WorldWideScience

Sample records for non-universal large scales

  1. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

    Directory of Open Access Journals (Sweden)

    Vincent Desjacques

    2010-01-01

    generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.

  2. Non-gut baryogenesis and large scale structure of the universe

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1995-07-01

    We discuss a mechanism for generating baryon density perturbations and study the evolution of the baryon charge density distribution in the framework of the low temperature baryogenesis scenario. This mechanism may be important for the large scale structure formation of the Universe and particularly, may be essential for understanding the existence of a characteristic scale of 130h -1 Mpc in the distribution of the visible matter. The detailed analysis showed that both the observed very large scale of the visible matter distribution in the Universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, according to our model, at present the visible part of the Universe may consist of baryonic and antibaryonic shells, sufficiently separated, so that annihilation radiation is not observed. This is an interesting possibility as far as the observational data of antiparticles in cosmic rays do not rule out the possibility of antimatter superclusters in the Universe. (author). 16 refs, 3 figs

  3. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  4. Towards a Gravity Dual for the Large Scale Structure of the Universe

    CERN Document Server

    Kehagias, A.

    2016-01-01

    The dynamics of the large-scale structure of the universe enjoys at all scales, even in the highly non-linear regime, a Lifshitz symmetry during the matter-dominated period. In this paper we propose a general class of six-dimensional spacetimes which could be a gravity dual to the four-dimensional large-scale structure of the universe. In this set-up, the Lifshitz symmetry manifests itself as an isometry in the bulk and our universe is a four-dimensional brane moving in such six-dimensional bulk. After finding the correspondence between the bulk and the brane dynamical Lifshitz exponents, we find the intriguing result that the preferred value of the dynamical Lifshitz exponent of our observed universe, at both linear and non-linear scales, corresponds to a fixed point of the RGE flow of the dynamical Lifshitz exponent in the dual system where the symmetry is enhanced to the Schrodinger group containing a non-relativistic conformal symmetry. We also investigate the RGE flow between fixed points of the Lifshitz...

  5. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  6. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  7. Evidence for non-Abelian dark matter from large scale structure?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    If dark matter multiplicity arises from a weakly coupled non-Abelian dark gauge group the corresponding "dark gluons" can have interesting signatures in cosmology which I will review: 1. the "dark gluons" contribute to the radiation content of the universe and 2. gluon interactions with the dark matter may explain the >3 sigma discrepancy between precision fits to the CMB from Planck and direct measurements of large scale structure in the universe.

  8. Managing Risk and Uncertainty in Large-Scale University Research Projects

    Science.gov (United States)

    Moore, Sharlissa; Shangraw, R. F., Jr.

    2011-01-01

    Both publicly and privately funded research projects managed by universities are growing in size and scope. Complex, large-scale projects (over $50 million) pose new management challenges and risks for universities. This paper explores the relationship between project success and a variety of factors in large-scale university projects. First, we…

  9. The existence of very large-scale structures in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, L J; Martin-Mirones, J M [Universidad de Cantabria Santander, (ES)

    1989-09-01

    Assuming that the dipole moment observed in the cosmic background radiation (microwaves and X-rays) can be interpreted as a consequence of the motion of the observer toward a non-local and very large-scale structure in our universe, we study the perturbation of the m-z relation by this inhomogeneity, the dynamical contribution of sources to the dipole anisotropy in the X-ray background and the imprint that several structures with such characteristics would have had on the microwave background at the decoupling. We conclude that in this model the observed anisotropy in the microwave background on intermediate angular scales ({approx}10{sup 0}) may be in conflict with the existence of superstructures.

  10. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  11. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    This thesis exposes my contribution to the measurement of homogeneity scale using galaxies, with the cosmological interpretation of results. In physics, any model is characterized by a set of principles. Most models in cosmology are based on the Cosmological Principle, which states that the universe is statistically homogeneous and isotropic on a large scales. Today, this principle is considered to be true since it is respected by those cosmological models that accurately describe the observations. However, while the isotropy of the universe is now confirmed by many experiments, it is not the case for the homogeneity. To study cosmic homogeneity, we propose to not only test a model but to test directly one of the postulates of modern cosmology. Since 1998 the measurements of cosmic distances using type Ia supernovae, we know that the universe is now in a phase of accelerated expansion. This phenomenon can be explained by the addition of an unknown energy component, which is called dark energy. Since dark energy is responsible for the expansion of the universe, we can study this mysterious fluid by measuring the rate of expansion of the universe. The universe has imprinted in its matter distribution a standard ruler, the Baryon Acoustic Oscillation (BAO) scale. By measuring this scale at different times during the evolution of our universe, it is then possible to measure the rate of expansion of the universe and thus characterize this dark energy. Alternatively, we can use the homogeneity scale to study this dark energy. Studying the homogeneity and the BAO scale requires the statistical study of the matter distribution of the universe at large scales, superior to tens of Mega-parsecs. Galaxies and quasars are formed in the vast over densities of matter and they are very luminous: these sources trace the distribution of matter. By measuring the emission spectra of these sources using large spectroscopic surveys, such as BOSS and eBOSS, we can measure their positions

  12. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  13. Origin of the large scale structures of the universe

    International Nuclear Information System (INIS)

    Oaknin, David H.

    2004-01-01

    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength

  14. Stochastic inflation lattice simulations: Ultra-large scale structure of the universe

    International Nuclear Information System (INIS)

    Salopek, D.S.

    1990-11-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs

  15. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  16. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  17. LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER

    International Nuclear Information System (INIS)

    Park, Changbom; Kim, Young-Rae

    2010-01-01

    We propose to use the large-scale structure (LSS) of the universe as a cosmic standard ruler. This is possible because the pattern of large-scale distribution of matter is scale-dependent and does not change in comoving space during the linear-regime evolution of structure. By examining the pattern of LSS in several redshift intervals it is possible to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters governing the expansion of the universe. The features of the large-scale matter distribution that can be used as standard rulers include the topology of LSS and the overall shapes of the power spectrum and correlation function. The genus, being an intrinsic topology measure, is insensitive to systematic effects such as the nonlinear gravitational evolution, galaxy biasing, and redshift-space distortion, and thus is an ideal cosmic ruler when galaxies in redshift space are used to trace the initial matter distribution. The genus remains unchanged as far as the rank order of density is conserved, which is true for linear and weakly nonlinear gravitational evolution, monotonic galaxy biasing, and mild redshift-space distortions. The expansion history of the universe can be constrained by comparing the theoretically predicted genus corresponding to an adopted set of cosmological parameters with the observed genus measured by using the redshift-comoving distance relation of the same cosmological model.

  18. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  19. Fractals and the Large-Scale Structure in the Universe

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...

  20. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  1. Origin of large-scale cell structure in the universe

    International Nuclear Information System (INIS)

    Zel'dovich, Y.B.

    1982-01-01

    A qualitative explanation is offered for the characteristic global structure of the universe, wherein ''black'' regions devoid of galaxies are surrounded on all sides by closed, comparatively thin, ''bright'' layers populated by galaxies. The interpretation rests on some very general arguments regarding the growth of large-scale perturbations in a cold gas

  2. Large scale geometry and evolution of a universe with radiation pressure and cosmological constant

    CERN Document Server

    Coquereaux, Robert; Coquereaux, Robert; Grossmann, Alex

    2000-01-01

    In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedmann-Lemaitre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse the behaviour of redshifts in such models and the description of ``very large scale geometrical features'' when analysed by distant observers.

  3. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  4. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  5. Imprint of non-linear effects on HI intensity mapping on large scales

    Energy Technology Data Exchange (ETDEWEB)

    Umeh, Obinna, E-mail: umeobinna@gmail.com [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  6. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  7. Generating scale-invariant tensor perturbations in the non-inflationary universe

    International Nuclear Information System (INIS)

    Li, Mingzhe

    2014-01-01

    It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  8. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-09-01

    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  9. Statistics and Dynamics in the Large-scale Structure of the Universe

    International Nuclear Information System (INIS)

    Matsubara, Takahiko

    2006-01-01

    In cosmology, observations and theories are related to each other by statistics in most cases. Especially, statistical methods play central roles in analyzing fluctuations in the universe, which are seeds of the present structure of the universe. The confrontation of the statistics and dynamics is one of the key methods to unveil the structure and evolution of the universe. I will review some of the major statistical methods in cosmology, in connection with linear and nonlinear dynamics of the large-scale structure of the universe. The present status of analyses of the observational data such as the Sloan Digital Sky Survey, and the future prospects to constrain the nature of exotic components of the universe such as the dark energy will be presented

  10. Real tunneling geometries and the large-scale topology of the universe

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Hartle, J.B.

    1990-01-01

    If the topology and geometry of spacetime are quantum-mechanically variable, then the particular classical large-scale topology and geometry observed in our universe must be statistical predictions of its initial condition. This paper examines the predictions of the ''no boundary'' initial condition for the present large-scale topology and geometry. Finite-action real tunneling solutions of Einstein's equation are important for such predictions. These consist of compact Riemannian (Euclidean) geometries joined to a Lorentzian cosmological geometry across a spacelike surface of vanishing extrinsic curvature. The classification of such solutions is discussed and general constraints on their topology derived. For example, it is shown that, if the Euclidean Ricci tensor is positive, then a real tunneling solution can nucleate only a single connected Lorentzian spacetime (the unique conception theorem). Explicit examples of real tunneling solutions driven by a cosmological constant are exhibited and their implications for cosmic baldness described. It is argued that the most probable large-scale spacetime predicted by the real tunneling solutions of the ''no-boundary'' initial condition has the topology RxS 3 with the de Sitter metric

  11. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-09-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.

  12. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    Science.gov (United States)

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Anninos Peter

    2001-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  14. A correlation between the cosmic microwave background and large-scale structure in the Universe.

    Science.gov (United States)

    Boughn, Stephen; Crittenden, Robert

    2004-01-01

    Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.

  15. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  16. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  17. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  18. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  19. The topology of large-scale structure. III - Analysis of observations. [in universe

    Science.gov (United States)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  20. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  1. Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe

    CERN Document Server

    Komatsu, E; Afshordi, N; Bartolo, N; Baumann, D; Bond, J R; Buchbinder, E I; Byrnes, C T; Chen, X; Chung, D J H; Cooray, A; Creminelli, P; Dalal, N; Dore, O; Easther, R; Frolov, A V; Gorski, K M; Jackson, M G; Khoury, J; Kinney, W H; Kofman, L; Koyama, K; Leblond, L; Lehners, J L; Lidsey, J E; Liguori, M; Lim, E A; Linde, A; Lyth, D H; Maldacena, J; Matarrese, S; McAllister, L; McDonald, P; Mukohyama, S; Ovrut, B; Peiris, H V; Rath, C; Riotto, A; Rodriguez, Y; Sasaki, M; Scoccimarro, R; Seery, D; Sefusatti, E; Seljak, U; Senatore, L; Shandera, S; Shellard, E P S; Silverstein, E; Slosar, A; Smith, K M; Starobinsky, A A; Steinhardt, P J; Takahashi, F; Tegmark, M; Tolley, A J; Verde, L; Wandelt, B D; Wands, D; Weinberg, S; Wyman, M; Yadav, A P S; Zaldarriaga, M

    2009-01-01

    A new and powerful probe of the origin and evolution of structures in the Universe has emerged and been actively developed over the last decade. In the coming decade, non-Gaussianity, i.e., the study of non-Gaussian contributions to the correlations of cosmological fluctuations, will become an important probe of both the early and the late Universe. Specifically, it will play a leading role in furthering our understanding of two fundamental aspects of cosmology and astrophysics: (i) the physics of the very early universe that created the primordial seeds for large-scale structures, and (ii) the subsequent growth of structures via gravitational instability and gas physics at later times. To date, observations of fluctuations in the Cosmic Microwave Background (CMB) and the Large-Scale Structure of the Universe (LSS) have focused largely on the Gaussian contribution as measured by the two-point correlations (or the power spectrum) of density fluctuations. However, an even greater amount of information is contai...

  2. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  3. Galaxies distribution in the universe: large-scale statistics and structures

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    1988-01-01

    This research thesis addresses the distribution of galaxies in the Universe, and more particularly large scale statistics and structures. Based on an assessment of the main used statistical techniques, the author outlines the need to develop additional tools to correlation functions in order to characterise the distribution. She introduces a new indicator: the probability of a volume randomly tested in the distribution to be void. This allows a characterisation of void properties at the work scales (until 10h"-"1 Mpc) in the Harvard Smithsonian Center for Astrophysics Redshift Survey, or CfA catalog. A systematic analysis of statistical properties of different sub-samples has then been performed with respect to the size and location, luminosity class, and morphological type. This analysis is then extended to different scenarios of structure formation. A program of radial speed measurements based on observations allows the determination of possible relationships between apparent structures. The author also presents results of the search for south extensions of Perseus supernova [fr

  4. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Science.gov (United States)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  5. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2009-01-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ 0 . Using the gravitoelectromagnetic inflationary formalism with A 0 =0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  6. Limitations of scaling and universality in stock market data

    OpenAIRE

    Kertesz, Janos; Eisler, Zoltan

    2005-01-01

    We present evidence, that if a large enough set of high resolution stock market data is analyzed, certain analogies with physics -- such as scaling and universality -- fail to capture the full complexity of such data. Despite earlier expectations, the mean value per trade, the mean number of trades per minute and the mean trading activity do not show scaling with company capitalization, there is only a non-trivial monotonous dependence. The strength of correlations present in the time series ...

  7. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: membiela@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-04-20

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant {lambda}{sub 0}. Using the gravitoelectromagnetic inflationary formalism with A{sub 0}=0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  8. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-03-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  9. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  10. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  11. On soft limits of large-scale structure correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2016-08-15

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  12. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  13. Primordial Non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure

    Directory of Open Access Journals (Sweden)

    Michele Liguori

    2010-01-01

    Full Text Available The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.

  14. Background radiation fields as a probe of the large-scale matter distribution in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N [Cambridge Univ. (UK). Inst. of Astronomy

    1982-03-01

    A 'Swiss Cheese' model is used to calculate to order of magnitude the temperature fluctuation of the cosmic microwave background radiation (CMB) in a lumpy universe. The calculations are valid in a Friedmann background of arbitrary ..cap omega.. provided that matter has been dominant since the photons were last scattered. The inhomogeneities may be larger than the curvature scale, as is required to deal with fluctuations on a large angular scale in a low-density universe. This model is combined with observational limits on the fluctuations in the CMB to yield an upper limit to the present spectrum of inhomogeneities. The absence of any quadrupole anisotropy approximately > 3 x 10/sup -4/ sets a limit on the amplitude of lumps on scales very much greater than the present horizon. It is seen that, as shown by Peebles, for ..cap omega.. = 1 and a simple (Poisson) model the predicted ..delta..T/T(theta) is in remarkable accord with the recent measurements of quadrupole and 6/sup 0/ anisotropy. For a low-density model the predicted ..delta..T/T(theta) for large angles is markedly different. The limits on inhomogeneity from the isotropy of the X-ray background are briefly considered and they are found to be consistent with the microwave limits.

  15. Background radiation fields as a probe of the large-scale matter distribution in the Universe

    International Nuclear Information System (INIS)

    Kaiser, N.

    1982-01-01

    A 'Swiss Cheese' model is used to calculate to order of magnitude the temperature fluctuation of the cosmic microwave background radiation (CMB) in a lumpy universe. The calculations are valid in a Friedmann background of arbitrary Ω provided that matter has been dominant since the photons were last scattered. The inhomogeneities may be larger than the curvature scale, as is required to deal with fluctuations on a large angular scale in a low-density universe. This model is combined with observational limits on the fluctuations in the CMB to yield an upper limit to the present spectrum of inhomogeneities. The absence of any quadrupole anisotropy approximately > 3 x 10 -4 sets a limit on the amplitude of lumps on scales very much greater than the present horizon. It is seen that, as shown by Peebles, for Ω = 1 and a simple (Poisson) model the predicted ΔT/T(theta) is in remarkable accord with the recent measurements of quadrupole and 6 0 anisotropy. For a low-density model the predicted ΔT/T(theta) for large angles is markedly different. The limits on inhomogeneity from the isotropy of the X-ray background are briefly considered and they are found to be consistent with the microwave limits. (author)

  16. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  17. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  18. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  19. A Numeric Scorecard Assessing the Mental Health Preparedness for Large-Scale Crises at College and University Campuses: A Delphi Study

    Science.gov (United States)

    Burgin, Rick A.

    2012-01-01

    Large-scale crises continue to surprise, overwhelm, and shatter college and university campuses. While the devastation to physical plants and persons is often evident and is addressed with crisis management plans, the number of emotional casualties left in the wake of these large-scale crises may not be apparent and are often not addressed with…

  20. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    Science.gov (United States)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  1. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  2. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  3. Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primordial non-Gaussianity.

    Science.gov (United States)

    Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís

    2013-10-25

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.

  4. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  5. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  6. Soil-Structure Interaction for Non-Slender, Large-Diameter Offshore Monopiles

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal

    conducted. The initial part of p-y curves for non-slender piles has been investigated by means of numerical modelling. The general behaviour of eccentrically loaded non-slender piles has been investigated by physical modelling. These tests have been conducted in the pressure tank at Aalborg University....... The monopile foundation concept has been employed as the foundation for the majority of the currently installed offshore wind turbines. Therefore, this PhD thesis concerns the soil-pile interaction for non-slender, large-diameter offshore piles. A combination of numerical and physical modelling has been....... Hence, the application of an overburden pressure is possible. The timescale of the backfill process and the compaction of soil material backfilled around piles in storm conditions have been investigated by means of large-scale physical modelling....

  7. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    Science.gov (United States)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  8. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  9. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  10. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  11. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  12. Effects of baryons on the statistical properties of large scale structure of the Universe

    International Nuclear Information System (INIS)

    Guillet, T.

    2010-01-01

    Observations of weak gravitational lensing will provide strong constraints on the cosmic expansion history and the growth rate of large scale structure, yielding clues to the properties and nature of dark energy. Their interpretation is impacted by baryonic physics, which are expected to modify the total matter distribution at small scales. My work has focused on determining and modeling the impact of baryons on the statistics of the large scale matter distribution in the Universe. Using numerical simulations, I have extracted the effect of baryons on the power spectrum, variance and skewness of the total density field as predicted by these simulations. I have shown that a model based on the halo model construction, featuring a concentrated central component to account for cool condensed baryons, is able to reproduce accurately, and down to very small scales, the measured amplifications of both the variance and skewness of the density field. Because of well-known issues with baryons in current cosmological simulations, I have extended the central component model to rely on as many observation-based ingredients as possible. As an application, I have studied the effect of baryons on the predictions of the upcoming Euclid weak lensing survey. During the course of this work, I have also worked at developing and extending the RAMSES code, in particular by developing a parallel self-gravity solver, which offers significant performance gains, in particular for the simulation of some astrophysical setups such as isolated galaxy or cluster simulations. (author) [fr

  13. Just enough inflation. Power spectrum modifications at large scales

    International Nuclear Information System (INIS)

    Cicoli, Michele; Downes, Sean

    2014-07-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50-60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-l, and so seem disfavoured by recent observational hints for a lack of CMB power at l< or similar 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  14. Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization

    International Nuclear Information System (INIS)

    Rahman, M. A.; Basarudin, T.

    1997-01-01

    This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine

  15. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  16. Inflation in a Scale Invariant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Noller, Johannes [Zurich U.; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-02-16

    A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a frame-invariant approach to calculate inflationary observables in a scale invariant theory of gravity involving two scalar fields - the spectral indices, the tensor to scalar ratio, the level of isocurvature modes and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes and that, in the scale-symmetry broken phase, this theory is well described by a single scalar field theory. We find the predictions of this theory strongly compatible with current observations.

  17. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  18. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  19. Non-universal SUSY breaking, hierarchy and squark degeneracty

    International Nuclear Information System (INIS)

    Murayama, Hitoshi.

    1995-01-01

    I discuss non-trivial effects in the soft SUSY breaking terms which appear when one integrates out heavy fields. The effects exist only when the SUSY breaking terms are non-universal. They may spoil (1) the hierarchy between the weak and high-energy scales, or (2) degeneracy among the squark masses even in the presense of a horizontal symmetry. I argue, in the end, that such new effects may be useful in probing physics at high-energy scales from TeV-scale experiments

  20. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  1. Large-angle cosmic microwave background anisotropies in an open universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  2. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  3. μ - e conversion in nuclei within the CMSSM seesaw: universality versus non-universality

    International Nuclear Information System (INIS)

    Arganda, Ernesto; Herrero, MarIa J.; Teixeira, Ana M.

    2007-01-01

    In this paper we study μ-e conversion in nuclei within the context of the Constrained Minimal Supersymmetric Standard Model, enlarged by three right handed neutrinos and their supersymmetric partners, and where the neutrino masses are generated via a seesaw mechanism. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. In the first part we present a complete one-loop computation of the conversion rate for this process that includes the photon-, Z-boson, and Higgs-boson penguins, as well as box diagrams, and compare their size in the two considered scenarios. Then, in these two scenarios we analyse the relevance of the various parameters on the conversion rates, particularly emphasising the role played by the heavy neutrino masses, tan β, and especially θ 13 . In the case of hierachical heavy neutrinos, an extremely high sensitivity of the rates to θ 13 is indeed found. The last part of this work is devoted to the study of the interesting loss of correlation between the μ-e conversion and μ→eγ rates that occurs in the non-universal scenario. In the case of large tan β and light H 0 Higgs boson, an enhanced ratio of the μ-e to μ→eγ rates, with respect to the universal case is found, and this could be tested with the future experimental sensitivities

  4. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  5. On the soft limit of the large scale structure power spectrum. UV dependence

    International Nuclear Information System (INIS)

    Garny, Mathias

    2015-08-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.

  6. Universities scale like cities.

    Directory of Open Access Journals (Sweden)

    Anthony F J van Raan

    Full Text Available Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

  7. Universities scale like cities.

    Science.gov (United States)

    van Raan, Anthony F J

    2013-01-01

    Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

  8. Large scale electrolysers

    International Nuclear Information System (INIS)

    B Bello; M Junker

    2006-01-01

    Hydrogen production by water electrolysis represents nearly 4 % of the world hydrogen production. Future development of hydrogen vehicles will require large quantities of hydrogen. Installation of large scale hydrogen production plants will be needed. In this context, development of low cost large scale electrolysers that could use 'clean power' seems necessary. ALPHEA HYDROGEN, an European network and center of expertise on hydrogen and fuel cells, has performed for its members a study in 2005 to evaluate the potential of large scale electrolysers to produce hydrogen in the future. The different electrolysis technologies were compared. Then, a state of art of the electrolysis modules currently available was made. A review of the large scale electrolysis plants that have been installed in the world was also realized. The main projects related to large scale electrolysis were also listed. Economy of large scale electrolysers has been discussed. The influence of energy prices on the hydrogen production cost by large scale electrolysis was evaluated. (authors)

  9. Observing the temperature of the big bang through large scale structure

    Science.gov (United States)

    Ferreira, Pedro G.; Magueijo, João

    2008-09-01

    It is an interesting possibility that the Universe underwent a period of thermal equilibrium at very early times. One expects a residue of this primordial state to be imprinted on the large scale structure of space time. In this paper, we study the morphology of this thermal residue in a universe whose early dynamics is governed by a scalar field. We calculate the amplitude of fluctuations on large scales and compare it with the imprint of vacuum fluctuations. We then use the observed power spectrum of fluctuations on the cosmic microwave background to place a constraint on the temperature of the Universe before and during inflation. We also present an alternative scenario, where the fluctuations are predominantly thermal and near scale-invariant.

  10. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  11. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  12. Large-scale innovation and change in UK higher education

    Directory of Open Access Journals (Sweden)

    Stephen Brown

    2013-09-01

    Full Text Available This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ technology to deliver such changes. Key lessons that emerged from these experiences are reviewed covering themes of pervasiveness, unofficial systems, project creep, opposition, pressure to deliver, personnel changes and technology issues. The paper argues that collaborative approaches to project management offer greater prospects of effective large-scale change in universities than either management-driven top-down or more champion-led bottom-up methods. It also argues that while some diminution of control over project outcomes is inherent in this approach, this is outweighed by potential benefits of lasting and widespread adoption of agreed changes.

  13. Phenomenology of non-universal gaugino masses and implications ...

    Indian Academy of Sciences (India)

    universal gaugino masses for the phenomenology of Higgs bosons in the context of large hadron collider. Keywords. Supersymmetry; non-universal gaugino masses; Higgs bosons. PACS Nos 12.60.Jv; 11.30.Er; 14.80.Ly. 1. Introduction.

  14. The large-scale structure of the universe

    International Nuclear Information System (INIS)

    Silk, J.

    1999-01-01

    The Big Bang is a highly predictive theory, and one that has been systematically refined as the observational data base grows. We assume that the laws an constants of physics are unchanged throughout cosmic time. Einstein's theory of gravitation and the Planck-inspired quantum theory tell us all that we need to know to describe space and time. The local universe is observed to be highly inhomogeneous. Yet if one filters the observed structure, homogeneity appears once the filter bandpass exceeds a few tens of Mpc. The universe is approximately homogeneous. It is also isotropic, there being no apparent preferred direction. Of course, these observations are made from out vantage point. The cosmological principle generalizes the appearance of homogeneity and isotropy to a set of observers distributed through the universe. One motivation behind the cosmological principle is the need to dethrone US as being privileged observers from the vantage point of the earth. The universe is assumed to be statistically isotropic at all times for sets of fundamental observers. One consequence is that the universe must be statistically homogeneous. Observations of the cosmic microwave background have vindicated the cosmological principle, originally applied by Einstein in high first derivation of a static universe, originally applied by Einstein in his first derivation of a static universe. The cosmic microwave background is isotropic to approximately 1 part in 10 5 . It originates from the early universe, and demonstrates that the matter distribution satisfied a similar level of homogeneity during the first million years of cosmic history. (author)

  15. Large-scale fluid motion in the earth's outer core estimated from non-dipole magnetic field data

    International Nuclear Information System (INIS)

    Matsushima, Masaki; Honkura, Yoshimori

    1989-01-01

    Fluid motions in the Earth's outer core can be estimated from magnetic field data at the Earth's surface based on some assumptions. The basic standpoint here is that the non-dipole magnetic field is generated by the interaction between a strong toroidal magnetic field, created by differential rotation, and the convective motion in the outer core. Large-scale convective motions are studied to express them in terms of the poloidal velocity field expanded into a series of spherical harmonics. The radial distribution of differential rotation is estimated from the balance between the effective couple due to angular momentum transfer and the electromagnetic couple. Then the radial dependence of the toroidal magnetic field is derived from the interaction between the differential rotation thus estimated and the dipole magnetic field within the outer core. Magnetic field data are applied to a secular variation model which takes into account the fluctuations of the standing and drifting parts of the non-zonal magnetic field. The velocity field in the outer core is estimated for two cases. It is revealed that the pattern of convective motions is generally characterized by large-scale motions in the quasi-steady case. In the non-steady case, the magnitude of the velocity field is much larger, indicating a more dynamic feature. (N.K.)

  16. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  17. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  18. Non-cognitive Child Outcomes and Universal High Quality Child Care

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Simonsen, Marianne

    2010-01-01

    universal preschool programs and family day care vis-à-vis home care. We find that, compared to home care, being enrolled in preschool at age three does not lead to significant differences in child outcomes at age seven no matter the gender or the mother's level of education. Family day care, on the other...... hand, seems to significantly deteriorate outcomes for boys whose mothers have a lower level of education. Finally, longer hours in non-parental care lead to poorer child outcomes.......Exploiting a rich panel data child survey merged with administrative records along with a pseudoexperiment generating variation in the take-up of preschool across municipalities, we provide evidence of the effects on non-cognitive child outcomes of participating in large scale publicly provided...

  19. Quantum cosmological origin of large scale structures of the universe

    International Nuclear Information System (INIS)

    Anini, Y.

    1989-07-01

    In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs

  20. Scaling and universality in urban economic diversification.

    Science.gov (United States)

    Youn, Hyejin; Bettencourt, Luís M A; Lobo, José; Strumsky, Deborah; Samaniego, Horacio; West, Geoffrey B

    2016-01-01

    Understanding cities is central to addressing major global challenges from climate change to economic resilience. Although increasingly perceived as fundamental socio-economic units, the detailed fabric of urban economic activities is only recently accessible to comprehensive analyses with the availability of large datasets. Here, we study abundances of business categories across US metropolitan statistical areas, and provide a framework for measuring the intrinsic diversity of economic activities that transcends scales of the classification scheme. A universal structure common to all cities is revealed, manifesting self-similarity in internal economic structure as well as aggregated metrics (GDP, patents, crime). We present a simple mathematical derivation of the universality, and provide a model, together with its economic implications of open-ended diversity created by urbanization, for understanding the observed empirical distribution. Given the universal distribution, scaling analyses for individual business categories enable us to determine their relative abundances as a function of city size. These results shed light on the processes of economic differentiation with scale, suggesting a general structure for the growth of national economies as integrated urban systems. © 2016 The Authors.

  1. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  2. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  3. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  4. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  5. An Novel Architecture of Large-scale Communication in IOT

    Science.gov (United States)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  6. Scale-invariant matter distribution in the universe

    International Nuclear Information System (INIS)

    Balian, R.; Schaeffer, R.

    1989-01-01

    We calculate the galaxy counts or the matter content within a randomly placed cell, under the sole hypothesis of scale-invariance of the many-body correlations functions. The various forms taken by the probability for finding N objects in a given volume are obtained as a function of its size. At smallscales ( -1 Mpc), this probability decreases exponentially with N. At larger scales (0.5h -1 Mpc to 10h -1 Mpc) it behaves as a power-law with an upper and possibly a lower exponential cut-off, reminiscent of the current parametrizations of the galaxy and cluster luminosity functions. We show that the large scale void probability, whose logarithm is seen to be a power-law, is a scale-free extrapolation of its small scale behaviour. As long as the correlation functions are power-laws, this void distribution is not compatible with the linear theory, whatever large scale is considered. We relate this large-scale behaviour of the void probability to the power-law observed at the faint end of the luminosity functions. A scaling law is found, the galaxy and cluster distributions being expressed by the same universal function. We show that the counts in cells are approximately gaussian, only at very large scales, above 50h -1 Mpc, provived the density fluctuations are less than 10% of the mean. In the intermediate range of 10h -1 to 50h -1 Mpc, considerable deviations from gaussian statistics are predicted. Counts in cells are seen to provide a cleaner statistical tool than the mass or luminosity functions and are as easy to obtain either from theoretical information on correlation functions or from observations

  7. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    Science.gov (United States)

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  8. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  9. Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey

    Science.gov (United States)

    Jones, William

    The standard dark-matter and dark-energy dominated cosmological model (LCDM) has proven to be remarkably successful in describing the current state and past evolution of the Universe. However, there remain significant uncertainties regarding the physical mechanisms that established the initial conditions upon which the LCDM predictions rely. Theories of cosmic genesis - the extremely high energy mechanisms that established these conditions - should be expected to provide a natural description of the nearly flat geometry of the Universe, the existence of super-horizon density correlations, and the adiabatic, Gaussian and nearly scale-invariant nature of the observed primordial density perturbations. The primary objective of Spider is to subject models of the early Universe to observational test, probing fundamental physics at energy scales far beyond the reach of terrestrial particle accelerators. The main scientific result will be to characterize, or place stringent upper limits on the level of the odd-parity polarization of the CMB. In the context of the inflationary paradigm, Spider will confirm or exclude the predictions of the simplest single-field inflationary models near the Lyth bound, characterized by tensor to scalar ratios r 0.03. While viable alternatives to the inflationary paradigm are an active and important area of investigation, including string cosmologies and cyclic models, early Universe models described by inflationary periods are now widely accepted as the underlying cause behind much of what we observe in cosmology today. Nevertheless, we know very little about the mechanism that would drive inflation or the energy scale at which it occurred, and the paradigm faces significant questions about the viability of the framework as a scientific theory. Fortunately, inflationary paradigms and alternative theories offer distinct predictions regarding the statistical properties of the Cosmic Microwave Background radiation. Spider will use measurements

  10. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  11. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    Science.gov (United States)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; hide

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  12. Non-smooth optimization methods for large-scale problems: applications to mid-term power generation planning

    International Nuclear Information System (INIS)

    Emiel, G.

    2008-01-01

    This manuscript deals with large-scale non-smooth optimization that may typically arise when performing Lagrangian relaxation of difficult problems. This technique is commonly used to tackle mixed-integer linear programming - or large-scale convex problems. For example, a classical approach when dealing with power generation planning problems in a stochastic environment is to perform a Lagrangian relaxation of the coupling constraints of demand. In this approach, a master problem coordinates local subproblems, specific to each generation unit. The master problem deals with a separable non-smooth dual function which can be maximized with, for example, bundle algorithms. In chapter 2, we introduce basic tools of non-smooth analysis and some recent results regarding incremental or inexact instances of non-smooth algorithms. However, in some situations, the dual problem may still be very hard to solve. For instance, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization may no longer be possible or the update of dual variables may fail. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically select a restricted set of constraints to be dualized along the iterations. This relax-and-cut type approach has shown its numerical efficiency in many combinatorial problems. In chapter 3, we show Primal-dual convergence of such strategy when using an adapted sub-gradient method for the dual step and under minimal assumptions on the separation procedure. Another limit of Lagrangian relaxation may appear when the dual function is separable in highly numerous or complex sub-functions. In such situation, the computational burden of solving all local subproblems may be preponderant in the whole iterative process. A natural strategy would be here to take full advantage of the dual separable structure, performing a dual iteration after having

  13. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  14. Large scale inhomogeneities and the cosmological principle

    International Nuclear Information System (INIS)

    Lukacs, B.; Meszaros, A.

    1984-12-01

    The compatibility of cosmologic principles and possible large scale inhomogeneities of the Universe is discussed. It seems that the strongest symmetry principle which is still compatible with reasonable inhomogeneities, is a full conformal symmetry in the 3-space defined by the cosmological velocity field, but even in such a case, the standard model is isolated from the inhomogeneous ones when the whole evolution is considered. (author)

  15. Scaling versus asymptotic scaling in the non-linear σ-model in 2D. Continuum version

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1990-01-01

    The two-point function of the O(N)-symmetric non-linear σ-model in two dimensions is large-N expanded and renormalized, neglecting terms of O(1/N 2 ). At finite cut-off, universal, analytical expressions relate the magnetic susceptibility and the dressed mass to the bare coupling. Removing the cut-off, a similar relation gives the renormalized coupling as a function of the mass gap. In the weak-coupling limit these relations reproduce the results of renormalization group improved weak-coupling perturbation theory to two-loop order. The constant left unknown, when the renormalization group is integrated, is determined here. The approach to asymptotic scaling is studied for various values of N. (orig.)

  16. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  17. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  18. Economics of Utility Scale Photovoltaics at Purdue University

    Science.gov (United States)

    Arnett, William

    The research for this case study shows that utility scale solar photovoltaics has become a competitive energy investment option, even when a campus operates a power plant at low electricity rates. To evaluate this an economic model called SEEMS (Solar Economic Evaluation Modelling Spreadsheets) was developed to evaluate a number of financial scenarios in Real Time Pricing for universities. The three main financing structures considered are 1) land leasing, 2) university direct purchase, and 3) third party purchase. Unlike other commercially available models SEEMS specifically accounts for real time pricing, where the local utility provides electricity at an hourly rate that changes with the expected demand. In addition, SEEMS also includes a random simulation that allows the model to predict the likelihood of success for a given solar installation strategy. The research showed that there are several options for utility scale solar that are financially attractive. The most practical financing structure is with a third party partnership because of the opportunity to take advantage of tax incentives. Other options could become more attractive if non-financial benefits are considered. The case study for this research, Purdue University, has a unique opportunity to integrate utility-scale solar electricity into its strategic planning. Currently Purdue is updating its master plan which will define how land is developed. Purdue is also developing a sustainability plan that will define long term environmental goals. In addition, the university is developing over 500 acres of land west of campus as part of its Aerospace Innovation District. This research helps make the case for including utility-scale solar electricity as part of the university's strategic planning.

  19. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  20. [Comparison of ¹⁸F-FDG PET/CT and large-scale DWI for evaluation of non-Hodgkin lymphoma bone marrow infiltration].

    Science.gov (United States)

    Tang, Rijie; Gui, Si; Li, Jiansheng; Zhang, Hainan; Lu, Bingui; Yang, Peiyu; Fu, Donghai; Fu, Wenhai; Li, Wei; Cai, Liang

    2014-03-01

    To compare the diagnostic value of ¹⁸F-fluorodeoxyglucose-positron emission tomography/computed tomography (¹⁸F-FDG PET/CT) and large-scale diffusion weighted imaging (DWI) for evaluation of non-Hodgkin lymphoma (NHL) bone marrow (BM) infiltration. A total of 79 patients with pathologically diagnosed NHL underwent ¹⁸F-FDG PET/CT, large scale DWI and BM pathological examination. BM examination as the "gold standard", the performance (the sensitivity, specificity, accuracy, positive and negative predictive value) of ¹⁸F-FDG PET/CT and large scale DWI for evaluation of BM infiltration was compared and the risk of BM infiltration of different subtypes and sources of NHL was analyzed. 25 of 79 cases were diagnosed as BM infiltration by pathological examination with 57 BM sites. Abnormal high BM metabolisms were identified in 22 cases with 56 BM sites by ¹⁸F-FDG PET/CT and 25 cases with 58 BM sites by large-scale DWI. The sensitivity, specificity, accuracy, positive and negative predictive value of ¹⁸F-FDG PET/CT were 80.0%, 96.3%, 91.1%, 90.9%, 91.2%, respectively. And they were 84.0%, 92.6%, 89.9%, 84.0%, and 92.6% by large-scale DWI, respectively. A receiver operating characteristic (ROC) analysis demonstrated that there was no statistical difference in ¹⁸F-FDG PET/CT and large-scale DWI (P>0.05). The area under ROC curve for ¹⁸F-FDG PET/CT and large-scale DWI were 0.911 and 0.883 respectively. The incidences of BM infiltration in aggressive NHL patients by ¹⁸F-FDG PET/CT (21/69, 30.4%) and large-scale DWI (23/69, 33.3%) were higher than those (PET/CT: 10.0%; large-scale DWI: 20.0%; P>0.05) in indolent NHL patients. ¹⁸F-FDG PET/CT and large-scale DWI had important clinical value in diagnosing BM infiltration of NHL. A combination of ¹⁸F-FDG PET/CT, large-scale DWI and pathological examination could improve the positive rate of BM infiltration in NHL.

  1. Some Statistics for Measuring Large-Scale Structure

    OpenAIRE

    Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey

    1993-01-01

    Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...

  2. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  3. Spatiotemporal property and predictability of large-scale human mobility

    Science.gov (United States)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  4. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2017-05-01

    In recent years, because the frequency and severity of floods have increased across Canada, it is important to understand the characteristics of Canadian heavy precipitation. Long-term precipitation data of 463 gauging stations of Canada were analyzed using non-stationary generalized extreme value distribution (GEV), Poisson distribution and generalized Pareto (GP) distribution. Time-varying covariates that represent large-scale climate patterns such as El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation (PDO) and North Pacific Oscillation (NP) were incorporated to parameters of GEV, Poisson and GP distributions. Results show that GEV distributions tend to under-estimate annual maximum daily precipitation (AMP) of western and eastern coastal regions of Canada, compared to GP distributions. Poisson regressions show that temporal clusters of heavy precipitation events in Canada are related to large-scale climate patterns. By modeling AMP time series with non-stationary GEV and heavy precipitation with non-stationary GP distributions, it is evident that AMP and heavy precipitation of Canada show strong non-stationarities (abrupt and slowly varying changes) likely because of the influence of large-scale climate patterns. AMP in southwestern coastal regions, southern Canadian Prairies and the Great Lakes tend to be higher in El Niño than in La Niña years, while AMP of other regions of Canada tends to be lower in El Niño than in La Niña years. The influence of ENSO on heavy precipitation was spatially consistent but stronger than on AMP. The effect of PDO, NAO and NP on extreme precipitation is also statistically significant at some stations across Canada.

  5. Single-field consistency relations of large scale structure

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo

    2013-01-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe

  6. Influence of large local and non-local bispectra on primordial black hole abundance

    International Nuclear Information System (INIS)

    Young, Sam; Regan, Donough; Byrnes, Christian T.

    2016-01-01

    Primordial black holes represent a unique probe to constrain the early universe on small scales—providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates

  7. The cosmic large-scale structure, dark matter and the origin of galaxies

    CERN Document Server

    Frenk, Carlos S

    1998-01-01

    In this series of lectures, I will review the main events and processes which are thought to have led to the build of structure in the Universe. First, I will provide an overview of some basic ideas such as inflation, Big Bang nucleosynthesis, the microwave background radiation and gravitanional instability. I will then dicuss the evidence for dark matter in the universe and current ideas on the nature and amount of this dark matter, including their consequences for the values of the fundamental cosmological parameters. Next, I will review the processes that give rise to the cosmic large-scale structure, starting with a discussion of the main fluctuation damping mechanisms at early times and finishing with a description of the non-linear phases of evolution. I will discuss how these calculations compare with observations and present the current status of competing cosmological models. Finally I will summarize the most recent and very exciting developments in observational and theoretical studies of gala...

  8. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  9. Universality and scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Michael, C.; Teper, M.; Oxford Univ.

    1988-01-01

    We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)

  10. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  11. "Annotated Lectures": Student-Instructor Interaction in Large-Scale Global Education

    Directory of Open Access Journals (Sweden)

    Roger Diehl

    2009-10-01

    Full Text Available We describe an "Annotated Lectures" system, which will be used in a global virtual teaching and student collaboration event on embodied intelligence presented by the University of Zurich. The lectures will be broadcasted via video-conference to lecture halls of different universities around the globe. Among other collaboration features, an "Annotated Lectures" system will be implemented in a 3D collaborative virtual environment and used by the participating students to make annotations to the video-recorded lectures, which will be sent to and answered by their supervisors, and forwarded to the lecturers in an aggregated way. The "Annotated Lectures" system aims to overcome the issues of limited studentinstructor interaction in large-scale education, and to foster an intercultural and multidisciplinary discourse among students who review the lectures in a group. After presenting the concept of the "Annotated Lectures" system, we discuss a prototype version including a description of the technical components and its expected benefit for large-scale global education.

  12. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  13. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  14. Non-parametric co-clustering of large scale sparse bipartite networks on the GPU

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai

    2011-01-01

    of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale...... sparse bipartite networks and achieve a speedup of two orders of magnitude compared to estimation based on conventional CPUs. In terms of scalability we find for networks with more than 100 million links that reliable inference can be achieved in less than an hour on a single GPU. To efficiently manage...

  15. Scale-Up: Improving Large Enrollment Physics Courses

    Science.gov (United States)

    Beichner, Robert

    1999-11-01

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.

  16. The Transition to Large-scale Cosmic Homogeneity in the WiggleZ Dark Energy Survey

    Science.gov (United States)

    Scrimgeour, Morag; Davis, T.; Blake, C.; James, B.; Poole, G. B.; Staveley-Smith, L.; Dark Energy Survey, WiggleZ

    2013-01-01

    The most fundamental assumption of the standard cosmological model (ΛCDM) is that the universe is homogeneous on large scales. This is clearly not true on small scales, where clusters and voids exist, and some studies seem to suggest that galaxies follow a fractal distribution up to very large scales 200 h-1 Mpc or more), whereas the ΛCDM model predicts transition to homogeneity at scales of ~100 h-1 Mpc. Any cosmological measurements made below the scale of homogeneity (such as the power spectrum) could be misleading, so it is crucial to measure the scale of homogeneity in the Universe. We have used the WiggleZ Dark Energy Survey to make the largest volume measurement to date of the transition to homogeneity in the galaxy distribution. WiggleZ is a UV-selected spectroscopic survey of ~200,000 luminous blue galaxies up to z=1, made with the Anglo-Australian Telescope. We have corrected for survey incompleteness using random catalogues that account for the various survey selection criteria, and tested the robustness of our results using a suite of fractal mock catalogues. The large volume and depth of WiggleZ allows us to probe the transition of the galaxy distribution to homogeneity on large scales and over several epochs, and see if this is consistent with a ΛCDM prediction.

  17. Neutralino Dark Matter in non-universal and non-minimal SUSY

    International Nuclear Information System (INIS)

    King, S.F.

    2010-01-01

    We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.

  18. Testing Einstein's Gravity on Large Scales

    Science.gov (United States)

    Prescod-Weinstein, Chandra

    2011-01-01

    A little over a decade has passed since two teams studying high redshift Type Ia supernovae announced the discovery that the expansion of the universe was accelerating. After all this time, we?re still not sure how cosmic acceleration fits into the theory that tells us about the large-scale universe: General Relativity (GR). As part of our search for answers, we have been forced to question GR itself. But how will we test our ideas? We are fortunate enough to be entering the era of precision cosmology, where the standard model of gravity can be subjected to more rigorous testing. Various techniques will be employed over the next decade or two in the effort to better understand cosmic acceleration and the theory behind it. In this talk, I will describe cosmic acceleration, current proposals to explain it, and weak gravitational lensing, an observational effect that allows us to do the necessary precision cosmology.

  19. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  20. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  1. Microscopic universality of complex matrix model correlation functions at weak non-Hermiticity

    International Nuclear Information System (INIS)

    Akemann, G.

    2002-01-01

    The microscopic correlation functions of non-chiral random matrix models with complex eigenvalues are analyzed for a wide class of non-Gaussian measures. In the large-N limit of weak non-Hermiticity, where N is the size of the complex matrices, we can prove that all k-point correlation functions including an arbitrary number of Dirac mass terms are universal close to the origin. To this aim we establish the universality of the asymptotics of orthogonal polynomials in the complex plane. The universality of the correlation functions then follows from that of the kernel of orthogonal polynomials and a mapping of massive to massless correlators

  2. Large-scale grid management

    International Nuclear Information System (INIS)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-01-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series

  3. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  4. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  5. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  6. THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE-GALAXY SCALING RELATIONS

    International Nuclear Information System (INIS)

    Jahnke, Knud; Maccio, Andrea V.

    2011-01-01

    We show that the M BH -M bulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of black hole (BH) and bulge mass, for example, through feedback by active galactic nuclei (AGNs). Provided some physics for the absolute normalization, the creation of the scaling relations can be fully explained by the hierarchical assembly of BH and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) BH and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and BH accretion recipes that (1) work without any coupling of the two properties per individual galaxy and (2) correctly reproduce the observed star formation and BH accretion rate density in the universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ∼1.1 for the M BH -M bulge relation at z = 0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.

  7. Implementing Projects in Calculus on a Large Scale at the University of South Florida

    Science.gov (United States)

    Fox, Gordon A.; Campbell, Scott; Grinshpan, Arcadii; Xu, Xiaoying; Holcomb, John; Bénéteau, Catherine; Lewis, Jennifer E.; Ramachandran, Kandethody

    2017-01-01

    This paper describes the development of a program of project-based learning in Calculus courses at a large urban research university. In this program, students developed research projects in consultation with a faculty advisor in their major, and supervised by their calculus instructors. Students wrote up their projects in a prescribed format…

  8. Implementation of highly parallel and large scale GW calculations within the OpenAtom software

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.

  9. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  10. The Belonging to the University Scale

    Science.gov (United States)

    Karaman, Omer; Cirak, Yuksel

    2017-01-01

    The aim of the study is to develop a belonging to the university scale (BUS) in order to determine the level of fulfillment of the need to belong among university students at the higher education institutions they attend. The population of the investigation includes university students studying at the campus of Ordu University. A 5 point…

  11. Three-Flavoured Non-Resonant Leptogenesis at Intermediate Scales

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, K. [Durham U., IPPP; Pascoli, S. [Durham U., IPPP; Petcov, S. T. [Tokyo U., IPMU; Schulz, H. [Cincinnati U.; Turner, J. [Fermilab

    2018-04-13

    Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of heavy Majorana neutrinos in the early Universe. In this article we focus on non-resonant thermal leptogenesis and we study the possibility of lowering its scale through flavour effects in an exhaustive exploration of the model parameter space. We numerically solve the density matrix equations for one and two decaying heavy Majorana neutrinos and present the level of fine-tuning of the light neutrino masses within these scenarios. We demonstrate that the scale of thermal leptogenesis may be as low as $10^6$ GeV.

  12. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  13. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  14. Large scale analysis of signal reachability.

    Science.gov (United States)

    Todor, Andrei; Gabr, Haitham; Dobra, Alin; Kahveci, Tamer

    2014-06-15

    Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. © The Author 2014

  15. A large-scale peer teaching programme - acceptance and benefit.

    Science.gov (United States)

    Schuetz, Elisabeth; Obirei, Barbara; Salat, Daniela; Scholz, Julia; Hann, Dagmar; Dethleffsen, Kathrin

    2017-08-01

    The involvement of students in the embodiment of university teaching through peer-assisted learning formats is commonly applied. Publications on this topic exclusively focus on strictly defined situations within the curriculum and selected target groups. This study, in contrast, presents and evaluates a large-scale structured and quality-assured peer teaching programme, which offers diverse and targeted courses throughout the preclinical part of the medical curriculum. The large-scale peer teaching programme consists of subject specific and interdisciplinary tutorials that address all scientific, physiological and anatomic subjects of the preclinical curriculum as well as tutorials with contents exceeding the formal curriculum. In the study year 2013/14 a total of 1,420 lessons were offered as part of the programme. Paper-based evaluations were conducted over the full range of courses. Acceptance and benefit of this peer teaching programme were evaluated in a retrospective study covering the period 2012 to 2014. Usage of tutorials by students who commenced their studies in 2012/13 (n=959) was analysed from 2012 till 2014. Based on the results of 13 first assessments in the preclinical subjects anatomy, biochemistry and physiology, the students were assigned to one of five groups. These groups were compared according to participation in the tutorials. To investigate the benefit of tutorials of the peer teaching programme, the results of biochemistry re-assessments of participants and non-participants of tutorials in the years 2012 till 2014 (n=188, 172 and 204, respectively) were compared using Kolmogorov-Smirnov- and Chi-square tests as well as the effect size Cohen's d. Almost 70 % of the students attended the voluntary additional programme during their preclinical studies. The students participating in the tutorials had achieved different levels of proficiency in first assessments. The acceptance of different kinds of tutorials appears to correlate with their

  16. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  17. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  18. Limited accessibility to designs and results of Japanese large-scale clinical trials for cardiovascular diseases.

    Science.gov (United States)

    Sawata, Hiroshi; Ueshima, Kenji; Tsutani, Kiichiro

    2011-04-14

    Clinical evidence is important for improving the treatment of patients by health care providers. In the study of cardiovascular diseases, large-scale clinical trials involving thousands of participants are required to evaluate the risks of cardiac events and/or death. The problems encountered in conducting the Japanese Acute Myocardial Infarction Prospective (JAMP) study highlighted the difficulties involved in obtaining the financial and infrastructural resources necessary for conducting large-scale clinical trials. The objectives of the current study were: 1) to clarify the current funding and infrastructural environment surrounding large-scale clinical trials in cardiovascular and metabolic diseases in Japan, and 2) to find ways to improve the environment surrounding clinical trials in Japan more generally. We examined clinical trials examining cardiovascular diseases that evaluated true endpoints and involved 300 or more participants using Pub-Med, Ichushi (by the Japan Medical Abstracts Society, a non-profit organization), websites of related medical societies, the University Hospital Medical Information Network (UMIN) Clinical Trials Registry, and clinicaltrials.gov at three points in time: 30 November, 2004, 25 February, 2007 and 25 July, 2009. We found a total of 152 trials that met our criteria for 'large-scale clinical trials' examining cardiovascular diseases in Japan. Of these, 72.4% were randomized controlled trials (RCTs). Of 152 trials, 9.2% of the trials examined more than 10,000 participants, and 42.8% examined between 1,000 and 10,000 participants. The number of large-scale clinical trials markedly increased from 2001 to 2004, but suddenly decreased in 2007, then began to increase again. Ischemic heart disease (39.5%) was the most common target disease. Most of the larger-scale trials were funded by private organizations such as pharmaceutical companies. The designs and results of 13 trials were not disclosed. To improve the quality of clinical

  19. Limited accessibility to designs and results of Japanese large-scale clinical trials for cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Tsutani Kiichiro

    2011-04-01

    Full Text Available Abstract Background Clinical evidence is important for improving the treatment of patients by health care providers. In the study of cardiovascular diseases, large-scale clinical trials involving thousands of participants are required to evaluate the risks of cardiac events and/or death. The problems encountered in conducting the Japanese Acute Myocardial Infarction Prospective (JAMP study highlighted the difficulties involved in obtaining the financial and infrastructural resources necessary for conducting large-scale clinical trials. The objectives of the current study were: 1 to clarify the current funding and infrastructural environment surrounding large-scale clinical trials in cardiovascular and metabolic diseases in Japan, and 2 to find ways to improve the environment surrounding clinical trials in Japan more generally. Methods We examined clinical trials examining cardiovascular diseases that evaluated true endpoints and involved 300 or more participants using Pub-Med, Ichushi (by the Japan Medical Abstracts Society, a non-profit organization, websites of related medical societies, the University Hospital Medical Information Network (UMIN Clinical Trials Registry, and clinicaltrials.gov at three points in time: 30 November, 2004, 25 February, 2007 and 25 July, 2009. Results We found a total of 152 trials that met our criteria for 'large-scale clinical trials' examining cardiovascular diseases in Japan. Of these, 72.4% were randomized controlled trials (RCTs. Of 152 trials, 9.2% of the trials examined more than 10,000 participants, and 42.8% examined between 1,000 and 10,000 participants. The number of large-scale clinical trials markedly increased from 2001 to 2004, but suddenly decreased in 2007, then began to increase again. Ischemic heart disease (39.5% was the most common target disease. Most of the larger-scale trials were funded by private organizations such as pharmaceutical companies. The designs and results of 13 trials were not

  20. Higgs mass prediction with non-universal soft supersymmetry breaking in MSSM

    International Nuclear Information System (INIS)

    Codoban, S.; Jurcisin, M.; Kazakov, D.

    2001-01-01

    In the framework of the MSSM (Minimal supersymmetric extension of the standard model) the non-universal boundary conditions of soft SUSY breaking parameters are considered. Taking as input the top, bottom and Z-boson masses, the values of the gauge couplings at the EW scale and the infrared quasi-fixed points for Yukawa couplings and the soft parameters the mass of the lightest CP-even Higgs boson is found to be m h = 92.7 -4.9 +10 ± 5 ± 0.4 GeV/c 2 for the low tan(β) case and m h 125.7 -9.0 +6.4 ± 5 ± 0.4 GeV/c 2 (μ > 0) or m h 125.4 -9.0 +6.6 ± 5 ± 0.4 Ge V/c 2 (μ < 0) in the case of large tan(β). (authors)

  1. Political consultation and large-scale research

    International Nuclear Information System (INIS)

    Bechmann, G.; Folkers, H.

    1977-01-01

    Large-scale research and policy consulting have an intermediary position between sociological sub-systems. While large-scale research coordinates science, policy, and production, policy consulting coordinates science, policy and political spheres. In this very position, large-scale research and policy consulting lack of institutional guarantees and rational back-ground guarantee which are characteristic for their sociological environment. This large-scale research can neither deal with the production of innovative goods under consideration of rentability, nor can it hope for full recognition by the basis-oriented scientific community. Policy consulting knows neither the competence assignment of the political system to make decisions nor can it judge succesfully by the critical standards of the established social science, at least as far as the present situation is concerned. This intermediary position of large-scale research and policy consulting has, in three points, a consequence supporting the thesis which states that this is a new form of institutionalization of science: These are: 1) external control, 2) the organization form, 3) the theoretical conception of large-scale research and policy consulting. (orig.) [de

  2. The topology of large-scale structure. III. Analysis of observations

    International Nuclear Information System (INIS)

    Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs

  3. The topology of large-scale structure. III - Analysis of observations

    Science.gov (United States)

    Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.

    1989-05-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  4. Large-scale multimedia modeling applications

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications

  5. Challenges and opportunities for large landscape-scale management in a shifting climate: The importance of nested adaptation responses across geospatial and temporal scales

    Science.gov (United States)

    Gary M. Tabor; Anne Carlson; Travis Belote

    2014-01-01

    The Yellowstone to Yukon Conservation Initiative (Y2Y) was established over 20 years ago as an experiment in large landscape conservation. Initially, Y2Y emerged as a response to large scale habitat fragmentation by advancing ecological connectivity. It also laid the foundation for large scale multi-stakeholder conservation collaboration with almost 200 non-...

  6. A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2016-07-01

    Full Text Available This paper presents a review of over a decade of research on Vertical Axis Wind Turbines (VAWTs conducted at Uppsala University. The paper presents, among others, an overview of the 200 kW VAWT located in Falkenberg, Sweden, as well as a description of the work done on the 12 kW prototype VAWT in Marsta, Sweden. Several key aspects have been tested and successfully demonstrated at our two experimental research sites. The effort of the VAWT research has been aimed at developing a robust large scale VAWT technology based on an electrical control system with a direct driven energy converter. This approach allows for a simplification where most or all of the control of the turbines can be managed by the electrical converter system, reducing investment cost and need for maintenance. The concept features an H-rotor that is omnidirectional in regards to wind direction, meaning that it can extract energy from all wind directions without the need for a yaw system. The turbine is connected to a direct driven permanent magnet synchronous generator (PMSG, located at ground level, that is specifically developed to control and extract power from the turbine. The research is ongoing and aims for a multi-megawatt VAWT in the near future.

  7. Inflation and large scale structure formation after COBE

    International Nuclear Information System (INIS)

    Schaefer, R.K.; Shafi, Q.

    1992-06-01

    The simplest realizations of the new inflationary scenario typically give rise to primordial density fluctuations which deviate logarithmically from the scale free Harrison-Zeldovich spectrum. We consider a number of such examples and, in each case we normalize the amplitude of the fluctuations with the recent COBE measurement of the microwave background anisotropy. The predictions for the bulk velocities as well as anisotropies on smaller (1-2 degrees) angular scales are compared with the Harrison-Zeldovich case. Deviations from the latter range from a few to about 15 percent. We also estimate the redshift beyond which the quasars would not be expected to be seen. The inflationary quasar cutoff redshifts can vary by as much as 25% from the Harrison-Zeldovich case. We find that the inflationary scenario provides a good starting point for a theory of large scale structure in the universe provided the dark matter is a combination of cold plus (10-30%) hot components. (author). 27 refs, 1 fig., 1 tab

  8. Possible evidence for the existence of antimatter on a cosmological scale in the universe.

    Science.gov (United States)

    Stecker, F. W.; Morgan, D. L., Jr.; Bredekamp, J.

    1971-01-01

    Initial results of a detailed calculation of the cosmological gamma-ray spectrum from matter-antimatter annihilation in the universe. The similarity between the calculated spectrum and the present observations of the gamma-ray background spectrum above 1 MeV suggests that such observations may be evidence of the existence of antimatter on a large scale in the universe.

  9. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  10. A large-scale mass casualty simulation to develop the non-technical skills medical students require for collaborative teamwork.

    Science.gov (United States)

    Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam

    2016-03-08

    There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.

  11. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  12. Scaling defect decay and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Avelino, P.P.; Barbosa, D.

    2004-01-01

    We consider a model for the reionization history of the Universe in which a significant fraction of the observed optical depth is a result of direct reionization by the decay products of a scaling cosmic defect network. We show that such network can make a significant contribution to the reionization history of the Universe even if its energy density is very small (the defect energy density has to be greater than about 10 -11 of the background density). We compute the Cosmic Microwave Background temperature, polarization and temperature-polarization cross power spectrum and show that a contribution to the observed optical depth due to the decay products of a scaling defect network may help to reconcile a high optical depth with a low redshift of complete reionization suggested by quasar data. However, if the energy density of defects is approximately a constant fraction of the background density then these models do not explain the large scale bump in the temperature-polarization cross power spectrum observed by Wilkinson Microwave Anisotropy Probe

  13. Non-cognitive Child Outcomes and Universal High Quality Child Care

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Simonsen, Århus Universitet, Marianne

    universal pre-school programs and family day care vis-à-vis home care. We find that, compared to home care, being enrolled in pre-school at age three does not lead to significant differences in child outcomes at age seven no matter the gender or mother’s level of education. Family day care, on the other......Exploiting a rich panel data child survey merged with administrative records along with a pseudo-experiment generating variation in the take-up of pre-school across municipalities, we provide evidence of the effects on non-cognitive child outcomes of participating in large scale publicly provided...... hand, seems to significantly deteriorate outcomes for boys whose mothers have a lower level of education. Finally, increasing hours in family day care from 30-40 hours per week to 40-50 hours per week and hours in pre-school from 20-30 hours per week to 30-40 hours per week leads to significantly...

  14. Non-cognitive Child Outcomes and Universal High Quality Child Care

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Simonsen, Marianne

    universal pre-school programs and family day care vis-à-vis home care. We find that, compared to home care, being enrolled in pre-school at age three does not lead to significant differences in child outcomes at age seven no matter the gender or mother's level of education. Family day care, on the other......Exploiting a rich panel data child survey merged with administrative records along with a pseudo-experiment generating variation in the take-up of pre-school across municipalities, we provide evidence of the effects on non-cognitive child outcomes of participating in large scale publicly provided...... hand, seems to significantly deteriorate outcomes for boys whose mothers have a lower level of education. Finally, increasing hours in family day care from 30-40 hours per week to 40-50 hours per week and hours in pre-school from 20-30 hours per week to 30-40 hours per week leads to significantly...

  15. Teaching the Thrill of Discovery: Student Exploration of the Large-Scale Structures of the Universe

    Science.gov (United States)

    Juneau, Stephanie; Dey, Arjun; Walker, Constance E.; NOAO Data Lab

    2018-01-01

    In collaboration with the Teen Astronomy Cafes program, the NOAO Data Lab is developing online Jupyter Notebooks as a free and publicly accessible tool for students and teachers. Each interactive activity teaches students simultaneously about coding and astronomy with a focus on large datasets. Therefore, students learn state-of-the-art techniques at the cross-section between astronomy and data science. During the activity entitled “Our Vast Universe”, students use real spectroscopic data to measure the distance to galaxies before moving on to a catalog with distances to over 100,000 galaxies. Exploring this dataset gives students an appreciation of the large number of galaxies in the universe (2 trillion!), and leads them to discover how galaxies are located in large and impressive filamentary structures. During the Teen Astronomy Cafes program, the notebook is supplemented with visual material conducive to discussion, and hands-on activities involving cubes representing model universes. These steps contribute to build the students’ physical intuition and give them a better grasp of the concepts before using software and coding. At the end of the activity, students have made their own measurements, and have experienced scientific research directly. More information is available online for the Teen Astronomy Cafes (teensciencecafe.org/cafes) and the NOAO Data Lab (datalab.noao.edu).

  16. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  17. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    Science.gov (United States)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  18. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  19. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  20. Numerical and experimental simulation of accident processes using KMS large-scale test facility under the program of training university students for nuclear power industry

    International Nuclear Information System (INIS)

    Aniskevich, Yu.N.

    2005-01-01

    The KMS large-scale test facility is being constructed at NITI site and designed to model accident processes in VVER reactor plants and provide experimental data for safety analysis of both existing and future NPPs. The KMS phase I is at the completion stage. This is a containment model of 2000 m3 volume intended for experimentally simulating heat and mass transfers of steam-gas mixtures and aerosols inside containment. The KMS phase II will incorporate a reactor model (1:27 scale) and be used for analysing a number of events including primary and secondary LOCA. The KMS program for background training of university students in the nuclear field will include preparation and conduction of experiments, analysis of experiment data. The KMS program for background training of university students in nuclear will include: participation in the development and application of experiment procedures, preparation and carrying out experiments; carrying out pretest and post-test calculations with different computer codes; on-the-job training as operators of experiment scenarios; training of specialists in measurement and information acquisition technologies. (author)

  1. Universal scaling and nonlinearity of aggregate price impact in financial markets

    Science.gov (United States)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2018-01-01

    How and why stock prices move is a centuries-old question still not answered conclusively. More recently, attention shifted to higher frequencies, where trades are processed piecewise across different time scales. Here we reveal that price impact has a universal nonlinear shape for trades aggregated on any intraday scale. Its shape varies little across instruments, but drastically different master curves are obtained for order-volume and -sign impact. The scaling is largely determined by the relevant Hurst exponents. We further show that extreme order-flow imbalance is not associated with large returns. To the contrary, it is observed when the price is pinned to a particular level. Prices move only when there is sufficient balance in the local order flow. In fact, the probability that a trade changes the midprice falls to zero with increasing (absolute) order-sign bias along an arc-shaped curve for all intraday scales. Our findings challenge the widespread assumption of linear aggregate impact. They imply that market dynamics on all intraday time scales are shaped by correlations and bilateral adaptation in the flows of liquidity provision and taking.

  2. Validation of the Temporal Satisfaction with Life Scale in a Sample of Chinese University Students

    Science.gov (United States)

    Ye, Shengquan

    2007-01-01

    The study aims at validating the Temporal Satisfaction With Life Scale (TSWLS; Pavot et al., 1998, "The Temporal Satisfaction With Life Scale", Journal of Personality Assessment 70, pp. 340-354) in a non-western context. Data from 646 Chinese university students (330 females and 316 males) supported the three-factor structure of the…

  3. Higher Education Teachers' Descriptions of Their Own Learning: A Large-Scale Study of Finnish Universities of Applied Sciences

    Science.gov (United States)

    Töytäri, Aija; Piirainen, Arja; Tynjälä, Päivi; Vanhanen-Nuutinen, Liisa; Mäki, Kimmo; Ilves, Vesa

    2016-01-01

    In this large-scale study, higher education teachers' descriptions of their own learning were examined with qualitative analysis involving application of principles of phenomenographic research. This study is unique: it is unusual to use large-scale data in qualitative studies. The data were collected through an e-mail survey sent to 5960 teachers…

  4. Radiations: large scale monitoring in Japan

    International Nuclear Information System (INIS)

    Linton, M.; Khalatbari, A.

    2011-01-01

    As the consequences of radioactive leaks on their health are a matter of concern for Japanese people, a large scale epidemiological study has been launched by the Fukushima medical university. It concerns the two millions inhabitants of the Fukushima Prefecture. On the national level and with the support of public funds, medical care and follow-up, as well as systematic controls are foreseen, notably to check the thyroid of 360.000 young people less than 18 year old and of 20.000 pregnant women in the Fukushima Prefecture. Some measurements have already been performed on young children. Despite the sometimes rather low measures, and because they know that some parts of the area are at least as much contaminated as it was the case around Chernobyl, some people are reluctant to go back home

  5. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    Science.gov (United States)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  6. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  7. Large-scale data analysis of power grid resilience across multiple US service regions

    Science.gov (United States)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  8. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Science.gov (United States)

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  9. Phylogenetic distribution of large-scale genome patchiness

    Directory of Open Access Journals (Sweden)

    Hackenberg Michael

    2008-04-01

    Full Text Available Abstract Background The phylogenetic distribution of large-scale genome structure (i.e. mosaic compositional patchiness has been explored mainly by analytical ultracentrifugation of bulk DNA. However, with the availability of large, good-quality chromosome sequences, and the recently developed computational methods to directly analyze patchiness on the genome sequence, an evolutionary comparative analysis can be carried out at the sequence level. Results The local variations in the scaling exponent of the Detrended Fluctuation Analysis are used here to analyze large-scale genome structure and directly uncover the characteristic scales present in genome sequences. Furthermore, through shuffling experiments of selected genome regions, computationally-identified, isochore-like regions were identified as the biological source for the uncovered large-scale genome structure. The phylogenetic distribution of short- and large-scale patchiness was determined in the best-sequenced genome assemblies from eleven eukaryotic genomes: mammals (Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, and Canis familiaris, birds (Gallus gallus, fishes (Danio rerio, invertebrates (Drosophila melanogaster and Caenorhabditis elegans, plants (Arabidopsis thaliana and yeasts (Saccharomyces cerevisiae. We found large-scale patchiness of genome structure, associated with in silico determined, isochore-like regions, throughout this wide phylogenetic range. Conclusion Large-scale genome structure is detected by directly analyzing DNA sequences in a wide range of eukaryotic chromosome sequences, from human to yeast. In all these genomes, large-scale patchiness can be associated with the isochore-like regions, as directly detected in silico at the sequence level.

  10. The Emergence of Large-Scale Computer Assisted Summative Examination Facilities in Higher Education

    NARCIS (Netherlands)

    Draaijer, S.; Warburton, W. I.

    2014-01-01

    A case study is presented of VU University Amsterdam where a dedicated large-scale CAA examination facility was established. In the facility, 385 students can take an exam concurrently. The case study describes the change factors and processes leading up to the decision by the institution to

  11. Managing large-scale models: DBS

    International Nuclear Information System (INIS)

    1981-05-01

    A set of fundamental management tools for developing and operating a large scale model and data base system is presented. Based on experience in operating and developing a large scale computerized system, the only reasonable way to gain strong management control of such a system is to implement appropriate controls and procedures. Chapter I discusses the purpose of the book. Chapter II classifies a broad range of generic management problems into three groups: documentation, operations, and maintenance. First, system problems are identified then solutions for gaining management control are disucssed. Chapters III, IV, and V present practical methods for dealing with these problems. These methods were developed for managing SEAS but have general application for large scale models and data bases

  12. Large Scale Self-Organizing Information Distribution System

    National Research Council Canada - National Science Library

    Low, Steven

    2005-01-01

    This project investigates issues in "large-scale" networks. Here "large-scale" refers to networks with large number of high capacity nodes and transmission links, and shared by a large number of users...

  13. Large-scale computation in solid state physics - Recent developments and prospects

    International Nuclear Information System (INIS)

    DeVreese, J.T.

    1985-01-01

    During the past few years an increasing interest in large-scale computation is developing. Several initiatives were taken to evaluate and exploit the potential of ''supercomputers'' like the CRAY-1 (or XMP) or the CYBER-205. In the U.S.A., there first appeared the Lax report in 1982 and subsequently (1984) the National Science Foundation in the U.S.A. announced a program to promote large-scale computation at the universities. Also, in Europe several CRAY- and CYBER-205 systems have been installed. Although the presently available mainframes are the result of a continuous growth in speed and memory, they might have induced a discontinuous transition in the evolution of the scientific method; between theory and experiment a third methodology, ''computational science'', has become or is becoming operational

  14. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    Science.gov (United States)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  15. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  16. On a Game of Large-Scale Projects Competition

    Science.gov (United States)

    Nikonov, Oleg I.; Medvedeva, Marina A.

    2009-09-01

    The paper is devoted to game-theoretical control problems motivated by economic decision making situations arising in realization of large-scale projects, such as designing and putting into operations the new gas or oil pipelines. A non-cooperative two player game is considered with payoff functions of special type for which standard existence theorems and algorithms for searching Nash equilibrium solutions are not applicable. The paper is based on and develops the results obtained in [1]-[5].

  17. The complex universe: recent observations and theoretical challenges

    International Nuclear Information System (INIS)

    Sylos Labini, Francesco; Pietronero, Luciano

    2010-01-01

    The large-scale distribution of galaxies in the universe displays a complex pattern of clusters, super-clusters, filaments and voids with sizes limited only by the boundaries of the available samples. A quantitative statistical characterization of these structures shows that galaxy distribution is inhomogeneous in these samples, being characterized by large amplitude fluctuations of large spatial extension. Over a large range of scales, both the average conditional density and its variance show a non-trivial scaling behavior: at small scales, r −1 . At larger scales, the density depends only weakly (logarithmically) on the system size and density fluctuations follow the Gumbel distribution of extreme value statistics. These complex behaviors are different from what is expected in a homogeneous distribution with Gaussian fluctuations. The observed density inhomogeneities pose a fundamental challenge to the standard picture of cosmology but they also represent an important opportunity which points to new directions with respect to many cosmological puzzles. Indeed, the fact that matter distribution is not uniform, in the limited range of scales sampled by observations, raises the question of understanding how inhomogeneities affect the large-scale dynamics of the universe. We discuss several attempts which try to model inhomogeneities in cosmology, considering their effects with respect to the role and abundance of dark energy and dark matter

  18. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    Science.gov (United States)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  19. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  20. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  1. Study of viable models with non-universal gaugino mediation with CompHEP and ISAJET

    International Nuclear Information System (INIS)

    Baer, H.; Balazs, C.; Belyaev, A.; Dermisek, R.; Mafi, A.; Mustafayev, A.

    2003-01-01

    We study the recently proposed scenario for SUSY GUT models in which compactification of the extra dimension(s) leads to a breakdown of the gauge symmetry and/or supersymmetry. SUSY breaking occurs on a hidden brane, and is communicated to the visible brane via gaugino mediation. The non-universal gaugino masses are developed at the compactification scale as a consequence of a restricted gauge symmetry on the hidden brane. For gaugino masses related due to a Pati-Salam symmetry on the hidden brane, we find the limited, but significant, regions of the model parameter space where a viable spectra of SUSY matter is generated. In the more general case of three independent gaugino masses, large parameter space regions open up for large values of the U(1) gaugino mass M 1 . We also find the relic density of neutralinos for these models to be generally below the expectations from cosmological observations, thus leaving room for hidden sector states to make up the bulk of cold dark matter

  2. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  3. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  4. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo

    2017-01-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non......-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal...... students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated...

  5. Non-linear variability in geophysics scaling and fractals

    CERN Document Server

    Lovejoy, S

    1991-01-01

    consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying...

  6. Scaling and Universality at Dynamical Quantum Phase Transitions.

    Science.gov (United States)

    Heyl, Markus

    2015-10-02

    Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.

  7. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  8. Large non-Gaussianity from two-component hybrid inflation

    International Nuclear Information System (INIS)

    Byrnes, Christian T.; Choi, Ki-Young; Hall, Lisa M.H.

    2009-01-01

    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f NL , τ NL and a small g NL . For certain parameter values we can satisfy τ NL >> f NL 2 . The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields

  9. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that

  10. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  11. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    Science.gov (United States)

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  12. Algorithm 896: LSA: Algorithms for Large-Scale Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009

  13. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  14. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  15. Application of cooperative and non-cooperative games in large-scale water quantity and quality management: a case study.

    Science.gov (United States)

    Mahjouri, Najmeh; Ardestani, Mojtaba

    2011-01-01

    In this paper, two cooperative and non-cooperative methodologies are developed for a large-scale water allocation problem in Southern Iran. The water shares of the water users and their net benefits are determined using optimization models having economic objectives with respect to the physical and environmental constraints of the system. The results of the two methodologies are compared based on the total obtained economic benefit, and the role of cooperation in utilizing a shared water resource is demonstrated. In both cases, the water quality in rivers satisfies the standards. Comparing the results of the two mentioned approaches shows the importance of acting cooperatively to achieve maximum revenue in utilizing a surface water resource while the river water quantity and quality issues are addressed.

  16. Stochastic time scale for the Universe

    International Nuclear Information System (INIS)

    Szydlowski, M.; Golda, Z.

    1986-01-01

    An intrinsic time scale is naturally defined within stochastic gradient dynamical systems. It should be interpreted as a ''relaxation time'' to a local potential minimum after the system has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model this time scale is of order of the age of the Universe. 7 refs. (author)

  17. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  18. Large-Scale Multi-Resolution Representations for Accurate Interactive Image and Volume Operations

    KAUST Repository

    Sicat, Ronell B.

    2015-11-25

    The resolutions of acquired image and volume data are ever increasing. However, the resolutions of commodity display devices remain limited. This leads to an increasing gap between data and display resolutions. To bridge this gap, the standard approach is to employ output-sensitive operations on multi-resolution data representations. Output-sensitive operations facilitate interactive applications since their required computations are proportional only to the size of the data that is visible, i.e., the output, and not the full size of the input. Multi-resolution representations, such as image mipmaps, and volume octrees, are crucial in providing these operations direct access to any subset of the data at any resolution corresponding to the output. Despite its widespread use, this standard approach has some shortcomings in three important application areas, namely non-linear image operations, multi-resolution volume rendering, and large-scale image exploration. This dissertation presents new multi-resolution representations for large-scale images and volumes that address these shortcomings. Standard multi-resolution representations require low-pass pre-filtering for anti- aliasing. However, linear pre-filters do not commute with non-linear operations. This becomes problematic when applying non-linear operations directly to any coarse resolution levels in standard representations. Particularly, this leads to inaccurate output when applying non-linear image operations, e.g., color mapping and detail-aware filters, to multi-resolution images. Similarly, in multi-resolution volume rendering, this leads to inconsistency artifacts which manifest as erroneous differences in rendering outputs across resolution levels. To address these issues, we introduce the sparse pdf maps and sparse pdf volumes representations for large-scale images and volumes, respectively. These representations sparsely encode continuous probability density functions (pdfs) of multi-resolution pixel

  19. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  20. An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies.

    Science.gov (United States)

    Noorman, Henk

    2011-08-01

    For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Non-dimensional scaling of impact fast ignition experiments

    International Nuclear Information System (INIS)

    Farley, D R; Shigemori, K; Murakami, M; Azechi, H

    2008-01-01

    Recent experiments at the Osaka University Institute for Laser Engineering (ILE) showed that 'Impact Fast Ignition' (IFI) could increase the neutron yield of inertial fusion targets by two orders of magnitude [1]. IFI utilizes the thermal and kinetic energy of a laser-accelerated disk to impact an imploded fusion target. ILE researchers estimate a disk velocity of 10 8 cm/sec is needed to ignite the fusion target [2]. To be able to study the IFI concept using lasers different from that at ILE, appropriate non-dimensionalization of the flow should be done. Analysis of the rocket equation gives parameters needed for producing similar IFI results with different lasers. This analysis shows that a variety of laboratory-scale commercial lasers could produce results useful to full-scale ILE experiments

  2. Non-baryonic dark matter

    OpenAIRE

    Berezinsky, Veniamin Sergeevich; Bottino, A; Mignola, G

    1996-01-01

    The best particle candidates for non--baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc.

  3. Large-scale grid management; Storskala Nettforvaltning

    Energy Technology Data Exchange (ETDEWEB)

    Langdal, Bjoern Inge; Eggen, Arnt Ove

    2003-07-01

    The network companies in the Norwegian electricity industry now have to establish a large-scale network management, a concept essentially characterized by (1) broader focus (Broad Band, Multi Utility,...) and (2) bigger units with large networks and more customers. Research done by SINTEF Energy Research shows so far that the approaches within large-scale network management may be structured according to three main challenges: centralization, decentralization and out sourcing. The article is part of a planned series.

  4. Reviving large-scale projects

    International Nuclear Information System (INIS)

    Desiront, A.

    2003-01-01

    For the past decade, most large-scale hydro development projects in northern Quebec have been put on hold due to land disputes with First Nations. Hydroelectric projects have recently been revived following an agreement signed with Aboriginal communities in the province who recognized the need to find new sources of revenue for future generations. Many Cree are working on the project to harness the waters of the Eastmain River located in the middle of their territory. The work involves building an 890 foot long dam, 30 dikes enclosing a 603 square-km reservoir, a spillway, and a power house with 3 generating units with a total capacity of 480 MW of power for start-up in 2007. The project will require the use of 2,400 workers in total. The Cree Construction and Development Company is working on relations between Quebec's 14,000 Crees and the James Bay Energy Corporation, the subsidiary of Hydro-Quebec which is developing the project. Approximately 10 per cent of the $735-million project has been designated for the environmental component. Inspectors ensure that the project complies fully with environmental protection guidelines. Total development costs for Eastmain-1 are in the order of $2 billion of which $735 million will cover work on site and the remainder will cover generating units, transportation and financial charges. Under the treaty known as the Peace of the Braves, signed in February 2002, the Quebec government and Hydro-Quebec will pay the Cree $70 million annually for 50 years for the right to exploit hydro, mining and forest resources within their territory. The project comes at a time when electricity export volumes to the New England states are down due to growth in Quebec's domestic demand. Hydropower is a renewable and non-polluting source of energy that is one of the most acceptable forms of energy where the Kyoto Protocol is concerned. It was emphasized that large-scale hydro-electric projects are needed to provide sufficient energy to meet both

  5. An eternal universe

    International Nuclear Information System (INIS)

    Novello, M.; Heintzmann, H.

    1983-01-01

    A new generalized solution of Maxwell-Einstein equations (which are non-minimally coupled) which leads to some fascinating aspects of the Universe is presented. The Cosmos has no singularity due to the coupling of longitudinal electromagnetism with space-time. It contains the Milne-Schucking cosmos as a limiting case. This model contains a free parameter (the longitudinal electromagnetic field) which allows one to fix the density of highest compression of the Cosmos. Alternativelly the parameter allows one to adjust our cosmos to the presently observed Hubble constant and the deceleration parameter. The model seems to be a viable candidate for our real cosmos as it allows one to extend the time scale of the Universe to arbitrarily large values i.e., it is able to provide the necessary time scale for the origin of life. It is speculated that the entropy is finite but intelligence in the Universe may be infinite. (Author) [pt

  6. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  7. Human visual system automatically represents large-scale sequential regularities.

    Science.gov (United States)

    Kimura, Motohiro; Widmann, Andreas; Schröger, Erich

    2010-03-04

    Our brain recordings reveal that large-scale sequential regularities defined across non-adjacent stimuli can be automatically represented in visual sensory memory. To show that, we adopted an auditory paradigm developed by Sussman, E., Ritter, W., and Vaughan, H. G. Jr. (1998). Predictability of stimulus deviance and the mismatch negativity. NeuroReport, 9, 4167-4170, Sussman, E., and Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory. NeuroReport, 16, 1519-1523 to the visual domain by presenting task-irrelevant infrequent luminance-deviant stimuli (D, 20%) inserted among task-irrelevant frequent stimuli being of standard luminance (S, 80%) in randomized (randomized condition, SSSDSSSSSDSSSSD...) and fixed manners (fixed condition, SSSSDSSSSDSSSSD...). Comparing the visual mismatch negativity (visual MMN), an event-related brain potential (ERP) index of memory-mismatch processes in human visual sensory system, revealed that visual MMN elicited by deviant stimuli was reduced in the fixed compared to the randomized condition. Thus, the large-scale sequential regularity being present in the fixed condition (SSSSD) must have been represented in visual sensory memory. Interestingly, this effect did not occur in conditions with stimulus-onset asynchronies (SOAs) of 480 and 800 ms but was confined to the 160-ms SOA condition supporting the hypothesis that large-scale regularity extraction was based on perceptual grouping of the five successive stimuli defining the regularity. 2010 Elsevier B.V. All rights reserved.

  8. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    Science.gov (United States)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  9. A full picture of large lepton number asymmetries of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela [Departament de Física Teòrica and IFIC, Universitat de València-CSIC, C/ Dr. Moliner, 50, Burjassot, E-46100 Spain (Spain); Park, Wan-Il, E-mail: Gabriela.Barenboim@uv.es, E-mail: wipark@jbnu.ac.kr [Department of Science Education (Physics), Chonbuk National University, 567 Baekje-daero, Jeonju, 561-756 (Korea, Republic of)

    2017-04-01

    A large lepton number asymmetry of O(0.1−1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 03. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10{sup −2}-10{sup 2}) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m {sub φ} ∼> O(10) TeV and φ{sub 0} ∼> O(10{sup 14}) GeV, respectively.

  10. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  11. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  12. Unstable ‘black branes’ from scaled membranes at large D

    Energy Technology Data Exchange (ETDEWEB)

    Dandekar, Yogesh; Mazumdar, Subhajit; Minwalla, Shiraz; Saha, Arunabha [Department of Theoretical Physics, Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai, 400005 (India)

    2016-12-28

    It has recently been demonstrated that the dynamics of black holes at large D can be recast as a set of non gravitational membrane equations. These membrane equations admit a simple static solution with shape S{sup D−p−2}×R{sup p,1}. In this note we study the equations for small fluctuations about this solution in a limit in which amplitude and length scale of the fluctuations are simultaneously scaled to zero as D is taken to infinity. We demonstrate that the resultant nonlinear equations, which capture the Gregory-Laflamme instability and its end point, exactly agree with the effective dynamical ‘black brane’ equations of Emparan Suzuki and Tanabe. Our results thus identify the ‘black brane’ equations as a special limit of the membrane equations and so unify these approaches to large D black hole dynamics.

  13. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  14. A Heuristic Approach to Author Name Disambiguation in Bibliometrics Databases for Large-scale Research Assessments

    NARCIS (Netherlands)

    D'Angelo, C.A.; Giuffrida, C.; Abramo, G.

    2011-01-01

    National exercises for the evaluation of research activity by universities are becoming regular practice in ever more countries. These exercises have mainly been conducted through the application of peer-review methods. Bibliometrics has not been able to offer a valid large-scale alternative because

  15. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  16. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    Science.gov (United States)

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures. © 2016 The Protein Society.

  17. Naturalness in low-scale SUSY models and "non-linear" MSSM

    CERN Document Server

    Antoniadis, I; Ghilencea, D M

    2014-01-01

    In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Delta\\approx 800 to 1000 for the constrained MSSM and Delta\\approx 500 for non-universal gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (\\sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Delta\\approx 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(\\sqrt f) of the visible to the hidden sector SUSY breaking...

  18. Uncovering Nature’s 100 TeV Particle Accelerators in the Large-Scale Jets of Quasars

    Science.gov (United States)

    Georganopoulos, Markos; Meyer, Eileen; Sparks, William B.; Perlman, Eric S.; Van Der Marel, Roeland P.; Anderson, Jay; Sohn, S. Tony; Biretta, John A.; Norman, Colin Arthur; Chiaberge, Marco

    2016-04-01

    Since the first jet X-ray detections sixteen years ago the adopted paradigm for the X-ray emission has been the IC/CMB model that requires highly relativistic (Lorentz factors of 10-20), extremely powerful (sometimes super-Eddington) kpc scale jets. R I will discuss recently obtained strong evidence, from two different avenues, IR to optical polarimetry for PKS 1136-135 and gamma-ray observations for 3C 273 and PKS 0637-752, ruling out the EC/CMB model. Our work constrains the jet Lorentz factors to less than ~few, and leaves as the only reasonable alternative synchrotron emission from ~100 TeV jet electrons, accelerated hundreds of kpc away from the central engine. This refutes over a decade of work on the jet X-ray emission mechanism and overall energetics and, if confirmed in more sources, it will constitute a paradigm shift in our understanding of powerful large scale jets and their role in the universe. Two important findings emerging from our work will also discussed be: (i) the solid angle-integrated luminosity of the large scale jet is comparable to that of the jet core, contrary to the current belief that the core is the dominant jet radiative outlet and (ii) the large scale jets are the main source of TeV photon in the universe, something potentially important, as TeV photons have been suggested to heat up the intergalactic medium and reduce the number of dwarf galaxies formed.

  19. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.

    Science.gov (United States)

    Campione, Nicolás E; Evans, David C

    2012-07-10

    Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a

  20. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Directory of Open Access Journals (Sweden)

    Campione Nicolás E

    2012-07-01

    Full Text Available Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in

  1. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele; Attili, Antonio; Bisetti, Fabrizio; Elsinga, Gerrit E.

    2015-01-01

    from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  2. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  3. Relict gravitational waves in the expanding Universe model and the grand unification scale

    International Nuclear Information System (INIS)

    Veryskin, A.V.; Rubakov, V.A.; Sazhin, M.V.

    1983-01-01

    The amplification of the vacuum fluctuations of the metric in the model of the expanding Universe was considered. The spectrum of the relict gravitational waves was chosen to be independent from the details of an evolution of the Universe after the phase transition. It is shown that the expanding Universe scenario is compatible with the experimental data on the anisotropy of the microwave background only if the vacuum energy density of the symmetric phase is much less than the Planck one. The theories of grand unification with not large values of the unification scale (one and a half order less than the Planck mass) are preferable from the point of view of cosmology

  4. Minimal and non-minimal standard models: Universality of radiative corrections

    International Nuclear Information System (INIS)

    Passarino, G.

    1991-01-01

    The possibility of describing electroweak processes by means of models with a non-minimal Higgs sector is analyzed. The renormalization procedure which leads to a set of fitting equations for the bare parameters of the lagrangian is first reviewed for the minimal standard model. A solution of the fitting equations is obtained, which correctly includes large higher-order corrections. Predictions for physical observables, notably the W boson mass and the Z O partial widths, are discussed in detail. Finally the extension to non-minimal models is described under the assumption that new physics will appear only inside the vector boson self-energies and the concept of universality of radiative corrections is introduced, showing that to a large extent they are insensitive to the details of the enlarged Higgs sector. Consequences for the bounds on the top quark mass are also discussed. (orig.)

  5. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  6. Percolation Analysis as a Tool to Describe the Topology of the Large Scale Structure of the Universe

    Science.gov (United States)

    Yess, Capp D.

    1997-09-01

    Percolation analysis is the study of the properties of clusters. In cosmology, it is the statistics of the size and number of clusters. This thesis presents a refinement of percolation analysis and its application to astronomical data. An overview of the standard model of the universe and the development of large scale structure is presented in order to place the study in historical and scientific context. Then using percolation statistics we, for the first time, demonstrate the universal character of a network pattern in the real space, mass distributions resulting from nonlinear gravitational instability of initial Gaussian fluctuations. We also find that the maximum of the number of clusters statistic in the evolved, nonlinear distributions is determined by the effective slope of the power spectrum. Next, we present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β = 0.1 to 1.0, where β=Ω0.6/b,/ Ω is the present dimensionless density and b is the linear bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R≈100h-1 Mpc, percolation analysis reveals a slight 'meatball' topology for the real space, galaxy distribution of the IRAS survey. Finally, we employ a percolation technique developed for pointwise distributions to analyze two-dimensional projections of the three northern and three southern slices in the Las Campanas Redshift Survey and then give consideration to further study of the methodology, errors and application of percolation. We track the growth of the largest cluster as a topological indicator to a depth of 400 h-1 Mpc, and report an unambiguous signal, with high signal-to-noise ratio, indicating a network topology which in

  7. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  8. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  9. Small-scale angular fluctuations in the microwave background radiation and the existence of isolated large-scale structures in the universe

    International Nuclear Information System (INIS)

    Goicoechea, L.J.; Sanz, J.L.

    1985-01-01

    The relative fluctuation of the present temperature associated with the microwave background radiation (MBR) on a small angular scale, (deltaT/T) 0 , can be related for a general inhomogeneous cosmological model to the kinematical quantities, their gradients, and the Weyl tensor through the geodesic deviation equation. We apply this result to calculate the induction of temperature fluctuations in the MBR by a spherically symmetric cluster (or void) of matter or radiation or both, considered as a perturbation in a flat Friedmann universe, with negligible pressure. For an isolated object (void or cluster) with radius roughly-equal10 3 h -1 Mpc and located outside our present horizon, we have found, taking into account recent data on the anisotropies of the MBR at an angular scale 6 0 , that the relative mass fluctuation is bounded by deltaVertical BarM/MVertical Bar 2 h -1 Mpc and distance from the observer to the center approx. =10h -1 Mpc), the observational angular fluctuations of the MBR imply that deltaVertical BarM/MVertical Bar< or approx. =10%

  10. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  11. Scale-dependent bias from the reconstruction of non-Gaussian distributions

    International Nuclear Information System (INIS)

    Chongchitnan, Sirichai; Silk, Joseph

    2011-01-01

    Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing the one- and two-point probability distributions of density fluctuations. We show that these distributions can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The Edgeworth formalism is shown to be well-suited for ''local'' cubic-order non-Gaussianity parametrized by g NL . We show that a strong scale dependence in the bias can be produced by g NL of order 10 5 , consistent with cosmic microwave background constraints. On a separation length of ∼100 Mpc, current constraints on g NL still allow the bias for the most massive clusters to be enhanced by 20-30% of the Gaussian value. We further examine the bias as a function of mass scale, and also explore the relationship between the clustering and the abundance of massive clusters in the presence of g NL . We explain why the Edgeworth formalism, though technically challenging, is a very powerful technique for constraining high-order non-Gaussianity with large-scale structures.

  12. Large-scale assembly bias of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2017-03-01

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous works in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.

  13. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  14. Gyrokinetic theory of slab universal modes and the non-existence of the gradient drift coupling (GDC) instability

    Science.gov (United States)

    Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure

    2018-05-01

    A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .

  15. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  16. Large-Scale 3D Printing: The Way Forward

    Science.gov (United States)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  17. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its......The Subject of large scale networks is approached from the perspective of the network planner. An analysis of the long term planning problems is presented with the main focus on the changing requirements for large scale networks and the potential problems in meeting these requirements. The problems...... the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...

  18. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  19. Large-scale instability in interacting dark energy and dark matter fluids

    International Nuclear Information System (INIS)

    Väliviita, Jussi; Majerotto, Elisabetta; Maartens, Roy

    2008-01-01

    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyse the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime

  20. Universality in few-body systems with large scattering length

    International Nuclear Information System (INIS)

    Hammer, H.-W.

    2005-01-01

    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed

  1. Stability of personality traits over a five-year period in Swedish patients with schizophrenia spectrum disorder and non-psychotic individuals: a study using the Swedish universities scales of personality.

    Science.gov (United States)

    Fagerberg, Tomas; Söderman, Erik; Petter Gustavsson, J; Agartz, Ingrid; Jönsson, Erik G

    2018-02-27

    Personality is considered as an important aspect in persons with psychotic disorders. Several studies have investigated personality in schizophrenia. However, no study has investigated stability of personality traits exceeding three years in patients with schizophrenia. This study aims to investigate the stability of personality traits over a five-year period among patients with schizophrenia and non-psychotic individuals and to evaluate case-control differences. Patients with psychotic disorders (n = 36) and non-psychotic individuals (n = 76) completed Swedish universities Scales of Personality (SSP) at two occasions five years apart. SSP scores were analysed for effect of time and case-control differences by multiple analysis of covariance (MANCOVA) and within-subjects correlation. MANCOVA within-subjects analysis did not show any effect of time. Thus, SSP mean scale scores did not significantly vary during the five-year interval. Within subject correlations (Spearman) ranged 0.30-0.68 and 0.54-0.75 for the different SSP scales in patients and controls, respectively. Patients scored higher than controls in SSP scales Somatic Trait Anxiety, Psychic Trait Anxiety, Stress Susceptibility, Lack of Assertiveness, Detachment, Embitterment, and Mistrust. The stability of the SSP personality trait was reasonably high among patients with psychotic disorder, although lower than among non-psychotic individuals, which is in accordance with previous research.

  2. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  3. Three-dimensional simulation of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Centrella, J.; Melott, A.L.

    1983-09-15

    High and low density cloud-in-cell models were used to simulate the nonlinear growth of adiabatic perturbations in collisionless matter to demonstrate the development of a cellular structure in the universe. Account was taken of a short wvelength cutoff in collisionless matter, with a focus on resolving filaments and low density pancakes. The calculations were performed with a Friedmann-Robertson-Walker model, and the gravitational potential of dark matter was obtained through solution of the Poisson equation. The simulation began with z between 100-1000, and initial particle velocities were set at zero. Spherically symmetric voids were observed to form, then colide and interact. Sufficient particles were employed to avoid depletion during nonlinear collapse. No galaxies formed during the epoch studied, which has implications for the significance of dark, baryonic matter in the present universe.

  4. Scaling and universality in magnetocaloric materials

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Bahl, Christian R. H.

    2014-01-01

    -order phase transition within the context of the theory of critical phenomena. Sufficiently close to the critical temperature of a second-order material, the scaling of the isothermal entropy change will be determined by the critical exponents and will be the same as that of the singular part of the entropy......The magnetocaloric effect of a magnetic material is characterized by two quantities, the isothermal entropy change and the adiabatic temperature change, both of which are functions of temperature and applied magnetic field. We discuss the scaling properties of these quantities close to a second...... fields are not universal, showing significant variation for models in the same universality class. As regards the adiabatic temperature change, it is not determined exclusively by the singular part of the free energy and its derivatives. We show that the field dependence of the adiabatic temperature...

  5. Large Data at Small Universities: Astronomical processing using a computer classroom

    Science.gov (United States)

    Fuller, Nathaniel James; Clarkson, William I.; Fluharty, Bill; Belanger, Zach; Dage, Kristen

    2016-06-01

    The use of large computing clusters for astronomy research is becoming more commonplace as datasets expand, but access to these required resources is sometimes difficult for research groups working at smaller Universities. As an alternative to purchasing processing time on an off-site computing cluster, or purchasing dedicated hardware, we show how one can easily build a crude on-site cluster by utilizing idle cycles on instructional computers in computer-lab classrooms. Since these computers are maintained as part of the educational mission of the University, the resource impact on the investigator is generally low.By using open source Python routines, it is possible to have a large number of desktop computers working together via a local network to sort through large data sets. By running traditional analysis routines in an “embarrassingly parallel” manner, gains in speed are accomplished without requiring the investigator to learn how to write routines using highly specialized methodology. We demonstrate this concept here applied to 1. photometry of large-format images and 2. Statistical significance-tests for X-ray lightcurve analysis. In these scenarios, we see a speed-up factor which scales almost linearly with the number of cores in the cluster. Additionally, we show that the usage of the cluster does not severely limit performance for a local user, and indeed the processing can be performed while the computers are in use for classroom purposes.

  6. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  7. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  8. A Numerical Study of Galaxy Formation and the Large Scale Structure of the Universe : Astrophysics and Relativity

    OpenAIRE

    Kazuyuki, YAMASHITA; Department of Physics, Kyoto University

    1993-01-01

    We investigate the thermodynamical and hydrodynamical effects on the structure formation on scales of 20h^ Mpc in the Einstein de-Sitter universe by three-dimensional numerical simulation. Calculations involve cosmological expansion, self-gravity, hydrodynamics, and cooling processes with 100×100×100 mesh cells and the same number of CDM particles. Galactic bursts out of young galaxies as a heat input are parametrically taken into account. We find that the thermodynamics of the intergalactic ...

  9. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  10. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  11. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample.

    Science.gov (United States)

    Crawford, John R; Henry, Julie D

    2003-06-01

    To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.

  12. Implementation of a large-scale hospital information infrastructure for multi-unit health-care services.

    Science.gov (United States)

    Yoo, Sun K; Kim, Dong Keun; Kim, Jung C; Park, Youn Jung; Chang, Byung Chul

    2008-01-01

    With the increase in demand for high quality medical services, the need for an innovative hospital information system has become essential. An improved system has been implemented in all hospital units of the Yonsei University Health System. Interoperability between multi-units required appropriate hardware infrastructure and software architecture. This large-scale hospital information system encompassed PACS (Picture Archiving and Communications Systems), EMR (Electronic Medical Records) and ERP (Enterprise Resource Planning). It involved two tertiary hospitals and 50 community hospitals. The monthly data production rate by the integrated hospital information system is about 1.8 TByte and the total quantity of data produced so far is about 60 TByte. Large scale information exchange and sharing will be particularly useful for telemedicine applications.

  13. Technology for the large-scale production of multi-crystalline silicon solar cells and modules

    International Nuclear Information System (INIS)

    Weeber, A.W.; De Moor, H.H.C.

    1997-06-01

    In cooperation with Shell Solar Energy (formerly R and S Renewable Energy Systems) and the Research Institute for Materials of the Catholic University Nijmegen the Netherlands Energy Research Foundation (ECN) plans to develop a competitive technology for the large-scale manufacturing of solar cells and solar modules on the basis of multi-crystalline silicon. The project will be carried out within the framework of the Economy, Ecology and Technology (EET) program of the Dutch ministry of Economic Affairs and the Dutch ministry of Education, Culture and Sciences. The aim of the EET-project is to reduce the costs of a solar module by 50% by means of increasing the conversion efficiency as well as the development of cheap processes for large-scale production

  14. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  15. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  16. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  17. A convex optimization approach for solving large scale linear systems

    Directory of Open Access Journals (Sweden)

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  18. 'Finite' non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2009-01-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, (arXiv: 0707.0105)] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, (arXiv: 0712.1260 [hep-th])] and using the formalisms of [S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar slow-roll inflation, (arXiv: 0705.3178 [astro-ph]); S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar inflation, Phys. Rev. D 77 (2008) 083511, (arXiv: 0711.2920 [astro-ph])], after inclusion of perturbative and non-perturbative α' corrections to the Kaehler potential and (D1- and D3-)instanton generated superpotential, we show the possibility of getting finite values for the non-linear parameter f NL while looking for non-Gaussianities in type IIB compactifications on orientifolds of the Swiss cheese Calabi-Yau WCP 4 [1,1,1,6,9] in the L(arge) V(olume) S(cenarios) limit. We show the same in two contexts. First is multi-field slow-roll inflation with D3-instanton contribution coming from a large number of multiple wrappings of a single (Euclidean) D3-brane around the 'small' divisor yielding f NL ∼O(1). The second is when the slow-roll conditions are violated and for the number of the aforementioned D3-instanton wrappings being of O(1) but more than one, yielding f NL ∼O(1). Based on general arguments not specific to our (string-theory) set-up, we argue that requiring curvature perturbations not to grow at horizon crossing and at super-horizon scales, automatically picks out hybrid inflationary scenarios which in our set up can yield f NL ∼O(1) and tensor-scalar ratio of O(10 -2 ). For all our calculations, the world-sheet instanton contributions to the Kaehler potential coming from the non-perturbative α ' corrections

  19. University and non-formal education

    Directory of Open Access Journals (Sweden)

    Popescu Liliana Georgeta

    2017-01-01

    Full Text Available Young students place great importance on their personal, professional and educational development alike but in the same time are actively involved in leisure activities. Through non-formal and informal activities the university can help students to develop new skills, can change or increase certain preferences regarding cultural consumption, sports and recreational activities. This paper presents the results of a study based on students attending universities across three cities. It aims to demonstrate that during the years spent at university, students are significantly less influenced by their parents in terms of behaviour and cultural preferences; instead these aspects as well as recreational activities are undertaken by universities and their group of friends and colleagues. For a meaningful analysis and correct interpretation of data, specific tools of quality management were used.

  20. USE OF RFID AT LARGE-SCALE EVENTS

    Directory of Open Access Journals (Sweden)

    Yuusuke KAWAKITA

    2005-01-01

    Full Text Available Radio Frequency Identification (RFID devices and related technologies have received a great deal of attention for their ability to perform non-contact object identification. Systems incorporating RFID have been evaluated from a variety of perspectives. The authors constructed a networked RFID system to support event management at NetWorld+Interop 2004 Tokyo, an event that received 150,000 visitors. The system used multiple RFID readers installed at the venue and RFID tags carried by each visitor to provide a platform for running various management and visitor support applications. This paper presents the results of this field trial of RFID readability rates. It further addresses the applicability of RFID systems to visitor management, a problematic aspect of large-scale events.

  1. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  2. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  3. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  4. The Student Perception of University Support and Structure Scale: Development and Validation

    Science.gov (United States)

    Wintre, Maxine G.; Gates, Shawn K. E.; Pancer, W. Mark; Pratt, Michael S.; Polivy, Janet; Birnie-Lefcovitch, S.; Adams, Gerald

    2009-01-01

    A new scale, the Student Perception of University Support and Structure Scale (SPUSS), was developed for research on the transition to university. The scale was based on concepts derived from Baumrind's (1971) theory of parenting styles. Data were obtained from two separate cohorts of freshmen (n=759 and 397) attending six Canadian universities of…

  5. Some Aspects of Scaling and Universality in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Bahl, Christian R.H.

    2014-01-01

    The magnetocaloric effect of a magnetic material is characterized by two quantities, the isothermal entropy change and the adiabatic temperature change, both of which are functions of temperature and applied magnetic field. We discuss the scaling properties of these quantities close to a second...... order phase transition within the context of critical scaling theory. In the critical region the isothermal entropy change will exhibit universal scaling exponents. However, this is only true close to Tc and for small fields; we show that for finite fields the scaling exponents in general become field...... dependent, even at Tc. Furthermore, the scaling exponents at finite fields are not universal: Two models with the same critical exponents can exhibit markedly different scaling behaviour even at relatively low fields. Turning to the adiabatic temperature change, we argue that it is not determined...

  6. Large-scale stochasticity in Hamiltonian systems

    International Nuclear Information System (INIS)

    Escande, D.F.

    1982-01-01

    Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)

  7. Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses

    CERN Document Server

    Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio

    2008-01-01

    In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...

  8. PKI security in large-scale healthcare networks.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  9. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  10. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  11. Universality of non-leading logarithmic contributions in transverse-momentum distributions

    CERN Document Server

    Catani, S; Grazzini, Massimiliano

    2001-01-01

    We consider the resummation of the logarithmic contributions to the region of small transverse momenta in the distributions of high-mass systems (lepton pairs, vector bosons, Higgs particles, ....) produced in hadron collisions. We point out that the resummation formulae that are usually used to compute the distributions in perturbative QCD involve process-dependent form factors and coefficient functions. We present a new universal form of the resummed distribution, in which the dependence on the process is embodied in a single perturbative factor. The new form simplifies the calculation of non-leading logarithms at higher perturbative orders. It can also be useful to systematically implement process-independent non-perturbative effects in transverse-momentum distributions. We also comment on the dependence of these distributions on the factorization and renormalization scales.

  12. English Language Screening for Scientific Staff at Delft University of Technology,

    NARCIS (Netherlands)

    Klaassen, R.G.; Bos, M.H.P.C.

    2010-01-01

    Delft University of Technology (DUT) screened her (non-native English) scientific staff on their level of English proficiency in the academic year of 2006/2007. In this paper this large scale operation, involving planning, policy decisions, assessment means, advice and training are discussed. Since

  13. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  14. Investigation of the large scale regional hydrogeological situation at Ceberg

    International Nuclear Information System (INIS)

    Boghammar, A.; Grundfelt, B.; Hartley, L.

    1997-11-01

    The present study forms part of the large-scale groundwater flow studies within the SR 97 project. The site of interest is Ceberg. Within the present study two different regional scale groundwater models have been constructed, one large regional model with an areal extent of about 300 km 2 and one semi-regional model with an areal extent of about 50 km 2 . Different types of boundary conditions have been applied to the models. Topography driven pressures, constant infiltration rates, non-linear infiltration combined specified pressure boundary conditions, and transfer of groundwater pressures from the larger model to the semi-regional model. The present model has shown that: -Groundwater flow paths are mainly local. Large-scale groundwater flow paths are only seen below the depth of the hypothetical repository (below 500 meters) and are very slow. -Locations of recharge and discharge, to and from the site area are in the close vicinity of the site. -The low contrast between major structures and the rock mass means that the factor having the major effect on the flowpaths is the topography. -A sufficiently large model, to incorporate the recharge and discharge areas to the local site is in the order of kilometres. -A uniform infiltration rate boundary condition does not give a good representation of the groundwater movements in the model. -A local site model may be located to cover the site area and a few kilometers of the surrounding region. In order to incorporate all recharge and discharge areas within the site model, the model will be somewhat larger than site scale models at other sites. This is caused by the fact that the discharge areas are divided into three distinct areas to the east, south and west of the site. -Boundary conditions may be supplied to the site model by means of transferring groundwater pressures obtained with the semi-regional model

  15. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  16. Flexible non-linear predictive models for large-scale wind turbine diagnostics

    DEFF Research Database (Denmark)

    Bach-Andersen, Martin; Rømer-Odgaard, Bo; Winther, Ole

    2017-01-01

    We demonstrate how flexible non-linear models can provide accurate and robust predictions on turbine component temperature sensor data using data-driven principles and only a minimum of system modeling. The merits of different model architectures are evaluated using data from a large set...... of turbines operating under diverse conditions. We then go on to test the predictive models in a diagnostic setting, where the output of the models are used to detect mechanical faults in rotor bearings. Using retrospective data from 22 actual rotor bearing failures, the fault detection performance...... of the models are quantified using a structured framework that provides the metrics required for evaluating the performance in a fleet wide monitoring setup. It is demonstrated that faults are identified with high accuracy up to 45 days before a warning from the hard-threshold warning system....

  17. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  18. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  19. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  20. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  1. Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation

    International Nuclear Information System (INIS)

    Gorokhovski, M A; Saveliev, V L

    2008-01-01

    This paper analyses statistical universalities that arise over time during constant frequency fragmentation under scaling symmetry. The explicit expression of particle-size distribution obtained from the evolution kinetic equation shows that, with increasing time, the initial distribution tends to the ultimate steady-state delta function through at least two intermediate universal asymptotics. The earlier asymptotic is the well-known log-normal distribution of Kolmogorov (1941 Dokl. Akad. Nauk. SSSR 31 99-101). This distribution is the first universality and has two parameters: the first and the second logarithmic moments of the fragmentation intensity spectrum. The later asymptotic is a power function (stronger universality) with a single parameter that is given by the ratio of the first two logarithmic moments. At large times, the first universality implies that the evolution equation can be reduced exactly to the Fokker-Planck equation instead of making the widely used but inconsistent assumption about the smallness of higher than second order moments. At even larger times, the second universality shows evolution towards a fractal state with dimension identified as a measure of the fracture resistance of the medium

  2. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  3. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  4. The New Era of Precision Cosmology: Testing Gravity at Large Scales

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2011-01-01

    Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.

  5. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    Science.gov (United States)

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  6. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  7. Scaling and universality of ac conduction in disordered solids

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2000-01-01

    Recent scaling results for the ac conductivity of ionic glasses by Roling et al. [Phys. Rev. Lett. 78, 2160 (1997)] and Sidebottom [Phys. Rev. Lett. 82, 3653 (1999)] are discussed. We prove that Sidebottom's version of scaling is completely general. A new approximation to the universal ac conduct...... conductivity arising in the extreme disorder limit of the symmetric hopping model, the "diffusion cluster approximation," is presented and compared to computer simulations and experiments.......Recent scaling results for the ac conductivity of ionic glasses by Roling et al. [Phys. Rev. Lett. 78, 2160 (1997)] and Sidebottom [Phys. Rev. Lett. 82, 3653 (1999)] are discussed. We prove that Sidebottom's version of scaling is completely general. A new approximation to the universal ac...

  8. Updating Geospatial Data from Large Scale Data Sources

    Science.gov (United States)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  9. Universal Partial Words over Non-Binary Alphabets

    OpenAIRE

    Goeckner, Bennet; Groothuis, Corbin; Hettle, Cyrus; Kell, Brian; Kirkpatrick, Pamela; Kirsch, Rachel; Solava, Ryan

    2016-01-01

    Chen, Kitaev, M\\"{u}tze, and Sun recently introduced the notion of universal partial words, a generalization of universal words and de Bruijn sequences. Universal partial words allow for a wild-card character $\\diamond$, which is a placeholder for any letter in the alphabet. We settle and strengthen conjectures posed in the same paper where this notion was introduced. For non-binary alphabets, we show that universal partial words have periodic $\\diamond$ structure and are cyclic, and we give ...

  10. Large scale cluster computing workshop

    International Nuclear Information System (INIS)

    Dane Skow; Alan Silverman

    2002-01-01

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community

  11. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  12. A BAYESIAN ESTIMATE OF THE CMB–LARGE-SCALE STRUCTURE CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Santos, E. [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, 05508-090, São Paulo—SP (Brazil); Carvalho, F. C. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró-RN (Brazil); Penna-Lima, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Novaes, C. P.; Wuensche, C. A., E-mail: emoura@if.usp.br, E-mail: fabiocabral@uern.br, E-mail: pennal@apc.in2p3.fr, E-mail: cawuenschel@das.inpe.br, E-mail: camilanovaes@on.br [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil)

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe ( WMAP 9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  13. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...... sugarcane outgrower scheme on household income and asset stocks. Chapter 5 examines the wages and working conditions in ‘formal’ large-scale and ‘informal’ small-scale irrigated agriculture. The results in Chapter 2 show that moisture stress, the use of untested planting materials, and conflict over land...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  14. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  15. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  16. Large Vessel Occlusion Scales Increase Delivery to Endovascular Centers Without Excessive Harm From Misclassifications.

    Science.gov (United States)

    Zhao, Henry; Coote, Skye; Pesavento, Lauren; Churilov, Leonid; Dewey, Helen M; Davis, Stephen M; Campbell, Bruce C V

    2017-03-01

    Clinical large vessel occlusion (LVO) triage scales were developed to identify and bypass LVO to endovascular centers. However, there are concerns that scale misclassification of patients may cause excessive harm. We studied the settings where misclassifications were likely to occur and the consequences of these misclassifications in a representative stroke population. Prospective data were collected from consecutive ambulance-initiated stroke alerts at 2 stroke centers, with patients stratified into typical (LVO with predefined severe syndrome and non-LVO without) or atypical presentations (opposite situations). Five scales (Rapid Arterial Occlusion Evaluation [RACE], Los Angeles Motor Scale [LAMS], Field Assessment Stroke Triage for Emergency Destination [FAST-ED], Prehospital Acute Stroke Severity scale [PASS], and Cincinnati Prehospital Stroke Severity Scale [CPSSS]) were derived from the baseline National Institutes of Health Stroke Scale scored by doctors and analyzed for diagnostic performance compared with imaging. Of a total of 565 patients, atypical presentations occurred in 31 LVO (38% of LVO) and 50 non-LVO cases (10%). Most scales correctly identified >95% of typical presentations but <20% of atypical presentations. Misclassification attributable to atypical presentations would have resulted in 4 M1/internal carotid artery occlusions, with National Institutes of Health Stroke Scale score ≥6 (5% of LVO) being missed and 9 non-LVO infarcts (5%) bypassing the nearest thrombolysis center. Atypical presentations accounted for the bulk of scale misclassifications, but the majority of these misclassifications were not detrimental, and use of LVO scales would significantly increase timely delivery to endovascular centers, with only a small proportion of non-LVO infarcts bypassing the nearest thrombolysis center. Our findings, however, would require paramedics to score as accurately as doctors, and this translation is made difficult by weaknesses in current

  17. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  18. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  19. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  20. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  1. Efficient Topology Estimation for Large Scale Optical Mapping

    CERN Document Server

    Elibol, Armagan; Garcia, Rafael

    2013-01-01

    Large scale optical mapping methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that low-cost ROVs usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predefined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This book contributes to the state-of-art in large area image mosaicing methods for underwater surveys using low-cost vehicles equipped with a very limited sensor suite. The main focus has been on global alignment...

  2. Lessons from a large-scale assessment: Results from conceptual inventories

    Directory of Open Access Journals (Sweden)

    Beth Thacker

    2014-07-01

    Full Text Available We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER (physics education research-informed materials into a department where most instruction has previously been traditional and a significant number of faculty are hesitant, ambivalent, or even resistant to the introduction of such reforms. Data were collected in all of the sections of both the large algebra- and calculus-based introductory courses for a number of years employing commonly used conceptual inventories. Results from a small PER-informed, inquiry-based, laboratory-based class are also reported. Results suggest that when PER-informed materials are introduced in the labs and recitations, independent of the lecture style, there is an increase in students’ conceptual inventory gains. There is also an increase in the results on conceptual inventories if PER-informed instruction is used in the lecture. The highest conceptual inventory gains were achieved by the combination of PER-informed lectures and laboratories in large class settings and by the hands-on, laboratory-based, inquiry-based course taught in a small class setting.

  3. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  4. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  5. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed; Elsawy, Hesham; Gharbieh, Mohammad; Alouini, Mohamed-Slim; Adinoyi, Abdulkareem; Alshaalan, Furaih

    2017-01-01

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end

  6. Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints

    International Nuclear Information System (INIS)

    Chakrabortty, Joydeep; Mohanty, Subhendra; Rao, Soumya

    2014-01-01

    We perform a comprehensive study of SU(5), SO(10) and E(6) supersymmetric GUT models where the gaugino masses are generated through the F-term breaking vacuum expectation values of the non-singlet scalar fields. In these models the gauginos are non-universal at the GUT scale unlike in the mSUGRA scenario. We discuss the properties of the LSP which is stable and a viable candidate for cold dark matter. We look for the GUT scale parameter space that leads to the the lightest SM like Higgs mass in the range of 122–127 GeV compatible with the observations at ATLAS and CMS, the relic density in the allowed range of WMAP-PLANCK and compatible with other constraints from colliders and direct detection experiments. We scan universal scalar (m 0 G ), trilinear coupling A 0 and SU(3) C gaugino mass (M 3 G ) as the independent free parameters for these models. Based on the gaugino mass ratios at the GUT scale, we classify 25 SUSY GUT models and find that of these only 13 models satisfy the dark matter and collider constraints. Out of these 13 models there is only one model where there is a sizeable SUSY contribution to muon (g−2)

  7. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  8. Exploiting Universality in Atoms with Large Scattering Lengths

    International Nuclear Information System (INIS)

    Braaten, Eric

    2012-01-01

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  9. A comparison of physical self-concept between physical education and non-physical education university students

    Directory of Open Access Journals (Sweden)

    Hamid ARAZI

    2013-06-01

    Full Text Available The purpose of this study was to compare physical self-concept between physical education and non-physical education university students. The target population of this study was all male and female physical education and non-physical education university students in Rasht city of Iran. After translating the Physical Self-Description Questionnaire (PSDQ and adjusting some of the questions, the questionnaire was evaluated by the specialists in the context of validity and the reliability achieved by test-retest (Cronbach Alpha value of 0.84. We then, according to the Odineski table selected 180 physical education and non-physical education males and 190 physical education and non-physical education females opportunistically. The collected data was analyzed by 2×2 MANOVA for determine differences between genders and major. The results showed mean vector scores of physical education in the following scales: physical activity; global physical; competence; sports; strength; endurance and flexibility were significantly (p<0.05 higher than that of non-physical education major students. Also, the results shows that mean vector scores of male in the following scales: health; coordination; physical activity; body fat; global physical; competence; sports; global physical self-concept and global esteem were significantly (p<0.05 higher than female. Based on the result of our study the physical self-concept non-physical education and female is lower, than that physical education and male. The results may reflect that male and physical major education students, who usually spend more time on physical activity and sport training to have better fitness and skill oriented self concept than their counterparts.

  10. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  11. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    Science.gov (United States)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  12. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  13. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  14. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  15. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  16. Universality in invariant random-matrix models: Existence near the soft edge

    International Nuclear Information System (INIS)

    Kanzieper, E.; Freilikher, V.

    1997-01-01

    We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-matrix models should display universal eigenvalue correlations in the soft-edge scaling limit. copyright 1997 The American Physical Society

  17. A spatial picture of the synthetic large-scale motion from dynamic roughness

    Science.gov (United States)

    Huynh, David; McKeon, Beverley

    2017-11-01

    Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.

  18. Large-scale structure in mimetic Horndeski gravity

    Science.gov (United States)

    Arroja, Frederico; Okumura, Teppei; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2018-05-01

    In this paper, we propose to use the mimetic Horndeski model as a model for the dark universe. Both cold dark matter (CDM) and dark energy (DE) phenomena are described by a single component, the mimetic field. In linear theory, we show that this component effectively behaves like a perfect fluid with zero sound speed and clusters on all scales. For the simpler mimetic cubic Horndeski model, if the background expansion history is chosen to be identical to a perfect fluid DE (PFDE) then the mimetic model predicts the same power spectrum of the Newtonian potential as the PFDE model with zero sound speed. In particular, if the background is chosen to be the same as that of LCDM, then also in this case the power spectrum of the Newtonian potential in the mimetic model becomes indistinguishable from the power spectrum in LCDM on linear scales. A different conclusion may be found in the case of non-adiabatic perturbations. We also discuss the distinguishability, using power spectrum measurements from LCDM N-body simulations as a proxy for future observations, between these mimetic models and other popular models of DE. For instance, we find that if the background has an equation of state equal to ‑0.95 then we will be able to distinguish the mimetic model from the PFDE model with unity sound speed. On the other hand, it will be hard to do this distinction with respect to the LCDM model.

  19. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    International Nuclear Information System (INIS)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\

  20. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  1. Study of multi-functional precision optical measuring system for large scale equipment

    Science.gov (United States)

    Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi

    2017-10-01

    The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.

  2. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  3. CImbinator: a web-based tool for drug synergy analysis in small- and large-scale datasets.

    Science.gov (United States)

    Flobak, Åsmund; Vazquez, Miguel; Lægreid, Astrid; Valencia, Alfonso

    2017-08-01

    Drug synergies are sought to identify combinations of drugs particularly beneficial. User-friendly software solutions that can assist analysis of large-scale datasets are required. CImbinator is a web-service that can aid in batch-wise and in-depth analyzes of data from small-scale and large-scale drug combination screens. CImbinator offers to quantify drug combination effects, using both the commonly employed median effect equation, as well as advanced experimental mathematical models describing dose response relationships. CImbinator is written in Ruby and R. It uses the R package drc for advanced drug response modeling. CImbinator is available at http://cimbinator.bioinfo.cnio.es , the source-code is open and available at https://github.com/Rbbt-Workflows/combination_index . A Docker image is also available at https://hub.docker.com/r/mikisvaz/rbbt-ci_mbinator/ . asmund.flobak@ntnu.no or miguel.vazquez@cnio.es. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  4. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  5. Large non-Gaussianity in non-minimal inflation

    CERN Document Server

    Gong, Jinn-Ouk

    2011-01-01

    We consider a simple inflation model with a complex scalar field coupled to gravity non-minimally. Both the modulus and the angular directions of the complex scalar are slowly rolling, leading to two-field inflation. The modulus direction becomes flat due to the non-minimal coupling, and the angular direction becomes a pseudo-Goldstone boson from a small breaking of the global U(1) symmetry. We show that large non-Gaussianity can be produced during slow-roll inflation under a reasonable assumption on the initial condition of the angular direction. This scenario may be realized in particle physics models such as the Standard Model with two Higgs doublets.

  6. Large-scale dynamo action due to α fluctuations in a linear shear flow

    Science.gov (United States)

    Sridhar, S.; Singh, Nishant K.

    2014-12-01

    We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.

  7. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  8. Large-scale calculation of ferromagnetic spin systems on the pyrochlore lattice

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, Konstantin, E-mail: soldatov_ks@students.dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Science, Vladivostok (Russian Federation); Komura, Yukihiro [CIJ-solutions, Chuo-ku, Tokyo 103-0023 (Japan); Okabe, Yutaka, E-mail: okabe@phys.se.tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2017-02-19

    We perform the high-performance computation of the ferromagnetic Ising model on the pyrochlore lattice. We determine the critical temperature accurately based on the finite-size scaling of the Binder ratio. Comparing with the data on the simple cubic lattice, we argue the universal finite-size scaling. We also calculate the classical XY model and the classical Heisenberg model on the pyrochlore lattice. - Highlights: • Calculations of the ferromagnetic models on the pyrochlore lattice were performed. • Precise critical temperatures were determined using Binder ratio finite-size scaling. • The universal finite-size scaling was argued.

  9. National and Gender Measurement Invariance of the Utrecht-Management of Identity Commitments Scale (U-MICS): A 10-Nation Study With University Students.

    Science.gov (United States)

    Crocetti, Elisabetta; Cieciuch, Jan; Gao, Cheng-Hai; Klimstra, Theo; Lin, Ching-Ling; Matos, Paula Mena; Morsünbül, Ümit; Negru, Oana; Sugimura, Kazumi; Zimmermann, Grégoire; Meeus, Wim

    2015-12-01

    The purpose of this study was to examine the psychometric properties of the Utrecht-Management of Identity Commitments Scale (U-MICS), a self-report measure aimed at assessing identity processes of commitment, in-depth exploration, and reconsideration of commitment. We tested its factor structure in university students from a large array of cultural contexts, including 10 nations located in Europe (i.e., Italy, the Netherlands, Poland, Portugal, Romania, and Switzerland), Middle East (i.e., Turkey), and Asia (i.e., China, Japan, and Taiwan). Furthermore, we tested national and gender measurement invariance. Participants were 6,118 (63.2% females) university students aged from 18 to 25 years (Mage = 20.91 years). Results indicated that the three-factor structure of the U-MICS fitted well in the total sample, in each national group, and in gender groups. Furthermore, national and gender measurement invariance were established. Thus, the U-MICS can be fruitfully applied to study identity in university students from various Western and non-Western contexts. © The Author(s) 2015.

  10. Scaling and universality in the human voice.

    Science.gov (United States)

    Luque, Jordi; Luque, Bartolo; Lacasa, Lucas

    2015-04-06

    Speech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work, we empirically analyse the statistics of large human speech datasets ranging several languages. We first show that during speech, the energy is unevenly released and power-law distributed, reporting a universal robust Gutenberg-Richter-like law in speech. We further show that such 'earthquakes in speech' show temporal correlations, as the interevent statistics are again power-law distributed. As this feature takes place in the intraphoneme range, we conjecture that the process responsible for this complex phenomenon is not cognitive, but it resides in the physiological (mechanical) mechanisms of speech production. Moreover, we show that these waiting time distributions are scale invariant under a renormalization group transformation, suggesting that the process of speech generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards a universal pattern and yet another hint of complexity in human speech. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Motivation of university and non-university stakeholders to change medical education in Vietnam.

    NARCIS (Netherlands)

    Luu, H.N.; Nguyen, V.L.; van der Wilt, G.J.; Broerse, J.E.W.; Ruitenberg, E.J.; Wright, E.P.

    2009-01-01

    Background. Both university and non-university stakeholders should be involved in the process of curriculum development in medical schools, because all are concerned with the competencies of the graduates. That may be difficult unless appropriate strategies are used to motivate each stakeholder.

  12. Motivation of university and non-university stakeholders to change medical education in Vietnam

    NARCIS (Netherlands)

    Lu, H.; Nguyen, V; van der Wilt, G.J.; Broerse, J.E.W.; Ruitenberg, E.J.; Wright, P.

    2009-01-01

    Background. Both university and non-university stakeholders should be involved in the process of curriculum development in medical schools, because all are concerned with the competencies of the graduates. That may be difficult unless appropriate strategies are used to motivate each stakeholder.

  13. Eternally existing self-reproducing inflationary universe

    International Nuclear Information System (INIS)

    Linde, A.D.

    1986-05-01

    It is shown that the large-scale quantum fluctuations of the scalar field φ generated in the chaotic inflation scenario lead to an infinite process of self-reproduction of inflationary mini-universes. A model of eternally existing chaotic inflationary universe is suggested. It is pointed out that whereas the universe locally is very homogeneous as a result of inflation, which occurs at the classical level, the global structure of the universe is determined by quantum effects and is highly non-trivial. The universe consists of exponentially large number of different mini-universes, inside which all possible (metastable) vacuum states and all possible types of compactification are realized. The picture differs crucially from the standard picture of a one-domain universe in a ''true'' vacuum state. Our results may serve as a justification of the anthropic principle in the inflationary cosmology. These results may have important implications for the elementary particle theory as well. Namely, since all possible types of mini-universes, in which inflation may occur, should exist in our universe, there is no need to insist (as it is usually done) that in realistic theories the vacuum state of our type should be the only possible one or the best one. (author)

  14. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  15. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  16. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    International Nuclear Information System (INIS)

    Khodadi, M.; Sepangi, H.R.

    2014-01-01

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively

  17. A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Yingni Zhai

    2014-10-01

    Full Text Available Purpose: A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems (JSP is proposed.Design/methodology/approach: In the algorithm, a number of sub-problems are constructed by iteratively decomposing the large-scale JSP according to the process route of each job. And then the solution of the large-scale JSP can be obtained by iteratively solving the sub-problems. In order to improve the sub-problems' solving efficiency and the solution quality, a detection method for multi-bottleneck machines based on critical path is proposed. Therewith the unscheduled operations can be decomposed into bottleneck operations and non-bottleneck operations. According to the principle of “Bottleneck leads the performance of the whole manufacturing system” in TOC (Theory Of Constraints, the bottleneck operations are scheduled by genetic algorithm for high solution quality, and the non-bottleneck operations are scheduled by dispatching rules for the improvement of the solving efficiency.Findings: In the process of the sub-problems' construction, partial operations in the previous scheduled sub-problem are divided into the successive sub-problem for re-optimization. This strategy can improve the solution quality of the algorithm. In the process of solving the sub-problems, the strategy that evaluating the chromosome's fitness by predicting the global scheduling objective value can improve the solution quality.Research limitations/implications: In this research, there are some assumptions which reduce the complexity of the large-scale scheduling problem. They are as follows: The processing route of each job is predetermined, and the processing time of each operation is fixed. There is no machine breakdown, and no preemption of the operations is allowed. The assumptions should be considered if the algorithm is used in the actual job shop.Originality/value: The research provides an efficient scheduling method for the

  18. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  19. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  20. Large-Scale Environment Properties of Narrow-Line Seyfert 1 Galaxies at z < 0.4

    Energy Technology Data Exchange (ETDEWEB)

    Järvelä, Emilia [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Lähteenmäki, A. [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Tartu Observatory, Tõravere (Estonia); Lietzen, H., E-mail: emilia.jarvela@aalto.fi [Tartu Observatory, Tõravere (Estonia)

    2017-11-30

    The large-scale environment is believed to affect the evolution and intrinsic properties of galaxies. It offers a new perspective on narrow-line Seyfert 1 galaxies (NLS1) which have not been extensively studied in this context before. We study a large and diverse sample of 960 NLS1 galaxies using a luminosity-density field constructed using Sloan Digital Sky Survey. We investigate how the large-scale environment is connected to the properties of NLS1 galaxies, especially their radio loudness. Furthermore, we compare the large-scale environment properties of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to shed light on their possible relations. In general NLS1 galaxies reside in less dense large-scale environments than any of our comparison samples, thus supporting their young age. The average luminosity-density and distribution to different luminosity-density regions of NLS1 sources is significantly different compared to BLS1 galaxies. This contradicts the simple orientation-based unification of NLS1 and BLS1 galaxies, and weakens the hypothesis that BLS1 galaxies are the parent population of NLS1 galaxies. The large-scale environment density also has an impact on the intrinsic properties of NLS1 galaxies; the radio loudness increases with the increasing luminosity-density. However, our results suggest that the NLS1 population is indeed heterogeneous, and that a considerable fraction of them are misclassified. We support a suggested description that the traditional classification based on the radio loudness should be replaced with the division to jetted and non-jetted sources.

  1. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  2. Numerical cosmology: Revealing the universe using computers

    International Nuclear Information System (INIS)

    Centrella, J.; Matzner, R.A.; Tolman, B.W.

    1986-01-01

    In this paper the authors present two research projects which study the evolution of different periods in the history of the universe using numerical simulations. The first investigates the synthesis of light elements in an inhomogeneous early universe dominated by shocks and non-linear gravitational waves. The second follows the evolution of large scale structures during the later history of the universe and calculates their effect on the 3K background radiation. Their simulations are carried out using modern supercomputers and make heavy use of multidimensional color graphics, including film to elucidate the results. Both projects provide the authors the opportunity to do experiments in cosmology and assess their results against fundamental cosmological observations

  3. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  4. Large-scale tides in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  5. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  6. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    International Nuclear Information System (INIS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-01-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  7. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Science.gov (United States)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  8. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luz M., E-mail: luzmarinareyes@gmail.com [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Moreno, Claudia, E-mail: claudia.moreno@cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Madriz Aguilar, Jose Edgar, E-mail: edgar.madriz@red.cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-10-22

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  9. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays

    International Nuclear Information System (INIS)

    Mumm, F; Sikorski, P

    2011-01-01

    We report a simple and fast approach to fabricate large, non-flaking arrays of CuO nanowires by oxidizing thin copper substrates in air. Oxidative CuO nanowire growth is commonly accompanied by oxide layer flaking due to stress at the copper-copper oxide interface. Using thin substrates is shown to prevent this flaking by introducing favourable material thickness ratios in the samples after oxidation. Additionally, thin foils allow larger scale topographic patterns to be transferred from an underlying mould to realize non-flat, nanowire-decorated surfaces. Further patterning is possible by electrodeposition of a nickel layer, which restricts nanowire growth to specific areas of the sample.

  10. A large-scale study of epilepsy in Ecuador: methodological aspects.

    Science.gov (United States)

    Placencia, M; Suarez, J; Crespo, F; Sander, J W; Shorvon, S D; Ellison, R H; Cascante, S M

    1992-01-01

    The methodology is presented of a large-scale study of epilepsy carried out in a highland area in northern Ecuador, South America, covering a population of 72,121 people; The study was carried out in two phases, the first, a cross-sectional phase, consisted of a house-to-house survey of all persons in this population, screening for epileptic seizures using a specially designed questionnaire. Possible cases identified in screening were assessed in a cascade diagnostic procedure applied by general doctors and neurologists. Its objectives were: to establish a comprehensive epidemiological profile of epileptic seizures; to describe the clinical phenomenology of this condition in the community; to validate methods for diagnosis and classification of epileptic seizures by a non-specialised team; and to ascertain the community's knowledge, attitudes and practices regarding epilepsy. A sample was selected in this phase in order to study the social aspects of epilepsy in this community. The second phase, which was longitudinal, assessed the ability of non-specialist care in the treatment of epilepsy. It consisted of a prospective clinical trial of antiepileptic therapy in untreated patients using two standard anti-epileptic drugs. Patients were followed for 12 months by a multidisciplinary team consisting of a primary health worker, rural doctor, neurologist, anthropologist, and psychologist. Standardised, reproducible instruments and methods were used. This study was carried out through co-operation between the medical profession, political agencies and the pharmaceutical industry, at an international level. We consider this a model for further large-scale studies of this type.

  11. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  12. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  13. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  14. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  15. ORNL Pre-test Analyses of A Large-scale Experiment in STYLE

    International Nuclear Information System (INIS)

    Williams, Paul T.; Yin, Shengjun; Klasky, Hilda B.; Bass, Bennett Richard

    2011-01-01

    Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite

  16. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  17. Universality in radiative corrections for non-supersymmetric heterotic vacua

    CERN Document Server

    Angelantonj, C; Tsulaia, Mirian

    2016-01-01

    Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.

  18. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo

    2014-04-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  19. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2014-01-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  20. Benefits of transactive memory systems in large-scale development

    OpenAIRE

    Aivars, Sablis

    2016-01-01

    Context. Large-scale software development projects are those consisting of a large number of teams, maybe even spread across multiple locations, and working on large and complex software tasks. That means that neither a team member individually nor an entire team holds all the knowledge about the software being developed and teams have to communicate and coordinate their knowledge. Therefore, teams and team members in large-scale software development projects must acquire and manage expertise...

  1. Study of a large scale neutron measurement channel

    International Nuclear Information System (INIS)

    Amarouayache, Anissa; Ben Hadid, Hayet.

    1982-12-01

    A large scale measurement channel allows the processing of the signal coming from an unique neutronic sensor, during three different running modes: impulses, fluctuations and current. The study described in this note includes three parts: - A theoretical study of the large scale channel and its brief description are given. The results obtained till now in that domain are presented. - The fluctuation mode is thoroughly studied and the improvements to be done are defined. The study of a fluctuation linear channel with an automatic commutation of scales is described and the results of the tests are given. In this large scale channel, the method of data processing is analogical. - To become independent of the problems generated by the use of a an analogical processing of the fluctuation signal, a digital method of data processing is tested. The validity of that method is improved. The results obtained on a test system realized according to this method are given and a preliminary plan for further research is defined [fr

  2. Soft-Pion theorems for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2014-01-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS

  3. Reflections on the political economy of large-scale technology using the example of German fast-breeder development

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    Proceeding from Anglo-Saxon opinions which, from a liberal point of view, criticize the German practice of research policy - state centres of large-scale research and state subventions for research and development in industry - to be inefficient, the author empirically verified these statements taking the German fast breeder project as an example. If the case of the German fast breeder can be generalized, this had consequences for the research political practice and for other technologies. Supporters as well as opponents of large-scale technology today proceed from the assumption that almost every technology can be made commercially viable when using sufficient amounts of money and persons. This is a migth which owes its existence to the technical success of great projects in non-commercial fields. The German fast breeder project confirms the opinion that the recipes for success of these non-commercial projects cannot be applied to the field of commercial technology. The results of this study suggest that practice and theory of technology policy can be misdirected if they are uncritically oriented according to the form of state intervention so far used in large-scale technology. (orig./HSCH) [de

  4. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  5. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  6. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  7. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  8. Ward identities and consistency relations for the large scale structure with multiple species

    International Nuclear Information System (INIS)

    Peloso, Marco; Pietroni, Massimo

    2014-01-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field

  9. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    Science.gov (United States)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this

  10. Large-scale application of highly-diluted bacteria for Leptospirosis epidemic control.

    Science.gov (United States)

    Bracho, Gustavo; Varela, Enrique; Fernández, Rolando; Ordaz, Barbara; Marzoa, Natalia; Menéndez, Jorge; García, Luis; Gilling, Esperanza; Leyva, Richard; Rufín, Reynaldo; de la Torre, Rubén; Solis, Rosa L; Batista, Niurka; Borrero, Reinier; Campa, Concepción

    2010-07-01

    Leptospirosis is a zoonotic disease of major importance in the tropics where the incidence peaks in rainy seasons. Natural disasters represent a big challenge to Leptospirosis prevention strategies especially in endemic regions. Vaccination is an effective option but of reduced effectiveness in emergency situations. Homeoprophylactic interventions might help to control epidemics by using highly-diluted pathogens to induce protection in a short time scale. We report the results of a very large-scale homeoprophylaxis (HP) intervention against Leptospirosis in a dangerous epidemic situation in three provinces of Cuba in 2007. Forecast models were used to estimate possible trends of disease incidence. A homeoprophylactic formulation was prepared from dilutions of four circulating strains of Leptospirosis. This formulation was administered orally to 2.3 million persons at high risk in an epidemic in a region affected by natural disasters. The data from surveillance were used to measure the impact of the intervention by comparing with historical trends and non-intervention regions. After the homeoprophylactic intervention a significant decrease of the disease incidence was observed in the intervention regions. No such modifications were observed in non-intervention regions. In the intervention region the incidence of Leptospirosis fell below the historic median. This observation was independent of rainfall. The homeoprophylactic approach was associated with a large reduction of disease incidence and control of the epidemic. The results suggest the use of HP as a feasible tool for epidemic control, further research is warranted. 2010 Elsevier Ltd. All rights reserved.

  11. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    Full Text Available Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1 complex sub-pixel heterogeneity; (2 little to no available calibration data; and (3 high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000–2001 to 2015–2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites. This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods

  12. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  13. The Limits and Possibilities of International Large-Scale Assessments. Education Policy Brief. Volume 9, Number 2, Spring 2011

    Science.gov (United States)

    Rutkowski, David J.; Prusinski, Ellen L.

    2011-01-01

    The staff of the Center for Evaluation & Education Policy (CEEP) at Indiana University is often asked about how international large-scale assessments influence U.S. educational policy. This policy brief is designed to provide answers to some of the most frequently asked questions encountered by CEEP researchers concerning the three most popular…

  14. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  15. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Administrator

    structure and chemical purity of 99⋅1% by inductively coupled plasma optical emission spectroscopy on a large scale. Keywords. Sol–gel; yttria-stabilized zirconia; large scale; nanopowder; Pechini method. 1. Introduction. Zirconia has attracted the attention of many scientists because of its tremendous thermal, mechanical ...

  16. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  17. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  18. The Universal Patient Centredness Questionnaire: scaling approaches to reduce positive skew

    Directory of Open Access Journals (Sweden)

    Bjertnaes O

    2016-11-01

    Full Text Available Oyvind Bjertnaes, Hilde Hestad Iversen, Andrew M Garratt Unit for Patient-Reported Quality, Norwegian Institute of Public Health, Oslo, Norway Purpose: Surveys of patients’ experiences typically show results that are indicative of positive experiences. Unbalanced response scales have reduced positive skew for responses to items within the Universal Patient Centeredness Questionnaire (UPC-Q. The objective of this study was to compare the unbalanced response scale with another unbalanced approach to scaling to assess whether the positive skew might be further reduced. Patients and methods: The UPC-Q was included in a patient experience survey conducted at the ward level at six hospitals in Norway in 2015. The postal survey included two reminders to nonrespondents. For patients in the first month of inclusion, UPC-Q items had standard scaling: poor, fairly good, good, very good, and excellent. For patients in the second month, the scaling was more positive: poor, good, very good, exceptionally good, and excellent. The effect of scaling on UPC-Q scores was tested with independent samples t-tests and multilevel linear regression analysis, the latter controlling for the hierarchical structure of data and known predictors of patient-reported experiences. Results: The response rate was 54.6% (n=4,970. Significantly lower scores were found for all items of the more positively worded scale: UPC-Q total score difference was 7.9 (P<0.001, on a scale from 0 to 100 where 100 is the best possible score. Differences between the four items of the UPC-Q ranged from 7.1 (P<0.001 to 10.4 (P<0.001. Multivariate multilevel regression analysis confirmed the difference between the response groups, after controlling for other background variables; UPC-Q total score difference estimate was 8.3 (P<0.001. Conclusion: The more positively worded scaling significantly lowered the mean scores, potentially increasing the sensitivity of the UPC-Q to identify differences over

  19. Large scale photovoltaic field trials. Second technical report: monitoring phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This report provides an update on the Large-Scale Building Integrated Photovoltaic Field Trials (LS-BIPV FT) programme commissioned by the Department of Trade and Industry (Department for Business, Enterprise and Industry; BERR). It provides detailed profiles of the 12 projects making up this programme, which is part of the UK programme on photovoltaics and has run in parallel with the Domestic Field Trial. These field trials aim to record the experience and use the lessons learnt to raise awareness of, and confidence in, the technology and increase UK capabilities. The projects involved: the visitor centre at the Gaia Energy Centre in Cornwall; a community church hall in London; council offices in West Oxfordshire; a sports science centre at Gloucester University; the visitor centre at Cotswold Water Park; the headquarters of the Insolvency Service; a Welsh Development Agency building; an athletics centre in Birmingham; a research facility at the University of East Anglia; a primary school in Belfast; and Barnstable civic centre in Devon. The report describes the aims of the field trials, monitoring issues, performance, observations and trends, lessons learnt and the results of occupancy surveys.

  20. Large-scale Agricultural Land Acquisitions in West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine large-scale agricultural land acquisitions in nine West African countries -Burkina Faso, Guinea-Bissau, Guinea, Benin, Mali, Togo, Senegal, Niger, and Côte d'Ivoire. ... They will use the results to increase public awareness and knowledge about the consequences of large-scale land acquisitions.

  1. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  2. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  3. Validation of the JDS satisfaction scales applied to educational university environments

    Directory of Open Access Journals (Sweden)

    Martha Giraldo-O'Meara

    2014-01-01

    Full Text Available Purpose: The aim of this study is to review and summarize the main satisfaction scales used in publications about human Resource Management and educational research, in order to adapt the satisfaction scales of the Job Diagnostic Survey (JDS to higher education and validate it with a sample of university students and to assess the concept of satisfaction in two different ways: as a single-item measure, with a global indicator and as a multi-item measure, analyzed as a global model and composed by several scales. Design/methodology/approach: Confirmatory factor analysis with maximum likelihood, using structural equations model, was employed to assess the model fit in 152 business management undergraduates. Findings and Originality/value: The satisfaction model measured as multi-item scale present an acceptable fit. Even though, some of the satisfaction scales did not present a satisfactory fit, they can be used and interpreted independently with carefulness. Nevertheless, the satisfaction single-item scale presents a better fit and has been validated as a simpler and less costly measure of satisfaction. Originality/value: In the current process of change that is taking place in universities according to the plan developed by the European Space of higher Education, validated instruments as the satisfaction scale of JDS, adapted to teaching, may facilitate this process through the diagnosis, and follow-up of changes in satisfaction levels in university classrooms.

  4. On transport in formations of large heterogeneity scales

    International Nuclear Information System (INIS)

    Dagan, Gedeon

    1990-01-01

    It has been suggested that in transport through heterogeneous aquifers, the effective dispersivity increases with the travel distance, since plumes encounter heterogeneity of increasing scales. This conclusion is underlain, however, by the assumption of ergodicity. If the plume is viewed as made up of different particles, this means that these particles move independently from a statistical point of view. To satisfy ergodicity the solute body has to be of a much larger extent than heterogeneity scales. Thus, if the latter are increasing for ever and the solute body is finite, ergodicity cannot be obeyed. To demonstrate this thesis we relate to the two-dimensional heterogeneity associated with transmissivity variations in the horizontal plane. First, the effective dispersion coefficient is defined as half the rate of change of the expected value of the solute body second spatial moment relative to its centroid. Subsequently the asymptotic large time limit of dispersivity is evaluated in terms of the log transmissivity integral scale and of the dimensions of the initial solute body in the direction of mean flow and normal to it. It is shown that for a thin plume aligned with the mean flow the effective dispersivity is zero and the effect of heterogeneity is a slight and finite expansion determined solely by the solute body size. In the case of a solute body transverse to the mean flow the effective dispersivity is different from zero, but has a maximal value which is again dependent on the solute body size and not on the heterogeneity scale. It is concluded that from a theoretical standpoint and for the definition of dispersivity adopted here for non-ergodic conditions, the claim of ever-increasing dispersivity with travel distance is not valid for the scale of heterogeneity analyzed here. (Author) (21 refs., 6 figs.)

  5. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  6. Laboratory astrophysics. Model experiments of astrophysics with large-scale lasers

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    2012-01-01

    I would like to review the model experiment of astrophysics with high-power, large-scale lasers constructed mainly for laser nuclear fusion research. The four research directions of this new field named 'Laser Astrophysics' are described with four examples mainly promoted in our institute. The description is of magazine style so as to be easily understood by non-specialists. A new theory and its model experiment on the collisionless shock and particle acceleration observed in supernova remnants (SNRs) are explained in detail and its result and coming research direction are clarified. In addition, the vacuum breakdown experiment to be realized with the near future ultra-intense laser is also introduced. (author)

  7. Universal Scaling and Critical Exponents of the Anisotropic Quantum Rabi Model

    Science.gov (United States)

    Liu, Maoxin; Chesi, Stefano; Ying, Zu-Jian; Chen, Xiaosong; Luo, Hong-Gang; Lin, Hai-Qing

    2017-12-01

    We investigate the quantum phase transition of the anisotropic quantum Rabi model, in which the rotating and counterrotating terms are allowed to have different coupling strengths. The model interpolates between two known limits with distinct universal properties. Through a combination of analytic and numerical approaches, we extract the phase diagram, scaling functions, and critical exponents, which determine the universality class at finite anisotropy (identical to the isotropic limit). We also reveal other interesting features, including a superradiance-induced freezing of the effective mass and discontinuous scaling functions in the Jaynes-Cummings limit. Our findings are extended to the few-body quantum phase transitions with N >1 spins, where we expose the same effective parameters, scaling properties, and phase diagram. Thus, a stronger form of universality is established, valid from N =1 up to the thermodynamic limit.

  8. A new large-scale manufacturing platform for complex biopharmaceuticals.

    Science.gov (United States)

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  9. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  10. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  11. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  12. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  13. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  14. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  15. Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity

    International Nuclear Information System (INIS)

    Hunana, P.; Zank, G. P.; Shaikh, D.

    2006-01-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  16. Why are large cities faster? Universal scaling and self-similarity in urban organization and dynamics

    Science.gov (United States)

    Bettencourt, L. M. A.; Lobo, J.; West, G. B.

    2008-06-01

    Cities have existed since the beginning of civilization and have always been intimately connected with humanity's cultural and technological development. Much about the human and social dynamics that takes place is cities is intuitively recognizable across time, space and culture; yet we still do not have a clear cut answer as to why cities exist or to what factors are critical to make them thrive or collapse. Here, we construct an extensive quantitative characterization of the variation of many urban indicators with city size, using large data sets for American, European and Chinese cities. We show that social and economic quantities, characterizing the creation of wealth and new ideas, show increasing returns to population scale, which appear quantitatively as a power law of city size with an exponent β≃ 1.15 > 1. Concurrently, quantities characterizing material infrastructure typically show economies of scale, namely β≃ 0.8 exponential growth, which inexorably lead to crises of urban organization. To avoid them we show that growth may proceed in cycles, separated by major urban adaptations, with the unintended consequence that the duration of such cycles decreases with larger urban population size and is now estimated to be shorter than a human lifetime.

  17. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  18. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Chen, Shang

    2016-01-01

    Highlights: • Two dimensionless uniformity factors are presented to heat exchange network. • The grouping of process streams reduces the computational complexity of large-scale HENS problems. • The optimal sub-network can be obtained by Powell particle swarm optimization algorithm. • The method is illustrated by a case study involving 39 process streams, with a better solution. - Abstract: The optimal design of large-scale heat exchanger networks is a difficult task due to the inherent non-linear characteristics and the combinatorial nature of heat exchangers. To solve large-scale heat exchanger network synthesis (HENS) problems, two dimensionless uniformity factors to describe the heat exchanger network (HEN) uniformity in terms of the temperature difference and the accuracy of process stream grouping are deduced. Additionally, a novel algorithm that combines deterministic and stochastic optimizations to obtain an optimal sub-network with a suitable heat load for a given group of streams is proposed, and is named the Powell particle swarm optimization (PPSO). As a result, the synthesis of large-scale heat exchanger networks is divided into two corresponding sub-parts, namely, the grouping of process streams and the optimization of sub-networks. This approach reduces the computational complexity and increases the efficiency of the proposed method. The robustness and effectiveness of the proposed method are demonstrated by solving a large-scale HENS problem involving 39 process streams, and the results obtained are better than those previously published in the literature.

  19. Early Predictors of First-Year Academic Success at University: Pre-University Effort, Pre-University Self-Efficacy, and Pre-University Reasons for Attending University

    Science.gov (United States)

    van Herpen, Sanne G. A.; Meeuwisse, Marieke; Hofman, W. H. Adriaan; Severiens, Sabine E.; Arends, Lidia R.

    2017-01-01

    Given the large number of dropouts in the 1st year at university, it is important to identify early predictors of 1st-year academic success. The present study (n = 453 first-year students) contributes to literature on the transition from secondary to higher education by investigating how the non-cognitive factors "pre-university" effort…

  20. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    Science.gov (United States)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  1. Universal Scaling in Highly Doped Conducting Polymer Films

    NARCIS (Netherlands)

    Kronemeijer, A. J.; Huisman, E. H.; Katsouras, I.; van Hal, P. A.; Geuns, T. C. T.; Blom, P. W. M.; van der Molen, S. J.; de Leeuw, D. M.

    2010-01-01

    Electrical transport of a highly doped disordered conducting polymer, viz. poly-3,4-ethylenedioxythiophene stabilized with poly-4-styrenesulphonic acid, is investigated as a function of bias and temperature. The transport shows universal power-law scaling with both bias and temperature. All

  2. Universal scaling in highly doped conducting polymer films

    NARCIS (Netherlands)

    Kronemeijer, A.J.; Huisman, E.H.; Katsouras, I.; Hal, P.A. van; Geuns, T.C.T.; Blom, P.W.M.; Molen, S.J. van der; Leeuw, D.M. de

    2010-01-01

    Electrical transport of a highly doped disordered conducting polymer, viz. poly-3,4-ethylenedioxythiophene stabilized with poly-4-styrenesulphonic acid, is investigated as a function of bias and temperature. The transport shows universal power-law scaling with both bias and temperature. All

  3. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  4. Learning from large scale neural simulations

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Large-scale neural simulations have the marks of a distinct methodology which can be fruitfully deployed to advance scientific understanding of the human brain. Computer simulation studies can be used to produce surrogate observational data for better conceptual models and new how...

  5. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai

    2017-01-01

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  6. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  7. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  8. MEASUREMENT OF LARGE-SCALE SOLAR POWER PLANT BY USING IMAGES ACQUIRED BY NON-METRIC DIGITAL CAMERA ON BOARD UAV

    Directory of Open Access Journals (Sweden)

    R. Matsuoka

    2012-07-01

    Full Text Available This paper reports an experiment conducted in order to investigate the feasibility of the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a non-metric digital camera on board a micro unmanned aerial vehicle (UAV. It is required that a root mean squares of errors (RMSE in height measurement should be less than 26 mm that is 1/3 of the critical limit of deformation of 78 mm off the plane of a solar panel. Images utilized in the experiment have been obtained by an Olympus PEN E-P2 digital camera on board a Microdrones md4-1000 quadrocopter. The planned forward and side overlap ratios of vertical image acquisition have been 60 % and 60 % respectively. The planned flying height of the UAV has been 20 m above the ground level and the ground resolution of an image is approximately 5.0 mm by 5.0 mm. 8 control points around the experiment area are utilized for orientation. Measurement results are evaluated by the space coordinates of 220 check points which are corner points of 55 solar panels selected from 1768 solar panels in the experiment area. Two teams engage in the experiment. One carries out orientation and measurement by using 171 images following the procedure of conventional aerial photogrammetry, and the other executes those by using 126 images in the manner of close range photogrammetry. The former fails to satisfy the required accuracy, while the RMSE in height measurement by the latter is 8.7 mm that satisfies the required accuracy. From the experiment results, we conclude that the deformation measurement of a large-scale solar power plant on reclaimed land by using images acquired by a nonmetric digital camera on board a micro UAV would be feasible if points utilized in orientation and measurement have a sufficient number of bundles in good geometry and self-calibration in orientation is carried out.

  9. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  10. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  11. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  12. Managing sensitive phenotypic data and biomaterial in large-scale collaborative psychiatric genetic research projects: practical considerations.

    Science.gov (United States)

    Demiroglu, S Y; Skrowny, D; Quade, M; Schwanke, J; Budde, M; Gullatz, V; Reich-Erkelenz, D; Jakob, J J; Falkai, P; Rienhoff, O; Helbing, K; Heilbronner, U; Schulze, T G

    2012-12-01

    Large-scale collaborative research will be a hallmark of future psychiatric genetic research. Ideally, both academic and non-academic institutions should be able to participate in such collaborations to allow for the establishment of very large samples in a straightforward manner. Any such endeavor requires an easy-to-implement information technology (IT) framework. Here we present the requirements for a centralized framework and describe how they can be met through a modular IT toolbox.

  13. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  14. Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments

    International Nuclear Information System (INIS)

    Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.

    1993-01-01

    The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)

  15. Validity and reliability of the Multidimensional Body Image Scale in Malaysian university students.

    Science.gov (United States)

    Gan, W Y; Mohd, Nasir M T; Siti, Aishah H; Zalilah, M S

    2012-12-01

    This study aimed to evaluate the validity and reliability of the Multidimensional Body Image Scale (MBIS), a seven-factor, 62-item scale developed for Malaysian female adolescents. This scale was evaluated among male and female Malaysian university students. A total of 671 university students (52.2% women and 47.8% men) completed a self-administered questionnaire on MBIS, Eating Attitude Test-26, and Rosenberg Self-Esteem Scale. Their height and weight were measured. Results in confirmatory factor analysis showed that the 62-item MBIS reported poor fit to the data, xhi2/df = 4.126, p self-esteem. Also, this scale discriminated well between participants with and without disordered eating. The MBIS-46 demonstrated good reliability and validity for the evaluation of body image among university students. Further studies need to be conducted to confirm the validation results of the 46-item MBIS.

  16. Contributed report: Probing non-universal gaugino masses ...

    Indian Academy of Sciences (India)

    Experiments at Fermilab Tevatron Run I [1] have obtained important bounds on the chargino–neutralino sector of the minimal supersymmetric extension of the standard model using the clean trilepton signal. However, the analyses used the universal gaugino mass hypothesis at the GUT scale (MG) motivated by the minimal ...

  17. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  18. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: pfischer@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  19. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

    KAUST Repository

    Hadwiger, Markus; Al-Awami, Ali K.; Beyer, Johanna; Agus, Marco; Pfister, Hanspeter

    2017-01-01

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  20. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

    KAUST Repository

    Hadwiger, Markus

    2017-08-28

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  1. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  3. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  4. Photorealistic large-scale urban city model reconstruction.

    Science.gov (United States)

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

  5. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  6. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    Science.gov (United States)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat

  7. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  8. A cloud-based framework for large-scale traditional Chinese medical record retrieval.

    Science.gov (United States)

    Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Xianwen; Zhang, Yin

    2018-01-01

    Electronic medical records are increasingly common in medical practice. The secondary use of medical records has become increasingly important. It relies on the ability to retrieve the complete information about desired patient populations. How to effectively and accurately retrieve relevant medical records from large- scale medical big data is becoming a big challenge. Therefore, we propose an efficient and robust framework based on cloud for large-scale Traditional Chinese Medical Records (TCMRs) retrieval. We propose a parallel index building method and build a distributed search cluster, the former is used to improve the performance of index building, and the latter is used to provide high concurrent online TCMRs retrieval. Then, a real-time multi-indexing model is proposed to ensure the latest relevant TCMRs are indexed and retrieved in real-time, and a semantics-based query expansion method and a multi- factor ranking model are proposed to improve retrieval quality. Third, we implement a template-based visualization method for displaying medical reports. The proposed parallel indexing method and distributed search cluster can improve the performance of index building and provide high concurrent online TCMRs retrieval. The multi-indexing model can ensure the latest relevant TCMRs are indexed and retrieved in real-time. The semantics expansion method and the multi-factor ranking model can enhance retrieval quality. The template-based visualization method can enhance the availability and universality, where the medical reports are displayed via friendly web interface. In conclusion, compared with the current medical record retrieval systems, our system provides some advantages that are useful in improving the secondary use of large-scale traditional Chinese medical records in cloud environment. The proposed system is more easily integrated with existing clinical systems and be used in various scenarios. Copyright © 2017. Published by Elsevier Inc.

  9. New technologies for large-scale micropatterning of functional nanocomposite polymers

    Science.gov (United States)

    Khosla, A.; Gray, B. L.

    2012-04-01

    We present a review of different micropatterning technologies for flexible elastomeric functional nanocomposites with a particular emphasis on mold material and processes for production of large size substrates. The functional polymers include electrically conducting and magnetic materials developed at the Micro-instrumentation Laboratory at Simon Fraser University, Canada. We present a chart that compares many of these different conductive and magnetic functional nanocomposites and their measured characteristics. Furthermore, we have previously reported hybrid processes for nanocomposite polymers micromolded against SU-8 photoepoxy masters. However, SU-8 is typically limited to substrate sizes that are compatible with microelectronics processing as a microelectronics uv-patterning step is typically involved, and de-molding problems are observed. Recently, we have developed new processes that address the problems faced with SU-8 molds. These new technologies for micropatterning nanocomposites involve new substrate materials. A low cost Poly(methyl methacrylate) (PMMA) microfabrication technology has been developed, which involves fabrication of micromold via either CO2 laser ablation or deep UV. We have previously reported this large-scale patterning technique using laser ablation. Finally, we compare the two processes for PMMA producing micromolds for nanocomposites.

  10. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    Energy Technology Data Exchange (ETDEWEB)

    Terrana, Alexandra; Johnson, Matthew C. [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada); Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-02-01

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, and estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.

  11. SPORT AND MENTAL HEALTH LEVEL AMONG UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Mouloud Kenioua

    2016-06-01

    Full Text Available Purpose: study of mental health level of university student, athletes and non-athletes. Material: The tested group consisted of 160 male and female undergraduates from Ouargla University, Algeria; 80 students-athletes from Institute of Physical Education and Sports and 80 students-non-athletes from Department of Psychology, English and Mathematics. In the study we used health mental scale, adapted by Diab (2006 to Arab version scale, formed from five dimensions (Competence and self-confidence, Capacity for social interaction, Emotional maturity, Freedom from neurotic symptoms, self rating and aspects of natural deficiencies. Results: the findings indicated that university students have high level of mental health. And the mean of the responses of students-athletes group by mental health scale reached (M = 32.40, with standard deviation (STD =5.83, while the mean of the responses of students-non athletes group by mental health scale has reached (M=27.47, with standard deviation (STD=7.88. T-value, required to know significance of differences between means of students-athletes and students-non athletes has reached (T=4.51, (DF=185, p -0.01. So there are significant statistical differences between student athletes and non-athletes in their responses by mental health scale in favor of the student athletes. Conclusion:sports are beneficial in respect to mental health among university students and emphasizing the importance of the mental health of university students through its integration in the various recreational and competitive activities. Future qualitative research, covering multi-variables’ tests on mental health and others psychological characteristics could be performed in sports area.

  12. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for peta scale platforms and beyond

    International Nuclear Information System (INIS)

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-01-01

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC-Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC-Chem has been shown to be capable of running at the peta scale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exa scale platforms with a comparable level of efficiency is expected to be feasible. (authors)

  13. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  14. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  15. Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....

  16. Creating Large Scale Database Servers

    International Nuclear Information System (INIS)

    Becla, Jacek

    2001-01-01

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region

  17. Creating Large Scale Database Servers

    Energy Technology Data Exchange (ETDEWEB)

    Becla, Jacek

    2001-12-14

    The BaBar experiment at the Stanford Linear Accelerator Center (SLAC) is designed to perform a high precision investigation of the decays of the B-meson produced from electron-positron interactions. The experiment, started in May 1999, will generate approximately 300TB/year of data for 10 years. All of the data will reside in Objectivity databases accessible via the Advanced Multi-threaded Server (AMS). To date, over 70TB of data have been placed in Objectivity/DB, making it one of the largest databases in the world. Providing access to such a large quantity of data through a database server is a daunting task. A full-scale testbed environment had to be developed to tune various software parameters and a fundamental change had to occur in the AMS architecture to allow it to scale past several hundred terabytes of data. Additionally, several protocol extensions had to be implemented to provide practical access to large quantities of data. This paper will describe the design of the database and the changes that we needed to make in the AMS for scalability reasons and how the lessons we learned would be applicable to virtually any kind of database server seeking to operate in the Petabyte region.

  18. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  19. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  20. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  1. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  2. Mapping the universe in three dimensions.

    Science.gov (United States)

    Haynes, M P

    1996-12-10

    The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble's law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.

  3. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  4. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  5. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  6. "Non-cold" dark matter at small scales: a general approach

    Science.gov (United States)

    Murgia, R.; Merle, A.; Viel, M.; Totzauer, M.; Schneider, A.

    2017-11-01

    Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. However, most of the astrophysical constraints obtained so far refer to a very specific shape of the power suppression, corresponding to thermal warm dark matter (WDM), i.e., candidates with a Fermi-Dirac or Bose-Einstein momentum distribution. In this work we introduce a new analytical fitting formula for the power spectrum, which is simple yet flexible enough to reproduce the clustering signal of large classes of non-thermal DM models, which are not at all adequately described by the oversimplified notion of WDM . We show that the formula is able to fully cover the parameter space of sterile neutrinos (whether resonantly produced or from particle decay), mixed cold and warm models, fuzzy dark matter, as well as other models suggested by effective theory of structure formation (ETHOS). Based on this fitting formula, we perform a large suite of N-body simulations and we extract important nonlinear statistics, such as the matter power spectrum and the halo mass function. Finally, we present first preliminary astrophysical constraints, based on linear theory, from both the number of Milky Way satellites and the Lyman-α forest. This paper is a first step towards a general and comprehensive modeling of small-scale departures from the standard cold DM model.

  7. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  8. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  9. Development of a Career Resilience Scale for University Students

    OpenAIRE

    児玉, 真樹子

    2017-01-01

    The purpose of this study was to develop a career resilience scale for university students. The data of 114 university students was collected. Career resilience, career decision making anxiety, and the degree of career development were measured. The result of a confirmatory factor analysis indicated a five-factor structure of career resilience with a high Cronbach’s alpha: ability to cope with problems and changes; social skills; interest in novelty; optimism about the future; and willingness...

  10. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  11. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  12. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  13. Institutionalizing Large-Scale Curricular Change: The Top 25 Project at Miami University

    Science.gov (United States)

    Hodge, David C.; Nadler, Marjorie Keeshan; Shore, Cecilia; Taylor, Beverley A. P.

    2011-01-01

    Now more than ever, it is urgent that colleges and universities mobilize themselves to produce graduates who are capable of being productive, creative, and responsible members of a global society. Employers want clear communicators who are strong critical thinkers and who can solve real-world problems in an ethical way. To achieve these outcomes,…

  14. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  15. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  16. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  17. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  18. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  19. Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin

    2014-01-01

    This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result......) simulations were performed to study the spray combustion phenomena within a constant volume bomb. Both non-reacting and reacting conditions were applied in this study. Liquid and vapor penetration lengths were replicated for non-reacting diesel spray. For reacting diesel spray, both ignition delay and lift......-off length were simulated. The simulation results were then compared to the experimental data of Sandia National Laboratories and No. 2 Diesel Fuel (D2) was designated as the reference fuel. Both liquid and vapor penetrations for non-reacting condition were well-matched, while ignition delay was advanced...

  20. The future of primordial features with large-scale structure surveys

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Dvorkin, Cora; Huang, Zhiqi; Verde, Licia

    2016-01-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  1. The future of primordial features with large-scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang; Namjoo, Mohammad Hossein [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dvorkin, Cora [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275 (China); Verde, Licia, E-mail: xingang.chen@cfa.harvard.edu, E-mail: dvorkin@physics.harvard.edu, E-mail: huangzhq25@sysu.edu.cn, E-mail: mohammad.namjoo@cfa.harvard.edu, E-mail: liciaverde@icc.ub.edu [ICREA and ICC-UB, University of Barcelona (IEEC-UB), Marti i Franques, 1, Barcelona 08028 (Spain)

    2016-11-01

    Primordial features are one of the most important extensions of the Standard Model of cosmology, providing a wealth of information on the primordial Universe, ranging from discrimination between inflation and alternative scenarios, new particle detection, to fine structures in the inflationary potential. We study the prospects of future large-scale structure (LSS) surveys on the detection and constraints of these features. We classify primordial feature models into several classes, and for each class we present a simple template of power spectrum that encodes the essential physics. We study how well the most ambitious LSS surveys proposed to date, including both spectroscopic and photometric surveys, will be able to improve the constraints with respect to the current Planck data. We find that these LSS surveys will significantly improve the experimental sensitivity on features signals that are oscillatory in scales, due to the 3D information. For a broad range of models, these surveys will be able to reduce the errors of the amplitudes of the features by a factor of 5 or more, including several interesting candidates identified in the recent Planck data. Therefore, LSS surveys offer an impressive opportunity for primordial feature discovery in the next decade or two. We also compare the advantages of both types of surveys.

  2. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  3. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  4. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  5. Large scale applicability of a Fully Adaptive Non-Intrusive Spectral Projection technique: Sensitivity and uncertainty analysis of a transient

    International Nuclear Information System (INIS)

    Perkó, Zoltán; Lathouwers, Danny; Kloosterman, Jan Leen; Hagen, Tim van der

    2014-01-01

    Highlights: • Grid and basis adaptive Polynomial Chaos techniques are presented for S and U analysis. • Dimensionality reduction and incremental polynomial order reduce computational costs. • An unprotected loss of flow transient is investigated in a Gas Cooled Fast Reactor. • S and U analysis is performed with MC and adaptive PC methods, for 42 input parameters. • PC accurately estimates means, variances, PDFs, sensitivities and uncertainties. - Abstract: Since the early years of reactor physics the most prominent sensitivity and uncertainty (S and U) analysis methods in the nuclear community have been adjoint based techniques. While these are very effective for pure neutronics problems due to the linearity of the transport equation, they become complicated when coupled non-linear systems are involved. With the continuous increase in computational power such complicated multi-physics problems are becoming progressively tractable, hence affordable and easily applicable S and U analysis tools also have to be developed in parallel. For reactor physics problems for which adjoint methods are prohibitive Polynomial Chaos (PC) techniques offer an attractive alternative to traditional random sampling based approaches. At TU Delft such PC methods have been studied for a number of years and this paper presents a large scale application of our Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm for performing the sensitivity and uncertainty analysis of a Gas Cooled Fast Reactor (GFR) Unprotected Loss Of Flow (ULOF) transient. The transient was simulated using the Cathare 2 code system and a fully detailed model of the GFR2400 reactor design that was investigated in the European FP7 GoFastR project. Several sources of uncertainty were taken into account amounting to an unusually high number of stochastic input parameters (42) and numerous output quantities were investigated. The results show consistently good performance of the applied adaptive PC

  6. Psychometric properties of the Francis Scale of Attitude Towards Christianity among Portuguese university students.

    Science.gov (United States)

    Ferreira, Ana Veríssimo; Neto, Félix

    2002-12-01

    To facilitate use of the adult form of the Francis Scale of Attitude Towards Christianity in cross-cultural studies, the psychometric characteristics of the translated scale were examined among 323 university students in Portugal (130 men and 193 women). Their ages ranged from 18 to 31 years. Analysis supported the unidimensionality, internal consistency, and construct validity of this scale in this sample of Portuguese university students.

  7. Weighted Scaling in Non-growth Random Networks

    International Nuclear Information System (INIS)

    Chen Guang; Yang Xuhua; Xu Xinli

    2012-01-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  8. Adaptive visualization for large-scale graph

    International Nuclear Information System (INIS)

    Nakamura, Hiroko; Shinano, Yuji; Ohzahata, Satoshi

    2010-01-01

    We propose an adoptive visualization technique for representing a large-scale hierarchical dataset within limited display space. A hierarchical dataset has nodes and links showing the parent-child relationship between the nodes. These nodes and links are described using graphics primitives. When the number of these primitives is large, it is difficult to recognize the structure of the hierarchical data because many primitives are overlapped within a limited region. To overcome this difficulty, we propose an adaptive visualization technique for hierarchical datasets. The proposed technique selects an appropriate graph style according to the nodal density in each area. (author)

  9. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  10. The large-scale solar feed-in tariff reverse auction in the Australian Capital Territory, Australia

    International Nuclear Information System (INIS)

    Buckman, Greg; Sibley, Jon; Bourne, Richard

    2014-01-01

    Feed-in tariffs (FiTs) offer renewable energy developers significant investor certainty but sometimes at the cost of being misaligned with generation costs. Reverse FiT auctions, where the FiT rights for a predetermined capacity are auctioned, can overcome this problem but can be plagued by non-delivery risks, particularly of competitively priced proposals. In 2012 and 2013 the Australian Capital Territory (ACT) Government in Australia conducted a FiT reverse auction for 40 MW of large-scale solar generating capacity, the first such auction undertaken in the country. The auction was highly competitive in relation to price and demonstrating low delivery risks. Proposal capital costs, particularly engineering, procurement and construction costs, as well as internal rates of return, were lower than expected. The auction process revealed limited land availability for large-scale solar developments in the ACT as well as a significant perceived sovereign risk issue. The auction process was designed to mitigate non-delivery risk by requiring proposals to be pre-qualified on the basis of delivery risk, before considering FiT pricing. The scheme is likely to be used by the ACT Government to support further large-scale renewable energy development as part of its greenhouse gas reduction strategy which is underpinned by a 90-per cent-by-2020 renewable energy target. - Highlights: • Evolution of the reverse auction process in the Australian Capital Territory. • Analysis of the outcomes of the first Australian feed-in tariff reverse auction. • Identification of the major drivers of the low FiT prices achieved in the auction. • Identification of major issues that emerged in the auction

  11. An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies.

    Science.gov (United States)

    Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong

    2018-04-01

    One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Modeling and Control of a Large Nuclear Reactor A Three-Time-Scale Approach

    CERN Document Server

    Shimjith, S R; Bandyopadhyay, B

    2013-01-01

    Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property,...

  13. Motivation of university and non-university stakeholders to change medical education in Vietnam

    Directory of Open Access Journals (Sweden)

    Ruitenberg EJ

    2009-07-01

    Full Text Available Abstract Background Both university and non-university stakeholders should be involved in the process of curriculum development in medical schools, because all are concerned with the competencies of the graduates. That may be difficult unless appropriate strategies are used to motivate each stakeholder. From 1999 to 2006, eight medical schools in Vietnam worked together to change the curriculum and teaching for general medical students to make it more community oriented. This paper describes the factors that motivated the different stakeholders to participate in curriculum change and teaching in Vietnamese medical schools and the activities to address those factors and have sustainable contributions from all relevant stakeholders. Methods Case study analysis of contributions to the change process, using reports, interviews, focus group discussions and surveys and based on Herzberg's Motivation Theory to analyze involvement of different stakeholders. Results Different stakeholders were motivated by selected activities, such as providing opportunities for non-university stakeholders to share their opinions, organizing interactions among university stakeholders, stimulating both bottom-up and top-down inputs, focusing on learning from each other, and emphasizing self-motivation factors. Conclusion The Herzberg Motivation theory helped to identify suitable approaches to ensure that teaching topics, materials and assessment methods more closely reflected the health care needs of the community. Other medical schools undertaking a reform process may learn from this experience.

  14. Motivation of university and non-university stakeholders to change medical education in Vietnam.

    Science.gov (United States)

    Luu, Ngoc Hoat; Nguyen, Lan Viet; van der Wilt, G J; Broerse, J; Ruitenberg, E J; Wright, E P

    2009-07-24

    Both university and non-university stakeholders should be involved in the process of curriculum development in medical schools, because all are concerned with the competencies of the graduates. That may be difficult unless appropriate strategies are used to motivate each stakeholder. From 1999 to 2006, eight medical schools in Vietnam worked together to change the curriculum and teaching for general medical students to make it more community oriented. This paper describes the factors that motivated the different stakeholders to participate in curriculum change and teaching in Vietnamese medical schools and the activities to address those factors and have sustainable contributions from all relevant stakeholders. Case study analysis of contributions to the change process, using reports, interviews, focus group discussions and surveys and based on Herzberg's Motivation Theory to analyze involvement of different stakeholders. Different stakeholders were motivated by selected activities, such as providing opportunities for non-university stakeholders to share their opinions, organizing interactions among university stakeholders, stimulating both bottom-up and top-down inputs, focusing on learning from each other, and emphasizing self-motivation factors. The Herzberg Motivation theory helped to identify suitable approaches to ensure that teaching topics, materials and assessment methods more closely reflected the health care needs of the community. Other medical schools undertaking a reform process may learn from this experience.

  15. Can a marginally open universe amplify magnetic fields?

    International Nuclear Information System (INIS)

    Shtanov, Yuri; Sahni, Varun

    2013-01-01

    In a series of recent papers, including arXiv:1210.1183, it was claimed that large-scale magnetic fields generated during inflation in a spatially open universe could remain astrophysically significant at the present time since they experienced superadiabatic amplification specific to an open universe. We reexamine this assertion and show that, on the contrary, large-scale magnetic fields in a realistic open universe decay in much the same manner as they would in a spatially flat universe. Consequently, their amplitude today is extremely small (B 0 ∼ −59 G) and is unlikely to be of astrophysical significance

  16. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  17. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  18. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    Directory of Open Access Journals (Sweden)

    Julie Vercelloni

    Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  19. A large scale test of the gaming-enhancement hypothesis

    Directory of Open Access Journals (Sweden)

    Andrew K. Przybylski

    2016-11-01

    Full Text Available A growing research literature suggests that regular electronic game play and game-based training programs may confer practically significant benefits to cognitive functioning. Most evidence supporting this idea, the gaming-enhancement hypothesis, has been collected in small-scale studies of university students and older adults. This research investigated the hypothesis in a general way with a large sample of 1,847 school-aged children. Our aim was to examine the relations between young people’s gaming experiences and an objective test of reasoning performance. Using a Bayesian hypothesis testing approach, evidence for the gaming-enhancement and null hypotheses were compared. Results provided no substantive evidence supporting the idea that having preference for or regularly playing commercially available games was positively associated with reasoning ability. Evidence ranged from equivocal to very strong in support for the null hypothesis over what was predicted. The discussion focuses on the value of Bayesian hypothesis testing for investigating electronic gaming effects, the importance of open science practices, and pre-registered designs to improve the quality of future work.

  20. A large scale test of the gaming-enhancement hypothesis.

    Science.gov (United States)

    Przybylski, Andrew K; Wang, John C

    2016-01-01

    A growing research literature suggests that regular electronic game play and game-based training programs may confer practically significant benefits to cognitive functioning. Most evidence supporting this idea, the gaming-enhancement hypothesis , has been collected in small-scale studies of university students and older adults. This research investigated the hypothesis in a general way with a large sample of 1,847 school-aged children. Our aim was to examine the relations between young people's gaming experiences and an objective test of reasoning performance. Using a Bayesian hypothesis testing approach, evidence for the gaming-enhancement and null hypotheses were compared. Results provided no substantive evidence supporting the idea that having preference for or regularly playing commercially available games was positively associated with reasoning ability. Evidence ranged from equivocal to very strong in support for the null hypothesis over what was predicted. The discussion focuses on the value of Bayesian hypothesis testing for investigating electronic gaming effects, the importance of open science practices, and pre-registered designs to improve the quality of future work.