simple methods of synthesis have yielded specific capacitances of the order of hundreds of Farads per gram showing that Prussian Blue has promise as an electrode material for applications needing high rates of charge-discharge.

  5. Terrestrial Energy Storage SPS Systems

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  6. SALES, STORAGE AND SALVAGE

    CERN Multimedia

    Division SPL, groupe logistique; A. Notar

    2000-01-01

    From 3 January 2000 there will be a security barrier in front of the storage-recycling area in bldg 133, which will be accessible only to authorised staff and contractors.You are reminded that the equipment delivered to this area must be unpolluted and non-radioactive. The cost of recycling the equipment will be debited to the budget code of the Division concerned, with the prior approval of the Group Leader.Reminder relating to equipment salesThe Sales Section is open on Thursdays from 13.30 to 15.00 hours only.SPL DivisionLogistics GroupA. Notari

  7. Materials for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Andreas Züttel

    2003-09-01

    The goal is to pack hydrogen as close as possible, i.e. to reach the highest volumetric density by using as little additional material as possible. Hydrogen storage implies the reduction of an enormous volume of hydrogen gas. At ambient temperature and atmospheric pressure, 1 kg of the gas has a volume of 11 m3. To increase hydrogen density, work must either be applied to compress the gas, the temperature decreased below the critical temperature, or the repulsion reduced by the interaction of hydrogen with another material.

  8. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  9. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  10. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  11. Interim storage study report

    Energy Technology Data Exchange (ETDEWEB)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  12. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  13. Storage Allocation for Multi-Class Distributed Data Storage Systems

    OpenAIRE

    Roshandeh, Koosha Pourtahmasi; Noori, Moslem; Ardakani, Masoud; Tellambura, Chintha

    2017-01-01

    Distributed storage systems (DSSs) provide a scalable solution for reliably storing massive amounts of data coming from various sources. Heterogeneity of these data sources often means different data classes (types) exist in a DSS, each needing a different level of quality of service (QoS). As a result, efficient data storage and retrieval processes that satisfy various QoS requirements are needed. This paper studies storage allocation, meaning how data of different classes must be spread ove...

  14. Physical and Flavor Quality of Some Potential Varieties of Arabica Coffee in Several Interval Storage Periods

    Directory of Open Access Journals (Sweden)

    Yusianto .

    2006-12-01

    Full Text Available Coffee storage was an active process, where the quality and flavor was depend on the origin, humidity, temperature, period, and ware house condition. The objective of this research was to know quality and flavor of some Arabica coffee varieties in interval of storage periods. The examined coffee varieties were BP 416 A, BP 430 A, BP 432 A, BP 509 A, BP 542 A, P 88, AS 1, S 795, and USDA-762. The treatments were recent harvest, one and two years stored green coffee. The green coffee were wet processed, sun dried, packed in polyethylene bags, one kg/pack and placed in some covered plastic boxes. The boxes were stored in ware house covered with wavy asbes roof and flat asbes ceiling. The green coffee was examined for its moisture content, color, and bulk density. The green coffee was roasted at medium level, and then examined for its the bulk density, yield, volume of swelling, and color of the roasted and powdered. The flavors examination was blind test method. The research showed that storage period significantly influenced the moisture content, color, and bulk density of green coffee, yield, volume of swelling, color of roasted coffee, color, and flavor profile of coffee powder. Those varieties tested showed significantly different on the moisture content, green coffee color, roasted coffee color, coffee powder color, and the profile flavor. The storage period influenced the green coffee color from greenish-gray to yellowish-red. The bulk density of green coffee decreased. The varieties that showed a little color changeduring storage, were BP 430 A,BP 416 A, AS 1, and S 795. One year of storage periode, the green coffee was still had the original color, but after two years, the original color had changed totally. The powder of recent harvest coffee was darker than that of one and two years storage. One year stored coffee had higher quality of aroma, intensity of aroma, quality of flavor, intensity of flavor, acidity, quality of after taste

  15. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer;

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...... glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG. ©2007 American Institute of Physics...

  16. 27 CFR 24.301 - Bulk still wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk still wine record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.301 Bulk still wine record. A proprietor who produces or receives still wine in bond, (including wine intended for use as distilling material or vinegar...

  17. 7 CFR 58.211 - Packaging room for bulk products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and...

  18. T-duality trivializes bulk-boundary correspondence

    CERN Document Server

    Mathai, Varghese

    2015-01-01

    Recently we introduced T-duality in the study of topological insulators. In this paper, we study the bulk-boundary correspondence for three phenomena in condensed matter physics, namely, the quantum Hall effect, the Chern insulator, and time reversal invariant topological insulators. In all of these cases, we show that T-duality trivializes the bulk-boundary correspondence.

  19. Import and Export of Bulk Pharmaceuticals in 2006

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ According to customs statistics, the total import and export value of bulk pharmaceuticals (excluding chemical raw materials and bulk pesticides) in China was US$10.346 billion in 2006. The export value was US$7.482 billion - an increase of 22% over the 2005.

  20. Modelling and Forecasting in the Dry Bulk Shipping Market

    NARCIS (Netherlands)

    Chen, S.

    2011-01-01

    This dissertation proposes strategies not only for modelling price behavior in the dry bulk market, but also for modelling relationships between economic and technical variables of dry bulk ships, by using modern time series approaches, Monte Carlo simulation and other economic techniques. The time

  1. Advanced and new developments in bulk metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Ravn, Bjarne Gottlieb;

    2000-01-01

    Increasing demands to manufacturing industry of faster, better and cheaper production has intensified the research and development of bulk metal forming. The present paper gives examples on European industrial research on secondary bulk metal forming processes. The R&D follows three lines of appr...

  2. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel L∞ -bound which is of independent...

  3. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  4. Optical information storage

    Energy Technology Data Exchange (ETDEWEB)

    Woike, T. [Koeln Univ., Inst. fuer Kristallography, Koeln (Germany)

    1996-11-01

    In order to increase storage capacity and data transfer velocity by about three orders of magnitude compared to CD or magnetic disc it is necessary to work with optical techniques, especially with holography. About 100 TByte can be stored in a waver of an area of 50 cm{sup 2} via holograms which corresponds to a density of 2.10{sup 9} Byte/mm{sup 2}. Every hologram contains data of 1 MByte, so that parallel-processing is possible for read-out. Using high-speed CCD-arrays a read-out velocity of 1 MByte/{mu}sec can be reached. Further, holographic technics are very important in solid state physics. We will discuss the existence of a space charge field in Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} doped with cerium and the physical properties of metastable states, which are suited for information storage. (author) 19 figs., 9 refs.

  5. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  6. Probe-based data storage

    CERN Document Server

    Koelmans, Wabe W; Abelmann, L

    2015-01-01

    Probe-based data storage attracted many researchers from academia and industry, resulting in unprecendeted high data-density demonstrations. This topical review gives a comprehensive overview of the main contributions that led to the major accomplishments in probe-based data storage. The most investigated technologies are reviewed: topographic, phase-change, magnetic, ferroelectric and atomic and molecular storage. Also, the positioning of probes and recording media, the cantilever arrays and parallel readout of the arrays of cantilevers are discussed. This overview serves two purposes. First, it provides an overview for new researchers entering the field of probe storage, as probe storage seems to be the only way to achieve data storage at atomic densities. Secondly, there is an enormous wealth of invaluable findings that can also be applied to many other fields of nanoscale research such as probe-based nanolithography, 3D nanopatterning, solid-state memory technologies and ultrafast probe microscopy.

  7. Spectroscopic Feedback for High Density Data Storage and Micromachining

    Science.gov (United States)

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  8. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  9. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  10. Bulk viscosity, interaction and the viability of phantom solutions

    CERN Document Server

    Leyva, Yoelsy

    2016-01-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  11. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  12. Renormalization group approach to causal bulk viscous cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2002-06-07

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.

  13. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  14. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  15. Improved Polyurethane Storage Tank Performance

    Science.gov (United States)

    2014-06-30

    Figure 5.2.4 – Teen / Twenty Berm Bays from Tank 11 Corner Improved Polyurethane Storage Tank Performance Page 63 of 197 FY2009 Final Technical...5.3.9 Pump Discharge Pressure Measurement Improved Polyurethane Storage Tank Performance Page 76 of 197 FY2009 Final Technical Report...chamber pressure Improved Polyurethane Storage Tank Performance Page 173 of 197 FY2009 Final Technical Report Seaman Corporation could not be

  16. Grain Handling and Storage Safety

    OpenAIRE

    Webster, Jill, Ph.D.

    2005-01-01

    Agricultural Health and Safety Fact Sheet AHS-02 Grain Handling and Storage Safety Jill Webster Ph.D., S. Christian Mariger, Graduate Assistant Agricultural Systems Technology and Education There are several hazards that should be considered when working with grain. Storage structures, handling equipment, and the grain itself have all caused serious injuries and deaths. Storage structures (bins, silos, and granaries), like all confined spaces, have significant hazards associated with them. Be...

  17. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  18. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  19. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  20. Storage Ring Measurements of Electron Impact Ionization for Solar Physics

    Science.gov (United States)

    Hahn, Michael; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2013-07-01

    The interpretation of astrophysical spectra requires knowledge of the charge state distribution (CSD) of the plasma. The CSD is determined by the rates of ionization and recombination. Thus, accurate electron impact ionization (EII) data are needed to calculate the CSD of the solar atmosphere as well as for other electron-ionized astrophysical objects, such as stars, supernovae, galaxies, and clusters of galaxies. We are studying EII for astrophysically important ions using the TSR storage ring located at the Max Plank Institute for Nuclear Physics in Heidelberg, Germany. Storage ring measurements are largely free of the metastable contamination found in other experimental geometries, resulting in unambiguous EII data. We have found discrepancies of about 10% - 30% between our measured cross sections and those commonly used in CSD models. Because it is impractical to perform experimental measurements for every astrophysically relevant ion, theory must provide the bulk of the necessary EII data. These experimental results provide an essential benchmark for such EII calculations.

  1. A concept of an electricity storage system with 50 MWh storage capacity

    OpenAIRE

    Józef Paska; Mariusz Kłos; Paweł Antos; Grzegorz Błajszczak

    2012-01-01

    Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy), and direct storage (in an electric or magnetic fi eld). Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers an...

  2. The Petascale Data Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Garth [Carnegie Mellon Univ., Pittsburgh, PA (United States); Long, Darrell [The Regents of the University of California, Santa Cruz, CA (United States); Honeyman, Peter [Univ. of Michigan, Ann Arbor, MI (United States); Grider, Gary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kramer, William [National Energy Research Scientific Computing Center, Berkeley, CA (United States); Shalf, John [National Energy Research Scientific Computing Center, Berkeley, CA (United States); Roth, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felix, Evan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ward, Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  3. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  4. 78 FR 72841 - List of Bulk Drug Substances That May Be Used in Pharmacy Compounding; Bulk Drug Substances That...

    Science.gov (United States)

    2013-12-04

    ... Used in Pharmacy Compounding; Bulk Drug Substances That May Be Used To Compound Drug Products in... Administration (FDA or Agency) is withdrawing the proposed rule to list bulk drug substances used in pharmacy... Pharmacopoeia chapter on pharmacy compounding; (II) if such a monograph does not exist, are drug substances that...

  5. Application of the penetration theory for gas - Liquid mass transfer without liquid bulk : Differences with system with a bulk

    NARCIS (Netherlands)

    van Elk, E. P.; Knaap, M. C.; Versteeg, G. F.

    2007-01-01

    Frequently applied micro models for gas-liquid mass transfer all assume the presence of a liquid bulk. However, some systems are characterized by the absence of a liquid bulk, a very thin layer of liquid flows over a solid surface. An example of such a process is absorption in a column equipped with

  6. Report of the Bulk Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G

    2010-02-09

    The world in general and the USA in particular are facing an oncoming energy shortage. One key mechanism to provide carbon-free energy is nuclear fission. At this point, 20% of the US electrical power grid is supplied by nuclear energy. (Interestingly, it is 50% in Illinois.) European nations such as Sweden (50% nuclear electricity) and France (80% nuclear electricity) are pushing ahead with permanent radioactive waste storage and processing. If nothing else, the USA needs to provide the scientific foundation for improving its nuclear-power generation facilities. One key issue and how the APS could affect it are discussed below. (This discussion of this issue is not meant to be a comprehension argument in support of a facility but merely an example of the sort of science that could be pursued. An exhaustive collection of arguments would take more time and effort.) The modification of various zones inside a nuclear fuel is an important issue. This includes microscopic re-crystallization, stress, fission gas production, He bubble formation and the intermixing, depletion and enrichment of various chemical, daughter and other isotopic species. For example, past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. The concentration variations shown above are of significant concern. Driven in part by the thermal gradient within the nuclear fuel, these variations can affect reactor performance and fuel burn-up levels. Similar gradients were observed in samples that were not irradiated but underwent thermal gradient treatments. From measurement such as these, kinetic parameters such as effective inter-diffusion coefficients were derived. The amount of such experimental data is very limited. Interaction of the fuel constituents with cladding and coolant are also important. At present, INL scientists pursue a number of measurements on-site at INL and off-site to address issues such as this. Here, we

  7. Impact of storage on dark chocolate: texture and polymorphic changes.

    Science.gov (United States)

    Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J

    2011-01-01

    Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating

  8. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  9. Study on the effect of humidity and dust on leakage current of bulk micro-MEGAS detector

    CERN Document Server

    Wang, Bo; Qi, Hui-Rong; Liu, Jing; Zhang, Xin-Shuai; Zhang, Tian-Chong; Yi, Fu-Ting; Ou-Yang, Qun; Chen, Yuan-Bo

    2013-01-01

    In this paper, the effect of humidity and dust trapped in avalanche region on leakage current of bulk micro-MEGAS detector is studied. Pyralux PC1025 layers of DuPont are introduced in bulk technique and micro-MEGAS detector with pillars of 300{\\mu}m in diameter is fabricated. Leakage current is tested in air with different humidity. Silicon carbide powder and PMMA (polymethyl methacrylate) powder are added as dust to avalanche region. Leakage current with and without powder is tested in air and results are depicted in the same figure. Test results indicate that leakage current increases with both storage humidity and test humidity, and also increases when powder is introduced in avalanche region.

  10. Heat storage system adapted for incongruently melting heat storage materials and congruently melting heat storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, J.L.

    1980-12-30

    A heat storage article adapted for prevention of stratification of incongruently melting heat storage materials, such as eutectic salts, and adapted for use with congruently melting heat storage materials, such as paraffins. The article is comprised of a concrete stone composition, a certain portion of which is comprised of metallic heat transfer materials in order to increase heat transfer through the concrete structure. The concrete structure has an internal cavity which is filled with either the eutectic salt material or the paraffin material.

  11. Field-driven Domain Wall Motion in Ferromagnetic Nanowires with Bulk Dzyaloshinskii-Moriya Interaction

    Science.gov (United States)

    Zhuo, Fengjun; Sun, Z. Z.

    2016-01-01

    Field-driven domain wall (DW) motion in ferromagnetic nanowires with easy- and hard-axis anisotropies was studied theoretically and numerically in the presence of the bulk Dzyaloshinskii-Moriya interaction (DMI) based on the Landau-Lifshitz-Gilbert equation. We propose a new trial function and offer an exact solution for DW motion along a uniaxial nanowire driven by an external magnetic field. A new strategy was suggested to speed up DW motion in a uniaxial magnetic nanowire with large DMI parameters. In the presence of hard-axis anisotropy, we find that the breakdown field and velocity of DW motion was strongly affected by the strength and sign of the DMI parameter under external fields. This work may be useful for future magnetic information storage devices based on DW motion. PMID:27118064

  12. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  13. Improving Performance in Dense Wireless Spaces by Controlling Bulk Traffic

    Directory of Open Access Journals (Sweden)

    Marat Zhanikeev

    2017-01-01

    Full Text Available The growing number of wireless devices nowadays often results in congestion of wireless channels. In research, this topic is referred to as networking in dense wireless spaces. The literature on the topic shows that the biggest problem is the high number of concurrent sessions to a wireless access point. The obvious solution is to reduce the number of concurrent sessions. This paper proposes a simple method called Bulk-n-Pick which minimizes the number of prolonged concurrent sessions by separating bulk from sync traffic. Aiming at educational applications, under the proposed design, web applications would distribute the main bulk of content once at the beginning of a class and then rely on small messages for real time sync traffic during the class. For realistic performance analysis, this paper first performs real-life experiments with various counts of wireless devices, bulk sizes, and levels of sync intensity. Based on the experiments, this paper shows that the proposed Bulk-n-Pick method outperforms the traditional design even when only two concurrent bulk sessions are allowed. The experiment shows that up to 10 concurrent bulk sessions are feasible in practice. Based on these results, a method for online performance optimization is proposed and validated in a trace-based emulation.

  14. Fatigue stipulation of bulk-fill composites: An in vitro appraisal.

    Science.gov (United States)

    Vidhawan, Shruti A; Yap, Adrian U; Ornaghi, Barbara P; Banas, Agnieszka; Banas, Krzysztof; Neo, Jennifer C; Pfeifer, Carmem S; Rosa, Vinicius

    2015-09-01

    The aim of this study was to determine the Weibull and slow crack growth (SCG) parameters of bulk-fill resin based composites. The strength degradation over time of the materials was also assessed by strength-probability-time (SPT) analysis. Three bulk-fill [Tetric EvoCeram Bulk Fill (TBF); X-tra fil (XTR); Filtek Bulk-fill flowable (BFL)] and a conventional one [Filtek Z250 (Z250)] were studied. Seventy five disk-shaped specimens (12mm in diameter and 1mm thick) were prepared by inserting the uncured composites in a stainless steel split mold followed by photoactivation (1200mW/cm(2)/20s) and storage in distilled water (37°C/24h). Degree of conversion was evaluated in five specimens by analysis of FT-IR spectra obtained in the mid-IR region. The SCG parameters n (stress corrosion susceptibility coefficient) and σf0 (scaling parameter) were obtained by testing ten specimens in each of the five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s using a piston-on-three-balls device. Weibull parameter m (Weibull modulus) and σf0 (characteristic strength) were obtained by testing additional 20 specimens at 1MPa/s. Strength-probability-time (SPT) diagrams were constructed by merging SCG and Weibull parameters. BFL and TBF presented higher n values, respectively (40.1 and 25.5). Z250 showed the highest (157.02MPa) and TBF the lowest (110.90MPa) σf0 value. Weibull analysis showed m (Weibull modulus) of 9.7, 8.6, 9.7 and 8.9 for TBF, BFL, XTR and Z250, respectively. SPT diagram for 5% probability of failure showed strength decrease of 18% for BFL, 25% for TBF, 32% for XTR and 36% for Z250, respectively, after 5 years as compared to 1 year. The reliability and decadence of strength over time for bulk-fill resin composites studied are, at least, comparable to conventional composites. BFL shows the highest fatigue resistance under all simulations followed by TBF, while XTR was at par with Z250. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  15. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    Science.gov (United States)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then

  16. Electrochemistry and Storage Panel Report

    Science.gov (United States)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  17. Block storage subsystem performance analysis

    CERN Document Server

    CERN. Geneva

    2016-01-01

    You feel that your service is slow because of the storage subsystem? But there are too many abstraction layers between your software and the raw block device for you to debug all this pile... Let's dive on the platters and check out how the block storage sees your I/Os! We can even figure out what those patterns are meaning.

  18. Hydrogen storage: beyond conventional methods.

    Science.gov (United States)

    Dalebrook, Andrew F; Gan, Weijia; Grasemann, Martin; Moret, Séverine; Laurenczy, Gábor

    2013-10-09

    The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbents, to chemical materials including metal hydrides, ammonia borane and liquid precursors such as alcohols and formic acid.

  19. Neuroimaging of Lipid Storage Disorders

    Science.gov (United States)

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  20. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  1. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  2. Friction Stir Welding of Zr_(55)Al_(10)Ni_5Cu_(30) Bulk Metallic Glass to Crystalline Aluminum

    Institute of Scientific and Technical Information of China (English)

    Zuoxiang Qin; Cuihong Li; Haifeng Zhang; Zhongguang Wang; Zhuangqi Hu; Zhiqiang Liu

    2009-01-01

    The Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass plate were successfully welded to crystalline aluminum plates by using a friction stir welding (FSW) method. The welded zone was examined. No defects, cracks or pores were observed and no other crystalline phases except for aluminum were found in the welded joint. The strength of the joint is higher than that of aluminum. The glassy phase in the stir zone keeps the amorphous state, showing a successful welding. The storage modulus softens over the glass transition. And the weldability was discussed according to this phenomena.

  3. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  4. Negative Effects of Sludge Bulking in Membrane Bio-Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; HUANG Zhi; REN Nanqi; MENG Qingjuan

    2006-01-01

    Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.

  5. Bulk local states and crosscaps in holographic CFT

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 175-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Ooguri, Hirosi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Center for Mathematical Sciences and Applications andCenter for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-17

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. We also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoro symmetry.

  6. Engineering nanostructural routes for enhancing thermoelectric performance: bulk to nanoscale

    Directory of Open Access Journals (Sweden)

    Rajeshkumar eMohanraman

    2015-11-01

    Full Text Available Thermoelectricity is a very important physical property, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  7. Eco Issues in Bulk Materials Handling Technologies in Ports

    Directory of Open Access Journals (Sweden)

    Nenad Zrnić

    2011-09-01

    Full Text Available This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials handling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby environment, dust explosions, jamming, noise, handling of hazardous materials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possible solutions for some of these issues

  8. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  9. Optimization and Performance Analysis of Bulk-Driven Differential Amplifier

    Directory of Open Access Journals (Sweden)

    Antarpreet kaur

    2014-04-01

    Full Text Available In recent years, there has been an increasing demand for high-speed digital circuits at low power consumption. This paper presents a design of input stage of Operational Amplifier i.e cascode differential amplifier using a standard 65nm CMOS Technology.A comparison betweem gate-driven, bulk-driven and cascode bulk driven bulk-driven differential amplifier is described. The Results demonstrate that CMMR is 83.98 dB, 3-dB Bandwidth is 1.04 MHz. The circuit dissipate power of 28uWunder single supply of 1.0V.

  10. Control of bulking phenomena and foaming by respirometry; Control del fenomeno bulking y foaming por respirometria

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2002-07-01

    The kinetic respirometry may represent an irreplaceable tool for the F/M control and toxicity detection in a waste water treatment plant control. The benefit of the respirometry lies on the fact that when using the genuine activated sludge from the own plant biological reactor, it reflects its current reality. On the other hand, the simplicity of the technique offers its possibility to be incorporated in different types of monitoring and control systems. In addition to a possible out of range dissolved oxygen and pH, the most common cause of the bulking and foaming phenomenon appearance may come from the F/M unbalance and toxicity. The type of respirometry we should make use lies on a kinetic system in where a serie of respiration rates can graphically represent the metabolization process of the organic matter. On this subject, we are utilizing a biological activity parameter figured out from the specific respiration rate Rsp determination. (Author)

  11. Paper Document Storage: A Summary of Options.

    Science.gov (United States)

    Dixon, Ross

    1995-01-01

    Discusses problems with paper storage; considers organizational requirements for storage, including access, cost, and security; describes storage options, including filing cabinets, open shelving, cabinets, carousels, mobile racking, and rotary storage; and examines paper storage as part of a records management strategy. (LRW)

  12. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  13. Room-temperature dynamic quasi-elastic mechanical behavior of a Zr-Cu-Fe-Al bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu.; Zadorozhnyy, M.Yu.; Shuryumov, A.Yu.; Golovin, I.S. [National University of Science and Technology ' ' MISiS' ' , 119049, Moscow (Russian Federation); Ketov, S.V.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 (Japan)

    2016-02-15

    The paper represents storage modulus and internal friction modulation upon cyclic loading of Zr{sub 61}Cu{sub 27}Fe{sub 2}Al{sub 10} bulk metallic glassy samples within quasi-reversible deformation regime. The structure of the samples was studied by X-ray diffraction and transmission electron microscopy including high-resolution imaging and selected-area electron diffraction. It is found that kinetically frozen anelastic deformation accumulates on mechanical cycling at room temperature and causes an increase in the storage modulus and even nanocrystallization of a metallic glassy phase after a certain number of cycles. The study has shown that even a minor cyclic deformation in an elastic region can lead to the changes the atomic structure and in turn affect the elastic modulus. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System

    Science.gov (United States)

    Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa

    Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.

  15. OPTIMIZATION PROCEDURE FOR PRELIMINARY DESIGN STAGE OF CAIRO-DAMIETTA SELF-PROPELLED GRAIN BULK SHIPS

    Directory of Open Access Journals (Sweden)

    M.M. Moustafa

    2016-01-01

    Full Text Available The global logistics center for the storage and handling of grain which will be constructed at Damietta port will extremely increase the annual movement of grain through Cairo-Damietta waterway. Therefore, the demand for inland grain bulk ships has increased significantly in the recent years. This paper introduces a procedure to find out the fleet size and optimum characteristics of self-propelled grain bulk ships working between Cairo and Damietta through River Nile. The characteristics of the Cairo–Damietta waterway are investigated to define the constraints on dimensions and speed for such ship type. Also, mathematical model for the objective function was developed considering: powering, voyage, weight, stability and cost calculation. In this research, Specific cost (Sc, cost of transporting one ton of cargo a distance of one kilometre, is considered as the objective function for this optimization process. This optimization problem is handled as a single objective nonlinear constrained optimization problem using a specially developed computer program. Solutions are generated by varying design variables systematically in certain steps. The best of these solutions is then taken as the estimated optimum. Finally, the problem is presented, the main constrains analyzed and the optimum solution shown.

  16. Hydrogen Desorption Properties of Bulk and Nanoconfined LiBH4-NaAlH4

    Directory of Open Access Journals (Sweden)

    Payam Javadian

    2016-06-01

    Full Text Available Nanoconfinement of 2LiBH4-NaAlH4 into a mesoporous carbon aerogel scaffold with a pore size, BET surface area and total pore volume of Dmax = 30 nm, SBET = 689 m2/g and Vtot = 1.21 mL/g, respectively is investigated. Nanoconfinement of 2LiBH4-NaAlH4 facilitates a reduction in the temperature of the hydrogen release by 132 °C, compared to that of bulk 2LiBH4-NaAlH4 and the onset of hydrogen release is below 100 °C. The reversible hydrogen storage capacity is also significantly improved for the nanoconfined sample, maintaining 83% of the initial hydrogen content after three cycles compared to 47% for that of the bulk sample. During nanoconfinement, LiBH4 and NaAlH4 reacts to form LiAlH4 and NaBH4 and the final dehydrogenation products, obtained at 481 °C are LiH, LiAl, AlB2 and Al. After rehydrogenation of the nanoconfined sample at T = 400 °C and p(H2 = 126 bar, amorphous NaBH4 is recovered along with unreacted LiH, AlB2 and Al and suggests that NaBH4 is the main compound that can reversibly release and uptake hydrogen.

  17. Interaction between ring permanent magnets and bulk Dy-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kurabayashi, H., E-mail: m208501@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Horikoshi, S.; Suzuki, A.; Ikeda, M.; Wongsatanawarid, A.; Seki, H. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Akiyama, S. [Magneo-Giken, 1-4-23, Suwa, Iwatsuki-Ku, Saitama-Shi, Saitama-Ken (Japan); Hiragushi, M. [SEIKOW Chemical Engineering, 4-1-31, Suidou-Cho, Amagasaki-Shi, Hyougo-Ken (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    A combination of bulk Dy-Ba-Cu-O superconductors and permanent magnets can be used for various rotational applications such as flywheel energy storage and magnetic bearings. For practical applications, there are two important parameters: the levitation force and the stiffness. Since the superconductor and magnets are installed in a closed space, the attractive force is another important parameter that we should take care. In this study, we measured the levitation force and the stiffness by changing the thickness of a ring permanent magnet. We used ring Fe-Nd-B magnets 120 mm in outer diameter and 70 mm in inner diameter with the thicknesses of 5-40 mm. For superconductors, we used single-domain bulk Dy-Ba-Cu-O 47 mm in diameter and 10 mm in thickness. Six pellets of Dy-Ba-Cu-O were placed concentrically such that the inner diameter becomes 70 mm. The levitation forces increased with increasing the thickness of the permanent magnet but tended to saturate.

  18. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  19. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  20. Storage-ring Electron Cooler for Relativistic Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  1. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    Science.gov (United States)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  2. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  3. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  4. Bulk metallic glass for low noise fluxgate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The team of Prime Photonics, Virginia Tech, and Utron Kinetics propose to demonstrate a method for fabrication of a bulk, amorphous, cobalt-rich material that...

  5. Solidex 84 - modern technology in bulk solids handling

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Proceedings from Conference on solids handling. Sections which are of interest include coal and ash handling, and flow problems and explosion hazards in bulk handling plant. 14 papers have been abstracted separately.

  6. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    Joysurya Basu; S Ranganathan

    2003-06-01

    Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

  7. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Andrade, Rone P G; Grassi, Frederique

    2013-01-01

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  8. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  9. Efficiency of bulk-heterojunction organic solar cells.

    Science.gov (United States)

    Scharber, M C; Sariciftci, N S

    2013-12-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10-15%. A more general approach assuming device operation close to the Shockley-Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices.

  10. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  11. Efficiency of bulk-heterojunction organic solar cells

    Science.gov (United States)

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  12. 27 CFR 19.588 - Construction of bulk conveyances.

    Science.gov (United States)

    2010-04-01

    ... compartment) shall be so arranged that it can be completely drained. (3) Each tank car or tank truck shall... device, for carrying required marks or brands shall be provided on each bulk conveyance. (6)...

  13. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  14. Advanced Manufacturing Technologies (AMT): Bulk Metallic Glass Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The first major objective of the ‘Bulk Metallic Glasses (BMGs) for Space Applications’ project is to raise the technology readiness level dry lubricated,...

  15. Neutron monitoring of plutonium at the ZPPR storage vault

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, J.T.; Kuckertz, T.H.; Bieri, J.M.; France, S.W.; Goin, R.W.; Hastings, R.D.; Pratt, J.C.; Shunk, E.R.

    1981-12-01

    We investigated a method for monitoring a typical large storage vault for unauthorized removal of plutonium. The method is based on the assumption that the neutron field in a vault produced by a particular geometric configuration of bulk plutonium remains constant in time and space as long as the configuration is undisturbed. To observe such a neutron field, we installed an array of 25 neutron detectors in the ceiling of a plutonium storage vault at Argonne National Laboratory West. Each neutron detector provided an independent spatial measurement of the vault neutron field. Data collected by each detector were processed to determine whether statistically significant changes had occurred in the neutron field. Continuous observation experiments measured the long-term stability of the system. Removal experiments were performed in which known quantities of plutonium were removed from the vault. Both types of experiments demonstrated that the neutron monitoring system can detect removal or addition of bulk plutonium (11% /sup 240/Pu) whose mass is as small as 0.04% of the total inventory.

  16. LHC signatures of vector boson emission from brane to bulk

    CERN Document Server

    Kirpichnikov, D V

    2012-01-01

    In the framework of the RSII-n model with n compact and one infinite extra dimensions, we study the production of Z-bosons and photons, which escape into the bulk, in association with a jet in pp collisions at the LHC energies. This would show up as the process pp -> jet+bulk. We calculate the distributions in the jet transverse momentum and rapidity and compare them with the Standard Model background pp->jet +\

  17. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  18. China's bulk shipping industry overview

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [China National Chartering Corp., Sinochart (China)

    2002-07-01

    A set of 20 slides/overheads (file LiZhen.ppt) in Chinese and English outlines the talk under the headings: recent development in marine shipping governance; trends and characteristics of international trade of China's main bulk cargo; China's bulk cargo fleet; and the development of China National Chartering Corp, SINOCHART. Four pages of text in English reports the talk.

  19. Alternative technology of nanoparticles consolidation in the bulk material

    OpenAIRE

    VOLKOV Georgiy Michailovich

    2016-01-01

    Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be ada...

  20. Ionic Liquids in Bulk and at an Interface

    OpenAIRE

    Tariq, Mohammad; Shimizu, Karina; Lopes, Jose N. Canongia; Saramago, Benilde; Rebelo, Luis Paulo N.

    2015-01-01

    In the present chapter, we describe different types of investigation carried out by research groups based at CQE/IST/UTL and ITQB/UNL and their ramifications in terms of surface science. Most of the work is focused on the characterization of ionic liquids (ILs) (both by experimental and theoretical techniques) and on the different types of interaction that they can experience in the bulk or at an interface. Studies in the bulk include the analysis of the aggregation behavior (micelle formatio...

  1. Characterization of cocoa butter and cocoa butter equivalents by bulk and molecular carbon isotope analyses: implications for vegetable fat quantification in chocolate.

    Science.gov (United States)

    Spangenberg, J E; Dionisi, F

    2001-09-01

    The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipé, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope ((13)C) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.

  2. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  3. Tritium Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, Donald F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Luo, Weifang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Smugeresky, John E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Fares, Stephen James [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Ong, Markus D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Arslan, Ilke [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Tran, Kim L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; McCarty, Kevin F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics Dept.; Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/Fluid Science and Engineering; Stewart, Kenneth D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Material Dept.; Clift, W. Miles [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Material Dept.

    2008-09-01

    Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

  4. Storage of sunflower seeds

    Directory of Open Access Journals (Sweden)

    Denise de Castro Lima

    Full Text Available The sunflower is among the top five crops in the world for the production of edible vegetable oil. The species displays rustic behavior, with an excellent edaphic and climatic adaptability index, being able to be cultivated throughout Brazil. Seed quality is the key to increasing production and productivity in the sunflower. The objective of this work was to monitor the viability of sunflower seeds with a view to their conservation when stored in different environments and packaging. The seeds were packed in paper bags, multilayered paper, black polyethylene and PET bottles; and stored for a period of twelve months in the following environments: dry cold room (10 ºC and 55% RH, the ambient conditions of Fortaleza, Ceará, Brazil (30-32 ºC and 75% RH, refrigerator (4 ºC and 38-43% RH and freezer (-20 ºC. Every three months, the water content of the seeds was determined and germination, accelerated ageing, speed of emergence index, and seedling dry weight were evaluated. The experimental design was completely randomized, in a scheme of split-lots, with four replications. It can be concluded that the natural environment is not suitable for the storage of sunflower seeds. Sunflower seeds remain viable for 12 months when stored in a dry cold room, refrigerator or freezer, irrespective of the type of packaging used.

  5. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  6. Disk storage at CERN

    Science.gov (United States)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  7. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  8. Bulk flow of halos in $\\Lambda$CDM simulation

    CERN Document Server

    Li, Ming; Gao, Liang; Jing, Yipeng; Yang, Xiaohu; Chi, Xuebin; Feng, Longlong; Kang, Xi; Lin, Weipeng; Shang, Guihua; Wang, Long; Zhao, Donghai; Zhang, Pengjie

    2012-01-01

    Analysis of the Pangu N-body simulation validates that bulk flow of halos follows Maxwellian distribution of which variance is consistent with prediction of linear perturbation theory of structure formation. We propose that consistency between observed bulk velocity and theories shall be examined at the effective scale as radius of spherical top-hat window function yielding the same smoothed velocity variance in linear theory as the sample window does. Then we compared some recently estimated bulk flows from observational samples with prediction of the $\\Lambda$CDM model we used, some results deviate the expectation at level of $\\sim 3\\sigma$ but the tension is not as severe as previously claimed. We disclose that bulk flow is weakly correlated with dipole of internal mass distribution, alignment angle between mass dipole and bulk flow has broad distribution but is peaked at $\\sim 30-50^\\circ$, meanwhile bulk flow shows little dependence on mass of halos used for estimation. In the simulation of box size $1h^...

  9. Exploring the BTZ bulk with boundary conformal blocks

    CERN Document Server

    da Cunha, Bruno Carneiro

    2016-01-01

    We point out a simple relation between the bulk field at an arbitrary radial position and the boundary OPE, by placing some old work by Ferrara, Gatto, Grillo and Parisi in the AdS/CFT context. This gives us, in principle, a prescription for extracting the classical bulk field from the boundary conformal block, and also clarifies why the latter is computed by a geodesic Witten diagram. We apply this prescription to the BTZ black hole - viewed as a pure state created by the insertion of a heavy operator in the boundary CFT_2 - and use it to relate a classical field in the bulk to a heavy-light Virasoro conformal block in the boundary. In particular, we obtain a relation between the radial bulk position and the conformal ratios in the boundary CFT. We use this to show that the singular points of the radial bulk equation occur when the dual boundary operators approach each other and that the associated bulk monodromies map to monodromies of the (appropriately transformed) conformal block, thus providing a CFT in...

  10. Dirac Fermions without bulk backscattering in rhombohedral topological insulators

    Science.gov (United States)

    Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto

    2015-03-01

    The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

  11. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  12. ICI optical data storage tape: An archival mass storage media

    Science.gov (United States)

    Ruddick, Andrew J.

    1993-01-01

    At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.

  13. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  14. Hydrogen Storage in Metal Hydrides

    Science.gov (United States)

    1990-08-01

    Hydrogen Storage Capacity Hydride by weight (%) [1) by volume (g/ml) [2] MgH2 7.00 0.101 Mg2NiH4 3.84 0,081 Mg2CuH4 2.04 - - 27 ...Include Security Classification) Hydrogen Storage in Metal Hydrides (U) 12. PERSONAL AUTHOR(S) DelaRosa, Mark J. 13a. TYPE OF REPORT 13b. TIME...objective of this program was to develop an economical process for pr-ducing a lightweight hydrogen storage medium by the chemical vapor infiltration

  15. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  16. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  17. Carbon material for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  18. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  19. Troubleshooting vSphere storage

    CERN Document Server

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  20. Determination of thermal properties of composting bulking materials.

    Science.gov (United States)

    Ahn, H K; Sauer, T J; Richard, T L; Glanville, T D

    2009-09-01

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric heat capacity of 12 compost bulking materials were determined in this study. Thermal properties were determined at varying bulk densities (1, 1.3, 1.7, 2.5, and 5 times uncompacted bulk density), particle sizes (ground and bulk), and water contents (0, 20, 50, 80% of water holding capacity and saturated condition). For the water content at 80% of water holding capacity, saw dust, soil compost blend, beef manure, and turkey litter showed the highest thermal conductivity (K) and volumetric heat capacity (C) (K: 0.12-0.81 W/m degrees C and C: 1.36-4.08 MJ/m(3) degrees C). Silage showed medium values at the same water content (K: 0.09-0.47 W/m degrees C and C: 0.93-3.09 MJ/m(3) degrees C). Wheat straw, oat straw, soybean straw, cornstalks, alfalfa hay, and wood shavings produced the lowest K and C values (K: 0.03-0.30 W/m degrees C and C: 0.26-3.45 MJ/m(3) degrees C). Thermal conductivity and volumetric heat capacity showed a linear relationship with moisture content and bulk density, while thermal diffusivity showed a nonlinear relationship. Since the water, air, and solid materials have their own specific thermal property values, thermal properties of compost bulking materials vary with the rate of those three components by changing water content, bulk density, and particle size. The degree of saturation was used to represent the interaction between volumes of water, air, and solids under the various combinations of moisture content, bulk density, and particle size. The first order regression models developed in this paper represent the relationship between degree of saturation and volumetric heat capacity (r=0.95-0.99) and thermal conductivity (r=0.84-0.99) well. Improved

  1. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  2. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  3. `Energy storage` using liquid air

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C. [Melbourne Univ., Parkville, VIC (Australia)

    1995-12-31

    Storage of liquid air is relatively simple, and the work needed to manufacture it is, at least in principle, entirely recoverable. Available energy densities seem excellent. Unfortunately the technology to use liquid air for energy storage has never been developed. The Phillips-Stirling and McMahon and Gifford air liquefiers, and a previous proposal by Smith, provide leads as to the form which the technology might take. This paper introduces the concept of `Exergy`, and how it can be utilized in the storage of liquid air. It concludes that liquid air seems to present some real advantages over batteries for energy storage. The development presents a challenge. Since battery technology is not making the huge advances promised, it could be time to take a more serious look at this alternative. (author). 4 figs., 14 refs.

  4. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  5. Multi-dimensional optical storage

    CERN Document Server

    Xu, Duanyi

    2016-01-01

    This book presents principles and applications to expand the storage space from 2-D to 3-D and even multi-D, including gray scale, color (light with different wavelength), polarization and coherence of light. These actualize the improvements of density, capacity and data transfer rate for optical data storage. Moreover, the applied implementation technologies to make mass data storage devices are described systematically. Some new mediums, which have linear absorption characteristics for different wavelength and intensity to light with high sensitivity, are introduced for multi-wavelength and multi-level optical storage. This book can serve as a useful reference for researchers, engineers, graduate and undergraduate students in material science, information science and optics. .

  6. Nanomaterials for optical data storage

    Science.gov (United States)

    Gu, Min; Zhang, Qiming; Lamon, Simone

    2016-12-01

    The growing amount of data that is generated every year creates an urgent need for new and improved data storage methods. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this Review, we survey recent advancements in nanomaterials technology towards the next generation of optical data storage systems, focusing on metallic nanoparticles, graphene and graphene oxide, semiconductor quantum dots and rare-earth-doped nanocrystals. We conclude by discussing the use of nanomaterials in data storage systems that do not rely on optical mechanisms and by surveying the future prospects for the field.

  7. ALICE bags data storage accolades

    CERN Multimedia

    2007-01-01

    ComputerWorld has recognized CERN with an award for the 'Best Practices in Storage' for ALICE's data acquisition system, in the category of 'Systems Implementation'. The award was presented to the ALICE DAQ team on 18 April at a ceremony in San Diego, CA. (Top) ALICE physicist Ulrich Fuchs. (Bottom) Three of the five storage racks for the ALICE Data Acquisition system (Photo Antonio Saba). Between 16 and19 April, one thousand people from data storage networks around the world gathered to attend the biannual Storage Networking World Conference. Twenty-five companies and organizations were celebrated as finalists, and five of those were given honorary awards-among them CERN, which tied for first place in the category of Systems Implementation for the success of the ALICE Data Acquisition System. CERN was one of five finalists in this category, which recognizes the winning facility for 'the successful design, implementation and management of an interoperable environment'. 'Successful' could include documentati...

  8. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  9. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  10. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm(2)). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (pmicrohardnesses. This was insignificant for the Z250/water, P90/orange juice (40 days), and Sinfony groups (40 and 60 days). Immersion produced variable time-dependent deterioration of microhardness in all groups. Multivariate repeated measures analysis of variance with post hoc Bonferroni tests were used to compare the results. ΔE and microhardness changes were significantly inversely correlated at 40 days, but this relationship was insignificant at 60 days (Pearson test). SEM showed degradation (40 days) that worsened (60 days). Bulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other composites. P90 showed better surface degradation resistance. In conclusion, bulk

  11. Management practices associated with the bulk-milk prevalence of Staphylococcus aureus in Canadian dairy farms.

    Science.gov (United States)

    Olde Riekerink, Richard G M; Barkema, Herman W; Scholl, Daniel T; Poole, Doris E; Kelton, Dave F

    2010-10-01

    When designing mastitis-prevention and control programs, it is important to know the level of adoption of mastitis-prevention management practices and control programs and the herd-level prevalence of contagious mastitis pathogens. Our objectives were to estimate: (1) adoption of recommended mastitis-preventive management on Canadian dairy farms; (2) herd-level prevalence of contagious mastitis pathogens on Canadian dairy farms; and (3) associations of certain management practices with the isolation of Staphylococcus aureus from the bulk tank milk from Canadian dairy farms. In total, 226 farms participating in dairy herd improvement milk recording were randomly selected. All participating farms in British Columbia had free-stall barns and 85% of farms in Québec had tie-stall barns. Post-milking teat disinfection was practised on 96% of the farms and 72% had implemented blanket dry-cow treatment. Weighted and province-stratified prevalence of Streptococcus agalactiae and Staph. aureus in bulk tank milk was 4% (95% confidence interval: 0-12%) and 74% (95% confidence interval: 61-86%), respectively. Highest Staph. aureus prevalence was found in Nova Scotia (91%) and lowest prevalence in British Columbia (38%). No Mycoplasma spp. were isolated, but detection of Mycoplasma spp. could have been hampered by the frozen shipment and storage of the milk samples. Management practices associated with a lower probability of isolating Staph. aureus were blanket dry-cow treatment and believing that a nutritionist is important in mastitis data review. Having the milking equipment checked by an independent technician at least once a year and rubber mats or mattresses in the free-stall barns were associated with an increased probability of isolating Staph. aureus from the bulk tank. Most of Canadian dairy farms adopted important mastitis-prevention practices, such as post-milking teat disinfection and drying off all cows with antibiotics; however, improvements can still be made. A

  12. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.

    2011-08-01

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  13. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys.

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei; de Yuso, Alicia Martinez; Zlotea, Claudia

    2016-11-18

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  14. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Matei Ghimbeu, Camelia; Martinez de Yuso, Alicia; Zlotea, Claudia

    2016-11-01

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  15. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  16. Storage of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Gamze Can

    2007-10-01

    Full Text Available Storage of human breast milk by freezing or refrigeration of milk has been recommended especially at some social circumstances of most mothers who are regularly separated from their infants because of work. The greatest fear that has hindered the prospects of in - vitro storage of breast milk for any considerable period of time is the possibility of bacterial contamination and growth of infectious pathogens in the stored milk, there by rendering them unsafe for human consumption. The storage container can influence the cell content of milk, as the cells adhere to the walls of a glass container but not to polyethylene or polypropylene containers. Bacteriological examination of refrigerated milks has proven their safety for human consumption for even up to 72 h. For a storage over longer periods up to 1 month, freezing at - 20 0C could be recommended, but the most preferred method, especially for longer storage would be fresh freezing at - 70 0C, if affordable or available. The nutrient value of human milk is essentially unchanged, but the immunological properties are reduced by various storage techniques. Boiling and microwave radiation have not been recommended. [TAF Prev Med Bull 2007; 6(5.000: 375-379

  17. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  18. Evaluation and remediation of bulk soap dispensers for biofilm.

    Science.gov (United States)

    Lorenz, Lindsey A; Ramsay, Bradley D; Goeres, Darla M; Fields, Matthew W; Zapka, Carrie A; Macinga, David R

    2012-01-01

    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~ 6 log(10)(CFU ml(-1)) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4-7 log(10)(CFU ml(-1)) bacteria, while 4-6 log(10)(CFU cm(-2)) biofilm bacteria were isolated from the inside surfaces of the dispensers (n = 6). Dispenser remediation studies, including a 10 min soak with 5000 mg l(-1) sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7-14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.

  19. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  20. Running with rugby balls: bulk renormalization of codimension-2 branes

    Science.gov (United States)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.