WorldWideScience

Sample records for non-traditional isotopic ratios

  1. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  2. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    Science.gov (United States)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  3. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  4. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  5. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    Science.gov (United States)

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  6. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  7. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  8. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    Science.gov (United States)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  9. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    parameters of the algorithm, i.e. the maximum count of ratios, the minimum relative group-size of data points belonging to each ratio has to be defined. Computation of the models can be done with statistical software. In this study Leisch and Grün's flexmix package [2] for the statistical open-source software R was applied. A code example is available in the electronic supplementary material of Kappel et al. [1]. In order to demonstrate the usefulness of finite mixture models in fields dealing with the computation of multiple isotope ratios in mixed samples, a transparent example based on simulated data is presented and problems regarding small group-sizes are illustrated. In addition, the application of finite mixture models to isotope ratio data measured in uranium oxide particles is shown. The results indicate that finite mixture models perform well in computing isotope ratios relative to traditional estimation procedures and can be recommended for more objective and straightforward calculation of isotope ratios in geochemistry than it is current practice. [1] S. Kappel, S. Boulyga, L. Dorta, D. Günther, B. Hattendorf, D. Koffler, G. Laaha, F. Leisch and T. Prohaska: Evaluation Strategies for Isotope Ratio Measurements of Single Particles by LA-MC-ICPMS, Analytical and Bioanalytical Chemistry, 2013, accepted for publication on 2012-12-18 (doi: 10.1007/s00216-012-6674-3) [2] B. Grün and F. Leisch: Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11), 5247-5252, 2007. (doi:10.1016/j.csda.2006.08.014)

  10. Detecting isotopic ratio outliers

    Science.gov (United States)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  11. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1986-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers

  12. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  13. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  14. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    Science.gov (United States)

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Application of isotopes in traditional Chinese medicine

    International Nuclear Information System (INIS)

    Ye Ling; Liu Ning; Yang Yuanyou; Mo Shangwu

    2006-01-01

    Modernization of traditional Chinese medicine necessitates many new or advanced methods. Among these methods, isotopes are considered to be a convenient, fast and feasible method. The recent advance of isotope's application to traditional Chinese medicine is reviewed. In addition, their present status, problems and prospect are discussed. (authors)

  16. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  17. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  18. Development, optimisation, and application of ICP-SFMS methods for the measurement of isotope ratios

    International Nuclear Information System (INIS)

    Stuerup, S.

    2000-07-01

    The measurement of isotopic composition and isotope ratios in biological and environmental samples requires sensitive, precise, and accurate analytical techniques. The analytical techniques used are traditionally based on mass spectrometry, among these techniques is the ICP-SFMS technique, which became commercially available in the mid 1990s. This technique is characterised by high sensitivity, low background, and the ability to separate analyte signals from spectral interferences. These features are beneficial for the measurement of isotope ratios and enable the measurement of isotope ratios of elements, which it has not previously been possible to measure due to either spectral interferences or poor sensitivity. The overall purpose of the project was to investigate the potential of the single detector ICP-SFMS technique for the measurement of isotope ratios in biological and environmental samples. One part of the work has focused on the fundamental aspects of the ICP-SFMS technique with special emphasize on the features important to the measurement of isotope ratios, while another part has focused on the development, optimisation and application of specific methods for the measurement of isotope ratios of elements of nutritional interest and radionuclides. The fundamental aspects of the ICP-SFMS technique were investigated theoretically and experimentally by the measurement of isotope ratios applying different experimental conditions. It was demonstrated that isotope ratios could be measured reliably using ICP-SFMS by educated choice of acquisition parameters, scanning mode, mass discrimination correction, and by eliminating the influence of detector dead time. Applying the knowledge gained through the fundamental study, ICP-SFMS methods for the measurement of isotope ratios of calcium, zinc, molybdenum and iron in human samples and a method for the measurement of plutonium isotope ratios and ultratrace levels of plutonium and neptunium in environmental samples

  19. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  20. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  1. Romanian wines characterization with CF-IRMS (Continuous Flow Isotope Ratio Mass Spectrometry) isotopic analysis

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile

    2007-01-01

    Wine growing has been known for centuries long in Romania. The country has been favored by its geographical position in south-eastern Europe, by its proximity to the Black Sea, as well as by the specificity of the local soil and climate. Alongside France, Italy, Spain, Germany, countries in this area like Romania could also be called 'a vine homeland' in Europe. High quality wines produced in this region were object of trade ever since ancient times. Under current EU research projects, it is necessary to develop new methods of evidencing wine adulteration and safety. The use of mass spectrometry (MS) to determine the ratios of stable isotopes in bio-molecules now provides the means to prove the botanical and geographical origin of a wide variety of foodstuffs - and therefore, to authenticate and eliminate fraud. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of wine. Adulteration of wine can happen in many ways, e.g. addition of non-grape ethanol, addition of non-grape sugar, water or other unauthorized substances, undeclared mixing of wines from different wards, geographical areas or countries, mislabelling of variety and age. The present paper emphasize the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from wines, using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupling with a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). Therefore authentication of wines is an important problem to which isotopic analysis has made a significant contribution. (authors)

  2. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  3. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  4. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  5. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  6. Isotope ratio in stellar atmospheres and nucleosynthesis

    International Nuclear Information System (INIS)

    Barbuy, B.L.S.

    1987-01-01

    The determination of isotopic ratios in stellar atmospheres is studied. The isotopic shift of atomic and molecular lines of different species of a certain element is examined. CH and MgH lines are observed in order to obtain the 12 C: 13 C and 24 Mg: 25 Mg: 26 Mg isotpic ratios. The formation of lines in stellar atmospheres is computed and the resulting synthetic spectra are employed to determine the isotopic abundances. The results obtained for the isotopic ratios are compared to predictions of nucleosynthesis theories. Finally, the concept of primary and secondary element is discussed, and these definitions are applied to the observed variations in the abundance of elements as a function of metallicity. (author) [pt

  7. The CN/C15N isotopic ratio towards dark clouds

    Science.gov (United States)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  8. Isotope ratios of lead as pollutant source indicators

    International Nuclear Information System (INIS)

    Chow, T.J.; Snyder, C.B.; Earal, J.L.

    1975-01-01

    Each lead ore deposit has its characteristic isotope ratios which are fixed during mineral ore genesis, and this unique property can be used to indicate the source of lead pollutants in the environment. The wolld production of primary lead is tabulated, and the geochemical significances of lead isotope ratios are discussed. The manufacture of lead alkyl additives for gasoline, which is the major source of lead pollutants, utilizes about 10% of the world annual consumption of lead. The isotope ratios of lead in gasoline, aerosols, soils and plants are correlated. Lead additives in various brands of gasoline sold in one region do not have the same isotope ratios. Regional variations in isotope ratios of lead additives were observed. This reflects the fact that petroleum refineries obtained the additives from various lead alkyl manufacturers which utilized lead from different mining districts. A definite changing trend of isotope ratios of lead pollutants in the San Diego, California (USA), area was detected. The lead shows a gradual increase in its radiogenic components during the past decade. This trend can be explained by the change of lead sources used by the additive manufacturers: Lead isotope ratios of the mid-1960's gasoline additives in the United States of America reflected those of less radiogenic leads imported from Canada, Australia, Peru and Mexico. Since then, the U.S. lead production has doubled-mainly from the Missouri district of highly radiogenic lead. Meanwhile, there has been a decrease in total lead imports. These combined effects result in changes in isotope ratios, from the less to more radiogenic, of the pooled lead. (aothor)

  9. Isotope analytics for the evaluation of the feeding influence on the isotope ratio in beef samples

    International Nuclear Information System (INIS)

    Herwig, Nadine

    2010-01-01

    Information about the origin of food and associated production systems has a high significance for food control. An extremely promising approach to obtain such information is the determination of isotope ratios of different elements. In this study the correlation of the isotope ratios C-13/C-12, N-15/N-14, Mg-25/Mg-24, and Sr-87/Sr-86 in bovine samples (milk and urine) and the corresponding isotope ratios in feed was investigated. It was shown that in the bovine samples all four isotope ratios correlate with the isotope composition of the feed. The isotope ratios of strontium and magnesium have the advantage that they directly reflect the isotope ratios of the ingested feed since there is no isotope fractionation in the bovine organism which is in contrast to the case of carbon and nitrogen isotope ratios. From the present feeding study it is evident, that a feed change leads to a significant change in the delta C-13 values in milk and urine within 10 days already. For the deltaN-15 values the feed change was only visible in the bovine urine after 49 days. Investigations of cows from two different regions (Berlin/Germany and Goestling/Austria) kept at different feeding regimes revealed no differences in the N-15/N-14 and Mg-26/Mg-24 isotope ratios. The strongest correlation between the isotope ratio of the bovine samples and the kind of ingested feed was observed for the carbon isotope ratio. With this ratio even smallest differences in the feed composition were traceable in the bovine samples. Since different regions usually coincide with different feeding regimes, carbon isotope ratios can be used to distinguish bovine samples from different regions if the delta C-13 values of the ingested feed are different. Furthermore, the determination of strontium isotope ratios revealed significant differences between bovine and feed samples of Berlin and Goestling due to the different geologic realities. Hence the carbon and strontium isotope ratios allow the best

  10. Worldwide lead-isotope ratio in bivalves and sediments

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jacobsen, Gitte; Strand, Jakob

    The lead-isotope ratio have been used to assess and identify impact of leaded gasoline, coal combustion and  mineral activities[ref 1] due to the difference in 206Pb (~52%), 207Pb (~24%) and 208Pb (~23%) isotope ratios. The source of these differences is the decaying of the parent isotopes of 238U...

  11. Precise and accurate isotope ratio measurements by ICP-MS.

    Science.gov (United States)

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  12. Assay of Uranium Isotopic Ratios 234U/238U, 235U/238U in Bottom Sediment Samples Using Destructive and Non Destructive Techniques (Nasser Lake)

    International Nuclear Information System (INIS)

    Agha, A.R.; El-Mongy, S.A.; Kandel, A.E.

    2011-01-01

    Nasser Lake is the greatest man-made lake in the World. It is considered as the main source of water where the Nile water is impounded behind the Aswan high dam.. Uranium has three naturally occurring isotopes 234 U, 235 U and 238 U with isotopic abundance 0.00548, 0.7200 and 99.2745 atom percent. Dissolved uranium in the lake is primary due to weathering process. Monitoring of the isotopic ratios of uranium is used as a good indicator to trace and evaluate the origin and activities associated with any variation of uranium in the lake environment. The main objective of the present study is to clarify any potential variation of natural uranium 234 U/ 238 U, 235 U/ 238 U ratios in sediment samples of Nasser Lake by using destructive alpha and non destructive gamma- techniques. The results show that the uranium isotopic activity ratios are very close to the natural values. This study can also be used for radiological protection and safety evaluation purposes.

  13. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  14. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    evaluated for, isotope ratio mass spectrometry (HT-RPLC/IRMS). The effect of column bleed on measured isotope ratios was investigated at high temperature in isothermal mode and in temperature gradient mode. Four different revised-phase columns were proven to be compatible with IRMS for compound-specific isotope analysis. The developed method was applied to measure caffeine in different drinks. Naturally occurring and industrially synthesized caffeine was observed to have two distinct δ{sup 13}C-ranges, from -25 to -32% circle and from -33 to -38% circle, respectively. On the basis of two different δ{sup 13}C-ranges, four out of 38 drinks were suspected of being mislabelled due to added but non-labelled synthetic caffeine with δ{sup 13}C-values falling in the range of synthetic caffeine. Furthermore, HTLC/IRMS was applied to measure non-polar and water-insoluble compounds, here steroids, for the first time. The use of steroid isotope analysis for pharmaceutical product control by HTLC/IRMS was demonstrated. The major advantage is that steroids can be analysed without derivatization. By overcoming current limitations in sample preparation, the method might become applicable for doping control purposes. Another potential application of LC/IRMS in doping control is the isotope analysis of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), a gene doping drug. Here, the first method for compound-specific isotope analysis of AICAR has been presented. The endogenous AICAR in urine and industrially synthesized AICAR were observed to have significantly different isotope signature. It shows that isotope analysis of LC/IRMS could potentially be used for the detection of AICAR abuse. The methodological developments presented in the thesis will lead to new applications of LC/IRMS.

  15. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Lijun

    2014-01-01

    evaluated for, isotope ratio mass spectrometry (HT-RPLC/IRMS). The effect of column bleed on measured isotope ratios was investigated at high temperature in isothermal mode and in temperature gradient mode. Four different revised-phase columns were proven to be compatible with IRMS for compound-specific isotope analysis. The developed method was applied to measure caffeine in different drinks. Naturally occurring and industrially synthesized caffeine was observed to have two distinct δ 13 C-ranges, from -25 to -32% circle and from -33 to -38% circle, respectively. On the basis of two different δ 13 C-ranges, four out of 38 drinks were suspected of being mislabelled due to added but non-labelled synthetic caffeine with δ 13 C-values falling in the range of synthetic caffeine. Furthermore, HTLC/IRMS was applied to measure non-polar and water-insoluble compounds, here steroids, for the first time. The use of steroid isotope analysis for pharmaceutical product control by HTLC/IRMS was demonstrated. The major advantage is that steroids can be analysed without derivatization. By overcoming current limitations in sample preparation, the method might become applicable for doping control purposes. Another potential application of LC/IRMS in doping control is the isotope analysis of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), a gene doping drug. Here, the first method for compound-specific isotope analysis of AICAR has been presented. The endogenous AICAR in urine and industrially synthesized AICAR were observed to have significantly different isotope signature. It shows that isotope analysis of LC/IRMS could potentially be used for the detection of AICAR abuse. The methodological developments presented in the thesis will lead to new applications of LC/IRMS.

  16. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 1: instrument validation of the DELTAplusXP IRMS for bulk nitrogen isotope ratio measurements.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude

    2010-01-01

    A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.

  17. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  18. Application of ICP-MS and AMS for determination of Pu- and U-isotope ratios for source identification

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L. (Norwegian Univ. of Life Sciences, Isotope Lab.. Dept. of Plant and Environmental Sciences, AAs (Norway))

    2010-03-15

    the Pu-240/Pu-239 ratio offers a reliable way of distinguishing weapon's grade sources from global fallout. Since these two isotopes are not separated easily by conventional alfa spectrometry techniques, mass spectrometry is required for an assessment of the isotope ratios. Because of the low levels of plutonium in the Arctic area, plutonium concentrations and 240/239 ratios have been determined using accelerator mass spectrometry (AMS), which has proved a useful and reliable method for analysis of plutonium. ICP-MS has proven to be a good tool together with traditional alfa spectrometry when it comes to analysing plutonium and its isotope ratios in more contaminated areas. (author)

  19. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples

    NARCIS (Netherlands)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-01-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid

  20. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  1. The isotopic composition of lead in man and the environment in Finland: isotope ratios of lead as indicators of pollutant source

    International Nuclear Information System (INIS)

    Keinonen, M.

    1989-01-01

    The isotopic composition of lead was determined in samples from the Helsinki area: in emission sources (gasoline, incinerator and lead smelter emissions, coal), in sources of intake to man (air, diet), in samples representing long-term deposition (lichen, soil, lake sediments) and in human tissue. The measurements of the isotope ratios 206 Pb/ 204 Pb and 206 Pb/ 207 Pb were done by thermal ionization mass spectrometry after chemical separation of lead by anion exchange and cathodic electrodeposition. The origin of lead in man and the environment in the Helsinki area was evaluated by using the differences in the measured isotope ratios as an indicator. The means of the ratios in gasoline ( 206 Pb/ 207 Pb 1.124+-0.026, 206 Pb/ 204 Pb 17.45+-0.42) and the ratios in other emission sources in Helsinki ( 206 Pb/ 207 Pb 1.149-1.226, 206 Pb/ 204 Pb 17.94-19.24) were significantly different. Lead in air samples from Helsinki (1.123+-0.013) could be attributed to gasoline, as lead in soil near a highway (1.136+-0.003). By contrast, isotope ratios measured in lichen (1.148+-0.006) indicated considerable amounts of lead from sources with higher 206 Pb abundances, evidently industrial sources. The isotope ratios in human liver, lung, and bone ( 206 Pb/ 207 Pb 1.142+-0.015, 1.151+-0.011, and 1.156+-0.013, respectively and 206 Pb/ 204 Pb 17.76+-0.28, 17.91+-0.20, and 17.96+-0.09, respectively) were practically the same and no significant dependence of the isotope ratios on age or concentration of lead was seen. In lake sediment cores a correlation was found between the isotope ratios, lead concentration, and depth. The non-anthropogenic lead of high isotope ratios from bedrock was the major component at depths dated older than 100 years. At the surface of the sediment atmospheric lead prevailed, with ratios similar to those of gasoline, air samples and lichen. In the post-1900 layers, anthropogenic lead made up about 40-60% of the total sedimentary lead

  2. Stable Carbon Isotope Ratio (δ13C Measurement of Graphite Using EA-IRMS System

    Directory of Open Access Journals (Sweden)

    Andrius Garbaras

    2015-06-01

    Full Text Available δ13C values in non-irradiated natural graphite were measured. The measurements were carried out using an elemental analyzer combined with stable isotope ratio mass spectrometer (EA-IRMS. The samples were prepared with ground and non-ground graphite, the part of which was mixed with Mg (ClO42. The best combustion of graphite in the oxidation furnace of the elemental analyzer was achieved when the amount of pulverized graphite ranged from 200 to 490 µg and the mass ratio C:Mg(ClO42 was approximately 1:10. The method for the graphite burning avoiding the isotope fractionation is proposed.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6873

  3. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    International Nuclear Information System (INIS)

    HOLDEN, N.E.

    2005-01-01

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS

  4. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  5. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  6. Isotope ratio monitoring LC/MS (IRM-LC/MS): new applications

    International Nuclear Information System (INIS)

    Juchelka, D; Hilkert, A.; Krummen, M.

    2005-01-01

    With the introduction of compound specific isotope analysis by isotope ratio monitoring GC/ MS (IRM-GC/MS) the immediate demand for similar applications using HPLC was created. Many compounds of biological, medical, pharmaceutical and environmental interest are not volatile or too polar. Consequently, they cannot be directly analyzed by gas chromatography. In IRM-GC/MS the carrier is helium, which does not interfere with the essential combust ion step prior to isotope ratio mass spectrometry (IRMS). In opposite the LC mobile phase has inhibited a similar direct conversion up to now. All earlier IRM-LC/MS approaches were based on the removal of the liquid phase prior to combustion risking fractionation of the isotope ratios of the eluted compounds. To avoid such restrictions we developed a new continuous flow concept for the coupling of an HPLC system to the isotope ratio MS for 13 C/ 12C isotope ratio analysis. In the Finnigan LC IsoLink, the liquid phase is not removed from the sample prior to oxidation. The sample is oxidized still in the mobile phase followed by on-line separation of the CO 2 from the liquid phase and transfer into the isotope ratio MS. Therefore, this strategy is based on water and inorganic buffers as mobile phase. The new approach opens up a whole new world in the application of gas isotope ratio mass spectrometry. The 13 C/ 12 C ratio s of organic acids, amino acids, carbohydrates and nucleotides can now be measured. These components typically within a complex matrix are separated by liquid chromatography followed by on-line determination of the isotope ratios. The draw backs of using derivatization and off-line preparation procedures can now be over come. This new technique allow s studying biochemical cycles, running tracer experiments and determining the origin of components. Applications from different scientific areas such as biogeochemistry, molecular biology, and pharmacy as well as authenticity control o f foods will be presented

  7. Determination of uranium, thorium and radium isotope ratio

    International Nuclear Information System (INIS)

    Sokolova, Z.A.

    1983-01-01

    The problems connected with the study of isotope composition of natural radioactive elements in natural objects are considered. It is pointed out that for minerals, ores and rocks the following ratios are usually determined: 234 U/ 238 U, 230 Th/ 238 U, 226 Ra/ 238 U, 228 Th/ 230 Th, 228 Th/ 232 Th and lead isotopes; for natural waters, besides the enumerated - 226 Ra/ 228 Ra. General content of uranium and thorium in the course of isotope investigations is determined from separate samples, most frequently by the X-ray spectral method, radium content - by usual radiochemical method, uranium and radium content in waters -respectively by calorimetric and emanation methods. Radiochemical preparation of geologic powder and aqueous samples for isotope analysis is described in detail. The technique of measuring and calculating isotope ratios (α-spectrometry for determining isotope composition of uranium and thorium and emanation method for determining 226 Ra/ 228 Ra) is presented

  8. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  9. MIR hollow waveguide (HWG) isotope ratio analyzer for environmental applications

    Science.gov (United States)

    Wang, Zhenyou; Zhuang, Yan; Deev, Andrei; Wu, Sheng

    2017-05-01

    An advanced commercial Mid-InfraRed Isotope Ratio (IR2) analyzer was developed in Arrow Grand Technologies based on hollow waveguide (HWG) as the sample tube. The stable carbon isotope ratio, i.e. δ13C, was obtained by measuring the selected CO2 absorption peaks in the MIR. Combined with a GC and a combustor, it has been successfully employed to measure compound specific δ13C isotope ratios in the field. By using both the 1- pass HWG and 5-path HWG, we are able to measure δ13C isotope ratio at a broad CO2 concentration of 300 ppm-37,500 ppm. Here, we demonstrate its applications in environmental studies. The δ13C isotope ratio and concentration of CO2 exhaled by soil samples was measured in real time with the isotope analyzer. The concentration was found to change with the time. We also convert the Dissolved Inorganic Carbon (DIC) into CO2, and then measure the δ13C isotope ratio with an accuracy of better than 0.3 ‰ (1 σ) with a 6 min test time and 1 ml sample usage. Tap water, NaHCO3 solvent, coca, and even beer were tested. Lastly, the 13C isotope ratio of CO2 exhaled by human beings was obtained <10 seconds after simply blowing the exhaled CO2 into a tube with an accuracy of 0.5‰ (1 σ) without sample preconditioning. In summary, a commercial HWG isotope analyzer was demonstrated to be able to perform environmental and health studies with a high accuracy ( 0.3 ‰/Hz1/2 1 σ), fast sampling rate (up to 10 Hz), low sample consumption ( 1 ml), and broad CO2 concentration range (300 ppm-37,500 ppm).

  10. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  11. Do Strontium Isotope Ratios of Animal Bone and Teeth Really Reflect the Isotope Ratios of its birth- and growth-places?

    Science.gov (United States)

    Minami, M.; Goto, A.; Suzuki, K.; Kato, T.; Watanabe, K.; Hasegawa, T.

    2007-12-01

    Strontium enters the human body through the food chain as nutrients pass from bedrock through soil and water to plants and animals. Strontium substitutes for calcium in the hydroxyapatite mineral of skeletal tissue, and is stored there. 87Sr/86Sr ratios in an individual's bone and teeth could directly reflect the isotopic ratios found in the plants and animals that she or he consumed, which reflect the isotope ratios found in the soil and bedrock of that geologic region. Therefore, 87Sr/86Sr ratios of human skeletons could be useful tools for assessing human residential mobility in prehistory, and many studies on them have been often made. In this study, to evaluate whether the 87Sr/86Sr ratio of a bone or teeth really reflects the isotopic ratios of its birth and growth places, several bone and teeth samples were measured for 87Sr/86Sr ratios, compared with 87Sr/86Sr ratios of geological samples in their growth-places. Bone and teeth samples were leached with 5% acetic acid. After drying, samples were ashed in a muffle furnace at 825°C for 8h, and then digested in nitric acid, followed by cation exchange chromatography with 2.4M hydrochloric acid. 87Sr/86Sr ratios were measured using a thermal ionization mass Spectrometer (VG Sector 54) or an inductively coupled plasma mass spectrometer (Finnigan ELEMENT2). A modern boar bone collected at Asuke, Toyota City, Aichi prefecture, Japan showed a 87Sr/86Sr of 0.71001±0.00002 (2 σ), while stream sediments in the Asuke area showed around 0.710 (Asahara et al., 2006). The 87Sr/86Sr ratio of a modern black bass bone collected from Lake Biwa, Shiga prefecture, Japan was 0.71215±0.00002, while those of surface water in Lake Biwa was 0.71233±0.00002. The similar 87Sr/86Sr ratios between bone and its provenance geology could indicate that the 87Sr/86Sr ratios of bones reflect the isotopic ratios of the birth- and growth-places. The more results of modern and fossil skeletons will be shown in our presentation.

  12. Isotopic ratios in outbursting comet C/2015 ER61

    Science.gov (United States)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  13. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    Science.gov (United States)

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  14. MAGNESIUM ISOTOPE RATIOS IN ω CENTAURI RED GIANTS

    International Nuclear Information System (INIS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-01-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ∼ 100,000) and at Gemini-S with b-HROS (R ∼ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = –1.78 to –0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show ( 25 Mg, 26 Mg)/ 24 Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26 Mg/ 24 Mg ratio is highest at intermediate metallicities ([Fe/H] 26 Mg in the extreme population stars is notably higher than that of 25 Mg, in contrast to model predictions. The 25 Mg/ 24 Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  15. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  16. An improved data acquisition system for isotopic ratio mass spectrometers

    International Nuclear Information System (INIS)

    Saha, T.K.; Reddy, B.; Nazare, C.K.; Handu, V.K.

    1999-01-01

    Isotopic ratio mass spectrometers designed and fabricated to measure the isotopic ratios with a precision of better than 0.05%. In order to achieve this precision, the measurement system consisting of ion signal to voltage converters, analog to digital converters, and data acquisition electronics should be at least one order better than the overall precision of measurement. Using state of the art components and techniques, a data acquisition system, which is an improved version of the earlier system, has been designed and developed for use with multi-collector isotopic ratio mass spectrometers

  17. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    Science.gov (United States)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  18. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  19. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, John; Baker, Joel; Handler, Monica

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard......) can be obtained on Pt stable isotope ratios with either double-spike. Elemental doping tests reveal that double-spike corrected Pt stable isotope ratios are insensitive to the presence of relatively high (up to 10%) levels of matrix elements, although the Pt-Pt double-spike is affected by an isobaric...... = 7.308%) results in a redefined Pt atomic weight of 195.08395 ± 0.00068. Using our technique we have measured small, reproducible and statistically significant offsets in Pt stable isotope ratios between different Pt element standards and the IRMM-010 standard, which potentially indicates...

  20. Uranium isotope ratio measurements in field settings

    International Nuclear Information System (INIS)

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% 235 U enrichment and above, the measurement precision for 235 U/( 235 U+ 238 U) isotope ratios was ±3%; it declined to ±15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described

  1. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  2. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  3. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  4. Laser ablation molecular isotopic spectrometry of water for {sub 1}D{sup 2}/{sub 1}H{sup 1} ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arnab [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mao, Xianglei; Chan, George C.-Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-10-01

    Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination. - Highlights: • D/H isotopic ratio in water over a large dynamic range was measured by LAMIS. • PLSR based multivariate calibration was used for construction of calibrations. • Region of interest significantly affects the analytical results of isotopic ratio. • LAMIS has improved results over LIBS irrespective of the spectrometer resolution. • The superiority is more prominent in the case using low resolution spectrometer.

  5. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  6. A Time-Measurement System Based on Isotopic Ratios

    International Nuclear Information System (INIS)

    Vo, Duc T.; Karpius, P.J.; MacArthur, D.W.; Thron, J.L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the 241 Pu- 241 Am parent-daughter pair. However, this 241 Pu- 241 Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes 210 Pb and 241 Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of 210 Pb to the 60-keV peak of 241 Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  7. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    International Nuclear Information System (INIS)

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236 U/ 238 U isotope ratios (i.e. 10 −5 ). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234 U/ 238 U and 235 U/ 238 U ratios. Experimental results obtained for 236 U/ 238 U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties U c (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U, respectively. - Highlights: ► LA-MC-ICP-MS was fully validated for the direct analysis of individual particles. ► Traceability was established by using an IRMM glass particle reference material. ► Measured U isotope ratios were in agreement with the certified range. ► A comprehensive total combined uncertainty evaluation was performed. ► The analysis of 236 U/ 238 U isotope ratios was improved by using a deceleration filter.

  8. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    Science.gov (United States)

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Plutonium isotope ratios in polychaete worms

    International Nuclear Information System (INIS)

    Beasley, T.M.; Fowler, S.W.

    1976-01-01

    Reference is made to recent reports that suggest that terrestrial and aquatic organisms may preferentially take up 238 Pu compared with sup(239+240)Pu. It is stated that although kinetic isotope effects are known to occur in biological systems for low mass number elements, such as H, C and N, such effects are generally discounted with higher mass numbers, and differences in the biological 'uptake' of isotopes of high mass number elements, such as those of Pu, are normally attributable to differences in the chemical or physical forms of the isotopes or to different quantities of isotopes available to organisms. This has been applied to explain differential Pu isotope behaviour in animals under controlled laboratory conditions, but it is not certain that it can be applied to explain anomalies of Pu isotope behaviour in organisms contaminated by nuclear test debris or by wastes from nuclear fuel reprocessing plants. Geochemical weathering may also have an effect. Described here are experiments in which it was found that deposit feeding marine worms living in sediments contaminated in different ways with Pu isotopes did not show preferential accumulation of 238 Pu. The worms had been exposed to different chemical and physical forms of the isotopes, including exposure to laboratory-labelled sediment, sediment collected from a former weapons test site, and sediment contaminated by wastes from a nuclear fuel reprocessing plant. The worms were allowed to accumulate Pu for times of 5 to 40 days. Isotope ratios were determined by α-spectrometric techniques. It is considered that the results are important for environmental samples where Pu activity levels are low. (U.K.)

  10. Comparison between IRMS and CRDS methods in the determination of isotopic ratios 2H/1H and 18O/16O in water

    International Nuclear Information System (INIS)

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-01-01

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of 18 O/ 16 O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  11. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  12. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    Science.gov (United States)

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  14. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  15. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  16. Investigation of the anomalous isotope ratios of the Central-Transdanubian bauxites

    International Nuclear Information System (INIS)

    Viczian, M.

    1977-01-01

    In the case of the Central Transdanubian bauxite deposits significant anomaly of the lead isotope ratios has been found. The 206 Pb/ 204 Pb isotope ratio in approximately 40 samples was investigated and the results have shown an average deviation from the literary value by about 80%. These results have been cont confirmed by thermal ionisation measurings, too. Some possibilities for the explanation of this isotope anomaly are also dealt with in the paper. (author)

  17. Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS).

    Science.gov (United States)

    Dong, Hao; Xiao, Kaijun; Xian, Yanping; Wu, Yuluan

    2018-02-01

    The present work aims to systematically demonstrate the authenticity of honeys with non-extractable proteins for the first time, by means of EA-IRMS and LC-IRMS. Fifty-three pure honeys of various botanical and geographical origins were studied and a criterion on the basis of the stable carbon isotope ratio characterization of total honey and the main sugars was established for pure honeys. Parameters such as δ 13 C values of total honey and the main sugars were well utilized to identify honeys with non-extractable proteins. Thirty-five honeys from which protein could not be extracted were all identified as adulterated with C-4 sugars or C-3 sugars. The use of isotopic compositions and some systematic differences permit the honeys with non-extractable proteins to be reliably identified. The findings obtained in this work could supplement the AOAC 998.12 C-4 sugar method, with regard to honeys from which protein cannot be extracted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Investigation of the feeding effect on the 13C/12C isotope ratio of the hormones in bovine urine using gas chromatography/combustion isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Balizs, Gabor; Jainz, Annett; Horvatovich, Peter

    2005-01-01

    The effect of the feeding on the 13C/12C isotope ratio of four endogenous steroid hormones testosterone (T), epi-testosterone (epi-T), dehydroepiandrosterone (DHEA) and etiocholanolone (ETIO) in bovine urine was investigated. An analytical method to determine the accurate isotope ratio was developed

  19. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    International Nuclear Information System (INIS)

    Freeman, K.H.; Ricci, S.A.; Studley, A.; Hayes, J.M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values

  20. Measurement of boron isotope ratios in groundwater studies

    International Nuclear Information System (INIS)

    Porteous, N.C.; Walsh, J.N.; Jarvis, K.E.

    1995-01-01

    Boron is present at low levels in groundwater and rainfall in the UK, ranging between 2 and 200 ng ml -1 . A sensitive technique has been developed using inductively coupled plasma mass spectrometry (ICP-MS) to measure boron isotope ratios at low concentrations with a precision (s r ) of between 0.1 and 0.2%. Samples were evaporated to increase elemental boron concentrations to 200 ng ml -1 and interfering matrix elements were removed by an adapted cation-exchange separation procedure. The validity of measuring boron isotopic ratios by ICP-MS at this concentration level is discussed in relation to the theoretical instrument precision attainable based on counting statistics. (author)

  1. Isotope yield ratios as a probe of the reaction dynamics

    International Nuclear Information System (INIS)

    Trautmann, W.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Trockel, R.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Eckert, E.M.; Pochodzalla, J.; Bock, I.; Pelte, D.

    1987-04-01

    Isotopically resolved yields of particles and complex fragments from 12 C and 18 O induced reactions on 53 Ni, 54 Ni, Ag, and 197 Au in the intermediate range of bombarding energies 30 MeV ≤ E/A ≤ 84 MeV were measured. The systematic variation of the deduced isotope yield ratios with projectile and target is used to determine the degree of N/Z equilibration achieved and to establish time scales for the reaction process. A quantum statistical model is employed in order to derive entropies of the emitting systems from the measured isotope yield ratios. (orig.)

  2. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  3. Heavy element stable isotope ratios. Analytical approaches and applications

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-01-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  4. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  5. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    Science.gov (United States)

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Isotopic ratios of 129I/127I in mammalian thyroid glands in Japan

    International Nuclear Information System (INIS)

    Seki, R.; Hatano, T.

    1994-01-01

    The isotopic ratios of 129 I/ 127 I in cattle thyroid glands collected from various areas of Japan were measured by neutron activation analysis with combustion pre-treatment. Pig and human thyroid glands were also analyzed by the same method. The iodine isotopic ratio in cattle thyroid glands in Japan is comparable with that observed in Europe. The isotopic ratio in human thyroid glands in Japan is remarkably lower than that in Europe, which has been reported to be comparable to that of cattle. The isotopic ratio in pig thyroid glands is also lower than that in cattle. (author) 7 refs.; 3 figs.; 5 tabs

  7. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  8. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  9. Estimation of the Impacts of Non-Oil Traditional and NonTraditional Export Sectors on Non-Oil Export of Azerbaijan

    Directory of Open Access Journals (Sweden)

    Nicat Hagverdiyev

    2016-12-01

    Full Text Available The significant share of oil sector of the Azerbaijan export portfolio necessitates promotion of non-oil exports. This study analyzes weather the commodities which contain the main share (more than 70% in non-oil export are traditional or non-traditional areas, using the so-called Commodity-specific cumulative export experience function, for the 1995-2015 time frame. Then, the impact of traditional and non-traditional exports on non-oil GDP investigated employing econometric model. The results of the study based on 16 non-oil commodities show that cotton, tobacco, and production of mechanic devices are traditional sectors in non-oil export. The estimation results of the model indicate that both, traditional and non-traditional non-oil export sectors have economically and statistically significant impact on non-oil GDP.

  10. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  11. Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus

    International Nuclear Information System (INIS)

    Ludwig, F.L.

    1976-01-01

    Marine aerosols often have sulfur-to-chloride ratios greater than that found in seawater. Sulfur isotope ratios ( 34 S/ 32 S) were measured in aerosol and cloud droplet samples collected in the San Francisco Bay Area in an attempt to understand the processes that produce the observed sulfur-to-chloride ratios. Seawater sulfur usually has very high sulfur isotope ratios: fossil fuel sulfur tends to have smaller isotope ratios and sulfur of bacteriogenic origin still smaller. Samples collected in unpolluted marine air over the hills south of San Francisco had sulfur ratios that were significantly lower than the values for samples collected in nearby areas that were subject to urban pollution. The highest sulfur isotope ratios were found in the offshore seawater. The results suggest bacteriogenic origins, of the marine air sulfur aerosol material. The low isotope ratios in the marine air cannot be explained as a mixture of seawater sulfur and pollutant sulfur, because both tend to have higher isotope ratios. (Auth.)

  12. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  13. Measurement of stable isotope ratio of organic carbon in water samples

    International Nuclear Information System (INIS)

    Fujii, Toshihiro; Otsuki, Akira

    1977-01-01

    A new method for the measurement of stable isotope ratios was investigated and applied to organic carbon's isotope ratio measurements in water samples. A few river water samples from Tsuchiura city were tested. After the wet oxidation of organic carbons to carbon dioxide in a sealed ampoule, the isotope ratios were determined with the gas chromatograph-quadrupole mass spectrometer combined with a total organic carbon analyser, under the dynamic conditions. The GC-MS had been equipped with the multiple ion detector-digital integrator system. The ion intensities at m/e 44 and 45 were simultaneously measured at a switching rate of 1 ms. The measurements with carbon dioxide acquired from sodium carbonate (53 μg) gave the isotope ratios with the variation coefficient of 0.62%. However, the variation coefficients obtained from organic carbons in natural water samples were 2 to 3 times as high as that from sodium carbonate. This method is simple and rapid and may be applied to various fields especially in biology and medicine. (auth.)

  14. Optimal sample to tracer ratio for isotope dilution mass spectrometry: the polyisotopic case

    International Nuclear Information System (INIS)

    Laszlo, G.; Ridder, P. de; Goldman, A.; Cappis, J.; Bievre, P. de

    1991-01-01

    The Isotope Dilution Mass Spectrometry (IDMS) measurement technique provides a means for determining the unknown amount of various isotopes of an element in a sample solution of known mass. The sample solution is mixed with an auxiliary solution, or tracer, containing a known amount of the same element having the same isotopes but of different relative abundances or isotopic composition and the induced change in the isotopic composition measured by isotope mass spectrometry. The technique involves the measurement of the abundance ratio of each isotope to a (same) reference isotope in the sample solution, in the tracer solution and in the blend of the sample and tracer solution. These isotope ratio measurements, the known element amount in the tracer and the known mass of sample solution are used to calculate the unknown amount of one isotope in the sample solution. Subsequently the unknown amount of element is determined. The purpose of this paper is to examine the optimization of the ratio of the estimated unknown amount of element in the sample solution to the known amount of element in the tracer solution in order to minimize the relative uncertainty in the determination of the unknown amount of element

  15. Stable isotope ratio mass spectrometry in forensic science and food adulteration research

    International Nuclear Information System (INIS)

    Kumar, B.

    2009-01-01

    Stable Isotope Ratio Mass Spectrometry (SIRMS) is an established technique for the determination of origin of geological, biological, chemical and physio-chemical samples/materials. With the development of highly precise mass spectrometers, the stable isotope ratio determination of hydrogen, carbon, nitrogen and oxygen have gained considerable interest in the fields of forensic science and food authentication. Natural variations in the isotopic composition of lighter elements occur due to fractionation effects, resulting in the finger printing of specific isotope ratio values that are characteristic of the origin, purity, and manufacturing processes of the products and their constituents. Forensic science uses scientific and technical methods to investigate traceable evidence of criminal acts. Stable isotope ratio mass spectrometry has been applied to numerous aspects of the forensic science. The analysis of explosives such as ammonium nitrate, gun powder and tri-nitro-toluene (TNT), cases of murder, armed robbery, drug smuggling, terrorism, arson and hit and run traffic accidents are a few of them. The main types of geological evidences in such cases are mud, soil, rocks, sand, gravel, dust particles, biological materials, organic particles and anthropogenic components. Stable isotopes are used as tools to corroborate and confirm the evidential leads in the investigation of such crimes. The variation in natural abundances of carbon and nitrogen and their isotopic ratios δ 13 C and δ 15 N can identify links between items found at crime scene with those of suspect. The paper discusses the applications of SIRMS in the field of forensic science and food adulteration research

  16. The thermal history of char as disclosed by carbon isotope ratios

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ambus, Per; Ahrenfeldt, Jesper

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...... pyrolysis and isotope ratio mass spectrometry. The results demonstrate that the temperature history of the char is reflected in the fine variation of carbon isotopes. The compound classes responsible for the variation were identified. Key words: Isotope ratio, flash pyrolysis, hot gas cleaning...

  17. Isotope ratios as pollutant source and behaviour indicators

    International Nuclear Information System (INIS)

    1975-01-01

    Recent years have witnessed significant advances in isotope techniques for identifying origins and for studying the behaviour of trace contaminants and pollutants of the environment under actual existing environmental conditions. Improvements in the supply of stable isotopes and their labelled compounds, instrumental analysis and information on stable or radioactive isotopic ratios of existing environmental contaminants as a function of origin or behaviour have provided relatively new tools for the environmental scientist. While variations in natural or existing environmental stable and radioactive nuclides could be regarded as 'background noise' in conventional tracer experiments they promised unique information about sources and behaviour to those who listened carefully. (author)

  18. Lead isotope ratios in artists' lead white: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Keisch, B; Callahan, R C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-07-01

    The lead isotope ratios in over four hundred samples of lead white have been determined. The samples represent various geographical sources and dates from the thirteenth century to the present. A new method for organizing this large volume of data is described which helps with the visualization of temporal and geographic patterns. A number of interesting relationships between lead isotope ratio and date or source are shown to exist. Some examples of successful applications of this methodology are described.

  19. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    Science.gov (United States)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  20. Application of TIMS in isotope correlations for determining the isotope ratios of plutonium

    International Nuclear Information System (INIS)

    Alamelu, D.; Aggarwal, S.K.

    2003-01-01

    Thermal ionisation mass spectrometry (TIMS) is a well-recognized technique for determining the isotopic composition of Pu in irradiated nuclear fuel samples. Other mass spectrometric methods such as ICPMS, SIMS can also be employed for the isotopic analysis of Pu. In the event of non-availability of a mass spectrometer, other techniques such as gamma spectrometry and alpha spectrometry can also be used. They have a limited applicability since data on all the Pu isotopes cannot be obtained

  1. Lead isotope ratios of ancient Chinese and Japanese glasses

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo; Murozumi, Masayo; Nakamura, Seiji; Yuasa, Mitsuaki; Watarai, Motohiko.

    1980-01-01

    Lead isotope ratios of 29 archaeological glass samples (5 samples excavated in China, 10 samples excavated in Japan, and 14 samples made in Japan) were determined by surface ionization mass spectrometry with a HITACHI RMU-6 spectrometer. Of these glass samples, 28 were made of high lead glass, and one, of alkali-lime glass. Glass samples were decomposed in a mixture of hydrofluoric and nitric acids, and lead was separated from other elements by extraction with dithizone-chloroform. The lead nitrate solution thus prepared (corresponding to 0.5 μg Pb) was loaded on the rhenium single filament. The coefficients of variation of the determined ratios, 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, were 0.1 -- 0.3%. Among the glasses excavated in Japan, some samples of the Yayoi period (ca. 3 rd C. B.C. -- ca. 3 rd C. A.D.) contained a large amount of barium in addition to lead, and resembled closely Chinese pre-Han glasses not only in chemical compositions, but also in lead isotope ratios. This means that pre-Han glasses were brought to Japan and then re-cast into glass beads characteristic of Japan. The lead isotope ratios of the glasses were compared with those of Chinese (2 samples), Korean (2) and Japanese (17) galena orea, and it was found that 12 glass beads made in the 8th century at Nara and 2 fine glass tubes made at Saga in the 18 th -- 19 th centuries showed similar lead isotope ratios with those of the Japanese galena ores. Consequently it is considered that the Japanese galena ores were already used as one of raw materials at manufacturing of these glass beads in ancient centuries. (author)

  2. Determination of stable isotope ratio of lead in airborne particulate matter by ICP-MS

    International Nuclear Information System (INIS)

    Mukai, Hitoshi; Ambe, Yoshinari

    1990-01-01

    ICP-MS was applied to the measurement of stable isotope ratios of lead, which are used as an indicator of the source of lead in airborne particulate matter. For the measurement of lead isotopes ratios, the influences of machine conditions, lead concentration and matrix elements to the precision and accuracy of the measurements were studied. At a scanning mode, dwell time of 40∼160 μs gave the best precision to the isotope ratio measurements; about 0.3 % of R.S.D. for 206 Pb/ 207 Pb and 206 Pb/ 208 Pb, 0.6 % for 206 Pb/ 204 Pb. Precision of the measurement was better at a high concentration of lead in sample solution. The observed value of 206 Pb/ 207 Pb ratio was not affected by the lead concentration, but in the cases of 206 Pb/ 204 Pb and 206 Pb/ 208 Pb, about 1 % of the value changed in the observed ratios with the lead concentration of 100∼500 μg/l. Six matrix elements (Na, K, Ca, Mg, Al, Fe) did not affect the observed isotope ratios up to 200 mg/l. The lead isotope ratios of reference materials {Urban Particulates (NIST) and Vehicle Exhausted Particulates (NIES)} were measured by using two kinds of sample; crude sample and lead-isolated sample from matrix elements by anodic deposition. Both cases gave the same isotope ratio values, therefore, lead isotope ratios in airborne particulate samples can be measured by ICP-MS without any separation of lead from matrix elements. (author)

  3. Isotopic Ratios of Samarium by TIMS for Nuclear Forensic Application

    Energy Technology Data Exchange (ETDEWEB)

    Louis Jean, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Inglis, Jeremy David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-08

    The isotopic ratio of Nd, Sm, and Gd can provide important information regarding fissile material (nuclear devices, reactors), neutron environment, and device yield. These studies require precise measurement of Sm isotope ratios, by either TIMS or MC-ICP-MS. There has been an increasing trend to measure smaller and smaller quantities of Sm bearing samples. In nuclear forensics 10-100 ng of Sm are needed for precise measurement. To measure sub-ng Sm samples using TIMS for nuclear forensic analysis.

  4. Lead isotope ratios in artists' lead white: a progress report

    International Nuclear Information System (INIS)

    Keisch, B.; Callahan, R.C.

    1976-01-01

    The lead isotope ratios in over four hundred samples of lead white have been determined. The samples represent various geographical sources and dates from the thirteenth century to the present. A new method for organizing this large volume of data is described which helps with the visualization of temporal and geographic patterns. A number of interesting relationships between lead isotope ratio and date or source are shown to exist. Some examples of successful applications of this methodology are described. (author)

  5. Carbon isotope ratios of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Sakai, Hitoshi; Kishima, Noriaki; Tsutaki, Yasuhiro.

    1982-01-01

    The delta 13 C values relative to PDB were measured for carbon dioxide in air samples collected at various parts of Japan and at Mauna Loa Observatory, Hawaii in the periods of 1977 and 1978. The delta 13 C values of the ''clean air'' are -7.6 % at Hawaii and -8.1 per mille Oki and Hachijo-jima islands. These values are definitely lighter than the carbon isotope ratios (-6.9 per mille) obtained by Keeling for clean airs collected at Southern California in 1955 to 1956. The increase in 12 C in atmospheric carbon dioxide is attributed to the input of the anthropogenic light carbon dioxides (combustion of fossil fuels etc.) Taking -7.6 per mille to be the isotope ratio of CO 2 in the present clean air, a simple three box model predicts that the biosphere has decreased rather than increased since 1955, implying that it is acting as the doner of carbon rather than the sink. (author)

  6. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    Science.gov (United States)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  7. Differentiation of endogenous and exogenous steroids by gas chromatography-combustion-mass spectrometry isotope ratio

    International Nuclear Information System (INIS)

    Montes de Oca Porto, Rodny; Rosado Perez, Aristides; Correa Vidal, Margarita Teresa

    2007-01-01

    Urinary steroids profiles are used to control the misuse of endogenous steroids such as testosterone and dihydrotestosterone. The testosterone/epistestosterone ratio, measured by Gas Chromatography-Mass Spectrometry, is used to control testosterone administration. When T/E ratio is higher than 4, consumption of testosterone or its precursors is suspected. Recent researches have demonstrated the effectiveness of Carbon Isotope Ratio Mass Spectrometry to detect and confirm endogenous steroids administration. The ratio of the two stable carbon isotopes 1 3 C and 1 2 C allows the differentiation of natural and synthetic steroids because synthetic steroids have lower 1 3 C abundance. In fact, the carbon isotope ratios can be used to determine endogenous steroids administration even when testosterone/epistestosterone ratio is at its normal value. In the current work, some of the most important aspects related to differentiation of endogenous and exogenous steroids by means of Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry are discussed. Also, this article provides a review about the purification and sample preparation previous to the analysis, and diet effects on carbon isotope ratio of endogenous anabolics steroids is presented too

  8. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  9. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  10. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    Science.gov (United States)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  11. Plutonium speciation and isotope ratios in Yenisey and Ob river and Yenisey estuary

    International Nuclear Information System (INIS)

    Skipperud, L.; Oughton, DH.; Fifield, K.; Lind, O.C.; Salbu, B.; Brown, J.

    2004-01-01

    Plutonium isotope ratios are known to vary with reactor type, nuclear fuel-burn up time, neutron flux, and energy, and for fallout from nuclear detonations, weapon type and yield. Weapons-grade plutonium is characterized by a low content of the 240 Pu isotope, with 240 Pu/ 239 Pu isotope ratio less than 0.05. In contrast, both global weapons fallout and spent nuclear fuel from civil reactors have higher 240 Pu/ 239 Pu isotope ratios (civil nuclear power reactors have 240 Pu/ 239 Pu atom ratios of between about 0.2-1). Thus, different sources often exhibit characteristic plutonium isotope ratios and these ratios can be used to identify the origin of contamination, calculate inventories, or follow the migration of contaminated sediments and waters. Together with activity measurements and isotope ratios, knowledge of plutonium speciation in the Ob and Yenisey rivers and processes controlling its behaviour in estuarine systems is a prerequisite for predicting the transfer and subsequent environmental impact to Arctic Seas. With this in mind, the study had two objectives: first to determine whether discharges from nuclear installations in the river catchment areas are having any influence on Pu levels in the estuaries; and, second, to investigate the transfer and mobility of plutonium in the Yenisey river and estuary. Plutonium 240/239 ratios were determined using accelerator mass spectrometry (AMS). The data indicated a clear influence from a low 240 Pu: 239 Pu source in surface sediments collected from the Yenisey Estuary, whereas plutonium in the Ob Estuary sediments are dominated by global fallout. The results also show an increase in plutonium concentration and a decrease in isotope ratio going upstream from the estuary. Sequential extractions of sediments indicate that up 70% of the Pu in the Yenisey river is easily mobilized with weak oxidizing agents, which indicates that the Pu is organically bound, while the Pu is more strongly irreversible bound further out

  12. New manuscript guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-01

    To eliminate possible confusion in the reporting of isotopic abundances on non-corresponding scales, the Commission on Atomic Weights and Isotopic Abundances recommended at the 37{sup th} General Assembly at Lisbon, Portugal that (i) {sup 2}H/{sup 1}H relative ratios of all substances be expressed relative to VSMOW (Vienna Standard Mean Ocean Water) on a scale such that {sup 2}H/{sup 1}H of SLAP (Standard Light Antartic Precipitation) is 0.572 times that of VSMOW, (ii) {sup 13}C/{sup 12}C relative ratios of all substances be expressed relative to VPDB (Vienna Peedee belemnite) on a scale such that {sup 13}C/{sup 12}C of NBS 19 carbonate is 1.00195 times that of VPDB, and (iii) {sup 18}O/{sup 16}O ratios of all substances be expressed relative to either VSMOW or VPDB on scales such that {sup 18}O/{sup 16}O of SLAP is 0.9445 times that of VSMOW. (Author)

  13. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  14. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Directory of Open Access Journals (Sweden)

    Gonzalo Ossa

    Full Text Available Flying foxes (Pteropodidae are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2H of fur keratin collected from non-migratory species (n = 191 individuals records variation in δ(2H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88 would come from based on their keratin δ(2H. Across non-migratory species, δ(2H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2H of extant E. helvum (n = 76 supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  15. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Science.gov (United States)

    Ossa, Gonzalo; Kramer-Schadt, Stephanie; Peel, Alison J; Scharf, Anne K; Voigt, Christian C

    2012-01-01

    Flying foxes (Pteropodidae) are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2)H) of fur keratin collected from non-migratory species (n = 191 individuals) records variation in δ(2)H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88) would come from based on their keratin δ(2)H. Across non-migratory species, δ(2)H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2)H of extant E. helvum (n = 76) supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  16. Lead isotope ratios in Japanese galena ores and archaeological objects

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo; Murozumi, Masayo; Nakamura, Seiji; Hinata, Makoto; Yuasa, Mitsuaki.

    1978-01-01

    Lead isotope ratios 206 Pb/ 204 Pb, 207 Pb/ 204 Pb, 208 Pb/ 204 Pb, 207 Pb/ 206 Pb and 208 Pb/ 206 Pb in Japanese galena ores and archaeological bronze objects were determined by a Hitachi RMU-6 mass spectrometer using a rhenium single filament as a surface ionization device. Basic experimental conditions including detection limit, fractionation effect, memory effect, etc. were examined, and the accuracy of determination was checked using the CIT shelf standard No. 1. Archaeological bronze objects were dissolved in nitric acid and lead was extracted by the dithizone method using specially purified reagents in a so-called clean laboratory. When 0.5 μg lead was loaded on the rhenium filament with phosphoric acid and silica gel as stabilizers, an ion current of 10 -13 -- 10 -15 A due to Pb + was obtained and maintained stable for several hours. Coefficients of variation found for the isotope ratios 207 Pb/ 206 Pb and 208 Pb/ 206 Pb were 0.1 -- 0.5%. Lead isotope ratios are given for 17 Japanese galena ores and for archaeological bronze objects such as bronze bells, halberds (Yayoi period), Horyuji pagoda spire (7th century), and Northern Sung coins (11th century). A close resemblance of the isotope ratios was found between Japanese galena ores and some Japanese bronze objects of the 7th century, suggesting the use of the former as raw materials of the latter. (auth.)

  17. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  18. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the need for a non-contact instrument capable of measuring the isotopic ratios O-18/O-16 and D/H from water ice and other solid materials...

  19. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    Science.gov (United States)

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  20. Computer-controlled detection system for high-precision isotope ratio measurements

    International Nuclear Information System (INIS)

    McCord, B.R.; Taylor, J.W.

    1986-01-01

    In this paper the authors describe a detection system for high-precision isotope ratio measurements. In this new system, the requirement for a ratioing digital voltmeter has been eliminated, and a standard digital voltmeter interfaced to a computer is employed. Instead of measuring the ratio of the two steadily increasing output voltages simultaneously, the digital voltmeter alternately samples the outputs at a precise rate over a certain period of time. The data are sent to the computer which calculates the rate of charge of each amplifier and divides the two rates to obtain the isotopic ratio. These results simulate a coincident measurement of the output of both integrators. The charge rate is calculated by using a linear regression method, and the standard error of the slope gives a measure of the stability of the system at the time the measurement was taken

  1. Locally Grown, Natural Ingredients? The Isotope Ratio Can Reveal a Lot!

    Science.gov (United States)

    Rossier, Joël S; Maury, Valérie; Pfammatter, Elmar

    2016-01-01

    This communication gives an overview of selected isotope analyses applied to food authenticity assessment. Different isotope ratio detection technologies such as isotope ratio mass spectrometry (IRMS) and cavity ring down spectroscopy (CRDS) are briefly described. It will be explained how δ(18)O of water contained in fruits and vegetables can be used to assess their country of production. It will be explained why asparagus grown in Valais, in the centre of the Alps carries much less heavy water than asparagus grown closer to the sea coast. On the other hand, the use of δ(13)C can reveal whether a product is natural or adulterated. Applications including honey or sparkling wine adulteration detection will be briefly presented.

  2. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  3. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  4. Uncertainties achievable for uranium isotope-amount ratios. Estimates based on the precision and accuracy of recent characterization measurements

    International Nuclear Information System (INIS)

    Mathew, K.J.; Essex, R.M.; Gradle, C.; Narayanan, U.

    2015-01-01

    Certified reference materials (CRMs) recently characterized by the NBL for isotope-amount ratios are: (i) CRM 112-A, Uranium (normal) Metal Assay and Isotopic Standard, (ii) CRM 115, Uranium (depleted) Metal Assay and Isotopic Standard, and (iii) CRM 116-A, Uranium (enriched) Metal Assay and Isotopic Standard. NBL also completed re-characterization of the isotope-amount ratios in CRM 125-A, Uranium (UO 2 ) Pellet Assay, Isotopic, and Radio-chronometric Standard. Three different TIMS analytical techniques were employed for the characterization analyses. The total evaporation technique was used for the major isotope-amount ratio measurement, the modified total evaporation technique was used for both the major and minor isotope-amount ratios, and minor isotope-amount ratios were also measured using a Conventional technique. Uncertainties for the characterization studies were calculated from the combined TIMS data sets following the ISO Guide to the expression of uncertainty in measurement. The uncertainty components for the isotope-amount ratio values are discussed. (author)

  5. Continuous flow isotope ratio mass spectrometer (CF-IRMS) and its applications in hydrocarbon research and exploration

    International Nuclear Information System (INIS)

    Kalpana, G.; Patil, D.J.; Kumar, B.

    2004-01-01

    Stable isotope ratio mass spectrometers have been widely used to determine the isotopic ratios of light elements such as hydrogen, carbon, nitrogen, oxygen and sulphur. Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) provides reliable data on nanomole amount of sample gas without the need for cryogenic trapping using cold fingers as in dual inlet isotope ratio mass spectrometer. High sample throughput is achieved as the system is configured with automated sample preparation devices and auto samplers. This paper presents a brief description of CFIRMS exploration

  6. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  7. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique

  8. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    Science.gov (United States)

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  9. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry.

    Science.gov (United States)

    Westley, Marian B; Popp, Brian N; Rust, Terri M

    2007-01-01

    Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.

  10. Isotope analytics for the evaluation of the feeding influence on the isotope ratio in beef samples; Isotopenanalytik zur Bestimmung des Einflusses der Ernaehrung auf die Isotopenzusammensetzung in Rinderproben

    Energy Technology Data Exchange (ETDEWEB)

    Herwig, Nadine

    2010-11-17

    Information about the origin of food and associated production systems has a high significance for food control. An extremely promising approach to obtain such information is the determination of isotope ratios of different elements. In this study the correlation of the isotope ratios C-13/C-12, N-15/N-14, Mg-25/Mg-24, and Sr-87/Sr-86 in bovine samples (milk and urine) and the corresponding isotope ratios in feed was investigated. It was shown that in the bovine samples all four isotope ratios correlate with the isotope composition of the feed. The isotope ratios of strontium and magnesium have the advantage that they directly reflect the isotope ratios of the ingested feed since there is no isotope fractionation in the bovine organism which is in contrast to the case of carbon and nitrogen isotope ratios. From the present feeding study it is evident, that a feed change leads to a significant change in the delta C-13 values in milk and urine within 10 days already. For the deltaN-15 values the feed change was only visible in the bovine urine after 49 days. Investigations of cows from two different regions (Berlin/Germany and Goestling/Austria) kept at different feeding regimes revealed no differences in the N-15/N-14 and Mg-26/Mg-24 isotope ratios. The strongest correlation between the isotope ratio of the bovine samples and the kind of ingested feed was observed for the carbon isotope ratio. With this ratio even smallest differences in the feed composition were traceable in the bovine samples. Since different regions usually coincide with different feeding regimes, carbon isotope ratios can be used to distinguish bovine samples from different regions if the delta C-13 values of the ingested feed are different. Furthermore, the determination of strontium isotope ratios revealed significant differences between bovine and feed samples of Berlin and Goestling due to the different geologic realities. Hence the carbon and strontium isotope ratios allow the best

  11. Lead isotope ratio analysis of bullet samples by using quadrupole ICP-MS

    International Nuclear Information System (INIS)

    Tamura, Shu-ichi; Hokura, Akiko; Nakai, Izumi; Oishi, Masahiro

    2006-01-01

    The measurement conditions for the precise analysis of the lead stable isotope ratio by using an ICP-MS equipped with a quadrupole mass spectrometer were studied in order to apply the technique to the forensic identification of bullet samples. The values of the relative standard deviation obtained for the ratio of 208 Pb/ 206 Pb, 207 Pb/ 206 Pb and 204 Pb/ 206 Pb were lower than 0.2% after optimization of the analytical conditions, including the optimum lead concentration of the sample solution to be about 70 ppb and an integration time for 1 m/s of 15 s. This method was applied to an analysis of lead in bullets for rifles and handguns; a stable isotope ratio of lead was found to be suitable for the identification of bullets. This study has demonstrated that the lead isotope ratio measured by using a quadrupole ICP-MS was useful for a practical analysis of bullet samples in forensic science. (author)

  12. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    OpenAIRE

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abu...

  13. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  14. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  15. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  16. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  17. Reproducibility of isotope ratio measurements

    International Nuclear Information System (INIS)

    Elmore, D.

    1981-01-01

    The use of an accelerator as part of a mass spectrometer has improved the sensitivity for measuring low levels of long-lived radionuclides by several orders of magnitude. However, the complexity of a large tandem accelerator and beam transport system has made it difficult to match the precision of low energy mass spectrometry. Although uncertainties for accelerator measured isotope ratios as low as 1% have been obtained under favorable conditions, most errors quoted in the literature for natural samples are in the 5 to 20% range. These errors are dominated by statistics and generally the reproducibility is unknown since the samples are only measured once

  18. Changes in hydrogen isotope ratios in sequential plumage stages: an implication for the creation of isotope-base maps for tracking migratory birds.

    Science.gov (United States)

    Duxbury, J M; Holroyd, G L; Muehlenbachs, K

    2003-09-01

    Accurate reference maps are important in the use of stable-isotopes to track the movements of migratory birds. Reference maps created by the analysis of samples collected from young at the nest site are more accurate than simply referring to naturally occurring patterns of hydrogen isotope ratios created by precipitation cycles. Ratios of hydrogen isotopes in the nutrients incorporated early in the development of young birds can be derived from endogenous, maternal sources. Base-maps should be created with the analysis of tissue samples from hatchlings after local the isotopic signature of exogenous nutrients is dominant. Migratory species such as Peregrine Falcons are known to use endogenous sources in the creation of their eggs, therefore knowledge of what plumage stage best represents the local hydrogen ratios would assist in the planning of nest visits. We conducted diet manipulation experiments involving Japanese Quail and Peregrine Falcons to determine the plumage stage when hydrogen isotope ratios were indicative of a switch in their food source. The natal down of both the quail and falcons reflected the diet of breeding adult females. The hydrogen isotope ratios of a new food source were dominant in the juvenile down of the young falcons, although a further shift was detected in the final juvenile plumage. The juvenile plumage is grown during weeks 3-4 after hatch on Peregrine Falcons. Nest visits for the purpose of collecting feathers for isotope-base-map creation should be made around 4 weeks after the presumed hatch of the young falcons.

  19. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS.

    Science.gov (United States)

    Kappel, S; Boulyga, S F; Dorta, L; Günther, D; Hattendorf, B; Koffler, D; Laaha, G; Leisch, F; Prohaska, T

    2013-03-01

    Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. 'point-by-point', 'integration' and 'linear regression slope' method) for the computation of (235)U/(238)U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their (235)U/(238)U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the 'point-by-point' method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a 'finite mixture model' is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The (235)U/(238)U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different (235)U/(238)U isotope ratios of particles deposited on the NUSIMEP-7 test samples.

  20. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    Science.gov (United States)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  1. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    International Nuclear Information System (INIS)

    Aggarwal, Jugdeep; Habicht-Mauche, Judith; Juarez, Chelsey

    2008-01-01

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers

  2. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Jugdeep [W.M. Keck Isotope Laboratory, Department of Earth Sciences, University of California, Santa Cruz, CA 95064 (United States)], E-mail: jaggarwal@pmc.ucsc.edu; Habicht-Mauche, Judith; Juarez, Chelsey [Department of Anthropology, University of California, Santa Cruz, CA 95064 (United States)

    2008-09-15

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers.

  3. Lead isotope ratios as a tracer for lead contamination sources: A lake Andong case study

    Directory of Open Access Journals (Sweden)

    Kim Y. H

    2013-04-01

    Full Text Available The objective of this study was to evaluate stable Pb isotope signatures as a tracer for Pb contamination in Lake Andong. For Pb isotope analysis, we collected water and sediment from Lake Andong, particles in the air, soils, and stream water, mine tailings, sludge and wastewater from zinc smelting around lake Andong watershed. The results showed that Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for zinc concentrate were 18.809 ± 0.322, 15.650 ± 0.062, and 38.728 ± 0.421, respectively. In wastewater, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were 17.363 ± 0.133, 15.550 ± 0.025, and 37.217 ± 0.092, respectively. Additionally, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for sludge were 17.515 ± 0.155, 15.537 ± 0.018, and 37.357 ± 0.173, respectively. These values were similar to those in zinc and lead concentrate originated from Canada and South America. In contrast, Pb isotope ratios of soil, tailings and sediment from Lake Andong were similar to those of Korean ore. Atmospheric particles showed different patterns of Pb isotope ratios from sediments, soils, and zinc smelting and this needs further investigation in order to identify atmospheric Pb sources.

  4. Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Date, A.R.; Yuk Ying Cheung

    1987-01-01

    The application of ICP-MS to the determination of lead isotope ratios in geological materials is described. Data presented for a series of lead mineral concentrates are compared with reference values obtained by conventional solid source thermal ionisation mass spectrometry. The simultaneous determination of lead isotope ratios and trace elements is carried out in a rapid analysis mode. The application of an electrothermal vaporisation technique for small solution aliquots is described. Lead isotope ratio data for the United States Geological Survey standard reference silicate rock BCR-1, obtained without separation of lead from the matrix, are compared with previously published values obtained after separation. (author)

  5. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  6. Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes - A review

    International Nuclear Information System (INIS)

    Balcaen, L.; Moens, L.; Vanhaecke, F.

    2010-01-01

    Since considerable time, isotopic analysis of different elements present in a sample, material or object (such as the 'light' elements H, C, N, O and S and 'heavy' elements, such as Sr and Pb), has been used in provenancing studies, as several factors - defined by 'the environment' or origin of the sample - can lead to measurable differences in their isotopic composition. For the light elements, traditionally, (gas source) isotope ratio mass spectrometry (IR-MS) is used, while for a long period of time, thermal ionization mass spectrometry (TIMS) was considered as the only technique capable of detecting subtle variations in the isotopic composition of the 'heavier' elements. However, since the introduction of the first inductively coupled plasma mass spectrometers (ICP-MS), considerable attention has been devoted to the development of methodologies and strategies to perform isotopic analysis by means of ICP-MS. While the relatively modest isotope ratio precision offered by single-collector ICP-MS may already be fit-for-purpose under some circumstances, especially the introduction of multi-collector ICP-MS instruments, equipped with an array of Faraday detectors instead of a single electron multiplier, has lead to tremendous improvements in the field of isotopic analysis. As a result, MC-ICP-MS can be seen as a very strong competitor of TIMS nowadays, while it even provides information on the small isotopic variations shown by some elements, that are not or hardly accessible by means of TIMS (e.g., elements with a high ionization energy). Owing to these new instrumental developments, the application field of isotopic analysis by means of ICP-MS is continuously growing, also in the field of provenance determination. This paper is intended as a review of the developments in and the recent applications of isotopic analysis by means of ICP-MS in this specific research field.

  7. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    International Nuclear Information System (INIS)

    Hagemann, R.; Nief, G.; Roth, E.

    1968-01-01

    The presence of H 3+ ions which are indistinguishable from HD + ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10 -6 . The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author) [fr

  8. Hafnium isotope ratios of nine GSJ reference samples

    International Nuclear Information System (INIS)

    Hanyu, Takeshi; Nakai, Shun'ichi; Tatsuta, Riichiro

    2005-01-01

    176 Hf/ 177 Hf ratios of nine geochemical reference rocks from the Geological Survey of Japan, together with BIR-1 and BCR-2, were determined using multi-collector inductively coupled plasma mass spectrometry. Our data for BIR-1, BCR-2 and JB-1 are in agreement with those previously reported, demonstrating the appropriateness of the chemical procedure and isotopic measurement employed in this study. The reference rocks have a wide range of 176 Hf/ 177 Hf covering the field defined by various volcanic rocks, such as mid-ocean ridge basalts, ocean island basalts, and subduction related volcanic rocks. They are therefore suitable as rock standards for Hf isotope measurement of geological samples. (author)

  9. Plutonium isotopes/137Cs activity ratios for soil in Montenegro

    International Nuclear Information System (INIS)

    Antovic, N. M.; Vukotic, P.; Svrkota, N.; Andrukhovich, S.K.

    2011-01-01

    Plutonium isotopes/ 137 Cs activity ratios were determined for six soil samples from Montenegro, using the results of alpha-spectrometric measurements of 239+240 Pu and 238 Pu, as well as gamma-spectrometric cesium measurements. An average 239+240 Pu/ 137 Cs activity ratio is found to be 0.02, as the 238 Pu/ 137 Cs and 238 Pu/ 239+240 Pu one - 0.0006 and 0.03, respectively. It follows from the results that the source of plutonium in Montenegro soil is nuclear weapon testing during the fifties and sixties of the twentieth century. On the other hand, there is a contribution of the accident at the Chernobyl nuclear power plant to the soil contamination with 137 Cs isotope. [sr

  10. Liquidity Analysis Using Cash Flow Ratios as Compared to Traditional Ratios in the Pharmaceutical Sector in Jordan

    OpenAIRE

    Sulayman H. Atieh

    2014-01-01

    The purpose of this study is to examine the liquidity position of the Jordanian pharmaceutical sector using the traditional ratios as compared to the more recently developed cash flow ratios. The research involved the comparison between traditional ratios and cash flow ratios of the big seven companies of the pharmaceutical industry in Jordan over six years period (2007¨C2012). The companies were all from the same sector, and the data was obtained from the annual reports of these companies. T...

  11. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  12. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a

  13. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  14. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, H.; Furuta, N.; Fujii, T.; Ambe, Y.; Sakamoto, K.; Hashimoto, Y. (National Institute of Environmental Studies, Tsukuba (Japan). Environmental Chemistry Division)

    1993-07-01

    Airborne particulate matter was collected at urban sites in six Asian countries (Japan, South Korea, China, Thailand, Sri Lanka, and Indonesia), and the stable lead isotope ratios were measured. Some source-related materials, such as coal and leaded gasoline, were also analyzed and compared to the ratios observed in airborne lead. Airborne lead isotope ratios differed considerably from each other, and these differences corresponded to differences in the regional source of lead. Leaded gasoline was still the primary source of lead in some cities in Asia, and the lead isotope ratios were strongly influenced by those of leaded gasoline. In Chinese and Korean cities, however, the considerable effect from coal combustion and industrial activity was also observed in their isotope ratios, despite leaded gasoline use. On the other hand, only refuse incineration was a possible single source of lead in Japanese air from the view of lead isotope ratios. 49 refs., 13 figs., 3 tabs.

  15. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  16. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  17. Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples.

    Science.gov (United States)

    Piper, Thomas; Thevis, Mario

    2017-01-01

    The misuse of anabolic-androgenic steroids (AAS) in sports aiming at enhancing athletic performance has been a challenging matter for doping control laboratories for decades. While the presence of a xenobiotic AAS or its metabolite(s) in human urine immediately represents an antidoping rule violation, the detection of the misuse of endogenous steroids such as testosterone necessitates comparably complex procedures. Concentration thresholds and diagnostic analyte ratios computed from urinary steroid concentrations of, e.g., testosterone and epitestosterone have aided identifying suspicious doping control samples in the past. These ratios can however also be affected by confounding factors and are therefore not sufficient to prove illicit steroid administrations. Here, carbon and, in rare cases, hydrogen isotope ratio mass spectrometry (IRMS) has become an indispensable tool. Importantly, the isotopic signatures of pharmaceutical steroid preparations commonly differ slightly but significantly from those found with endogenously produced steroids. By comparing the isotope ratios of endogenous reference compounds like pregnanediol to that of testosterone and its metabolites, the unambiguous identification of the urinary steroids' origin is accomplished. Due to the complex urinary matrix, several steps in sample preparation are inevitable as pure analyte peaks are a prerequisite for valid IRMS determinations. The sample cleanup encompasses steps such as solid phase or liquid-liquid extraction that are presumably not accompanied by isotopic fractionation processes, as well as more critical steps like enzymatic hydrolysis, high-performance liquid chromatography fractionation, and derivatization of analytes. In order to exclude any bias of the analytical results, each step of the analytical procedure is optimized and validated to exclude, or at least result in constant, isotopic fractionation. These efforts are explained in detail. © 2017 Elsevier Inc. All rights reserved.

  18. Oxygen isotope ratios of the Icelandic crust

    International Nuclear Information System (INIS)

    Hattori, K.; Muehlenbachs, K.

    1982-01-01

    Oxygen isotope ratios of hydrothermally altered basalts from depth of up to approx.3 km are reported from three localities in Iceland: International Research Drilling Project (IRDP) core at Reydarfjordur, eastern Iceland (Tertiary age); drill cuttings from Reykjavik (Plio-Pleistocene age); and Halocene drill cuttings from the active Krafla central volcano. Whole rock samples from these three localities have delta 18 O values averaging +3.9 +- 1.3, +2.4 +- 1.1, and -7.7 +- 2.4%, respectively. The observed values in the deeper samples from Krafla are as low as the values for any rocks previously reported. There seems to be a slight negative gradient in delta 18 O with depth at the former two localities and a more pronounced one at Krafla. Oxygen isotope fractionations between epidote and quartz and those between calcite and fluid suggests that the basalts were altered at temperatures of 300 0 --400 0 C. Low deltaD and delta 18 O of epidote and low delta 34 S of anhydrite indicate that the altering fluids in all three areas originated as meteoric waters and have undergone varied 'oxygen shifts'. Differences in the 18 O shift of the fluids are attributed to differences in hydrothermal systems; low water/rock ratios ( 5) at Krafla. The convective hydrothermal activity, which is probably driven by silicic magma beneath the central volcanoes, has caused strong subsolidus depletion of 18 O in the rocks. The primary-magnetic delta 18 O value of the rocks in the Tertiary IRDP core was about +3.9%, which is lower than that obtained for fresh basalt from other places. Such exceptionally low delta 18 O magmas are common in Iceland and may occur as the result of oxygen isotope exchange with or assimilation of altered rocks that form a thick sequence beneath the island due to isostatic subsidence

  19. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  20. The effects of dietary nitrogen to water-soluble carbohydrate ratio on isotopic fractionation and partitioning of nitrogen in non-lactating sheep.

    Science.gov (United States)

    Cheng, L; Nicol, A M; Dewhurst, R J; Edwards, G R

    2013-08-01

    The main objective of this study was to investigate the relationship between partitioning and isotopic fractionation of nitrogen (N) in sheep consuming diets with varying ratios of N to water-soluble carbohydrate (WSC). Six non-lactating sheep were offered a constant dry matter (DM) allowance with one of three ratios of dietary N/WSC, achieved by adding sucrose and urea to lucerne pellets. A replicated 3 dietary treatments (Low, Medium and High N/WSC) × 3 (collection periods) and a Latin square design was used, with two sheep assigned to each treatment in each period. Feed, faeces, urine, plasma, wool, muscle and liver samples were collected and analysed for ¹⁵N concentration. Nitrogen intake and outputs in faeces and urine were measured for each sheep using 6-day total collections. Blood urea N (BUN) and urinary excretion of purine derivative were also measured. Treatment effects were tested using general ANOVA; the relationships between measured variables were analysed by linear regression. BUN and N intake increased by 46% and 35%, respectively, when N/WSC increased 2.5-fold. However, no indication of change in microbial protein synthesis was detected. Results indicated effects of dietary treatments on urinary N/faecal N, faecal N/N intake and retained N/N intake. In addition, the linear relationships between plasma δ¹⁵N and urinary N/N intake and muscle δ¹⁵N and retained N/N intake based on individual measurements showed the potential of using N isotopic fractionation as an easy-to-use indicator of N partitioning when N supply exceeds that required to match energy supply in the diet.

  1. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method

    International Nuclear Information System (INIS)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2007-01-01

    For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

  3. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    Aravena, R.; Hunkeler, D.; Bloom, Y.; Frape, S.K.; Butler, B.; Edwards, E.; Cox, E.

    1999-01-01

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ 13 C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ 13 C of each dechlorination product was always more negative than the δ 13 C of the corresponding precursor. In addition, the δ 13 C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  4. CONSUMERS’ BRAND EQUITY PERCEPTIONS OF TRADITIONAL AND NON-TRADITIONAL BRANDS

    OpenAIRE

    Catli, Ozlem; Ermec Sertoglu, Aysegul; Ors, Husniye

    2017-01-01

    Thisstudy aims to compare consumers' brand perception of traditional brands withbrand perceptions of non-traditional brands.  Consumers livingin Ankara constitute the universe of work, and data were gathered in aface-to-face interview using the survey method. the demographic characteristicsof the participants was prepared with the aim of evaluating and comparing onetraditional brand and one non traditional brand of brand equity related to thebrand equity by the participants. According to...

  5. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  6. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    International Nuclear Information System (INIS)

    Fekiacova, Z.; Cornu, S.; Pichat, S.

    2015-01-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ 65 Cu values vary from − 0.15 to 0.44‰ and the δ 66 Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ 65 Cu and from − 0.53 to 0.64‰ for δ 66 Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing of the metal

  7. Results from an interlaboratory exercise on the determination of plutonium isotopic ratios by gamma spectrometry

    International Nuclear Information System (INIS)

    Ottmar, H.

    1981-07-01

    Results form interlaboratory comparison measurements on the determination of plutonium isotopic ratios by gamma spectrometry, organized by the ESARDA Working Group on Techniques and Standards for Nondestructive Analysis, are presented and discussed. Nine laboratories from nine countries or international organizations participated in the intercomparison exercise, which included both laboratories' own measurements on the plutonium isotopic reference materials NBS-SRM 946, 947, 948 and comparison analyses of gamma spectra from these materials distributed to the participating laboratories. Results from the intercomparison analyses have been used to reevaluate some gamma branching intensity ratios required for plutonium isotopic ratio measurements. (orig.) [de

  8. Determination of 239Pu and 240Pu isotope ratio for a nuclear bomb particle using X-ray spectrometry in conjunction with γ-ray spectrometry and non-destructive α-particle spectrometry

    International Nuclear Information System (INIS)

    Poellaenen, R.; Ruotsalainen, K.; Toivonen, H.

    2009-01-01

    A nuclear bomb particle from Thule containing Pu and U was analyzed using X-ray spectrometry in combination with γ-ray spectrometry and non-destructive α-spectrometry. The main objective was to investigate the possibility to determine the 239 Pu and 240 Pu isotope ratios. Previously, X-ray spectrometry together with the above-mentioned methods has been successfully applied for radiochemically processed samples, but not for individual particles. In the present paper we demonstrate the power of non-destructive analysis. The 239 Pu/( 239 Pu+ 240 Pu) atom ratio for the Thule particle was determined, using two different approaches, to be 0.93±0.07 and 0.91±0.05. These results are consistent with weapons-grade material and the results obtained by other investigators.

  9. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  10. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  11. The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of plutonium and neptunium

    International Nuclear Information System (INIS)

    Kenna, T.C.; Sayles, F.L.

    2002-01-01

    Isotopic ratios of Pu and Np measured in sediment cores from 5 locations in the Ob River drainage basin show clear evidence of input from sources other than global fallout (non-fallout sources). Historical contaminant records obtained by combining isotopic ratio information with chronological information indicate that non-fallout inputs are from several sources that have varied significantly over the past 50 years. Unique isotopic signatures observed in sediments from tributaries that drain areas containing known or suspected sources of non-fallout contamination are used to identify the source of materials in sediments collected at downstream locations. These data can lead to a better understanding of the transport behavior, fate, and relative importance of particle reactive, weapons related contaminants originating from the nuclear facilities Mayak, Tomsk-7, and Semipalitinsk, which lie within the drainage basin. From our work to date, we draw the following conclusions: (1) Persistent non-fallout contamination is observed in the Ob River above its confluence with the Irtysh River, indicating contamination from the Tomsk-7 facility. (2) Non-fallout contamination in the Tobol River above its confluence with the Irtysh River indicates contamination from the Mayak facility. (3) Non-fallout contamination in the Irtysh River above its confluence with the Tobol River indicates contamination from the Semipalitinsk weapons test site. (4) The occurrence of isotopic ratios in Ob Delta sediments that are similar to those observed in source tributaries suggests that contamination from at least two sources has been transported along the length of the river system. (5) Global fallout, a result of high-yield atmospheric weapons tests conducted by the FSU and USA primarily, is the dominant source of Pu and Np to the region; however, there have been brief periods when inputs from non-fallout sources exceeded those from global fallout

  12. Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios

    Science.gov (United States)

    Jeffrey F. Kelly; Viorel Atudorei; Zachary D. Sharp; Deborah M. Finch

    2002-01-01

    Our ability to link the breeding locations of individual passerines to migration stopover sites and wintering locations is limited. Stable isotopes of hydrogen contained in bird feathers have recently shown potential in this regard. We measured hydrogen stable-isotope ratios (deltaD) of feathers from breeding, migrating, and wintering Wilson's Warblers. Analyses...

  13. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  14. Elemental and isotopic characterization of Japanese and Philippine polished rice samples using instrumental neutron activation analysis and isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.; Mendoza, Norman dS.; Ebihara, Mitsuru

    2011-01-01

    Rice is a staple food for most Asian countries such as the Philippines and Japan and as such its elemental and isotopic content are of interest to the consumers. Its elemental content may reflect the macro nutrient reduction during milling or probable toxic elements uptake. Three Japanese and four Philippine polished rice samples in his study mostly came from rice bought from supermarkets.These rice samples were washed, dried and ground to fine powder. Instrumental neutron activation analysis (INAA), a very sensitive non-destructive multi-element analytical technique, was used for the elemental analysis of the samples and isotope-ratio mass spectrometry (IRMS) was used to obtain the isotopic signatures of the samples. Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/3 to 1/10 of Mg, Mn, K and Na. Levels of Ca and Zn are not greatly affected. Arsenic is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.070 μg/g. Arsenic contamination may have been introduced from the fertilizer used in rice fields. Higher levels of Br are seen in two of the Philippine rice at 14 and 34 μg/g with the most probable source being the pesticide methyl bromide. Isotopic ratio of ae 13 C show signature of a C3 plant with possible narrow distinguishable signature of Japanese rice within -27.5 to -28.5 while Philippine rice within -29 to -30. More rice samples will be analyzed to gain better understanding of isotopic signatures to distinguish inter-varietal and/or geographical differences. Elemental composition of soil samples of rice samples sources will be determined for better understanding of uptake mechanisms. (author)

  15. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    Science.gov (United States)

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  16. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  17. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication.

    Science.gov (United States)

    Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard

    2011-09-01

    High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.

  18. The calculation of isotopic partition function ratios by a perturbation theory technique

    International Nuclear Information System (INIS)

    Singh, G.; Wolfsberg, M.

    1975-01-01

    The vibrational Hamiltonian of a molecule in the harmonic approximation, H = (1/2) Σ (g/subi/jp/subi/p/subj/ + f/subi/jq/subi/q/subj/), has been divided into a diagonal part (terms with i=j) and an off-diagonal part (inot-equalj), which is regarded as the perturbation. The vibrational partition function of the molecule is then calculated by Schwinger perturbation theory as the partition function of the unperturbed problem, corresponding to a collection of oscillators with frequencies 2πν/subi/' = (f/subi/ig/subi/i)/sup 1 / 2 /, plus perturbation correction terms which are calculated to second order. With the usual assumptions of isotope effect calculations that the molecular translations and rotations are classical and separable from the vibrations, the perturbation formulation of the vibrational partition function is easily transformed into a perturbation theory formulation of (reduced) isotopic partition function ratios. If, for example, the molecular potential function is expressed in terms of the displacements of bond stretches and bond angle bends from their respective equilibrium values, the unperturbed partition function ratio corresponds to the isotope effect expected for noninteracting bond-stretch and bond-angle-bend oscillators. Detailed comparison is made for a number of molecular systems of perturbation theory calculations of partition functions and isotopic partition function ratios with exact calculations carried out by actually obtaining the normal mode vibrational frequencies of the vibrational Hamiltonian. Good agreement is found. The utility of the perturbation theory formulation resides in the fact that it permits one to look at isotope effects in a very simple manner; some demonstrations are given

  19. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    Science.gov (United States)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  20. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  1. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  2. Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    McRae, C.; Snape, C.E.; Fallick, A.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1998-07-01

    To establish the scope for applying gas chromatography-isotope ratio mass spectrometry ({sup {delta}-13}C GC-IRMS) to molecular recognition problems in coal utilisation, {sup 13}C/{sup 12}C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs) as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (-23 to -25 parts per thousand) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2-3 parts per thousand. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonization, are still heavier (by 2-3 parts per thousand) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank.

  3. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    Science.gov (United States)

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  5. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    Science.gov (United States)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  6. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    Science.gov (United States)

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  7. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    Science.gov (United States)

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  8. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  9. Non - Adiabaticity and Novel Isotope Effect in the Doped Cuprates

    International Nuclear Information System (INIS)

    Kresin, V.; WOLF, S. A.

    1995-01-01

    This paper reports a novel isotope effect which is due to a strong non-adiabaticity that manifests itself in the dependence of the carrier concentration on the isotopic mass. The critical temperature in turn depends on the carrier concentration giving rise to a unique and non-phononic isotope shift. (author)

  10. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    Science.gov (United States)

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright 2008 John Wiley & Sons, Ltd.

  11. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    Science.gov (United States)

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  13. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  14. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  15. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  16. Practice Location Characteristics of Non-Traditional Dental Practices.

    Science.gov (United States)

    Solomon, Eric S; Jones, Daniel L

    2016-04-01

    Current and future dental school graduates are increasingly likely to choose a non-traditional dental practice-a group practice managed by a dental service organization or a corporate practice with employed dentists-for their initial practice experience. In addition, the growth of non-traditional practices, which are located primarily in major urban areas, could accelerate the movement of dentists to those areas and contribute to geographic disparities in the distribution of dental services. To help the profession understand the implications of these developments, the aim of this study was to compare the location characteristics of non-traditional practices and traditional dental practices. After identifying non-traditional practices across the United States, the authors located those practices and traditional dental practices geographically by zip code. Non-traditional dental practices were found to represent about 3.1% of all dental practices, but they had a greater impact on the marketplace with almost twice the average number of staff and annual revenue. Virtually all non-traditional dental practices were located in zip codes that also had a traditional dental practice. Zip codes with non-traditional practices had significant differences from zip codes with only a traditional dental practice: the populations in areas with non-traditional practices had higher income levels and higher education and were slightly younger and proportionally more Hispanic; those practices also had a much higher likelihood of being located in a major metropolitan area. Dental educators and leaders need to understand the impact of these trends in the practice environment in order to both prepare graduates for practice and make decisions about planning for the workforce of the future.

  17. Determination of carbon isotope ratios in plant starch via selective enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Schimmelmann, A.; DeNiro, M.J.

    1983-01-01

    A method for the determination of the carbon isotope ratios in bipolymers hydrolyzed by enzymatic action consists of separating the monomer by passage through a dialysis membrane and then combusting the monomer prior to isotopic analysis. The method is described for application to the analysis of starch, but it should find application for polymers than can be degraded quantitatively to monomers and/or oligomers using specific hydrolytic enzymes

  18. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  19. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  20. Maintaining high precision of isotope ratio analysis over extended periods of time.

    Science.gov (United States)

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  1. Stable isotope ratio determination of the origin of vanillin in vanilla extracts and its relationship to vanillin/potassium ratios

    International Nuclear Information System (INIS)

    Martin, G.E.; Alfonso, F.C.; Figert, D.M.; Burggraff, J.M.

    1981-01-01

    A method is described for isolating vanillin from vanilla extract, followed by stable isotope ratio analysis to determine the amount of natural vanillin contained in adulterated vanilla extracts. After the potassium content is determined, the percent Madagascar and/or Java vanilla beans incorporated into the extract may then be approximated from the vanillin/potassium ratio

  2. The relationship between carbon stable isotope ratios of hatchling down and egg yolk in Black-headed Gulls

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Baarspul, T.; Dekkers, T.; Van Tienen, P.

    2004-01-01

    We reconstructed the nutrient source for egg synthesis by sampling Black-headed Gull (Larus ridibundus) eggs for yolk, analyzing their carbon stable isotope ratio, and comparing that to hatchling down. Most of the variation in carbon stable isotope ratio was explained by differences between nests,

  3. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    Science.gov (United States)

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  4. Traditional and non-traditional educational outcomes : Trade-off or complementarity?

    NARCIS (Netherlands)

    van der Wal, Marieke; Waslander, Sietske

    2007-01-01

    Recently, schools have increasingly been charged with enhancing non-traditional academic competencies, in addition to traditional academic competencies. This article raises the question whether schools can implement these new educational goals in their curricula and simultaneously realise the

  5. Dating of oilfield contamination by Natural Occurring Radioactive Materials (NORM) using isotopic ratios

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Othman, I.; Aba, A.

    2008-05-01

    In the present work, the possibility of using radium isotope ratios (226, 224, 228) for dating of NORM contaminated sites in the oilfields due to uncontrolled disposal of produced water into the environmental NORM contaminated soil sample were collected from different locations in Syrian Oilfields and radioactivity analysed. In addition, production water samples were collected and analysed to determine the isotopes ratios of the naturally occurring radioactive materials. The results have shown that the 228 Ra/ 226 Ra can be successfully used to date contaminated soil provided that this ratio is determined in production water. Moreover, the 210 Pb/ 226 Ra activity ratios was used for the first time for dating of contaminated soil where all factors affecting the method application have been evaluated. Furthermore, the obtained results for dating using the three methods were compared with the actual contamination dates provided by the oil companies. (Authors)

  6. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1987-06-01

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  7. Hydrogen isotope ratios of mouse tissues are influenced by a variety of factors other than diet

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    Hydrogen isotopes are fractionated during biochemical reactions in a variety of organisms. A number of experiments have shown that the D/H ratios of animals and their tissues are not controlled solely by the D/H ratios of their food. The authors performed a simple experiment which indicated that the D/H ratios of a significant fraction of the organically bonded hydrogen in animal tissues must be determined by the isotopic composition of water that the samples encounter. Aliquots of dried mouse brain and liver and mouse food were exposed to water vapors of different D/H ratios prior to isotopic analysis. The results of the experiment showed that at least 16 percent of the hydrogen in mouse brain is exchangeable with the hydrogen of water; the corresponding values for mouse liver and mouse food were 25 to 29 percent

  8. Mass spectrometric determination of magnesium isotopic ratios and its corrections for electron multiplier discrimination and mass fractionation

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1989-01-01

    The mass spectrometric determination of magnesium isotopic ratios by the use of uranyl nitrate added to magnesium samples to act as a binding agent is reported. Prebaking empty filaments and preheating filaments with deposited magnesium samples on its surface in a vacuum are employed to reduce the Na signal from the thenium-ribbon. Methods for correcting magnesium isotopic ratios for electron multiplier discrimination and mass fractionation are described in detail. The results of the determination of natural magnesium isotopic ratios are 25 Mg/ 24 Mg = 0.12660 (1±0.01%) and 26 Mg/ 24 Mg = 0.13938 (1±0.10%). The magnesium isotopic ratios of rich - 26 Mg-2 sample and rich- 25 Mg-1 sample are 24 Mg/ 26 Mg = 0.003463 (1±0.2%), 25 Mg/ 26 Mg = 0.001656 (±0.2%) and 24 Mg/ 25 Mg = 0.006716 (1±0.2%), 26 Mg/ 25 Mg = 0.007264 (1±0.2%) respectively

  9. A new sniffer probe for the determination of hydrogen isotope ratios in the W7-AS stellarator

    Science.gov (United States)

    Zebisch, P.; Taglauer, E.

    1999-07-01

    An improved sniffer probe was constructed for measurements of the hydrogen isotope ratio and impurities in the plasma edge of the W7-AS stellarator. Details of the new design and the probe performance are presented. The new design allows changing the head without breaking the vacuum in the torus. It has a high mechanical stability, effective screening of the magnetic field and high sensitivity. The gas dynamic properties of the probe are analyzed using transmission line calculus, resulting in a rise time of 114 ms for hydrogen. During the 1997 spring measurement campaign, H/D isotope ratio measurements were carried through showing considerable outgassing of the walls during and after the discharge. He glow discharges reduce the isotope ratio drastically. Results from a typical experiment day are presented together with the analytic procedure for determining the isotope ratio in both the plasma edge and in the neutral gas region between the plasma and the vessel walls.

  10. Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants.

    Science.gov (United States)

    Brinkkemper, O; Braadbaart, F; van Os, B; van Hoesel, A; van Brussel, A A N; Fernandes, R

    2018-02-15

    Isotopic analysis of archaeological charred plant remains offers useful archaeological information. However, adequate sample pre-treatment protocols may be necessary to provide a contamination-free isotopic signal while limiting sample loss and achieving a high throughput. Under these constraints, research was undertaken to compare the performance of different pre-treatment protocols. Charred archaeological plant material was selected for isotopic analysis (δ 13 C and δ 15 N values) by isotope ratio mass spectrometry from a variety of plant species, time periods and soil conditions. Preservation conditions and the effectiveness of cleaning protocols were assessed through Fourier transform infrared spectroscopy and X-ray fluorescence (XRF) spectrometry. An acid-base-acid protocol, successfully employed in radiocarbon dating, was used to define a contamination-free isotopic reference. Acid-base-acid isotopic measurements were compared with those obtained from untreated material and an acid-only protocol. The isotopic signals of untreated material and the acid-only protocol typically did not differ more than 1‰ from those of the acid-base-acid reference. There were no significant isotopic offsets between acid-base-acid and acid-only or untreated samples. Sample losses in the acid-base-acid protocol were on average 50 ± 17% (maximum = 98.4%). Elemental XRF measurements showed promising results in the detection of more contaminated samples albeit with a high rate of false positives. For the large range of preservation conditions described in the study, untreated charred plant samples, water cleaned of sediments, provide reliable stable isotope ratios of carbon and nitrogen. The use of pre-treatments may be necessary under different preservation conditions or more conservative measurement uncertainties should be reported. Copyright © 2017 John Wiley & Sons, Ltd.

  11. ICP-MS for isotope ratio measurement

    Science.gov (United States)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  12. ICP-MS as the method of the determination of gallium, indium and thallium isotope ratios in the studies of isotope effects in the chromatography systems

    International Nuclear Information System (INIS)

    Herdzik, I.

    2006-01-01

    The procedure of the determination of gallium, indium and thallium isotope ratios and its application to the studies of the isotope effects in chromatography systems by the ICP-MS method (inductively coupled plasma-mass spectrometry) are presented. It was shown that it is possible to determine the isotope ratios of gallium ( 69/71 Ga), indium ( 113/115 In) and thallium ( 203/205 Tl) with the relative standard deviation 0.03-0.07%. Such precision appeared to be sufficient to calculate the unit separation factors in the column chromatographic processes. (author) [pl

  13. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  14. Isotope ratio measurements of uranium by LA-HR-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Rafael C.; Sarkis, Jorge E.S., E-mail: rafael.marin@usp.b, E-mail: jesarkis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the utilization of Laser Ablation High Resolution Inductively Mass Spectrometry (LA-HR-ICP-MS) technique for the determination of uranium isotope composition in a UO{sub 2} pellet (CRM -125A) supplied and certified by the New Brunswick Laboratory (NBL). To carry out the adjustments of the parameters was used a glass standard NIST 610, supplied and certified by National Institute of Standards and Technology (NIST). The precision of the measurements were improved by adjusting the following parameters: RF power, laser beam diameter, defocusing of laser beam, laser energy, laser energy-density, auxiliary gas and sample gas. The measurements were performed on a continuous ablation with low energy density and defocusing, which demonstrated to be the optimum to reach the best signal stability. Isotope ratios, {sup 234}U/{sup 238}U, {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U were measured, reaching relative standard deviations (RSD) from 1.55% to 7.60%. The parameters which caused the greatest impact in order to improve the signal stability were RF power, defocusing and laser beam diameter. The results presented by the measurements revealed that the Laser ablation ICP-MS technique offers a rapid and accurate way to perform uranium isotope ratios without any sample preparation, since it allows carrying out the measurements straight on the sample, besides to preserve the testimony that is very important for safeguards and nuclear forensics purposes. (author)

  15. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  16. Non-Traditional Wraps

    Science.gov (United States)

    Owens, Buffy

    2009-01-01

    This article presents a recipe for non-traditional wraps. In this article, the author describes how adults and children can help with the recipe and the skills involved with this recipe. The bigger role that children can play in the making of the item the more they are apt to try new things and appreciate the texture and taste.

  17. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Schmitt

    2013-05-01

    Full Text Available Stable carbon isotope analysis of methane (δ13C of CH4 on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC isotope ratio mass spectrometry (IRMS coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

  18. Identifying the change in atmospheric sulfur sources in China using isotopic ratios in mosses

    Science.gov (United States)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2009-08-01

    A considerable number of studies on rainwater sulfur isotopic ratios (δ34Srain) have been conducted to trace sulfur sources at a large number of sites in the past. If longitudinal studies on the isotope composition of precipitation sulfate were conducted, it is possible to relate that to changes in sulfur emissions. But direct measurement needs considerable labor and time. So, in this study, sulfur isotopic ratios in rainwater and mosses were analyzed at Guiyang and Nanchang to evaluate the possibility of using mosses as a substitute for rainwater. We found that present moss sulfur isotopic ratios were comparable to those of present rainwater. Additionally, we investigated the changes of atmospheric sulfur sources and sulfur concentrations using an isotopic graphic analysis at five industrial cities, two forested areas, and two remote areas in China. Mosses in industrial cities show a wide range of δ34S values, with the highest occurring at Chongqing (+3.9‰) and the lowest at Guiyang (-3.1‰). But as compared to those in forested and remote areas, δ34S values of mosses in all the five industrial cities are lower. On the basis of isotopic comparisons between past rainwater (reported in the literature) and present mosses, in the plot of δ34Smoss versus δ34Srain, six zones indicating different atmospheric sulfur change are separated by the 1:1 line and δ34S values of potential sulfur sources. Our results indicate that atmospheric sulfur pollution in most of the industrial cities decreased, while at the two forested areas, no significant changes were observed, and a new anxiousness coming from new energy sources (e.g., oil) appeared in some cities. Studies on the change of ambient SO2 concentrations support these results.

  19. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  20. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    Science.gov (United States)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  1. Social Capital of Non-Traditional Students at a German University. Do Traditional and Non-Traditional Students Access Different Social Resources?

    Science.gov (United States)

    Brändle, Tobias; Häuberer, Julia

    2015-01-01

    Social capital is of particular value for the acquisition of education. Not only does it prevent scholars from dropping out but it improves the educational achievement. The paper focuses on access to social resources by traditional and non-traditional students at a German university and asks if there are group differences considering this…

  2. USE OF GC-MS/COMBUSTION/IRMS TO IDENTIFY AND DETERMINE THE STABLE CARBON ISOTOPIC RATIO OF INDIVIDUAL LIPIDS

    Science.gov (United States)

    A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...

  3. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  4. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    International Nuclear Information System (INIS)

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-01-01

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept

  5. Stable carbon and oxygen isotope ratios of malachite from the patinas of ancient bronze objects

    International Nuclear Information System (INIS)

    Smith, A.W.

    1978-01-01

    13 C/ 12 C and 18 O/ 16 O ratios have been measured for 62 samples of the mineral malachite, taken from the patinas of ancient bronze objects (from Britain, Italy, Libya and China), in order to investigate any possible relationship which may exist between the isotope ratios and the burial conditions of the objects. The results indicate that the isotope ratios are controlled by complex factors related to the climate, vegetation and soil type at the burial site. It is suggested that the technique might be used, given favourable circumstances, in the characterization of patinas and as a possible aid in the detection of synthetic patination. (author)

  6. Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments

    Science.gov (United States)

    Csernoch, Mária; Biró, Piroska; Máth, János; Abari, Kálmán

    2015-01-01

    The Testing Algorithmic and Application Skills (TAaAS) project was launched in the 2011/2012 academic year to test first year students of Informatics, focusing on their algorithmic skills in traditional and non-traditional programming environments, and on the transference of their knowledge of Informatics from secondary to tertiary education. The…

  7. Contribution of non-traditional lipid profiles to reduced glomerular filtration rate in H-type hypertension population of rural China.

    Science.gov (United States)

    Wang, Haoyu; Li, Zhao; Guo, Xiaofan; Chen, Yintao; Chen, Shuang; Tian, Yichen; Sun, Yingxian

    2018-05-01

    Despite current interest in the unfavourable impact of non-traditional lipid profiles on cardiovascular disease, information regarding its relations to reduced glomerular filtration rate (GFR) in H-type hypertension population has not been systemically elucidated. Analyses were based upon a cross-sectional study of 3259 participants with H-type hypertension who underwent assessment of biochemical, anthropometric and blood pressure values. Reduced GFR was considered if meeting estimated GFR <60 ml/min/1.73 m 2 . A stepwise multivariate regression analysis indicated that non-traditional lipid parameters remained as independent determinants of estimated GFR (all p < .001). In multivariable models, we observed a 50%, 51%, 31%, and 24% higher risk for decreased GFR with each SD increment in TC/HDL-C, TG/HDL-C, LDL-C/HDL-C ratios and non-HDL-C levels, respectively. The highest quartile of TC/HDL-C, TG/HDL-C and LDL-C/HDL-C ratios carried reduced GFR odds (confidence intervals) of 5.50 (2.50 to 12.09), 6.63 (2.58 to 17.05) and 2.22 (1.15 to 4.29), respectively. The relative independent contribution of non-traditional lipid profiles, as indexed by TC/HDL-C, TG/HDL-C, LDL-C/HDL-C ratios and non-HDL-C, towards reduced GFR putting research evidence at the very heart of lipoprotein-mediated renal injury set a vital example for applying a clinical and public health recommendation for reducing the burden of chronic kidney disease. KEY MESSAGES Non-traditional lipid profiles has been linked with the occurrence of cardiovascular disease, but none of the studies that address the effect of non-traditional lipid profiles on reduced GFR risk in H-type hypertension population has been specifically established. A greater emphasis of this study resided in the intrinsic value of TC/HDL-C, TG/HDL-C, LDL-C/HDL-C ratios and non-HDL-C that integrate atherogenic and anti-atherogenic lipid molecules to predict the risk of reduced GFR among H-type hypertension population and provide

  8. Isotopic ratio method for determining uranium contamination

    International Nuclear Information System (INIS)

    Miles, R.E.; Sieben, A.K.

    1994-01-01

    The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort

  9. VizieR Online Data Catalog: C and O isotopic ratios in Arcturus and Aldebaran (Abia+ 2012)

    Science.gov (United States)

    Abia, C.; Palmerini, S.; Busso, M.; Cristallo, S.

    2012-10-01

    CNO abundances, C and O isotopic ratios and equivalent diffusive coefficients (D) are given for the calculated extra-mixing models. For Arcturus we used the electronic version of the Infrared Atlas Spectrum by Hinkle et al. (1995, Cat. J/PASP/107/1042; resolution 0.01cm-1), and for Aldebaran we used a spectrum obtained on February 6, 1980 at the KPNO 4m Coude telescope using a Fourier transform spectrometer, kindly provided by K. Hinkle (resolution 0.016cm-1) The first 2 rows of table4 report the CNO abundances and isotopic ratios resulting from the observations. The other rows give the CNO abundances and isotopic ratios accounted for by the FDU in the three stellar models considered of 1.3Mo, 1.2Mo and 1.08Mo (see the paper for more details). (1 data file).

  10. Great isotope effects in compounding of sodium isotopes by macrocyclic polyether

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1978-01-01

    Isotope effects appear in the compounding of the two sodium isotopes 24 Na + and 22 Na + with macrocyclic polyethers, whose value was determined for the 13 best known polyethers. A radiometric process was used for determining the different half life periods of the nuclides used. To separate the compound and non-compound types, these were distributed between water and chloroform. The isotope ratio in the chloroform phase was compared with the output isotope ratio and the separation facfor determined from this. When using crown ethers, there was enrichment of 24 Na + by a significant amount (large crown ether) up to 3.1 +- 0.4% for 18 crown 6. The remarkably high results can be correlated by Biegeleisen's theory with other chemical conditions. There is a report on the first results of transferring these conditions to the H + /T + system. (orig.) [de

  11. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, Alkiviadis, E-mail: alkiviadis.gourgiotis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Ducasse, Thomas [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Barker, Evelyne [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Jollivet, Patrick; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Bassot, Sylvain; Cazala, Charlotte [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France)

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of {sup 29}Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O{sub 2} as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO{sup +} and SiO{sub 2}{sup +} ion species was performed, and we found that SiO{sup +} ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO{sub 3}). For SiO{sub 2}{sup +}, no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. {sup 28}Si{sup 16}O{sup 18}O{sup +}, {sup 30}Si{sup 16}O{sup 16}O{sup +}). The developed method was validated by measuring a series of reference solutions with different {sup 29}Si

  12. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  13. The measurement of mass spectrometric peak height ratio of helium isotope in trace samples

    International Nuclear Information System (INIS)

    Sun Mingliang

    1989-01-01

    An experiment study on the measurement of mass spectrometric peak height ratio of helium isotope in the trace gaseous sample is discussed by using the gas purification line designed by the authors and model VG-5400 static-vacuum noble gas mass spectrometer imported and air helium as a standard. The results show that the amount of He and Ne in natural gas sample is 99% after purification. When the amount of He in Mass Spectrometer is more than 4 x 10 -7 cm 3 STP, it's sensitivity remains stable, about 10 -4 A/cm 3 STP He and the precision of 3 He/ 4 He ratio within the following 17 days is 1.32%. The 'ABA' pattern and experiment condition in the measurement of mass spectrometric peak height ratio of He isotope are presented

  14. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Kenneth H. [National Optical Astronomy Observatory P.O. Box 26732, Tucson, AZ 85726 (United States); Lebzelter, Thomas [Department of Astrophysics, University of Vienna Türkenschanzstrasse 17, A-1180 Vienna (Austria); Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it [INAF, Osservatorio Astronomico di Collurania I-64100 Teramo (Italy)

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O

  15. Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison

    NARCIS (Netherlands)

    Bahlmann, E.; Bernasconi, S.M.; Bouillon, S.; Houtekamer, M.J.; Korntheuer, M.; Langenberg, F.; Mayr, C.; Metzke, M.; Middelburg, J.J.; Nagel, B.; Struck, U.; Voß, M.; Emeis, K.C.

    2010-01-01

    Nitrogen isotopes of organic matter are increasingly studied in marine biogeochemistry and geology, plant and animal ecology, and paleoceanography. Here, we present results of an inter-laboratory test on determination of nitrogen isotope ratios in marine and lacustrine sediments. Six different

  16. Disentangling effects of growth and nutritional status on seabird stable isotope ratios

    Science.gov (United States)

    Sears, J.; Hatch, Shyla A.; O'Brien, D. M.

    2009-01-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather ??15N and ??13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing ??15N and ??13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in ??15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC ??15N, with chicks exhibiting lower ??15N when they were growing the fastest. As growth slowed, ??15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted ??15N in chick RBCs by 0.92???. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. ??15N values in RBCs of free-ranging auklets fell within a range of only 1.03???, while feather ??15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue. ?? 2008 Springer-Verlag.

  17. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Srisotope ratios of basalts from Loihi Seamount, Hawaii

    International Nuclear Information System (INIS)

    Staudigel, H.; Zindler, A.; Leslie, T.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291 - 0.51305), and include the nearly constant tholeiite value (approx.= 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] 'Loa' trend towards higher 206 Pb/ 204 Pb, ratios, resulting in a substantial overlap with the 'Kea' trend. 206 Pb/ 204 Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. (orig.)

  18. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS

    International Nuclear Information System (INIS)

    Shouakar-Stash, Orfan; Drimmie, Robert J.; Zhang Min; Frape, Shaun K.

    2006-01-01

    A method for determining compound-specific Cl isotopic compositions (δ 37 Cl) was developed for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), trans-dichloroethene (trans-DCE) and 1,1-dichloroethene (1,1-DCE). The isotope ratio mass spectrometry (IRMS) used in this study has nine collectors, including two for m/z 50 and 52 (CH 3 Cl) and two for m/z 94 and 96 (CH 3 Br). The development of this method is based on the fact that fragments with mass ratios of 94/96, 95/97 and 96/98 are produced from PCE, TCE and DCE isomers during ion bombardment in the source of a mass spectrometer. Using continuous flow isotope ratio mass spectrometry coupled with gas chromatography (GC-CF-IRMS), it is possible to separate these compounds on-line and directly measure the Cl isotopic ratios of the fragments with the specific mass ratios. Both pure phase and aqueous samples were used for Cl isotopic analysis. For pure phase samples, a vapour phase of the chlorinated ethenes was injected directly into the GC, whereas the solid phase micro extraction (SPME) method was used to extract these compounds from aqueous solutions. The precisions of this analytical technique were ±0.12 per mille (1σ, n = 30), ±0.06 per mille (1σ, n = 30), and ±0.08 per mille (1σ, n = 15) for PCE, TCE and DCE isomers, respectively. The limits of quantification (LOQ) for analyzing Cl isotopic composition in aqueous solutions were 20, 5, and 5 μg/L for PCE, TCE and DCE isomers, respectively. This corresponds to 6-9 nano-mole of Cl, which is approximately 80 times lower than the most sensitive existing method. Compared to methods previously available, this new development offers the following advantages: (1) The much lower LOQ make it possible to extract these compounds directly from aqueous solutions using SPME without pre-concentration; (2) The linking of a GC with an IRMS eliminates off-line separation; and (3) Because the fragments used for isotopic ratio measurement are

  19. The impact of gender ideologies on men's and women's desire for a traditional or non-traditional partner

    OpenAIRE

    Thomae, M.; Houston, Diane

    2016-01-01

    Two studies examine preferences for a long-term partner who conforms to traditional or non- traditional gender\\ud roles. The studies both demonstrate a link between benevolent sexism and preference for a traditional partner.\\ud However, Study 1 also demonstrates a strong preference among women for a non-traditional partner. We measured\\ud ambivalent sexist ideologies before introducing participants to either a stereotypically traditional or stereotypically non-traditional character of the opp...

  20. Ratio of the dose factors of the isotopes of iodine

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Thomas, P.

    1977-12-01

    The ratio of dose factors occurring during inhalation and ingestion to the respective dose factors of I-129 is calculated for the isotopes of I-123 to I-126 and I-129 to I-135. All the dose factors refer to the thyroid as the critical organ. A distinction is made between adults and infants up to 1 year of age. To calculate the ratios only the effective energies and the effective half-lives in the human body and on grass are required. Most of the data have been taken from the literature. The effective energies of I-123 and I-125 have been calculated as examples. (orig.) [de

  1. Dietary heterogeneity among Western industrialized countries reflected in the stable isotope ratios of human hair.

    Science.gov (United States)

    Valenzuela, Luciano O; Chesson, Lesley A; Bowen, Gabriel J; Cerling, Thure E; Ehleringer, James R

    2012-01-01

    Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ(13)C values (-22.7 to -18.3‰), and significantly higher δ(15)N (7.8 to 10.3‰) and δ(34)S (4.8 to 8.3‰) values than samples from the USA (δ(13)C: -21.9 to -15.0‰, δ(15)N: 6.7 to 9.9‰, δ(34)S: -1.2 to 9.9‰). Within Europe, we detected differences in hair δ(13)C and δ(34)S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments.

  2. Dietary heterogeneity among Western industrialized countries reflected in the stable isotope ratios of human hair.

    Directory of Open Access Journals (Sweden)

    Luciano O Valenzuela

    Full Text Available Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization. Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ(13C values (-22.7 to -18.3‰, and significantly higher δ(15N (7.8 to 10.3‰ and δ(34S (4.8 to 8.3‰ values than samples from the USA (δ(13C: -21.9 to -15.0‰, δ(15N: 6.7 to 9.9‰, δ(34S: -1.2 to 9.9‰. Within Europe, we detected differences in hair δ(13C and δ(34S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments.

  3. Determination of uranium in urine - measurement of isotope ratios and quantification by use of inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Krystek, P.; Ritsema, R.

    2002-01-01

    For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction system was chosen. The methodical set-up was optimized to achieve the best precision for both the isotope ratio and the total uranium concentration in the urine matrix.Three spiked urine samples from an European interlaboratory comparison were analyzed to determine the 235 U/ 238 U isotope ratio. The ratio was found to be in the range 0.002116 to 0.007222, the latter being the natural uranium isotope ratio. The first ratio indicates the abundance of depleted uranium.The effect of storage conditions and the stability for the matrix urine were investigated by using ''real-life'' urine samples from unexposed persons in the Netherlands. For samples stored under refrigeration and acidified the results (range 0.8 to 5.3 ng L -1 U) were in the normal fluctuation range whereas a decrease in uranium concentration was observed for samples stored at room temperature without acidification. (orig.)

  4. Traditional and non-traditional treatments for autism spectrum disorder with seizures: an on-line survey.

    Science.gov (United States)

    Frye, Richard E; Sreenivasula, Swapna; Adams, James B

    2011-05-18

    Despite the high prevalence of seizure, epilepsy and abnormal electroencephalograms in individuals with autism spectrum disorder (ASD), there is little information regarding the relative effectiveness of treatments for seizures in the ASD population. In order to determine the effectiveness of traditional and non-traditional treatments for improving seizures and influencing other clinical factor relevant to ASD, we developed a comprehensive on-line seizure survey. Announcements (by email and websites) by ASD support groups asked parents of children with ASD to complete the on-line surveys. Survey responders choose one of two surveys to complete: a survey about treatments for individuals with ASD and clinical or subclinical seizures or abnormal electroencephalograms, or a control survey for individuals with ASD without clinical or subclinical seizures or abnormal electroencephalograms. Survey responders rated the perceived effect of traditional antiepileptic drug (AED), non-AED seizure treatments and non-traditional ASD treatments on seizures and other clinical factors (sleep, communication, behavior, attention and mood), and listed up to three treatment side effects. Responses were obtained concerning 733 children with seizures and 290 controls. In general, AEDs were perceived to improve seizures but worsened other clinical factors for children with clinical seizure. Valproic acid, lamotrigine, levetiracetam and ethosuximide were perceived to improve seizures the most and worsen other clinical factors the least out of all AEDs in children with clinical seizures. Traditional non-AED seizure and non-traditional treatments, as a group, were perceived to improve other clinical factors and seizures but the perceived improvement in seizures was significantly less than that reported for AEDs. Certain traditional non-AED treatments, particularly the ketogenic diet, were perceived to improve both seizures and other clinical factors.For ASD individuals with reported

  5. Strontium isotope ratios - a possible tool to study the authenticity of Indian tea using MC-ICP-MS

    International Nuclear Information System (INIS)

    Lagad, Rupali A.; Alamelu, D.; Aggarwal, Suresh K.; Singh, Sunil K.

    2011-01-01

    In the present study, an analytical procedure based on determination of the Sr isotope ratio 87 Sr/ 86 Sr in the Indian tea samples by MC-ICP-MS was developed and applied to 28 tea samples from four different Indian regions. The 87 Sr/ 86 Sr isotope ratio of the tea samples in different Indian regions is strongly dependent on the soil and growth environment condition. The analysis results of 28 Indian tea samples revealed that 87 Sr/ 86 Sr atom ratio follows the order Darjeeling > Kangra > Assam > Munnar

  6. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    Science.gov (United States)

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be

  7. Investigation of groundwater-streamflow interactions in the Bega alluvial aquifer using tritium and stable isotope ratios

    International Nuclear Information System (INIS)

    Stone, D.J.M.; Thomas, M.; Russell, G.

    2001-01-01

    An isotope hydrology study of the Bega Valley groundwater system has been made. The investigation which focussed on environmental tritium and stable isotope ratios confirms that that the groundwater in the alluvial aquifer of the Bega Valley is sustainable at the current usage rate

  8. Isotope ratios and chemical fractionation of CO in Lynds 134

    International Nuclear Information System (INIS)

    Dickman, R.L.; Langer, W.D.

    1977-01-01

    Mahoney, McCutcheon and Shuter (1976) reported observations of the J = 1 → 0 transition of three isotopes of CO in the dust cloud Lynds 134 using the 4.6 m telescope at Aerospace Corporation. In this paper a new observation of 12 C 17 O is discussed and the question of the ratio 13 C 16 O/ 12 C 18 O across the dust cloud is considered further. (Auth.)

  9. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  10. Determination of isotopic ratios of osmium and ruthenium in meteorites by pretreatment and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Chinfang Chai; Yongzhong Liu; Xueying Mao

    1996-01-01

    The isotopic abundance ratios of 190 Os/ 184 Os and 96 Ru/ 102 Ru for the metal phases of the Jilin and Taonan stone meteorites were determined by pretreatment and radiochemical neutron activation analysis. All experimental factors affecting Os and Ru isotopic ratios were discussed, including sampling, standard, irradiation, separation and counting. The statistical errors of measurements for the 199 Os/ 184 Os ratio can be controlled within 1%. The experimental results indicate that the statistically significant anomalies of the 190 Os/ 184 Os and 96 Ru/ 102 Ru ratios have not been found relative to the terrestrial Os and Ru standards. (author). 6 refs., 1 fig., 5 tabs

  11. Novel proxies for reconstructing paleohydrology from ombrotrophic peatlands: biomarker and compound-specific H and C stable isotope ratios

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2008-12-01

    Ombrotrophic peatlands are excellent archives for paleohydrologic information because they are hydrologically isolated from their surroundings. However, quantitative proxies for deciphering peatland archives are lacking. Here, we present development and application of novel organic geochemical methods for quantitative reconstruction of paleohydrology from the ombrotrophic sediments, and comparison of organic geochemical data with conventional paleoecological proxies. Application of these methods to the sediments of several North American and European peatlands has revealed significant changes in the hydroclimate throughout the Holocene. The plant assemblage living at the surface of the peatland is tightly controlled by surface moisture. Under wet conditions, Sphagnum mosses, with no active mechanism for drawing water from below the surface of the peatland, are dominant. During dry conditions, vascular plants are more productive relative to Sphagnum. A ratio of the abundance of two biomarkers representing Sphagnum and vascular plants sensitively records changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513). We have further developed stable isotope models to compute climate parameters from compound-specific H and C isotope ratios of biomarkers to create a more comprehensive climate reconstruction. Vascular plant leaf waxes carry the D/H ratio signature of precipitation that is little affected by evaporation, whereas the Sphagnum biomarker records isotopic ratios of the water at the peatland surface, which is strongly enriched by evaporation. Evaporation amount can be calculated using the differences between D/H ratios of the two types of biomarkers. C isotope ratios of Sphagnum biomarkers can also be used to quantify surface wetness. Methanotrophic bacteria live symbiotically with Sphagnum, providing isotopically light carbon for photosynthesis. These bacteria are more active when the Sphagnum is wet, thus providing more 13C-depleted CO2

  12. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean

    Science.gov (United States)

    Hartman, Gideon; Richards, Mike

    2014-02-01

    The relative contributions of bedrock and atmospheric sources to bioavailable strontium (Sr) pools in local soils was studied in Northern Israel and the Golan regions through intensive systematic sampling of modern plants and invertebrates, to produce a map of modern bioavailable strontium isotope ratios (87Sr/86Sr) for regional reconstructions of human and animal mobility patterns. The study investigates sources of variability in bioavailable 87Sr/86Sr ratios, in particular the intra-and inter-site range of variation in plant 87Sr/86Sr ratios, the range of 87Sr/86Sr ratios of plants growing on marine sedimentary versus volcanic geologies, the differences between ligneous and non-ligneous plants with varying growth and water utilization strategies, and the relative contribution of atmospheric Sr sources from different soil and vegetation types and climatic zones. Results indicate predictable variation in 87Sr/86Sr ratios. Inter- and intra-site differences in bioavailable 87Sr/86Sr ratios average of 0.00025, while the range of 87Sr/86Sr ratios measured regionally in plants and invertebrates is 0.7090 in Pleistocene calcareous sandstone and 0.7074 in mid-Pleistocene volcanic pyroclast. The 87Sr/86Sr ratios measured in plants growing on volcanic bedrock show time dependent increases in atmospheric deposition relative to bedrock weathering. The 87Sr/86Sr ratios measured in plants growing on renzina soils depends on precipitation. The spacing between bedrock 87Sr/86Sr ratios and plants is highest in wet conditions and decreases in dry conditions. The 87Sr/86Sr ratios measured in plants growing on terra rossa soils is relatively constant (0.7085) regardless of precipitation. Ligneous plants are typically closer to bedrock 87Sr/86Sr ratios than non-ligneous plants. Since the bioavailable 87Sr/86Sr ratios currently measured in the region reflect a mix of both exogenous and endogenous sources, changes in the relative contribution of exogenous sources can cause variation

  13. SRS-sensor 13C/12C isotops measurements for detecting Helicobacter Pylori

    Science.gov (United States)

    Grishkanich, Aleksandr; Chubchenko, Yan; Elizarov, Valentin; Zhevlakov, Aleksandr; Konopelko, Leonid

    2018-02-01

    We developed SRS-sensor 13C/12C isotops measurements detecting Helicobacter Pylori for medical diagnostics of human health. Measuring of absolute 13C/12C isotope amount ratios allows to explore the topical problems of the modern world, alcoholic beverages and tobacco, medical diagnostics of human health. SRS method is used to measure the ratio of carbon isotopes in the exhaled carbon dioxide, which is used to diagnose the human infection of Helicobacter pylori and the influence of the Helicobacter pylori bacterium on the occurrence of gastritis, gastric and duodenal ulcers. A method for the analysis of human infection with Helicobacter pylori was developed on the basis of measurements of the ratio of 13C / 12C carbon isotopes in human exhaled air with a high level of measurement accuracy. The article reviews the work in the field of provision comparability of absolute 13C/12C isotope amount ratios in the environment and food. The analysis of the technical and metrological characteristics of traditional and perspective instruments for measuring isotope ratios is presented. The provision of comparability of absolute 13C/12C isotope amount ratios is carried by gravimetrically prepared reference standards. The key features and emerging issues are discussed.

  14. The determination of initial ratio of strontium isotope in rocks and its geological application

    International Nuclear Information System (INIS)

    Ying Junlong; Zhao Puyun; Lin Xiulan

    1989-04-01

    The method to determine the initial ratio of strontium isotopes existed in rocks of poor rubidium and rich strontium and main carrier minerals is introduced. The initial ratio obtained from this method is equivalent to that acquired by Rb-Sr isochrone. Based on this result, information on regional rock genesis and mineralization regularities can be provided. It has great significance in the research on activities of ancient continental margin and material sources as well as their evolution. The migration of rock, and ore-forming materials, matallogenetic mechanism and its distribution in the space and time evolution are studied by using these data. In conclusion, the determination of strontium isotopes has broad prospects in the geological research

  15. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    Science.gov (United States)

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.

  16. On the source material of magmas - with special reference to Nd isotopic ratios of igneous rocks

    International Nuclear Information System (INIS)

    Shuto, Kenji

    1980-01-01

    In 1973, the Sm-Nd method was first used for the measurement of the absolute age of igneous rocks and meteorites. Subsequently in the following years, the research works by means of the Nd isotopic ratio in igneous rocks have been made strenuously in order to reveal the chemistry of the source materials of magma giving rise to the igneous rocks and further the evolution process of mantle and earth's crust. The fundamental items for the Sm-Nd method are explained. Then, the research results more important in the above connection are given. Finally, the ideas by the author concerning the source materials of magma are presented from the data available on the Nd isotopes in meteorites and igneous rocks. The following matters are described: the fundamentals of Sm-Nd method, the Nd content in seawater, the negative correlation between Nd and Sr isotopic ratios in igneous rocks, magma source materials and Nd isotopes, and considerations on magma source materials. (J.P.N.)

  17. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    Science.gov (United States)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  18. Online Stable Isotope Analysis of Dissolved Organic Carbon Size Classes Using Size Exclusion Chromatography Coupled to an Isotope Ratio Mass Spectrometer

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A.; Scheibe, A.; LokaBharathi, P.A.; Gleixner, G.

    size classes by coupling high-performance liquid chromatography (HPLC) - size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface...

  19. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  20. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York

    Science.gov (United States)

    Flipse, W.J.; Bonner, F.T.

    1985-01-01

    Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to

  1. Geographical variations in Sr and Nd isotopic ratios of cryoconite on Asian glaciers

    International Nuclear Information System (INIS)

    Nagatsuka, Naoko; Takeuchi, Nozomu; Nakano, Takanori; Shin, Kicheol; Kokado, Emi

    2014-01-01

    Cryoconite is a dark-coloured surface dust deposited on glaciers that consists of wind-blown mineral particles, as well as organic matter derived from microbes living on glaciers. In this paper, we analyse the Sr and Nd isotopic ratios of four mineral fractions (i.e., the saline, carbonate, phosphate, and silicate mineral fractions), as well as the organic fraction, of cryoconite samples obtained from six Asian glaciers (the Altai, Pamir, Tien Shan, Qillian Shan, and Himalayan regions), and discuss their geographical variations in terms of the geological origins of the mineral particles and the biogeochemical processes on the glaciers. The silicate mineral fraction showed lower Sr and higher Nd ratios for the glaciers located to the north (Altai, 87 Sr/ 86 Sr: 0.713 490–0.715 284, εNd(0): −6.4 to −5.6), while higher Sr and lower Nd ratios for the glaciers located to the south (Himalayas, 87 Sr/ 86 Sr: 0.740 121–0.742 088, εNd(0): −16.4 to −15.7); the ratios were similar to those of desert sand, loess, and river sediments in the respective regions of the glaciers. This result suggests that the silicate minerals within the cryoconites were derived from different sources depending on the geographical locations of the glaciers. The isotopic ratios of the saline, carbonate, and phosphate mineral fractions were distinct from those of the silicate fraction, and were similar to those of evaporites and apatite deposits from the Asian deserts, but also varied geographically, indicating that they are likely to reflect their geological origin. The Sr isotopic ratios of the organic fraction were similar to those of the saline and carbonate fractions from glaciers in the central area (Tien Shan and Qillian Shan), but were higher than those of the saline and carbonate fractions, and lower than the phosphate mineral fraction, in the northern and southern areas. The ratios of organic fraction may be determined from the mixing ratio of calcium sources

  2. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data.

    Science.gov (United States)

    Mimmo, Tanja; Camin, Federica; Bontempo, Luana; Capici, Calogero; Tagliavini, Massimo; Cesco, Stefano; Scampicchio, Matteo

    2015-11-15

    The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    Science.gov (United States)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  4. Determination of 240Pu/239Pu isotope ratios in Kara Sea and Novaya Zemlya sediments using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Oughton, D.H.; Skipperud, L.; Salbu, B.; Fifield, L.K.; Cresswell, R.C.; Day, J.P.

    1999-01-01

    Accelerator mass spectrometry (AMS) has been used to determine Pu activity concentrations and 240 Pu/ 239 Pu isotope ratios in sediments from the Kara Sea and radioactive waste dumping sites at Novaya Zemlya. Measured 239,240 Pu activities ranged from 0.06 - 9.8 Bq/kg dry weight, 240 Pu/ 239 Pu atom ratios ranged from 0.13 to 0.28, and 238 Pu/ 239,240 Pu activity ratios from 0.02 to 0.6. Perturbations from global fallout isotope ratios were evident at three sites: the Yenisey Estuary and Abrosimov Fjords where 240 Pu/ 239 Pu ratios were lower (0.13-0.14); and Stepovogo Fjord sediments where ratios were higher (up to 0.28) than fallout ratios. Based on procedural blanks, detection limits for AMS were below 1 fg Pu and the method showed good precision for isotope ratio measurements, minimal matrix, interference and memory effects. For high level samples, comparison between alpha spectrometry and AMS gave good agreement for measurement of 239,240 Pu activity concentrations. (author)

  5. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  6. The common property of isotope anomalies in meteorites

    International Nuclear Information System (INIS)

    Robert, F.

    2004-01-01

    The treatment proposed to account for the non-mass-dependent isotopic fractionation effect observed for oxygen isotopes during the synthesis of ozone (Robert and Camy-Peyret 2001) is applied to other chemical elements. A numerical treatment to calculate isotopic reaction rate ratios is proposed. This treatment yields non-mass-dependent isotopic effects in other chemical elements, qualitatively similar to those observed in some of the high temperature minerals found in the carbonaceous meteorites. This treatment may reflect the numerical consequences of an unrecognized quantum mechanical effect, linked to a property of chemical reactions involving indistinguishable isotopes. (author)

  7. Analytical techniques for determination of framework oxygen isotope ratio of wairakite

    International Nuclear Information System (INIS)

    Noto, Masami; Kusakabe, Minoru; Uchida, Tetsuo.

    1990-01-01

    Dehydration techniques were developed for the analysis of isotopic ratios of framework oxygen of wairakite, one of calcium zeolites often encountered in geothermal systems. Channel water in wairakite were separated from aluminosilicate framework by dehydration in vacuum at 300 deg, 400 deg, 450 deg, 500 deg, 550 deg, 650 deg, 750 deg, 850 deg, and 950 degC, and by stepwise heating at temperatures from 300 deg to 700 degC. The oxygen isotopic analyses of the separated channel water and the residual aluminosilicate framework of wairakite indicated that dehydration at temperatures higher than 400 degC is accompanied by isotopic exchang between the framework oxygen and dehydrating water vapor. The isotopic exchange during the high temperature dehydration makes the δ 18 O of framework oxygen lower and that of channel water higher than those obtained by dehydration at 300 degC. These results are consistent with dehydration behavior of wairakite under vacuum that the maximum rate of dehydration of channel water is attained at about 400 degC. Consequently it is recommended to dehydrate wairakite at a temperature as low as possible in order to avoid the effect of the isotopic exchange. Time required to attain complete dehydration becomes longer with lowering the temperature of dehydration. To compromise these conflicting effects, the optimum conditions of dehydration have been found that most of the channel water is dehydrated at 300 degC for 24 hours, followed by stepwise heating for additional 17 hours up to 700 degC. We obtained a better than ± 0.1 reproducibility for the framework oxygen isotopic determinations with this technique. (author)

  8. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.; Puscas, R.; Radu, S.; Mirel, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Cordea, D. V.; Mihaiu, M. [University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania)

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  9. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    International Nuclear Information System (INIS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-01-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ 18 O and δ 2 H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ 18 O and δ 2 H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source

  10. Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats

    International Nuclear Information System (INIS)

    Zilversmit, D.B.; Hughes, L.B.

    1974-01-01

    Several methods for measuring cholesterol absorption in the rat have been compared. After administration of an oral dose of labeled cholesterol ( 14 C or 3 H) and an intravenous dose of colloidal labeled cholesterol ( 3 H or 14 C) the ratio of the two labels in plasma or whole blood 48 hr or more after dosing compared closely to the ratio of areas under the respective specific activity-time curves. The area ratio method is independent of a time lag between the appearance of oral and intravenous label in the bloodstream. Both measures of cholesterol absorption agree fairly well with a method based on measuring the unabsorbed dietary cholesterol in a pooled fecal sample. The plasma isotope ratio method gave more reproducible results than the fecal collection method when the measurement was repeated in the same animals 5 days after the first measurement. Cholesterol absorption was overestimated by the use of Tween 20-solubilized labeled cholesterol for the intravenous dose. The plasma disappearance curves of injected labeled colloidal cholesterol and cholesterol-labeled chylomicrons infused intravenously over a 3.5-h period in the same animal coincided within experimental error from the first day until 75 days after injection. The plasma isotope ratio method for cholesterol absorption gave the same results in rats practicing coprophagy as in those in which this practice was prevented. The addition of sulfaguanidine to the diet lowered cholesterol absorption as measured by the plasma isotope ratio to the same degree as that measured by the fecal collection method. (U.S.)

  11. Determination of strontium and lead isotope ratios of grains using high resolution inductively coupled plasma mass spectrometer with single collector

    International Nuclear Information System (INIS)

    Shinozaki, Miyuki; Ariyama, Kaoru; Kawasaki, Akira; Hirata, Takafumi

    2010-01-01

    A method for determining strontium and lead isotope ratios of grains was developed. The samples investigated in this study were rice, barley and wheat. The samples were digested with nitric acid and hydrogen peroxide, and heated in a heating block. Strontium and lead were separated from the matrix by adding an acid digested solution into a column packed with Sr resin, which has selectivity for the absorption of strontium and lead. Strontium and lead isotope ratios were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with a single collector. The intraday relative standard deviations of 87 Sr/ 86 Sr and lead isotope ratios ( 204 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 206 Pb) by HR-ICP-MS measurements were < 0.06% and around 0.1%, respectively. This method enabled us to determine strontium and lead isotope ratios in two days. (author)

  12. Stable carbon isotope ratio profiling of illicit testosterone preparations--domestic and international seizures.

    Science.gov (United States)

    Brooker, Lance; Cawley, Adam; Drury, Jason; Edey, Claire; Hasick, Nicole; Goebel, Catrin

    2014-10-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is now established as a robust and mature analytical technique for the doping control of endogenous anabolic androgenic steroids in human sport. It relies on the assumption that the carbon isotope ratios of naturally produced steroids are significantly different to synthetically manufactured testosterone or testosterone prohormones used in commercial medical or dietary supplement products. Recent publications in this journal have highlighted the existence of black market testosterone preparations with carbon isotope ratios within the range reported for endogenous steroids (i.e. δ(13) C ≥ -25.8 ‰). In this study, we set out to profile domestic and international law enforcement seizures of illicit testosterone products to monitor the prevalence of 'enriched' substrates--which if administered to human subjects would be considered problematic for the use of current GC-C-IRMS methodologies for the doping control of testosterone in sport. The distribution of δ(13) C values for this illicit testosterone sample population (n = 283) ranged from -23.4 ‰ to -32.9 ‰ with mean and median of -28.6 ‰--comparable to previous work. However, only 13 out of 283 testosterone samples (4.6 %) were found to display δ(13) C values ≥ -25.8 ‰, confirming that in the vast majority of cases of illicit testosterone administration, current GC-C-IRMS doping control procedures would be capable of confirming misuse. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS.

    Science.gov (United States)

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Horacek, M; Prohaska, T

    2008-01-01

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, The Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.

  14. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.

  15. Mixed-mode chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  16. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Baruzzini, Matthew Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-08

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; the majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for

  17. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  18. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Determination of plutonium isotopic ratios and total concentration by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Despres, Michele.

    1980-11-01

    A non-destructive method of analysis is being investigated for the control in situ of plutonium isotopic composition and total concentration in different matrix without preliminary calibration. The plutonium isotopic composition is determined by gamma-ray spectrometry using germanium detector systems. The same apparatus is used for direct measuring of the total plutonium concentration in solutions or solids by a differential attenuation technique based on two transmitted gamma rays with energies on both sides of the k shell absorption edge of plutonium [fr

  20. An improved FT-TIMS method of measuring uranium isotope ratios in the uranium-bearing particles

    International Nuclear Information System (INIS)

    Chen, Yan; Wang, Fan; Zhao, Yong-Gang; Li, Li-Li; Zhang, Yan; Shen, Yan; Chang, Zhi-Yuan; Guo, Shi-Lun; Wang, Xiao-Ming; Cui, Jian-Yong; Liu, Yu-Ang

    2015-01-01

    An improved method of Fission Track technique combined with Thermal Ionization Mass Spectrometry (FT-TIMS) was established in order to determine isotope ratio of uranium-bearing particle. Working standard of uranium oxide particles with a defined diameter and isotopic composition were prepared and used to review the method. Results showed an excellent agreement with certified values. The developed method was used to analyze isotope ratio of single uranium-bearing particle in swipe samples successfully. The analysis results of uranium-bearing particles in swipe samples accorded with the operation history of the origin. - Highlights: • The developed method was successfully applied in the analysis of real swipe sample. • Uranium-bearing particles were confined in the middle of track detector. • The fission tracks of collodion film and PC film could be confirmed each other. • The thickness of collodion film should be no more than about 60 μm. • The method could avoid losing uranium-bearing particles in the etching step.

  1. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). Part I: delta13C measurements of selected compounds for the development of an isotopic Grob-test.

    Science.gov (United States)

    Serra, F; Janeiro, A; Calderone, G; Rojas, J M Moreno; Rhodes, C; Gonthier, L A; Martin, F; Lees, M; Mosandl, A; Sewenig, S; Hener, U; Henriques, B; Ramalho, L; Reniero, F; Teixeira, A J; Guillou, C

    2007-03-01

    This study was directed towards investigating suitable compounds to be used as stable isotope reference materials for gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) calibration. Several compounds were selected from those used in the 'Grob-test' mixture. Oxygen- and nitrogen-containing substances were added to these compounds to allow the mixture to be used as a possible multi-isotopic calibration tool for 2H/1H, 13C/12C, 15N/14N and 18O/16O ratio determinations. In this paper we present the results of delta13C measurements performed by the consortium of the five laboratories taking part in this inter-calibration exercise. All the compounds were individually assessed for homogeneity, short-term stability and long-term stability by means of EA-IRMS, as required by the bureau communitaire de reference (BCR) Guide for Production of Certified Reference Materials. The results were compared then with the GC-C-IRMS measurements using both polar and non-polar columns, and the final mixture of selected compounds underwent a further certification exercise assessing limits of accuracy and reproducibility under specified GC-C-IRMS conditions. Copyright 2007 John Wiley & Sons, Ltd.

  2. Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios.

    NARCIS (Netherlands)

    Notten, M.J.M.; Walraven, N.; Beets, K.; Vroon, P.; Rozema, J.; Aerts, R.

    2008-01-01

    Lead isotope ratios were used to trace the origin of Pb in a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and

  3. Determination of integrated neutron flux by the measurement of the isotopic ratios of cadmium and gadolinium

    International Nuclear Information System (INIS)

    Tomiyoshi, Irene Akemy

    1982-01-01

    In this work, the possibility of the indirect determination of the integrated neutron flux, through the change of isotopic ratios of cadmium and gadolinium was investigated. The samples of cadmium we/e gadolinium were irradiated in the IEA-Rl reactor. These elements were chosen because they have high thermal neutron absorption cross section which permit the change in the isotopic composition during a short irradiation time to be measured accurately. The isotopic ratios were measured with a thermionic mass spectrometer the silica-gel technique and arrangement with single filament were used for the cadmium analysis, where as the oxi - reduction technique and arrangement with double filaments were used for gadolinium analysis. The mass fractionation effects for cadmium and gadolinium were corrected respectively by the exponential and potential expansion of the isotopic fractionation factor per atomic mass unit. The flux values supplied by the Centro de Operacao e Utilizacao do Reator de Pesquisas do IPEN were extrapolated. These values and the integrated flux values obtained experimentally were compared. (author)

  4. Determination of isotope ratio of elements by mass distribution in molecules of varied chemical compounds

    International Nuclear Information System (INIS)

    Gladkikh, I.S.; Babichev, A.P.

    1999-01-01

    The procedure and program for calculation of isotope ratio of elements involving in the compound being studied using data of mass spectrometry were elaborated. The methods developed for the O 2 , SiH 4 , Cd(CH 3 ) 2 molecules were demonstrated for the illustration. The results of calculation provide support for the efficiency of the program and satisfactory reliability of the results during calculation of the isotope and complex compound concentrations. The program may be used for the estimation of the degree of nonequilibrium isotope distributions, it may indicate on the errors of the mass spectroscopy results [ru

  5. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  6. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces

    Directory of Open Access Journals (Sweden)

    D. Codron

    2005-06-01

    Full Text Available In African savannas, browse-based resources (@3 plants are isotopically distinct from grasses (@4 plants. The carbon isotopic composition of the basic plant diet is recorded in animal tissues. Mammal faeces are a readily accessible, non-invasive, sample material for temporally resolved dietary reconstructions. Faeces, however, include both undigested plant matter and waste, hence accuracy of dietary calculations could potentially be compromised by shifts in plant isotopic values related to seasonal or spatial differences, or by variability in the isotopic differences between faeces and diet. A controlled feeding study of four ungulate species showed a small, consistent difference between diet and faeces of-0.9 o, irrespective of whether the diet was @3 or C4-based. Results from faeces oftaxa known to be pure grazers, pure browsers, and mixed-feeders from the Kruger National Park were entirely consistent with their diets, but the accuracy of dietary reconstructions is enhanced with data from local plant communities.

  7. Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: Anthropogenic or natural sources?

    International Nuclear Information System (INIS)

    Reimann, C.; Fabian, K.; Flem, B.; Schilling, J.; Roberts, D.; Englmaier, P.

    2016-01-01

    Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km"2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km"2), and analysed for Pb and three of the four naturally occurring Pb isotopes ("2"0"6Pb, "2"0"7Pb and "2"0"8Pb) in a HNO_3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct "2"0"6Pb/"2"0"7Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the "2"0"6Pb/"2"0"7Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the "2"0"6Pb/"2"0"7Pb isotope ratio in the soil O horizon. - Highlights: • Lead concentrations are on average higher by a factor of 4 in the soil O than in the C horizon. • The "2"0"6Pb/"2"0"7Pb isotope ratio is considerably lower in the soil O than in the C horizon. • The observed shifts are in conflict with exclusive anthropogenic input of Pb. • The hypothesis of natural Pb-isotope invariance can not be hold.

  8. Yields and isomeric ratio of xenon and krypton isotopes from thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Hsu, S.S.; Lin, J.T.; Yang, C.M.; Yu, Y.W.

    1981-01-01

    The experimental cumulative yields of 85 Kr/sup m/, 87 Kr, 88 Kr, 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ and the independent isomeric yield of 133 Xe/sup m/ in the thermal neutron fission of 235 U have been measured by the gas chromatographic method. The independent yields of 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ were deduced with the aid of 133 I and 135 I data. The isomeric yield ratios of 133 Xe and 135 Xe have been computed and compared with theoretical values since they have the same high spin state J = 11/2 - and low spin ground state J = 3/2 + . The influence of the shell effect on the fission isomeric yield ratio is discussed. From the measured independent yield of Xe isotopes plus the reported data, the Xe-isotopic distribution curve has been constructed. The curve is compared with the isotopic distribution curves of Xe isotopes formed in 11.5 GeV proton interactions with 238 U and Cs isotopes formed in 24 GeV proton interactions with 238 U. Upon fitting the yield curves we find that only those products with N/Z> or =1.48 fit a curve typical of a binary fission process

  9. Isotopic ratio based source apportionment of children's blood lead around coking plant area.

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2014-12-01

    Lead exposure in the environment is a major hazard affecting human health, particularly for children. The blood lead levels in the local children living around the largest coking area in China were measured, and the source of blood lead and the main pathways of lead exposure were investigated based on lead isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in blood and in a variety of media, including food, airborne particulate matter, soil, dust and drinking water. The children's blood lead level was 5.25 (1.59 to 34.36 as range) μg dL(-1), lower than the threshold in the current criteria of China defined by the US Centers for Disease Control (10 μg dL(-1)). The isotopic ratios in the blood were 2.111±0.018 for (208)Pb/(206)Pb and 0.864±0.005 for (207)Pb/(206)Pb, similar to those of vegetables, wheat, drinking water, airborne particulate matter, but different from those of vehicle emission and soil/dust, suggesting that the formers were the main pathway of lead exposure among the children. The exposure pathway analysis based on the isotopic ratios and the human health risk assessment showed that dietary intake of food and drinking water contributed 93.67% of total exposed lead. The study further indicated that the coal used in the coking plant is the dominant pollution source of lead in children's blood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Stable lead isotope ratios and metals in freshwater mussels from a uranium mining environment in Australia’s wet-dry tropics

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas

    2012-01-01

    Highlights: ► Lead isotope ratios in mussels from Magela more uranogenic than from Sandy catchment. ► Additional input of Broken Hill type lead further downstream of mine site. ► Lead isotope ratios in mussels ideal for source apportionment of lead into waterways. - Abstract: Concentrations of Fe, Mn, Cu, Zn, U and Pb, and stable Pb isotopes 206 Pb, 207 Pb and 208 Pb were measured via inductively coupled plasma mass spectrometry in sediments, water and freshwater mussels (Velesunio angasi) from two catchments in the Alligator Rivers Region, Australia. Sediment U and Pb concentrations were higher in Magela Creek downstream than upstream of the Ranger U mine due to the mineralised nature of the catchment and potential local input of sediment from the mine site. Water metal concentrations were highest in Georgetown Creek, which is a tributary of Magela Creek and part drains the Ranger mine site, but there was little difference in concentrations between the Magela Creek upstream and downstream sites. Metal concentrations in mussels collected immediately upstream and downstream of the mine site also showed little difference, whereas Pb isotope ratios displayed a very distinct pattern. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb isotope ratios were more uranogenic downstream than upstream of the site and also more uranogenic than ratios measured in Sandy Billabong, a reference billabong in a catchment not influenced by U mineralisation. Isotope ratios were also more uranogenic in younger mussels, potentially due to the increasing footprint of the mine site over the past decade. The most uranogenic ratios were found in mussels from Georgetown Creek and at a site approximately 2 km downstream. At Mudginberri Billabong, approximately 12 km downstream of the Ranger mine, the relative contribution of uranogenic Pb to the total Pb concentration in mussels was small and overwhelmed by the input of industrial Pb with a Broken Hill type Pb signature. Whereas metal uptake by and

  11. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Prohaska, T [University of Natural Resources and Applied Life Sciences, Department of Chemistry-VIRIS Project, Vienna (Austria); Horacek, M [Austrian Research Centers GmbH, Seibersdorf (Austria)

    2008-01-15

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH{sub 4}NO{sub 3} extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%. (orig.)

  12. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, S.; Brunner, M.; Boulyga, S.F.; Galler, P.; Prohaska, T. [University of Natural Resources and Applied Life Sciences, Department of Chemistry-VIRIS Project, Vienna (Austria); Horacek, M. [Austrian Research Centers GmbH, Seibersdorf (Austria)

    2008-01-15

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH{sub 4}NO{sub 3} extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%. (orig.)

  13. Positron range in PET imaging: non-conventional isotopes

    International Nuclear Information System (INIS)

    Jødal, L; Le Loirec, C; Champion, C

    2014-01-01

    In addition to conventional short-lived radionuclides, longer-lived isotopes are becoming increasingly important to positron emission tomography (PET). The longer half-life both allows for circumvention of the in-house production of radionuclides, and expands the spectrum of physiological processes amenable to PET imaging, including processes with prohibitively slow kinetics for investigation with short-lived radiotracers. However, many of these radionuclides emit ‘high-energy’ positrons and gamma rays which affect the spatial resolution and quantitative accuracy of PET images. The objective of the present work is to investigate the positron range distribution for some of these long-lived isotopes. Based on existing Monte Carlo simulations of positron interactions in water, the probability distribution of the line of response displacement have been empirically described by means of analytic displacement functions. Relevant distributions have been derived for the isotopes 22 Na, 52 Mn, 89 Zr, 45 Ti, 51 Mn, 94m Tc, 52m Mn, 38 K, 64 Cu, 86 Y, 124 I, and 120 I. It was found that the distribution functions previously found for a series of conventional isotopes (Jødal et al 2012 Phys. Med. Bio. 57 3931–43), were also applicable to these non-conventional isotopes, except that for 120 I, 124 I, 89 Zr, 52 Mn, and 64 Cu, parameters in the formulae were less well predicted by mean positron energy alone. Both conventional and non-conventional range distributions can be described by relatively simple analytic expressions. The results will be applicable to image-reconstruction software to improve the resolution. (paper)

  14. Biogeochemistry Science and Education Part One: Using Non-Traditional Stable Isotopes as Environmental Tracers Part Two: Identifying and Measuring Undergraduate Misconceptions in Biogeochemistry

    Science.gov (United States)

    Mead, Chris

    This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to

  15. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  16. Reassessment of the C-13/C-12 and C-14/C-12 isotopic fractionation ratio and its impact on high-precision radiocarbon dating

    NARCIS (Netherlands)

    Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.; Palstra, Sanne W. L.; Meijer, Harro A. J.; Xu, Xiaomei

    2017-01-01

    The vast majority of radiocarbon measurement results (C-14/C-12 isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as C-13/C-12 isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0

  17. Lithologically inherited variation in Pb isotope ratios in sedimentary soils in The Netherlands

    NARCIS (Netherlands)

    Walraven, N.; Gaans, P.F.M. van; Veer, G. van der; Os, B.J.H. van; Klaver, G.T.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R.

    2013-01-01

    Knowledge on the lithologically inherited variation in present day Pb isotope ratios in soils is remarkably limited. Such information is essential to determine the anthropogenic Pb fraction and anthropogenic Pb sources in Pb-polluted soils. This study presents results of a survey of subsoil samples

  18. Strange Isotope Ratios in Jupiter

    Science.gov (United States)

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  19. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples

    International Nuclear Information System (INIS)

    Štrok, Marko; Hintelmann, Holger; Dimock, Brian

    2014-01-01

    Highlights: • The method for the quantitative pre-concentration of Hg from seawater was developed. • First report of Hg isotope ratios in seawater is presented. • A unique mass independent 200 Hg isotope fractionation was observed. • This fractionation has unique potential to distinguish anthropogenic and natural Hg. - Abstract: Hg concentrations in seawater are usually too low to allow direct (without pre-concentration and removal of salt matrix) measurement of its isotope ratios with multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS). Therefore, a new method for the pre-concentration of Hg from large volumes of seawater was developed. The final method allows for relatively fast (about 2.5 L h −1 ) and quantitative pre-concentration of Hg from seawater samples with an average Hg recovery of 98 ± 6%. Using this newly developed method we determined Hg isotope ratios in seawater. Reference seawater samples were compared to samples potentially impacted by anthropogenic activity. The results show negative mass dependent fractionation relative to the NIST 3133 Hg standard with δ 202 Hg values in the range from −0.50‰ to −1.50‰. In addition, positive mass independent fractionation of 200 Hg was observed for samples from reference sites, while impacted sites did not show significant Δ 200 Hg values. Although the influence of the impacted sediments is limited to the seawater and particulate matter in very close proximity to the sediment, this observation may raise the possibility of using Δ 200 Hg to distinguish between samples from impacted and reference sites

  20. Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with the 'Multiple Ion Counting' and filament carburization

    Energy Technology Data Exchange (ETDEWEB)

    Jakopic, Rozle; Richter, Stephan; Kuehn, Heinz; Aregbe, Yetunde [European Commission, Directorate General Joint Research Centre Institute for Reference Materials and Measurements, IRMM Retieseweg 111, B-2440 Geel (Belgium)

    2008-07-01

    A new sample preparation procedure for isotopic measurements using the Triton TIMS (Thermal Ionization Mass Spectrometer) was developed which employed the technique of carburization of rhenium filaments. Carburized filaments were prepared in a special vacuum chamber in which the filaments were heated and exposed to benzene vapor. Ionization efficiency was improved by an order of magnitude. Additionally, a new 'multi-dynamic' measurement technique was developed for Pu isotope ratio measurements using the 'multiple ion counting' (MIC) system. This technique was further combined with the filament carburization technique and applied to the NBL-137 isotopic standard and samples of the NUSIMEP 5 inter-laboratory comparison campaign. The results clearly show an improved precision and accuracy for the 'multi-dynamic' measurement procedure, compared to measurements carried out either in peak-jumping or in static mode using the MIC system with non-carburized filaments. (authors)

  1. The identification of lead ammunition as a source of lead exposure in First Nations: The use of lead isotope ratios

    International Nuclear Information System (INIS)

    Tsuji, Leonard J.S.; Wainman, Bruce C.; Martin, Ian D.; Sutherland, Celine; Weber, Jean-Philippe; Dumas, Pierre; Nieboer, Evert

    2008-01-01

    The use of lead shotshell to hunt water birds has been associated with lead-contamination in game meat. However, evidence illustrating that lead shotshell is a source of lead exposure in subsistence hunting groups cannot be deemed definitive. This study seeks to determine whether lead shotshell constitutes a source of lead exposure using lead isotope ratios. We examined stable lead isotope ratios for lichens, lead shotshell and bullets, and blood from residents of Fort Albany and Kashechewan First Nations, and the City of Hamilton, Ontario, Canada. Data were analyzed using ANOVA and regression analyses. ANOVA of isotope ratios for blood revealed significant differences with respect to location, but not sex. Hamilton differed from both Kashechewan and Fort Albany; however, the First Nations did not differ from each other. ANOVA of the isotope ratios for lead ammunition and lichens revealed no significant differences between lichen groups (north and south) and for the lead ammunition sources (pellets and bullets). A plot of 206 Pb/ 204 Pb and 206 Pb/ 207 Pb values illustrated that lichens and lead ammunition were distinct groupings and only the 95% confidence ellipse of the First Nations group overlapped that of lead ammunition. In addition, partial correlations between blood-lead levels (adjusted for age) and isotope ratios revealed significant (p 206 Pb/ 204 Pb and 206 Pb/ 207 Pb, and a significant negative correlation for 208 Pb/ 206 Pb, as predicted if leaded ammunition were the source of lead exposure. In conclusion, lead ammunition was identified as a source of lead exposure for First Nations people; however, the isotope ratios for lead shotshell pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden

  2. Postmortem study of stable carbon isotope ratios in human cerebellar DNA: preliminary results

    International Nuclear Information System (INIS)

    Slatkin, D.N.; Irsa, A.P.; Friedman, L.

    1978-01-01

    It is observed that 13 C/ 12 C ratios in tissue specimens removed postmortem in the United States and Canada are significantly different from corresponding ratios in European specimens. On the basis of this information, measurements of carbon isotope ratios in DNA isolated from cerebella of native-born and European-born North Americans are in progress with the goal of estimating the average lifetime rate of DNA turnover in human neurons. Preliminary results from twenty postmortem examinations are consistent with the hypothesis that a significant proportion of human cerebellar DNA is renewed during the lifetime of an individual

  3. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, 230 Th, 232 Th, 233 U, 234 U, 236 U, 238 U, 237 Np, 239 Pu, and 242 Pu, relative to 235 U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are 230 Th - 13%, 237 Np - 9.6% and 239 Pu - 7.6%. 5 refs., 6 tabs

  4. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and...

  5. A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. : I development and validation

    NARCIS (Netherlands)

    Federherr, E.; Cerli, C.; Kirkels, F. M. S. A.; Kalbitz, K.; Kupka, H. J.; Dunsbach, R.; Lange, L.; Schmidt, T. C.

    2014-01-01

    RATIONALE: Traditionally, dissolved organic carbon (DOC) stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analyzer/isotope ratiomass spectrometry (EA/IRMS) or a wet chemical oxidation (WCO)-based device coupled to an isotope ratio mass

  6. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  7. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brenna, Elisabetta [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: elisabetta.brenna@polimi.it; Fronza, Giovanni [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Instituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: giovanni.fronza@polimi.it; Fuganti, Claudio [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)

    2007-10-10

    Samples of fluoxetine of different origin were submitted to natural abundance {sup 2}H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting.

  8. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    International Nuclear Information System (INIS)

    Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio

    2007-01-01

    Samples of fluoxetine of different origin were submitted to natural abundance 2 H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting

  9. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  10. The assesment of the food quality by 13 C isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Cuna, Stela; Cuna, Cornel

    2001-01-01

    Carbon 13 analysis can be a key analytical technique used in the fight to detect undeclared addition of low cost adulterants to high value foods. The natural abundance of 13 C in food is related to how the plant fix the carbon during photosynthesis. Plants that use a C3 photosynthetic cycle discriminate against 13 C more than plants with C4 cycle. We developed a method for analysis of 13 C isotope in organic samples. Because of instrumental requirements carbon must be converted to CO 2 for stable isotope ratio measurements. Conversion of organic samples to CO 2 was accomplished by combustion in an excess oxygen atmosphere. This technique involves the combustion of individual samples in sealed, evacuated quartz tubes containing CuO as the oxygen source. Because each sample is prepared in its own container, there is no chance for memory effects. The method was tested for sensitivity (the smallest increment of the isotope ratio that must be detected with confidence), sample size (the minimum quantity of a pure molecular species available to achieve the desired accuracy) and precision. The method was utilised for the detection of a synthetic flavour from natural one, namely the natural oil bitter almond from the synthetic benzaldehyde. The method can be validated for the detection or establishment of authenticity in food products. (authors)

  11. Optimization and application of ICPMS with dynamic reaction cell for precise determination of 44Ca/40Ca isotope ratios.

    Science.gov (United States)

    Boulyga, Sergei F; Klötzli, Urs; Stingeder, Gerhard; Prohaska, Thomas

    2007-10-15

    An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it

  12. Energy and non-traditional security (NTS) in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Anthony, Mely [Nanyang Technological Univ., Singapore (SG). Centre for Non-Traditional Security (NTS) Studies; Chang, Youngho [Nanyang Technological Univ., Singapore (Singapore). Division of Economics; Putra, Nur Azha (eds.) [National Univ. of Singapore (Singapore). Energy Security Division

    2012-07-01

    Traditional notions of security are premised on the primacy of state security. In relation to energy security, traditional policy thinking has focused on ensuring supply without much emphasis on socioeconomic and environmental impacts. Non-traditional security (NTS) scholars argue that threats to human security have become increasingly prominent since the end of the Cold War, and that it is thus critical to adopt a holistic and multidisciplinary approach in addressing rising energy needs. This volume represents the perspectives of scholars from across Asia, looking at diverse aspects of energy security through a non-traditional security lens. The issues covered include environmental and socioeconomic impacts, the role of the market, the role of civil society, energy sustainability and policy trends in the ASEAN region.

  13. A lead isotope ratio data base of ancient Chinese bronzes

    International Nuclear Information System (INIS)

    Jin Zhengyao

    2005-01-01

    A data base of lead isotope ratio of ancient Chinese bronzes is set up. There are 2888 members, including bronze objects, casting remains, and related ores, etc. in the file. The file contents of data base are made from analysis work on Chinese bronze previously carried out in several laboratories in China, Japan and USA. The main body of the file contents is formed from records, analysis data, reference documents, and images. The data base is designed for sharing information in provenance study on raw metal material for bronze production in China Bronze Age. (author)

  14. Element/Ca, C and O isotope ratios in modern brachiopods

    DEFF Research Database (Denmark)

    Ullmann, C. V.; Frei, Robert; Korte, Christoph

    2017-01-01

    Fossil brachiopods are of major importance for the reconstruction of palaeoenvironmental conditions, particularly of the Paleozoic. In order to better understand signals of ancient shell materials, modern analogue studies have to be conducted. Here we present C and O isotope data in conjunction...... with ambient seawater. Some species – especially in the suborder Terebratellidina – show partly distinct disequilibrium signals, suggesting some degree of phylogenetic control on the expression of vital effects. Mn/Ca and Fe/Ca ratios measured in the modern species form a baseline to assess fossil preservation...

  15. Determination of carbon isotope ratios for honey samples by means of a liquid chromatography/isotope ratio mass spectrometry system coupled with a post-column pump.

    Science.gov (United States)

    Kawashima, Hiroto; Suto, Momoka; Suto, Nana

    2018-05-20

    Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO 2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios by LC/IRMS. The main improvement was the use of a post-column pump. Using the improved system, we determined δ 13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of the honey samples were analyzed by LC/IRMS. The δ 13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and -30.6 to -27.4‰, respectively. The analysis time was 1/3-1/2 the times required for analysis by previously reported methods. The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS. This article is protected by copyright. All rights reserved.

  16. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    Science.gov (United States)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  17. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (porigin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 15N/14N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    International Nuclear Information System (INIS)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-01-01

    In this study, the 15 N/ 14 N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of δ 15 N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, δ 15 N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places

  19. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  20. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis.

    Science.gov (United States)

    Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R

    2017-02-15

    Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    Science.gov (United States)

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may

  2. Isotopic 32S/33S ratio as a diagnostic of presolar grains from novae

    Directory of Open Access Journals (Sweden)

    A. Parikh

    2014-10-01

    Full Text Available Measurements of sulphur isotopes in presolar grains can help to identify the astrophysical sites in which these grains were formed. A more precise thermonuclear rate of the 33S(p,γ34Cl reaction is required, however, to assess the diagnostic ability of sulphur isotopic ratios. We have studied the 33S(3He,d34Cl proton-transfer reaction at 25 MeV using a high-resolution quadrupole–dipole–dipole–dipole magnetic spectrograph. Deuteron spectra were measured at ten scattering angles between 10° and 55°. Twenty-four levels in 34Cl over Ex=4.6–5.9 MeV were observed, including three levels for the first time. Proton spectroscopic factors were extracted for the first time for levels above the 33S + p threshold, spanning the energy range required for calculations of the thermonuclear 33S(p,γ34Cl rate in classical nova explosions. We have determined a new 33S(p,γ34Cl rate using a Monte Carlo method and have performed new hydrodynamic nova simulations to determine the impact on nova nucleosynthesis of remaining nuclear physics uncertainties in the reaction rate. We find that these uncertainties lead to a factor of ≤5 variation in the 33S(p,γ34Cl rate over typical nova peak temperatures, and variation in the ejected nova yields of SCa isotopes by ≤20%. In particular, the predicted 32S/33S ratio is 110–130 for the nova model considered, compared to 110–440 with previous rate uncertainties. As recent type II supernova models predict ratios of 130–200, the 32S/33S ratio may be used to distinguish between grains of nova and supernova origin.

  3. Carbon and oxygen isotopic ratio bi-variate distribution for marble artifacts quarry assignment

    International Nuclear Information System (INIS)

    Pentia, M.

    1995-01-01

    Statistical description, by a Gaussian bi-variate probability distribution of 13 C/ 12 C and 18 O/ 16 O isotopic ratios in the ancient marble quarries has been done and the new method for obtaining the confidence level quarry assignment for marble artifacts has been presented. (author) 8 figs., 3 tabs., 4 refs

  4. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C.; Krol, M.C.; Rockmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H-2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H-2 and several other species as well as the H-2 isotopic composition in air samples that were collected in the BARCA

  5. Permafrost oxygen isotope ratios and chronology of three cores from Antarctica

    International Nuclear Information System (INIS)

    Stuiver, M.; Yang, I.C.; Denton, G.H.

    1976-01-01

    It is stated that permafrost core sediments, associated with the last intrusion of the Ross Ice Shelf in the New Harbour region, were deposited in marine (0 - 85 m deep) as well as freshwater environments (100 - 125 m). Oxygen isotope ratio measurements on these cores provide palaeoclimatic information and show that the extension of the Ross Ice Shelf predates 150,000 yr BP, whereas the radiocarbon date of its retreat is about 5,800 yr b.p. (author)

  6. The application of stable carbon isotope ratios as water quality indicators in coastal areas of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Javed, T.; Tasneem, M.A.; Sajjad, M.I.; Saleem, M.; Khan, S.H.; Rizvi, S.H.N.; Siddiqui, S.A.; Qari, R.

    1998-01-01

    Stable carbon isotope ratios (δ 13 C) of total dissolved inorganic carbon (TDIC), total inorganic and organic carbon in bottom sediments, as well as sea plants in polluted water sources, non-polluted Karachi Sea water and pollution recipients are used to elaborate pollution scenario of shallow marine environment off Karachi coast. These results are supplemented with stable isotope composition of nitrogen (δ 15 N) in seaweeds and mangroves, toxic/trace metal concentration in sea-bottom sediments, total Coliform bacterial population, electrical conductivity, temperature and turbidity. Isotopic data shows that the mangrove ecosystem and the tidal fluctuations play a key role in controlling contamination inventories in shallow sea water off Karachi coast, specifically the Manora Channel. The Karachi harbour zone is found to be the most heavily polluted marine site in Manora channel during high as well as low tide regimes. Significant concentrations of toxic metals such as Pb, Ni, Cr, Zn, V, U are observed in off-shore sediments of Karachi coast. The results show that sewage and industrial wastes are the main sources of heavy metal pollution in Karachi harbour, Manora Channel exit zone and the southeast coast. However, as compared to other coastal areas, the Karachi coast is moderately polluted. Studies suggest incorporation of quick remedial measures to combat pollution in shallow marine environments off Karachi Coast. (author)

  7. Evaluating the reliability of uranium concentration and isotope ratio measurements via an interlaboratory comparison program

    International Nuclear Information System (INIS)

    Oliveira Junior, Olivio Pereira de; Oliveira, Inez Cristina de; Pereira, Marcia Regina; Tanabe, Eduardo

    2009-01-01

    The nuclear fuel cycle is a strategic area for the Brazilian development because it is associated with the generation of electricity needed to boost the country economy. Uranium is one the chemical elements in this cycle and its concentration and isotope composition must be accurately known. In this present work, the reliability of the uranium concentration and isotope ratio measurements carried out at the CTMSP analytical laboratories is evaluated by the results obtained in an international interlaboratory comparison program. (author)

  8. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    Science.gov (United States)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  9. Normalization of oxygen and hydrogen isotope data

    Science.gov (United States)

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  10. Effects of arbuscular mycorrhizal fungi on gas exchange and stable isotope ratio of δ13C, δ15N of leymus chinensis plant

    International Nuclear Information System (INIS)

    Shi Weiqi; Wang Guoan; Li Xiaolin

    2008-01-01

    Leymus chinensis, one of dominant species in Inner Mongolia grassland, was selected to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on plant gas change parameters and stable isotope ratio in pot culture. The plant was inoculated with two mycorrhizal fungi, Glomus intraradices and Glomus claroidum, and the uninoculated plant was used as the control check. On the 45th , 60th , 75th days after sowing, gas exchange parameters and stable isotope ratio were measured. The results showed that AM infection promoted phosphoms content, stomatal conductance and photosynthetic rate of Leymus chinensis, reduced host δ 15 N, however, it did not influence host intrinsic water using efficiency and δ 13 C. It was the growth time that significantly affected the gas exchange and stable isotope ratio of δ 13 C and δ 15 N. And the interaction of inoculation and growth time also influenced on the net photosynthetic rate, δ 13 C and δ 15 N of the host. Stomatal conductance and photosynthetic rate were always changed the same direction by arbuscular mycorrhizal fungi causing no significant difference between mycorrhizal and non-mycorrhizal plant. AMF absorbed nitrogen and accumulated δ 15 N, thus, it transformed less 15 N into the host, and as a result, the mycorrhizal plant had lower δ 15 N. Therefore, the results gave a new way and reference to know of the grass balance of carbon gain and water cost and the nitrogen cycle in grassland. (authors)

  11. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  12. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C; Krol, M.C.; Röckmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço

  13. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    Science.gov (United States)

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH 10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  14. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  15. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14. 74 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, and /sup 242/Pu, relative to /sup 235/U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are /sup 230/Th - 13%, /sup 237/Np - 9.6% and /sup 239/Pu - 7.6%. 5 refs., 6 tabs.

  16. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)

    Science.gov (United States)

    Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.

    2016-05-01

    In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as δ66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that δ66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were also observed between browsers and grazers as well as between carnivores that consumed bone (i.e. hyenas) compared to those that largely consume flesh (i.e. lions). We conclude that Zn isotope ratio measurements of bone and teeth are a new and promising dietary indicator.

  17. Investigation of two technical toxaphene products by using isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, W.; Armbruster, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Gleixner, G. [Max-Planck-Institut fuer Biogeochemie, Jena (Germany)

    2004-09-15

    Organochlorine compounds have been used in high quantities throughout the past 60 years. Being long-lived in the environment and toxic to humans and wildlife, some of them were classified as persistent organic pollutants (POPs). One of the POPs of special concern is toxaphene which is produced by the chlorination of the natural product camphene (or {alpha}-pinene). The technical products consist of several hundred compounds, mainly of chlorobornanes with an average number of eight chlorine substituents. Toxaphene has been produced in high quantities in different parts of the world. Even though the use has been discontinued during the last two decades, there are still several ecosystems which are heavily contaminated with this chloropesticide. Due to the huge variety of the technical products accompanied with a severe change of composition in the environment, analytical tracing back of toxaphene residues to a specific product has not yet been achieved. One of the potential analytical tools for distinguishing substances that differ only in their way of production is the determination of ratios of stable isotopes ({sup 13}C/{sup 12}C; {sup 2}H/{sup 1}H; {sup 15}N/{sup 14}N). Since the synthesis of toxaphene is starting from natural compounds obtained from different continents, the technical products could have different ratios of stable isotopes. In this study, we investigated the {sup 13}C/{sup 12}C ratio of two former major toxaphene products.

  18. Quantifying mercury isotope dynamics in captive Pacific bluefin tuna (Thunnus orientalis

    Directory of Open Access Journals (Sweden)

    Sae Yun Kwon

    2016-02-01

    Full Text Available Abstract Analyses of mercury (Hg isotope ratios in fish tissues are used increasingly to infer sources and biogeochemical processes of Hg in natural aquatic ecosystems. Controlled experiments that can couple internal Hg isotope behavior with traditional isotope tracers (δ13C, δ15N can improve the applicability of Hg isotopes as natural ecological tracers. In this study, we investigated changes in Hg isotope ratios (δ202Hg, Δ199Hg during bioaccumulation of natural diets in the pelagic Pacific bluefin tuna (Thunnus orientalis; PBFT. Juvenile PBFT were fed a mixture of natural prey and a dietary supplement (60% Loligo opalescens, 31% Sardinops sagax, 9% gel supplement in captivity for 2914 days, and white muscle tissues were analyzed for Hg isotope ratios and compared to time in captivity and internal turnover of δ13C and δ15N. PBFT muscle tissues equilibrated to Hg isotope ratios of the dietary mixture within ∼700 days, after which we observed a cessation in further shifts in Δ199Hg, and small but significant negative δ202Hg shifts from the dietary mixture. The internal behavior of Δ199Hg is consistent with previous fish studies, which showed an absence of Δ199Hg fractionation during Hg bioaccumulation. The negative δ202Hg shifts can be attributed to either preferential excretion of Hg with higher δ202Hg values or individual variability in captive PBFT feeding preferences and/or consumption rates. The overall internal behavior of Hg isotopes is similar to that described for δ13C and δ15N, though observed Hg turnover was slower compared to carbon and nitrogen. This improved understanding of internal dynamics of Hg isotopes in relation to δ13C and δ15N enhances the applicability of Hg isotope ratios in fish tissues for tracing Hg sources in natural ecosystems.

  19. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment

    Science.gov (United States)

    Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.

    2018-01-01

    The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.

  20. Stable isotope ratios of the atmospheric CH4, CO2 and N2O in Tokai-mura

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Andoh, Mariko A.; Amano, Hikaru

    2000-11-01

    This report presents the results and interpretation of stable isotope ratios of the atmospheric CH 4 , CO 2 and N 2 O from a variety of sources in Tokai-mura. The seasonal changes of δ 13 CH 4 , δ 13 CO 2 and δ 15 N 2 O were determined under in-situ conditions in four sampling sites and one control site. Such measurements are expected to provide a useful means of estimating the transport mechanisms of the three trace gases in the environment. These isotopic signatures were analyzed by Isotope Ratio Mass Spectrometer (IRMS, Micromass Isoprime). Our data showed the significant seasonal fluctuation in the Hosoura rice paddy during the entire growing season in 1999. Possible causes for the variation are postulated. Additional measurements on soil properties and on organic δ 13 C in rice plant are suggested. Cited outstanding original papers are summarized in the references. (author)

  1. Investigating the origin of Pb pollution in a terrestrial soil­-plant-­snail food chain by means of Pb isotope ratios

    NARCIS (Netherlands)

    Notten, M.J.M.; Walraven, N.; Beets, C.J.; Vroon, P.Z.; Rozema, J.; Aerts, R.

    2008-01-01

    Lead isotope ratios were used to trace the origin of Pb in a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and

  2. Student learning or the student experience: the shift from traditional to non-traditional faculty in higher education

    Directory of Open Access Journals (Sweden)

    Carlos Tasso Eira de Aquino

    2016-10-01

    Full Text Available Trends in higher education indicate transformations from teachers to facilitators, mentors, or coaches. New classroom management requires diverse teaching methods for a changing population. Non-traditional students require non-traditional faculty. Higher education operates similar to a traditional corporation, but competes for students, faculty, and funding to sustain daily operations and improve academic ranking among peers (Pak, 2013. This growing phenomenon suggests the need for faculty to transform the existing educational culture, ensuring the ability to attract and retain students. Transitions from student learning to the student experience and increasing student satisfaction scores are influencing facilitation in the classroom. On-line facilitation methods are transforming to include teamwork, interactive tutorials, media, and extending beyond group discussion. Faculty should be required to provide more facilitation, coaching, and mentoring with the shifting roles resulting in transitions from traditional faculty to faculty-coach and faculty mentor. The non-traditional adult student may require a more hands on guidance approach and may not be as self-directed as the adult learning theory proposes. This topic is important to individuals that support creation of new knowledge related to non-traditional adult learning models.

  3. Determination of uranium and its isotopic ratios in environmental samples

    International Nuclear Information System (INIS)

    Flues Szeles, M.S.M.

    1990-01-01

    A method for the determination of uranium and its isotopic ratios ( sup(235)U/ sup(238)U and sup(234U/ sup(238)U) is established in the present work. The method can be applied in environmental monitoring programs of uranium enrichment facilities. The proposed method is based on the alpha spectrometry technique which is applied after a purification of the sample by using an ionic exchange resin. The total yield achieved was (91 + 5)% with a precision of 5%, an accuracy of 8% and a lower limit of detection of 7,9 x 10 sup(-4)Bq. The uranium determination in samples containing high concentration of iron, which is an interfering element present in environmental samples, particularly in soil and sediment, was also studied. The results obtained by using artificial samples containing iron and uranium in the ratio 1000:1, were considered satisfactory. (author)

  4. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Science.gov (United States)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  5. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    Science.gov (United States)

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  6. Measurement of the natural variation of 13C/12C isotope ratio in organic samples

    International Nuclear Information System (INIS)

    Ducatti, C.

    1977-01-01

    The isotopic ratio analysis for 13 C/ 12 C by mass spectrometry using a 'Working standard' allows the study of 13 C natural variation in organic material, with a total analytical error of less than 0,2%. Equations were derived in order to determine 13 C/ 12 C and 18 O/ 16 O ratios related to the 'working standard' CENA-std and to the international standard PDB. Isotope ratio values obtained with samples prepared in two different combustion apparatus were compared; also the values obtained preparing samples by acid decomposition of carbonaceous materials were compared with the values obtained in different international laboratories. Utilizing the methodology proposed, several leaves collected at different heights of different vegetal species, found 'inside' and 'outside' of the Ducke Forest Reserve, located in the Amazon region, are analysed. It is found that the 13 C natural variation depends upon metabolic process and environmental factors, both being factors which may be qualified as parcial influences on the CO 2 cycle in the forest. (author) [pt

  7. Simultaneous determination of wine sugars, glycerol and organic acids 13C/12C isotopic ratio by ion chromatography-co-IRMS

    Directory of Open Access Journals (Sweden)

    Guyon Francois

    2014-01-01

    Full Text Available Ion chromatography (IC isotope ratio mass spectrometry (IRMS coupling is possible using a liquid interface allowing chemical oxidation (co of organic compounds. Synthetic solutions containing a mixture of glycerol, sugars (sucrose, glucose and fructose and organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric were elaborated to estimate analytical applications of two different IC systems. It appears that the use of carbonated solution in the eluting phase is a perturbation for 13C isotope measurements as it creates a δ13C deviation from the expected values. A sample of authentic sweet wine was analyzed by IC-co-IRMS using KOH gradient. Ratios of isotopic, ratios of organic acids and glycerol was found to be, in average, equal 1.01 ± 0.04 that is in accordance with our previous results.

  8. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  9. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    International Nuclear Information System (INIS)

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-01

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the (NiFe)-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  10. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  11. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  12. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    Science.gov (United States)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked

  13. Application of sulphur isotope ratios to examine weaning patterns and freshwater fish consumption in Roman Oxfordshire, UK

    Science.gov (United States)

    Nehlich, Olaf; Fuller, Benjamin T.; Jay, Mandy; Mora, Alice; Nicholson, Rebecca A.; Smith, Colin I.; Richards, Michael P.

    2011-09-01

    This study investigates the application of sulphur isotope ratios (δ 34S) in combination with carbon (δ 13C) and nitrogen (δ 15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans ( n = 83), terrestrial animals ( n = 11), and freshwater fish ( n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ 34S values were found. The δ 34S values from the terrestrial animals were highly variable (-13.6‰ to +0.5‰), but the δ 34S values of the fish were clustered and 34S-depleted (-20.9‰ to -17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ 34S values (-18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ 34S values were found between the males (-7.8 ± 6.0‰) and females (-5.3 ± 6.8‰), but the females had a linear correlation ( R2 = 0.71; p eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ 34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.

  14. Si and C isotopic ratios in AGB stars: SiC grain data, models, and the galactic evolution of the Si Isotopes

    NARCIS (Netherlands)

    Zinner, E.; Nittler, L.R.; Gallino, R.; Karakas, A.I.; Lugaro, M.A.; Straniero, O.; Lattanzio, J.C.

    2006-01-01

    Presolar grains of the mainstream, Y and Z type are believed to have an origin in carbon stars. We compared the C and Si isotopic ratios of these grains [1] with the results of theoretical models for the envelope compositions of AGB stars. Two sets of models (FRANEC, Monash) use a range of stellar

  15. On-line coupling of the MAT 251 with a Carlo Erba elemental analyzer for carbon isotope ratio measurements

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1986-06-01

    For carbon isotope investigations with a moderate precision demand of about 0.2 per mil in the isotope ratio fast and reliable results are attained by on line combination of the ANA 1500 Elemental Analyzer and the MAT 251 Isotope Mass Spectrometer. The crucial point hereof is the gas splitting device. By proper design and adjustment of the analytical parameters, good sample efficiency and a sharp CO 2 bulk within the He stream is reached. The main characteristics of this combined equipment are described and some isotopic results of organic and anorganic carbon in lake sediment-samples are given as well as deltasup1 3 C-analyses of spiritous liquors. (Author)

  16. Selection of mode for the measurement of lead isotope ratios by inductively coupled plasma mass spectrometry and its application to milk powder analysis

    International Nuclear Information System (INIS)

    Dean, J.R.; Ebdon, L.; Massey, R.

    1987-01-01

    An investigation into the selection of the optimum mode for the measurement of isotope ratios in inductively coupled plasma mass spectrometry (ICP-MS) is reported, with particular reference to lead isotope ratios. Variation in the accuracy and precision achievable using the measurement modes of scanning and peak jumping are discussed. It is concluded that if sufficient sample and time are available, scanning gives best accuracy and precision. Isotope dilution analysis (IDA) has been applied to the measurement of the lead content of two dried milk powders of Australian and European origin introduced as slurries into ICP-MS. Differences in the lead isotope ratios in the two milk powders were investigated and the total lead content determined by IDA. Isotope dilution analysis permitted accurate data to be obtained with an RSD of 4.2% or milk powder containing less than 30 ng g -1 of lead. The ICP-MS technique is confirmed as a useful tool for IDA. (author)

  17. Measurement of radium isotopes with the ANU AMS facility

    International Nuclear Information System (INIS)

    Tims, S.G.; Fifield, L.K.

    2003-01-01

    In contaminated environments the spatial distribution of thorium should be far more uniform than that for uranium. Accordingly, measurements of the 228 Ra/ 226 Ra ratio may provide a probe with which to assess variations in the amount of uranium-process derived 226 Ra. Furthermore, for contaminated or rehabilitated areas where the 226 Ra/ 228 Ra ratio is anomalous, measurements of the transport of material away from the site via the ratio could provide information on the local erosion rate. Accelerator Mass Spectrometry (AMS) adds a tandem ion accelerator and additional analysis stages to a conventional mass spectrometry arrangement, in order to facilitate ultra-trace level abundance measurements of selected isotopes. In doing so, it also makes use of the detection and analysis techniques of traditional nuclear physics. For the 226,228 Ra isotopes AMS offers a number of advantages over the more traditional techniques of a-and γ- spectroscopy. AMS requires less sample mass, and because of its very high selectivity provides excellent discrimination against potential interferences. The smaller sample size (∼1g) also allows a considerable simplification of the radio-chemical processing compared with α-spectroscopy. Two major advantages are the ability to measure both isotopes with the one technique without the necessity of waiting for 228 Th to grow in and, that once prepared, the 228 Ra/ 226 Ra ratio for ∼30 samples can be determined in about a day. This paper will describe the AMS technique, and highlight recent developments in the measurement of 226,228 Ra with the ANU system

  18. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry.

    Science.gov (United States)

    Srivastava, Abneesh; Michael Verkouteren, R

    2018-05-25

    Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.

  19. Profiling of new psychoactive substances (NPS) by using stable isotope ratio mass spectrometry (IRMS): study on the synthetic cannabinoid 5F-PB-22.

    Science.gov (United States)

    Münster-Müller, S; Scheid, N; Holdermann, T; Schneiders, S; Pütz, M

    2018-05-21

    In this paper results of a pilot study on the profiling of the synthetic cannabinoid receptor agonist 5F-PB-22 (5F-QUPIC, pentylfluoro-1H-indole-3-carboxylic acid-8-quinolinyl ester) via isotope ratio mass spectrometry are presented. It is focused on δ 13 C, δ 15 N and δ 2 H isotope ratios, which are determined using elemental analyser (EA) and high temperature elemental analyser (TC/EA) coupled to an isotope ratio mass spectrometer (IRMS). By means of a sample of pure material of 5F-PB-22 it is shown that the extraction of 5F-PB-22 from herbal material, a rapid clean-up procedure, or preparative column chromatography had no influences on the isotope ratios. Furthermore, 5F-PB-22 was extracted from fourteen different herbal blend samples ("Spice products" from police seizures) and analysed via IRMS, yielding three clusters containing seven, five and two samples, distinguishable through their isotopic composition, respectively. It is assumed that herbal blends in each cluster have been manufactured from individual batches of 5F-PB-22. This article is protected by copyright. All rights reserved.

  20. A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material.

    Science.gov (United States)

    Sieper, Hans-Peter; Kupka, Hans-Joachim; Williams, Tony; Rossmann, Andreas; Rummel, Susanne; Tanz, Nicole; Schmidt, Hanns-Ludwig

    2006-01-01

    The isotope ratio of each of the light elements preserves individual information on the origin and history of organic natural compounds. Therefore, a multi-element isotope ratio analysis is the most efficient means for the origin and authenticity assignment of food, and also for the solution of various problems in ecology, archaeology and criminology. Due to the extraordinary relative abundances of the elements hydrogen, carbon, nitrogen and sulfur in some biological material and to the need for individual sample preparations for H and S, their isotope ratio determination currently requires at least three independent procedures and approximately 1 h of work. We present here a system for the integrated elemental and isotope ratio analysis of all four elements in one sample within 20 min. The system consists of an elemental analyser coupled to an isotope ratio mass spectrometer with an inlet system for four reference gases (N(2), CO(2), H(2) and SO(2)). The combustion gases are separated by reversible adsorption and determined by a thermoconductivity detector; H(2)O is reduced to H(2). The analyser is able to combust samples with up to 100 mg of organic material, sufficient to analyse samples with even unusual elemental ratios, in one run. A comparison of the isotope ratios of samples of water, fruit juices, cheese and ethanol from wine, analysed by the four-element analyser and by classical methods and systems, respectively, yielded excellent agreements. The sensitivity of the device for the isotope ratio measurement of C and N corresponds to that of other systems. It is less by a factor of four for H and by a factor of two for S, and the error ranges are identical to those of other systems. Copyright (c) 2006 John Wiley & Sons, Ltd.

  1. Determination of 129I/127I isotope ratios in liquid solutions and environmental soil samples by ICP-MS with hexapole collision cell

    OpenAIRE

    Izmer, A. V.; Boulyga, S. F.; Becker, J. S.

    2003-01-01

    The determination of I-129 in environmental samples at ultratrace levels is very difficult by ICP-MS due to a high noise caused by Xe impurities in argon plasma gas (interference of Xe-129(+)), possible (IH2+)-I-127 interference and an insufficient abundance ratio sensitivity of the ICP mass spectrometer for I-129/I-127 isotope ratio measurement. A sensitive, powerful and fast analytical technique for iodine isotope ratio measurements in aqueous solutions and contaminated soil samples directl...

  2. Are Polyatomic Interferences, Cross Contamination, Mixing-Effect, etc., Obstacles for the Use of Laser Ablation-ICP-MS Coupling as an Operational Technique for Uranium Isotope Ratio Particle Analysis?

    International Nuclear Information System (INIS)

    Donard, A.; Pointurier, F.; Pecheyran, C.

    2015-01-01

    Analysis of ''environmental samples'', which consists in dust collected with cotton clothes wiped by inspectors on surfaces inside declared nuclear facilities, is a key tool for safeguards. Although two methods (fission tracks-TIMS and SIMS) are already used routinely to determine the isotopic composition of uranium particles, the laser ablationinductively coupled plasma mass spectrometry (LA-ICP-MS) coupling has been proven to be an interesting option thanks to its rapidity, high sensitivity and high signal/noise ratio. At CEA and UPPA, feasibility of particle analysis using a nanosecond LA device and a quadrupole ICP-MS has been demonstrated. However, despite the obvious potential of LA-ICP-MS for particle analysis, the effect of many phenomena which may bias isotope ratio measurements or lead to false detections must be investigated. Actually, environmental samples contain many types of non-uranium particles (organic debris, iron oxides, etc.) that can form molecular interferences and induce the risk of isotopic measurement bias, especially for minor isotopes (234U, 236U). The influence of these polyatomic interferences on the measurements will be discussed. Moreover, different uranium isotopic compositions can be found in the same sample. Therefore, risks of memory effect and of particle-toparticle cross-contamination by the deposition of ablation debris around the crater have also been investigated. This study has been conducted by using a femtosecond laser ablation device coupled to a high sensitivity sector field ICP-MS. Particles were fixed onto the discs with collodion and were located thanks to their fission tracks so that micrometric particles can be analyzed separately. All uranium isotope ratios were measured. Results are compared with the ones obtained with the fission tracks-TIMS technique on other deposition discs from the same sample. Performance of the method in terms of accuracy, precision, and detection limits are estimated

  3. Determination of 239Pu/240Pu isotopic ratio by high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Amoudry, F.; Burger, P.

    1983-05-01

    The development of passivated ion-implanted silicon detectors and of very thin alpha-particle sources improves the resolution of alpha-particle spectra and allows to separate energy pics up to now unseparate. The 239 Pu/ 240 Pu isotopic ratio of a mixture has been measured using the alpha spectrometry deconvolution code DEMO [fr

  4. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    Science.gov (United States)

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  5. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, Paul P. [University of Johannesburg, Department of Chemistry, Johannesburg (South Africa); Vanhaecke, Frank [Institute for Nuclear Sciences, Laboratory of Analytical Chemistry Ghent University, Ghent (Belgium)

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO{sub 3} was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the {sup 11}B/{sup 10}B ratios can be used to characterize wines from different geographical origins. Average {sup 11}B/{sup 10}B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  6. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    International Nuclear Information System (INIS)

    Coetzee, Paul P.; Vanhaecke, Frank

    2005-01-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO 3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11 B/ 10 B ratios can be used to characterize wines from different geographical origins. Average 11 B/ 10 B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  7. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  8. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    Science.gov (United States)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  9. The potential of Isotope Ratio Mass Spectrometry (IRMS) and gas chromatography-IRMS analysis of triacetone triperoxide in forensic explosives investigations

    NARCIS (Netherlands)

    Bezemer, K.D.B.; Koeberg, M.; Heijden, A.E.D.M. van der; Driel, C.A. va; Blaga, C.; Bruinsma, J.; Asten, A.C. van

    2016-01-01

    Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen

  10. A 40-year record of Northern Hemisphere atmospheric carbon monoxide concentration and isotope ratios from the firn at Greenland Summit.

    Science.gov (United States)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.; Buizert, C.; Lang, P. M.; Edwards, J.; Harth, C. M.; Hmiel, B.; Mak, J. E.; Novelli, P. C.; Brook, E.; Weiss, R. F.; Vaughn, B. H.; White, J. W. C.

    2014-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to climate forcing by being a major sink of tropospheric OH. A good understanding of the past atmospheric CO budget is therefore important for climate models attempting to characterize recent changes in the atmosphere. Previous work at NEEM, Greenland provided the first reconstructions of Arctic atmospheric history of CO concentration and stable isotope ratios (δC18O and δ13CO) from firn air, dating to the 1950s. In this new study, firn air was sampled from eighteen depth levels through the firn column at Summit, Greenland (in May 2013), yielding a second, independent record of Arctic CO concentration and isotopic ratios. Carbon monoxide stable isotope ratios were analyzed on replicate samples and using a newly developed system with improved precision allowing for a more robust reconstruction. The new CO concentration and stable isotope results overall confirm the earlier findings from NEEM, with a CO concentration peak around the 1970s and higher δC18O and δ13CO values associated with peak CO. Modeling and interpretation of the data are in progress.

  11. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    van Roij, Linda; Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert-Jan

    2017-01-01

    Rationale: Analyses of stable carbon isotope ratios (δ13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to

  12. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of euthanasia method on stable-carbon and stable-nitrogen isotope analysis for an ectothermic vertebrate.

    Science.gov (United States)

    Atwood, Meredith A

    2013-04-30

    Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica  =  Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas

  14. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography

    International Nuclear Information System (INIS)

    Chong, N.S.; Houk, R.S.

    1987-01-01

    A gas chromatograph (GC) with a packed column was interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to yield atomic mass spectra from volatile organic compounds. Atomization of injected compounds was nearly complete and independent of molecular structure, so that elemental ratios could be determined. Detection limits were in the range 0.001 to 400 ng s -1 , depending on the ionization energy of the element and its abundance in the background spectrum. The relative standard deviation of measured isotope ratios varied from 0.4% for Br (i.e., a ratio close to unity) to 18% for N (a very large ratio). Thus, GC-ICP-MS provides elemental and isotope ratio information that is complementary to the molecular information derived from GC-MS with conventional ionization methods

  15. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2014-05-01

    Full Text Available A compact isotope ratio laser spectrometry (IRLS instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰ better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.

  16. Sm isotope composition and Sm/Eu ratio determination in an irradiated 153Eu sample by ion exchange chromatography-quadrupole inductively coupled plasma mass spectrometry combined with double spike isotope dilution technique

    International Nuclear Information System (INIS)

    Bourgeois, M.; Isnard, H.; Gourgiotis, A.; Stadelmann, G.; Gautier, C.; Mialle, S.; Nonell, A.; Chartier, F.

    2011-01-01

    Within the framework of the research undertaken by the French Atomic Energy Commission on transmutation of long-lived radionuclides, targets of highly enriched actinides and fission products were irradiated in the fast neutron reactor Phenix. Precise and accurate measurements of the isotopic and elemental composition of the enriched elements are therefore required. In order to obtain the uncertainties of several per mil and to reduce handling time and exposure to analyst on radioactive material, the on-line coupling of ion exchange chromatography with quadrupole inductively coupled plasma mass spectrometry has been associated with the technique of the double spike isotope dilution. We present in this paper the results obtained on an irradiated sample of Europium oxide powder (enriched at 99.13% in 153 Eu). After irradiation of around 5 mg of Eu 2 O 3 powder the theoretical calculations predict the formation of several micrograms of gadolinium and samarium isotopes. In relation to the very high activity of the sample after irradiation and the very low quantity of Sm formed, the on-line ion exchange chromatography separation of Gd, Sm and Eu before Sm isotope ratio measurements has been developed for the quantification of the 152 Sm/ 153 Eu ratio. These on-line measurements were associated with the double spike isotope dilution technique after calibration of a 147 Sm/ 151 Eu spike solution. The external reproducibility of Sm isotopic ratios was determined to be around 0.5% (2 σ) resulting in a final uncertainty on the 152 Sm/ 153 Eu ratio of around 1% (2 σ). These on-line measurements present therefore a robust and high-throughput alternative to the thermal-ionisation mass spectrometry technique used so far in combination with off-line chromatographic separation, particularly in nuclear applications where characterisation of high activity sample solutions is required. (authors)

  17. Non-traditional inheritance

    International Nuclear Information System (INIS)

    Hall, J.G.

    1992-01-01

    In the last few years, several non-traditional forms of inheritance have been recognized. These include mosaicism, cytoplasmic inheritance, uniparental disomy, imprinting, amplification/anticipation, and somatic recombination. Genomic imprinting (GI) is the dependence of the phenotype on the sex of the transmitting parent. GI in humans seems to involve growth, behaviour, and survival in utero. The detailed mechanism of genomic imprinting is not known, but it seems that some process is involved in turning a gene off; this probably involves two genes, one of which produces a product that turns a gene off, and the gene that is itself turned off. The process of imprinting (turning off) may be associated with methylation. Erasure of imprinting can occur, and seems to be associated with meiosis. 10 refs

  18. Parsec-scale Variations in the "7Li i/"6Li i Isotope Ratio Toward IC 348 and the Perseus OB 2 Association

    International Nuclear Information System (INIS)

    Knauth, D. C.; Taylor, C. J.; Federman, S. R.; Ritchey, A. M.; Lambert, D. L.

    2017-01-01

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li i λ 6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the "7Li/"6Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic rays more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has "7Li/"6Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays.

  19. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.

    2009-01-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  20. Genuineness assessment of mandarin essential oils employing gas chromatography-combustion-isotope ratio MS (GC-C-IRMS).

    Science.gov (United States)

    Schipilliti, Luisa; Tranchida, Peter Quinto; Sciarrone, Danilo; Russo, Marina; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi

    2010-03-01

    Cold-pressed mandarin essential oils are products of great economic importance in many parts of the world and are used in perfumery, as well as in food products. Reconstituted mandarin oils are easy to find on the market; useful information on essential oil authenticity, quality, extraction technique, geographic origin and biogenesis can be attained through high-resolution GC of the volatile fraction, or enantioselective GC, using different chiral stationary phases. Stable isotope ratio analysis has gained considerable interest for the unveiling of citrus oil adulteration, detecting small differences in the isotopic carbon composition and providing plenty of information concerning the discrimination among products of different geographical origin and the adulteration of natural essential oils with synthetic or natural compounds. In the present research, the authenticity of several mandarin essential oils was assessed through the employment of GC hyphenated to isotope ratio MS, conventional GC flame ionization detector, enantioselective GC and HPLC. Commercial mandarin oils and industrial natural (declared as such) mandarin essential oils, characterized by different harvest periods and geographic origins, were subjected to analysis. The results attained were compared with those of genuine cold-pressed Italian mandarin oils, obtained during the 2008-2009 harvest season.

  1. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Sjåstad, Knut-Endre; Andersen, Tom; Simonsen, Siri Lene

    2013-01-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  2. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems.

    Science.gov (United States)

    Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M

    2017-05-15

    Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.

  3. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  4. Measurement of mercury isotopic ratio in stone meteorites by neutron activation analysis

    International Nuclear Information System (INIS)

    Thakur, A.N.

    1997-01-01

    196 Hg and 202 Hg isotopes have been measured by neutron activation analysis in samples of twelve stone meteorites. Hg is extracted from an irradiated sample by stepwise heating. The mercury concentrations vary from 0.07 to 33 ppm. While most of the samples give 196 Hg/ 202 Hg ratios similar to terrestrial value within error limits, in some cases large anomalies are observed. A number of control experiments have been devised, that show the absence of experimental artifacts, during sample preparation, neutron irradiation, chemical separation and counting stages. Several anomalous and normal Hg distillate have been re-irradiated as Hg-diethyl-dithio-carbamate complex to eliminate the influence of neutron self shielding and interfering reactions from matrix elements. The isotopic ratio patterns persist in the distillates too proving that any artifacts during meteorite irradiation and measurement are essentially absent. Both positive and negative anomalies are observed: however, the negative anomalies are much more frequent and abundant. In an extreme case of fine grained magnetic particles of Ambapur Nagla the 196 Hg is apparently absent in the Hg released at 100 deg C. A 2σ 196 Hg/ 202 Hg value is only 6% relative to the monitor. This experiment shows the robustness of neutron activation analysis and suggest some constrains on the formation history of stone meteorites. (author)

  5. The Distinct Genetics of Carbonaceous and Non-Carbonaceous Meteorites Inferred from Molybdenum Isotopes

    Science.gov (United States)

    Budde, G.; Burkhardt, C.; Kleine, T.

    2017-07-01

    Mo isotope systematics manifest a fundamental dichotomy in the genetic heritage of carbonaceous and non-carbonaceous meteorites. We discuss its implications in light of the most recent literature data and new isotope data for primitive achondrites.

  6. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  7. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    Science.gov (United States)

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  8. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  9. Determination of the Geographical Origin of All Commercial Hake Species by Stable Isotope Ratio (SIR) Analysis.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M

    2017-02-08

    The determination of the geographical origin of food products is relevant to comply with the legal regulations of traceability, to avoid food fraud, and to guarantee food quality and safety to the consumers. For these reasons, stable isotope ratio (SIR) analysis using an isotope ratio mass spectrometry (IRMS) instrument is one of the most useful techniques for evaluating food traceability and authenticity. The present study was aimed to determine, for the first time, the geographical origin for all commercial fish species belonging to the Merlucciidae family using SIR analysis of carbon (δ 13 C) and nitrogen (δ 15 N). The specific results enabled their clear classification according to the FAO (Food and Agriculture Organization of the United Nations) fishing areas, latitude, and geographical origin in the following six different clusters: European, North African, South African, North American, South American, and Australian hake species.

  10. {sup 15}N/{sup 14}N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    Energy Technology Data Exchange (ETDEWEB)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-05-10

    In this study, the {sup 15}N/{sup 14}N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of {delta}{sup 15}N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, {delta}{sup 15}N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places.

  11. Stable isotope discrimination factors and between-tissue isotope comparisons for bone and skin from captive and wild green sea turtles (Chelonia mydas).

    Science.gov (United States)

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M

    2017-11-30

    The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ 13 C) and nitrogen (Δ 15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ 13 C and Δ 15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ 13 C values) and nitrogen (δ 15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. The mean (±SD) Δ 13 C and Δ 15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ 13 C and Δ 15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ 15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ 13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach

  12. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Dvonch, J. Timothy [University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gratz, Lynne E. [University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011 (United States); Landis, Matthew S. [U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709 (United States)

    2015-01-01

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ({sup 207}Pb/{sup 206}Pb = 0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ({sup 87}Sr/{sup 86}Sr = 0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ{sup 202}Hg = − 1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution. - Highlights: • We measured Pb, Sr, and Hg isotopes in precipitation from the Great Lakes region. • Pb isotopes suggest that deposition was impacted by coal combustion and metal production. • Sr isotope ratios vary regionally, likely due to soil dust and coal fly ash. • Hg isotopes vary due to fractionation occurring within facilities and the atmosphere. • Isotope results support conclusions of previous trace element receptor modeling.

  13. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    Science.gov (United States)

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  14. Hydrologic and environmental controls on uranium-series and strontium isotope ratios in a natural weathering environment

    Science.gov (United States)

    White, A. M.; Ma, L.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    core samples with depth shows distinct weathering profiles with variable 234U/238U activity and Sr isotope ratios. Comparison of the isotopic composition of cores and groundwaters from similar depths, as well as surface waters in the JRB-CZO will be vital for the characterization of hydrogeologic controls on isotopic composition in this complex terrain.

  15. Uncertainty assessment in gamma spectrometric measurements of plutonium isotope ratios and age

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden); Nygren, U.; Tovedal, A. [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Ekberg, C.; Skarnemark, G. [Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden)

    2012-09-15

    A method for the assessment of the combined uncertainty in gamma spectrometric measurements of plutonium composition and age was evaluated. Two materials were measured. Isotope dilution inductively coupled plasma sector field mass spectrometry (ID-ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method for one of the materials. For this material (weapons grade plutonium) the measurement results were in agreement between the two methods for all measurands. Moreover, the combined uncertainty in all isotope ratios considered in this material (R{sub Pu238/Pu239}, R{sub Pu240/Pu239}, R{sub Pu241/Pu239}, and R{sub Am241/Pu241} for age determination) were limited by counting statistics. However, the combined uncertainty for the other material (fuel grade plutonium) were limited by the response fit, which shows that the uncertainty in the response function is important to include in the combined measurement uncertainty of gamma spectrometric measurements of plutonium.

  16. Assessment of Non-Traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities

    Science.gov (United States)

    2016-03-01

    alternative approach to direct measurement compares measured values of a second activation product in the sample with solutions of the Bateman equations...The Bateman equations describing this set of reactions are 151151151,150150, 151 )( SmSmSmaSmSm Sm NFNF dt dN λγ +−= (10... Bateman equations parameterized by the neutron fluence. The dotted black lines indicate the standard error propagated from the uncertainty of the

  17. Andragogical Teaching Methods to Enhance Non-Traditional Student Classroom Engagement

    Science.gov (United States)

    Allen, Pamela; Withey, Paul; Lawton, Deb; Aquino, Carlos Tasso

    2016-01-01

    The aim of this study was to provide a reflection of current trends in higher education, identify some of the changes in student behavior, and potential identification of non-traditional classroom facilitation with the purpose of strengthening active learning and use of technology in the classroom. Non-traditional teaching is emerging in the form…

  18. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    Science.gov (United States)

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  19. Ore lead isotope ratios in a continually changing Earth

    International Nuclear Information System (INIS)

    Cumming, G.L.; Richards, J.R.

    1975-01-01

    A critical reassessment of the construction of simple ore lead isotopic development curves is followed by three fresh approximations, all designed to involve the minimum possible number of assumptions. All are based on the Russell-Reynolds algorithm, when in its simplest form involves knowledge only of ratios, not of ages. The calculations are applied to a restricted class of ore leads, and the latest constant values for the U and Th isotopes are employed. Model I treats all data as being of equal weight, and shows that the deletion or inclusion of the Canyon Diablo meterorite data makes no difference to the derived parameters. Model II demonstrates that essentially the same parameters result if the simple curve is forced through the meteorite point; i.e. questions about homogeneity or otherwise of 'initial terrestrial'Pb are unimportant to the regression . Model III makes allowance for the known discrepancy in young 'model ages' by providing for a steady linear change in U/Pb and Th/Pb. The additional assumption of one fixed time point proves necessary. An age close to 430 m.y.for Captains Flat, N.S.W., yields acceptable age estimates for most other deposits investigated. No claim is made for the uniquences of this solution, but the derived evidence for steady growth in U/Ph accompanied by a slight decline in Th/U seems compatible with a crustal source for the lead ores concerned. (Auth.)

  20. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    Science.gov (United States)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  1. Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Delves, H.T.; Campbell, M.J.

    1988-01-01

    Methods are described for the accurate and precise determination of total lead and its isotopic composition in whole blood using inductively coupled plasma source mass spectrometry (ICP-MS). Sensitivities of up to 3 x 10 6 counts s -1 for 208 Pb at a total lead concentration of 5 μmol l -1 (1 μg ml -1 ) enabled total blood lead levels to be measured in 4 min per sample, with a detection limit of 0.072 μmol l -1 (15 μg l -1 ). The agreement between ICP-MS and atomic absorption spectrometry (AAS) for this analysis was excellent: ICP-MS 0.996 x AAS -0.0165 μmol l -1 ; r 0.994. Isotope ratio measurements required 15 min to achieve the required accuracy and precision both of which were generally better than 0.5% for 206 Pb: 207 Pb and 208 Pb: 206 Pb isotopic lead ratios. The ICP-MS data for these ratios in ten quality control blood specimens has a mean bias relative to isotope dilution mass spectrometry of -0.412% for 206 Pb: 207 Pb ratios and of +0.055% for the 208 Pb: 206 Pb ratios. This level of accuracy and that of the total blood lead measurements is sufficient to permit application of these ICP-MS methods to environmental studies. (author)

  2. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  3. Learning How to Learn: Implications for Non Traditional Adult Students

    Science.gov (United States)

    Tovar, Lynn A.

    2008-01-01

    In this article, learning how to learn for non traditional adult students is discussed with a focus on police officers and firefighters. Learning how to learn is particularly relevant for all returning non-traditional adults; however in the era of terrorism it is critical for the public safety officers returning to college after years of absence…

  4. Recent Developments in Trace, Ultratrace and Isotope Ratio Measurements in Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Zahran, N. F.

    2004-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and Laser Ablation (LA-ICP-MS) are recent techniques for trace, ultratrace and isotope ratio measurements. Main features of these techniques and their figure of merit and capabilities are discussed. An overview of ICP-MS instrument is presented in addition to its precision, accuracy and detection limits. Uses of ICP-MS in environmental monitoring in some cases for detection of some radio nuclides are presented. Two geological applications namely, zircon grains analysis and age dating of Rb-Sr method are presented. Zn elemental and isotopic analyses in blood and serum as a biological application is shown. (Author)

  5. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  6. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)

    OpenAIRE

    Jaouen, Klervia; Beasley, Melanie; Schoeninger, Margaret; Hublin, Jean-Jacques; Richards, Michael P.

    2016-01-01

    In order to explore the possibilities of using zinc (Zn) stable isotope ratios as dietary indicators, we report here on the measurements of the ratio of stable isotopes of zinc (66Zn/64Zn, expressed here as ?66Zn) in bioapatite (bone and dental enamel) of animals from a modern food web in the Koobi Fora region of the Turkana Basin in Kenya. We demonstrate that ?66Zn values in both bone and enamel allow a clear distinction between carnivores and herbivores from this food web. Differences were ...

  7. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  8. Introduction of a method for determining uranium isotope ratio by α-spectroscopy and application to study the migration of this element in uranium occurence

    International Nuclear Information System (INIS)

    Bastos, K.F.

    1981-01-01

    A method of U and Th isotope ratio determination by α-spectroscopy to analyse the migration process of these elements at an uranium bearing region in Goias, Brazil, is described. The method consists of simultaneous extraction of U and Th with TOPO/cyclohexane, reextraction of Th with H 2 SO 4 (0.3M) and further purification of both phases. The interferent coextracted ions are eliminated by scrubbing with EDTA/NaNO 3 , and pure U is extracted with (NH 4 ) 2 CO 3 . The counting sources are prepared via extraction with TTA or MIBK, and evaporation of suitable aliquots on stainless steel disks. The recovery of U about 98% is obtained. The energy resolutions of U 238 peak (E α =4.195 MeV) are 52 and 83 KeV. The counting efficiencies are between 11 and 21+. Th is separated from the stripping solution by direct coprecipitation with macro amounts of LaF 3 and subsequent extraction with TTA/benzene for source preparation. Alternatively coprecipitation is proposed with micro quantities of LaF 3 and posterior filtration with membrane filters, where LaF 3 layer was previously deposited. This method allows direct counting of the filters and is superior in relation to energy resolution and counting efficiency. The U 238 /U 234 and U 234 /Th 230 isotope ratios in geological standards and prospecting samples were determined. The U 234 /Th 230 isotope ratio was used for analysing the migration of these elements because the most of analysed samples presented values, for this ratio, greater than unity, indicating that the anomalous concentrations of U are due to secondary enrichment processes. Aditional results of non equilibrium of the radioactivity of samples by γ-spectroscopy, are presented. (author) [pt

  9. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  10. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  11. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater

    International Nuclear Information System (INIS)

    Chabaux, F.; Cohen, A.S.; O'Nions, R.K.; Hein, J.R.

    1995-01-01

    Comparison of ( 234 U) excess /( 238 U) and ( 230 Th)/( 232 Th) activity ratios in oceanic Fe-Mn deposits provides a method for assessing the closed-system behaviour of 238 U- 234 U- 230 Th, as well as variations in the initial uranium and thorium isotopic ratios of the precipitated metal oxides. This approach is illustrated using a Fe-Mn crust from Lotab seamount (Marshall Islands, west equatorial Pacific). Here we report uranium and thorium isotopic compositions in five subsamples from the surface of one large 5 cm diameter botyroid of this crust, and from two depth profiles of the outermost rim of the same botyroid. The decrease of ( 234 U) excess /( 238 U) and ( 230 Th/ 232 Th) activity ratio with depth in the two profiles gives mean growth rates, for the last 150 ka, of 7.8 ± 2 mm/Ma and 6.6 ± 1 mm/Ma, respectively. All data points (surface and core samples) but one, define a linear correlation in the Ln ( 230 Th/ 232 Th) - Ln [( 234 U) excess ( 238 U)] diagram. This correlation indicates that for all points the U-Th system remained closed after the Fe-Mn layer precipitated, and that the different samples possessed the same initial Uranium and thorium isotope ratios. Furthermore, these results show that the preserved surface of this Fe-Mn crust may not be the present-day growth surface, and that the thorium and uranium isotopic ratios of seawater in west equatorial Pacific have not changed during the past 150 ka. The initial thorium activity ratio is estimated from the correlation obtained between Ln( 230 Th/ 232 Th) and Ln [( 234 U) excess /( 238 U)

  12. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    Science.gov (United States)

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  13. Development of precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ohno, Takeshi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2007-01-01

    We have developed precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector-ICP-mass spectrometry (MC-ICP-MS) for experimental and environmental studies of their behavior. In order to obtain precise isotopic data using MC-ICP-MS, the mass discrimination effect was corrected by an exponential law correction method. The resulting isotopic data demonstrated that highly precise isotopic analyses (better than 0.1 per mille as 2SD) could be achieved. We also adopted a de-solvating nebulizer system to improve the sensitivity. This system could minimize the water load into the plasma and provided about five times larger intensity of analyte than a conventional nebulizer system did. (author)

  14. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu

    2004-01-01

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235 U/ 238 U for individual uranium particles were efficiently determined. (author)

  15. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  16. Evolution of E. coli on [U-13C] Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia...

  17. Development Of International Non-Governmental Organizations And Legal Traditions Of Russia

    OpenAIRE

    Alexandra A. Dorskaya

    2015-01-01

    The article examines the role of international non-governmental organizations in the maintenance and creation of a positive attitude to national legal traditions. The basic stages of development of international non-governmental organizations. Analyzed their advantages and disadvantages. Considered as the legal traditions of the Russian society are reflected in the activities of legal entities and individuals - members of international non-governmental organizations.

  18. Statistical methods for improving verification of claims of origin for Italian wines based on stable isotope ratios

    International Nuclear Information System (INIS)

    Dordevic, N.; Wehrens, R.; Postma, G.J.; Buydens, L.M.C.; Camin, F.

    2012-01-01

    Highlights: ► The assessment of claims of origin is of enormous economic importance for DOC and DOCG wines. ► The official method is based on univariate statistical tests of H, C and O isotopic ratios. ► We consider 5220 Italian wine samples collected in the period 2000–2010. ► Multivariate statistical analysis leads to much better specificity and easier detection of false claims of origin. ► In the case of multi-modal data, mixture modelling provides additional improvements. - Abstract: Wine derives its economic value to a large extent from geographical origin, which has a significant impact on the quality of the wine. According to the food legislation, wines can be without geographical origin (table wine) and wines with origin. Wines with origin must have characteristics which are essential due to its region of production and must be produced, processed and prepared, exclusively within that region. The development of fast and reliable analytical methods for the assessment of claims of origin is very important. The current official method is based on the measurement of stable isotope ratios of water and alcohol in wine, which are influenced by climatic factors. The results in this paper are based on 5220 Italian wine samples collected in the period 2000–2010. We evaluate the univariate approach underlying the official method to assess claims of origin and propose several new methods to get better geographical discrimination between samples. It is shown that multivariate methods are superior to univariate approaches in that they show increased sensitivity and specificity. In cases where data are non-normally distributed, an approach based on mixture modelling provides additional improvements.

  19. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  20. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  1. Chemometrical exploration of an isotopic ratio data set of acetylsalicylic acid

    International Nuclear Information System (INIS)

    Stanimirova, I.; Daszykowski, M.; Van Gyseghem, E.; Bensaid, F.F.; Lees, M.; Smeyers-Verbeke, J.; Massart, D.L.; Vander Heyden, Y.

    2005-01-01

    A data set consisting of fourteen isotopic ratios or quantities derived from such ratios for samples of acetylsalicylic acid (aspirin), commercialized by various pharmaceutical companies from different countries, was analyzed. The goal of the data analysis was to explore whether results can be linked to geographical origin or other features such as different manufacturing processes, of the samples. The methods of data analysis used were principal component analysis (PCA), robust principal component analysis (RPCA), projection pursuit (PP) and multiple factor analysis (MFA). The results do not seem to depend on geographic origin, except for some samples from India. They do depend on the pharmaceutical companies. Moreover, it seems that the samples from certain pharmaceutical companies form clusters of similar samples, suggesting that there is some common feature between those pharmaceutical companies. Variable selection performed by means of MFA showed that the number of variables can be reduced to five without loss of information

  2. Chemometrical exploration of an isotopic ratio data set of acetylsalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stanimirova, I. [ChemoAC, FABI, Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Daszykowski, M. [ChemoAC, FABI, Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Van Gyseghem, E. [Eurofins Scientific Analytics, Rue Pierre Adolphe Bobierre, 44323 Nantes Cedex 3 (France); Bensaid, F.F. [Eurofins Scientific Analytics, Rue Pierre Adolphe Bobierre, 44323 Nantes Cedex 3 (France); Lees, M. [Eurofins Scientific Analytics, Rue Pierre Adolphe Bobierre, 44323 Nantes Cedex 3 (France); Smeyers-Verbeke, J. [ChemoAC, FABI, Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Massart, D.L. [ChemoAC, FABI, Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Vander Heyden, Y. [ChemoAC, FABI, Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium)]. E-mail: yvanvdh@vub.ac.be

    2005-11-03

    A data set consisting of fourteen isotopic ratios or quantities derived from such ratios for samples of acetylsalicylic acid (aspirin), commercialized by various pharmaceutical companies from different countries, was analyzed. The goal of the data analysis was to explore whether results can be linked to geographical origin or other features such as different manufacturing processes, of the samples. The methods of data analysis used were principal component analysis (PCA), robust principal component analysis (RPCA), projection pursuit (PP) and multiple factor analysis (MFA). The results do not seem to depend on geographic origin, except for some samples from India. They do depend on the pharmaceutical companies. Moreover, it seems that the samples from certain pharmaceutical companies form clusters of similar samples, suggesting that there is some common feature between those pharmaceutical companies. Variable selection performed by means of MFA showed that the number of variables can be reduced to five without loss of information.

  3. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  4. Sulfur isotopic ratios of molybdenites from the Hida Mountains, Japan

    International Nuclear Information System (INIS)

    Ishihara, Shunso; Harayama, Satoru; Sasaki, Akira.

    1990-01-01

    Molybdenites occurring in Paleogene granitoids of the Northern Japan Alps of the Hida Mountains were analyzed for δ 34 S CDT at seven localities. The sulfur isotopic ratios vary from 3.0 to 6.4 per mille, which are within the range of ore molybdenites from the magnetite-series granitic terrane of the Sanin district, indicating that the Hida Mountains and Sanin district belong to the same metallogenic province. Porphyry-type molybdenite from the Kamioka lead-zinc mine has the δ 34 S value of 1.4 per mille. Sulfur of the molybdenite is not derived from the Jurassic Funatsu granitoids but brought up by the latest Cretaceous ilmenite-series magma, prior to the main Paleogene magnetite-series magmatism. (author)

  5. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    International Nuclear Information System (INIS)

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-01-01

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and 210 Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that 234 U/ 238 U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer

  6. Quantification and isotope ratio measurement of boron in U3Si2 by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K.; Samanta, Papu

    2014-01-01

    An analytical methodology was developed for precise quantification and isotope ratio measurement of boron in U 3 Si 2 matrix by using ICP-MS after matrix separation. The analytical technique was validated by recovery studies employing standard addition method and the accuracy in isotope ratio measurement was improved by correcting the bias factor after analyzing NIST SRM951. The quantification of B in the three U 3 Si 2 samples was found in the range of 2.32-3.90 μg g -1 with a maximum standard deviation of 3%. The 10 B/ 11 B value in the three samples was found to be 0.2455±0.0042, 0.2451±0.0036 and 0.2452±0.0041. (author)

  7. Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments

    Science.gov (United States)

    Lukman, Rebeka; Krajnc, Majda

    2012-01-01

    This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…

  8. Impact Parameter Dependence of the Double Neutron/Proton Ratio of Nucleon Emissions in Isotopic Reaction Systems

    International Nuclear Information System (INIS)

    Xun-Chao, Zhang; Gao-Chan, Yong; Bao-An, Li; Lie-Wen, Chen

    2009-01-01

    Within the transport model IBUU04, we investigate the double neutron/proton ratio of free nucleons taken from two reaction systems using two Sn isotopes at a beam energy of 50 MeV/nucleon and with impact parameters 2 fm, 4 fm and 8 fm, respectively. It is found that the double neutron/proton ratio from peripheral collisions is more sensitive to the density dependence of the symmetry energy than those from mid-central and central collisions. (nuclear physics)

  9. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios

    Directory of Open Access Journals (Sweden)

    Jie Lin

    2016-06-01

    Full Text Available LA-ICP-MS and LA-MC-ICP-MS have been the techniques of choice for achieving accurate and precise element content and isotopic ratio, the state-of-the-art technique combines the advantages of low detection limits with high spatial resolution, however, the analysis accuracy and precision are restricted by many factors, such as sensitivity drift, elemental/isotopic fractionation, matrix effects, interferences and the lack of sufficiently matrix-matched reference materials. Thus, rigorous and suitable calibration and correction methods are needed to obtain quantitative data. This review systematically summarized and evaluated the interference correction, quantitative calculation and sensitivity correction strategies in order to provide the analysts with suitable calibration and correction strategies according to the sample types and the analyzed elements. The functions and features of data reduction software ICPMSDataCal were also outlined, which can provide real-time and on-line data reduction of element content and isotopic ratios analyzed by LA-ICP-MS and LA-MC-ICP-MS.

  10. Development Of International Non-Governmental Organizations And Legal Traditions Of Russia

    Directory of Open Access Journals (Sweden)

    Alexandra A. Dorskaya

    2015-06-01

    Full Text Available The article examines the role of international non-governmental organizations in the maintenance and creation of a positive attitude to national legal traditions. The basic stages of development of international non-governmental organizations. Analyzed their advantages and disadvantages. Considered as the legal traditions of the Russian society are reflected in the activities of legal entities and individuals - members of international non-governmental organizations.

  11. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    Science.gov (United States)

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  12. Student Media Usage Patterns and Non-Traditional Learning in Higher Education

    Directory of Open Access Journals (Sweden)

    Olaf Zawacki-Richter

    2015-04-01

    Full Text Available A total of 2,338 students at German universities participated in a survey, which investigated media usage patterns of so-called traditional and non-traditional students (Schuetze & Wolter, 2003. The students provided information on the digital devices that they own or have access to, and on their usage of media and e-learning tools and services for their learning. A distinction was made between external, formal and internal, informal tools and services. Based on the students’ responses, a typology of media usage patterns was established by means of a latent class analysis (LCA. Four types or profiles of media usage patterns were identified. These types were labeled entertainment users, peripheral users, advanced users and instrumental users. Among non-traditional students, the proportion of instrumental users was rather high. Based on the usage patterns of traditional and non-traditional students, implications for media selection in the instructional design process are outlined in the paper.

  13. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  14. Isotope ratio 87Sr/86Sr in limestones from Bambui group, Brazil (MG)

    International Nuclear Information System (INIS)

    Kawashita, K.; Mizusaki, A.M.P.; Kiang, C.H.

    1987-01-01

    The Sr composition of ancient seawater can be estimated from the analysis of carbonate rocks and, in some cases, used to estimate the age of the analyzed carbonate. The normalized 87Sr/86Sr ratios in calcium carbonate fractions from 14 core samples in the Bambui Group near Montalvania, MG, were found to range between .7077 and .7280. The higher values are attributable to Sr isotopic exchange between silicate and carbonate phases during diagenesis. The ratio of .7077 obtained in two pure calcium carbonate samples is here suggested as the best aproximation for the 87Sr/86Sr value for the Bambui sea. This ratio is compatible with an age of about 700 Ma., estimated from the published 87Sr/86Sr curve of Veizer and others, an age in accordance with Quadros recent (1987, in preparation) identification of marine acritarchs from the latest Precambrian (Vendian). (author) [pt

  15. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    Science.gov (United States)

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  16. Parsec-scale Variations in the {sup 7}Li i/{sup 6}Li i Isotope Ratio Toward IC 348 and the Perseus OB 2 Association

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, D. C. [Woodlawn High School, 1801 Woodlawn Drive, Baltimore, MD 21207 (United States); Taylor, C. J.; Federman, S. R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Ritchey, A. M. [Department of Astronomy, University of Washington, Seattle, WA, 98195 (United States); Lambert, D. L., E-mail: knauth_dc2@hotmail.com, E-mail: steven.federman@utoledo.edu, E-mail: cjtaylor@astro.umd.edu, E-mail: aritchey@astro.washington.edu, E-mail: dll@astro.as.utexas.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2017-01-20

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li i λ 6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the {sup 7}Li/{sup 6}Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic rays more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has {sup 7}Li/{sup 6}Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays.

  17. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Jeffrey R. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)]. E-mail: j.bacon@macaulay.ac.uk; Dinev, Nikolai S. [N Poushkarov Institute of Soil Science and Agroecology, Sofia (Bulgaria)

    2005-03-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg{sup -1}, respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg{sup -1}, respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for {sup 206}Pb/{sup 207}Pb), the samples could be differentiated into three distinct groups: ores ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead.

  18. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    International Nuclear Information System (INIS)

    Bacon, Jeffrey R.; Dinev, Nikolai S.

    2005-01-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg -1 , respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg -1 , respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for 206 Pb/ 207 Pb), the samples could be differentiated into three distinct groups: ores ( 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead

  19. Lead isotope ratios of galenas from the Hida area

    International Nuclear Information System (INIS)

    Sato, Kazuo; Sasaki, Akira; Akiyama, Shin-ichi; Konagai, Kenji.

    1978-01-01

    Ore lead isotope data of the Kamioka and nearby lead-zinc mineralizations in the Hida metamorphic terrain are variable. Small but distinct isotopic variation is observed even in a single ore deposit. The present site of the Hida metamorphic terrain once was occupied by a Precambrian continent. The leads from the metamorphic, plutonic and sedimentary rocks indicate such continental nature of this terrain, as they have more complex isotopic patterns than those observed in the leads from igneous rocks and ores in younger terrains in Japan. The variability of ore lead isotopes in the Hida area could also be related to the presence of the old basement structure, implying that the leads in the Kamioka and nearby ore deposits came from more than a source of material. (mori, K.)

  20. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil.

    Science.gov (United States)

    Araujo, Beatriz Ferreira; Hintelmann, Holger; Dimock, Brian; Almeida, Marcelo Gomes; Rezende, Carlos Eduardo

    2017-07-01

    Mercury (Hg) may originate from both anthropogenic and natural sources. The measurement of spatial and temporal variations of Hg isotope ratios in sediments may enable source identification and tracking of environmental processes. In this study we establish the distribution of mercury concentrations and mercury isotope ratios in surface sediments of three transects along the continental shelf and slope in Campos Basin-RJ-Brazil. The shelf showed on average lower total Hg concentrations (9.2 ± 5.3 ng g -1 ) than the slope (24.6 ± 8.8 ng g -1 ). MMHg average concentrations of shelf 0.15 ± 0.12 ng g -1 and slope 0.13 ± 0.06 ng g -1 were not significantly different. Distinct differences in Hg isotope ratio signatures were observed, suggesting that the two regions were impacted by different sources of Hg. The shelf showed more negative δ 202 Hg and Δ 199 Hg values ranging from -0.59 to -2.19‰ and from -0.76 to 0.08‰, respectively. In contrast, the slope exhibited δ 202 Hg values from -0.29 to -1.82‰ and Δ 199 Hg values from -0.23 to 0.09‰. Mercury found on the shelf, especially along the "D" and "I" transects, is depleted in heavy isotopes resulting in more negative δ 202 Hg compared to the slope. Isotope ratios observed in the "D" and "I" shelf region are similar to Hg ratios commonly associated with plants and vegetation and very comparable to those detected in the estuary and adjoining mangrove forest, which suggests that Hg exported from rivers may be the dominating source of Hg in near coastal regions along the northern part of the shelf. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Measurement of the 13C/12C ratio of soil-plant individual sugars by gas chromatography/combustion/isotope-ratio mass spectrometry of silylated derivatives.

    Science.gov (United States)

    Derrien, Delphine; Balesdent, Jérôme; Marol, Christine; Santaella, Catherine

    2003-01-01

    Carbohydrate is an important pool in the terrestrial carbon cycle. The potential offered by natural and artificial 13C-labelling techniques should therefore be applied to the investigation of the dynamics of individual sugars in soils. For this reason, we evaluated the method of 13C sugar analysis by gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS) after hydrolysis and direct trimethylsilylation. Trimethylsilylation involved the addition of several carbon atoms per sugar. These atoms have to be taken into account in the estimation of the carbon isotope ratio. The analysis of standard and natural pentoses and hexoses of known 13C enrichments revealed that the number of analysed added carbon atoms was less than expected from stoichiometry. This was attributed to incomplete derivatization and/or incomplete oxidation of methylsilyl carbon before IRMS. Using a calibration of the number of analysed added carbon atoms, the isotope excess of enriched samples could be determined with a relative error close to 5%. Concerning the determination of natural abundances by GC/C/IRMS, we could measure the delta 13C of standard C3- and C4-derived sugars with an accuracy of +/-1.5 per thousand using the previous calibration. We were able to apply this technique to plant-soil systems labelled by pulse-chase of 13CO2, revealing the nature and dynamics of sugars in the plant rhizosphere. Copyright 2003 John Wiley & Sons, Ltd.

  2. Uranium isotopic ratio measurements ({sup 235}U/{sup 238}U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - {sup 235}U/{sup 238}U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    David, K.; Mokili, M.B.; Rousseau, G.; Deniau, I.; Landesman, C. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of {sup 235}U/{sup 238}U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct {sup 235}U/{sup 238}U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as

  3. Non-European traditional herbal medicines in Europe: a community herbal monograph perspective.

    Science.gov (United States)

    Qu, Liping; Zou, Wenjun; Zhou, Zhenxiang; Zhang, Tingmo; Greef, JanVander; Wang, Mei

    2014-10-28

    The European Directive 2004/24/EC introducing a simplified registration procedure for traditional herbal medicinal products, plays an important role in harmonising the current legislation framework for all herbal medicinal products in the European Union (EU). Although substantial achievements have been made under the new scheme, only a limited number of herbal medicinal products from non-European traditions commonly used in Europe have been registered. Therefore, identification of the obstacles, and determination of appropriate means to overcome the major challenges in the registration of non-European traditional herbal medicinal products are of critical importance for the EU herbal medicinal product market. The primary aims of this study were to understand the key issues and obstacles to registration of non-European traditional herbal medicinal products within the EU. The findings may identify the need for more attention on the Community herbal monographs elaborated by the Herbal Medicinal Products Committee (HMPC), as well as further evidence based scientific research on non-European herbal substances/preparations by the scientific community. A systematic evaluation of the herbal substances and preparations included in Community herbal monographs and public statements has been carried out. The focus was herbal substances and preparations derived from non-European traditions. Of the 109 adopted Community herbal monographs, 10 are herbal substances used in Chinese traditional medicine. Where the HMPC issued a public statement because it was unable to elaborate a monograph more than half-involved herbal substances/preparations from non-European traditions. The main reasons herbal substances/preparations from non-European traditions were not accepted for inclusion in the Community herbal monographs have been identified as due to unfulfilled requirements of Directive 2004/24/EC. The most common reasons were the lack of evidence to demonstrate a 15-year minimum

  4. CO2 and 12C:13C Isotopic Ratios on Phoebe and Iapetus

    Science.gov (United States)

    Clark, R. N.; Brown, R. H.; Cruikshank, D. P.

    2016-12-01

    Cassini VIMS has obtained spatially resolved 0.35 to 5.1 micron reflectance spectra of Saturn's satellites beginning with the Phoebe fly-by in 2004 and a close fly-by of Iapetus in 2007. Both surfaces contain relatively abundant CO2. The new (2016 RC19) calibration of VIMS has provided a significant increase in the data quality, such that isotopic absorption bands in CO2 are now well defined. CO2 on Saturn's icy satellites is trapped (Cruikshank et al., 2010, Icarus v206 p561; Pinilla-Alonso et al. 2011, Icarus v211, p75i), predominantly in the dark material (Clark et al. 2012, Icarus v218 p831). Clark et al. modeled the CO2 abundance as 2.8% on Iapetus and 3.7% on Phoebe. The main 12CO2 band in VIMS spectra on Iapetus occurs at 4.253 microns and Phoebe at 4.266 microns. The 13CO2 absorption is strong on Phoebe at 4.367 microns and weak on Iapetus at 4.387 microns. Converting the Phoebe, Iapetus, and a lab reflectance spectrum (of trace H2O-CO2 mixture on a diffuse substrate), we derive preliminary values for the ratio of the equivalent widths of the 12C and 13C absorptions as 19±2 on Phoebe, 82±8 on Iapetus, and 98±10 for the laboratory spectrum. These ratios are related to the 12C/13C ratio, but there may be effects due to intra-molecular and inter-molecular coupling that will contribute to systematic errors in the isotopic abundances derived using equivalent-width measurements that we've yet to quantify. We Believe the effects are small, and will be attempting to quantify them in the future. For comparison, the terrestrial value of the 12C/13C ratio is 90.17, and vibrational coupling may explain the slightly high lab mixture result. The local interstellar medium is 69±15 (Boogert et al., 2000, A&A). Because the CO2 bands on Phoebe and Iapetus dark material have different positions, and because the observed 13C absorption strengths are so different, the surface evolutions must be different. The large enrichment in 13C on Phoebe argues for significant

  5. Laser-based measurements of 18O/16O stable isotope ratios (δ18O in wine samples

    Directory of Open Access Journals (Sweden)

    Gupta M

    2013-09-01

    Full Text Available Manish Gupta,1 J Brian Leen,1 Elena Simone Franklin Berman,1 Aldo Ciambotti2 1Los Gatos Research, Mountain View, CA, USA; 2Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per l'Enologia, Asti, Italy Abstract: Wine counterfeiting is an international, multi-billion dollar issue, with some estimates suggesting that up to 5% of wines sold at auctions or secondary markets are fraudulent. Isotope ratio mass spectrometer (IRMS measurements of the 18O/16O stable isotope ratio (δ18O of water-in-wine have been used for wine authentication; however, these analyses are time-consuming and costly. In this preliminary study, off-axis integrated cavity output spectroscopy (OA-ICOS is used to quantify δ18O in wines. This laser-based method has been extensively used to study water isotopes for hydrological and medical applications. Recently, the development of a spectral contaminant identifier (SCI has extended the application of these OA-ICOS analyzers to contaminated water samples (eg, plant, soil, and leaf waters. Here, we utilize OA-ICOS with the SCI to characterize wine samples (9%–15% ethanol, and show that the laser-based instrument provides a δ18O measurement precision of ±0.07‰ (1σ and agrees with IRMS to within ±0.63‰ (1σ. Moreover, by training the SCI on isotopically-characterized wines, the agreement with IRMS improves to within ±0.30‰ (1σ. The utility of the instrument is demonstrated by measuring watered and mixed wines. The method presented here can be readily extended to address other food authentication applications. Keywords: wine isotopes, wine fraud, counterfeit wines, OA-ICOS

  6. Using GC-combustion isotope ratio mass spectrometry for confirming steroid administration from urinary metabolites in humans and animals

    International Nuclear Information System (INIS)

    Phillips, A.; Churchman, D.; Davis, S.

    2000-01-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was used to study the incorporation of exogenous testosterone enanthate into excreted urinary 5α- and 5β-androstane-3α, 17β-diols

  7. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  8. Seasonal dynamics of stable isotopes and element ratios in authigenic calcites during their precipitation and dissolution, Sacrower See (northeastern Germany

    Directory of Open Access Journals (Sweden)

    Bernd ZOLITSCHKA

    2009-08-01

    Full Text Available The seasonal evolution of chemical and physical water properties as well as particle fluxes was monitored in Sacrower See (northeastern Germany during two consecutive years (Oct 2003 - Oct 2005. Additonally, we measured δ18O and δ13C as well as Sr:Ca and Mg:Ca ratios of authigenic calcites that were collected in sequencing sediment traps in order to disentangle environmental and climatic factors controlling these parameters. In particular, our aim was to find out if element ratios and the isotopic composition of calcites reflect changes in water and air temperatures. Lake water is highly enriched in 18O (-1.3 to -2.5‰ VSMOW with an evaporative increase of 0.6‰ during summer. Values are 5-6‰ more positive than groundwater values and 4-5‰ more positive than long-term weighted annual means of precipitation. During spring and summer, high amounts of dissolved phosphate cause eutrophic conditions and calcite precipitation in isotopic disequilibrium. Measured values are depleted in 18O by 2 to 10‰ compared to calculated equilibrium values. Resuspension and partial dissolution of calcite in the water column contribute to this isotopic divergence in summer and autumn as δ18Oca and δ13C values increased in the hypolimnion during this time. Mg:Ca and Sr:Ca ratios are altered by dissolution as well. In the hypolimnion these ratios were higher than in the epilimnion. Another reason for the huge deviation between measured and theoretical δ18Oca values during summer is the occurrence of large amounts of Phacotus lenticularis in the carbonate fraction. High amounts of Phacotus lead to more negative δ18Oca and more positive δ13C values. Several characteristics of δ18Oca and δ13C are also reflected by Mg:Ca and Sr:Ca ratios and isotopic composition of oxygen and carbon were influenced by the onset and stability of stratification. Especially the earlier onset of stratification in 2005 caused higher sediment fluxes and more positive carbon and

  9. Isotope ratio mass spectrometry in combination with chemometrics for characterization of geographical origin and agronomic practices of table grape.

    Science.gov (United States)

    Longobardi, Francesco; Casiello, Grazia; Centonze, Valentina; Catucci, Lucia; Agostiano, Angela

    2017-08-01

    Although table grape is one of the most cultivated and consumed fruits worldwide, no study has been reported on its geographical origin or agronomic practice based on stable isotope ratios. This study aimed to evaluate the usefulness of isotopic ratios (i.e. 2 H/ 1 H, 13 C/ 12 C, 15 N/ 14 N and 18 O/ 16 O) as possible markers to discriminate the agronomic practice (conventional versus organic farming) and provenance of table grape. In order to quantitatively evaluate which of the isotopic variables were more discriminating, a t test was carried out, in light of which only δ 13 C and δ 18 O provided statistically significant differences (P ≤ 0.05) for the discrimination of geographical origin and farming method. Principal component analysis (PCA) showed no good separation of samples differing in geographical area and agronomic practice; thus, for classification purposes, supervised approaches were carried out. In particular, general discriminant analysis (GDA) was used, resulting in prediction abilities of 75.0 and 92.2% for the discrimination of farming method and origin respectively. The present findings suggest that stable isotopes (i.e. δ 18 O, δ 2 H and δ 13 C) combined with chemometrics can be successfully applied to discriminate the provenance of table grape. However, the use of bulk nitrogen isotopes was not effective for farming method discrimination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Trends and problems on the studies by stable isotope ratio mass spectrometry for verifying the geographical origin of foods

    International Nuclear Information System (INIS)

    Korenaga, Takashi

    2013-01-01

    The multi-stable isotopic analysis method has employed to solve food authenticity problems. Stable isotope ratio of the light elements such as H, C, N, and O in food samples (e.g., rice, beef, and eel) were precisely analyzed by elemental analysis/isotope ratio mass spectrometry. Those samples were mainly taken from four different countries; Japan, United States of America, Australia, and China as comparison. All the rice samples were grown in the presence of either natural and or artificial fertilizer. The beef samples were taken from three different countries; Japan, United States of America, and Australia. Imported beef samples were also presented from the Ministry of Agriculture, Forestry and Fisheries, Japan, and compared with a correlation equation. The eel samples were taken from the three different countries and areas; Japan, China, and Taiwan. δX values showing some differences, all the Japanese food samples were clearly distinctive from the United States of America, Australia, China, and Taiwan samples. The results may be explained by the regional differences in isotope signatures of the climate, utilized nutrition, and/or quality of irrigation water among the farming countries. The statistical distinction could be one of the useful metrics to extract the food samples (rice, meat, fish, etc.) grown in Japan from those grown in the other countries. The dynamics analysis studies on stable isotopic behavior (i.e., Isotopomics) in human metabolism may be looking forward to establish a new science in near future. (author)

  11. On the controls of leaf-water oxygen isotope ratios in the atmospheric Crassulacean acid metabolism epiphyte Tillandsia usneoides.

    Science.gov (United States)

    Helliker, Brent R

    2011-04-01

    Previous theoretical work showed that leaf-water isotope ratio (δ(18)O(L)) of Crassulacean acid metabolism epiphytes was controlled by the δ(18)O of atmospheric water vapor (δ(18)O(a)), and observed δ(18)O(L) could be explained by both a non-steady-state model and a "maximum enrichment" steady-state model (δ(18)O(L-M)), the latter requiring only δ(18)O(a) and relative humidity (h) as inputs. δ(18)O(L), therefore, should contain an extractable record of δ(18)O(a). Previous empirical work supported this hypothesis but raised many questions. How does changing δ(18)O(a) and h affect δ(18)O(L)? Do hygroscopic trichomes affect observed δ(18)O(L)? Are observations of changes in water content required for the prediction of δ(18)O(L)? Does the leaf need to be at full isotopic steady state for observed δ(18)O(L) to equal δ(18)O(L-M)? These questions were examined with a climate-controlled experimental system capable of holding δ(18)O(a) constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ(18)O(L) could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ(18)O(L), but the consequent increase in total conductance led to a tighter coupling with δ(18)O(a). The non-steady-state leaf water models explained observed δ(18)O(L) (y = 0.93*x - 0.07; r(2) = 0.98) over a wide range of δ(18)O(a) and h. Predictions of δ(18)O(L-M) agreed with observations of δ(18)O(L) (y = 0.87*x - 0.99; r(2) = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ(18)O(L-M) model to predict δ(18)O(L) in the Crassulacean acid metabolism epiphyte Tillandsia usneoides.

  12. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  13. Precise isotope ratio and multielement determination in prehistoric and historic human skeletal remains by HR-ICPMS - a novel application to shed light onto anthropological and archaeological questions

    International Nuclear Information System (INIS)

    Watkins, M.

    2000-12-01

    The primary aim of the presented work was the analytical setup for fast (including high sample throughput for statistical evaluation), precise and accurate measurement of strontium isotope ratios using HR-ICPMS (high-resolution inductively coupled plasma mass spectrometry) and their application to ancient human skeletal remains from different localities for the reconstruction of migration processes. Soils and plants are in isotopic equilibrium with local source rock and show therefore the same isotopic ratios for strontium (87Sr/86Sr). Dietary strontium incorporation varies for different body materials (teeth, muscle, bone, etc.) and repository periods depend on the different strontium turnover rates. Accordingly, strontium isotope analysis can provide important data for studying human or animal migration and mobility. An important issue will be addressed: the problem of strontium isotope ratio measurement reliability and the problem of post-mortem alterations. Thus a basic part of this interdisciplinary project is dealing with the systematic evaluation of diagenetic changes of the microstructure in human bone samples - including sample uptake and preparation. Different invasive histological techniques will be applied for further clarification. Newly developed chemical methods give us the opportunity to obtain details on ancient population mobility also in skeletal series of extreme fragmentary character, which usually restricts the macro-morphological approach. Since it is evident that strontium in teeth is only incorporated during childhood whereas strontium uptake in bones is constant, an intra-individual comparison of bone and teeth samples will answer the question whether teeth are indeed 'archives of the childhood'. The introduction of an analytical system allowing online matrix separation by High Performance Ion Chromatography (HPIC) and subsequent measurement of strontium isotope ratios by means of HR-ICPMS is presented, optimized and established as method

  14. Precise Isotope ratio and multielement determination in prehistoric and historic human skeletal remains by HR-ICPMS - a novel application to shed light onto anthropological and archaeological questions

    International Nuclear Information System (INIS)

    Watkins, M.

    2000-12-01

    The primary aim of the presented work was the analytical setup for fast (including high sample throughput for statistical evaluation), precise and accurate measurement of strontium isotope ratios using HR-ICPMS (high-resolution inductively coupled plasma mass spectrometry) and their application to ancient human skeletal remains from different localities for the reconstruction of migration processes. Soils and plants are in isotopic equilibrium with local source rock and show therefore the same isotopic ratios for strontium (87Sr/86Sr). Dietary strontium incorporation varies for different body materials (teeth, muscle, bone, etc.) and repository periods depend on the different strontium turnover rates. Accordingly, strontium isotope analysis can provide important data for studying human or animal migration and mobility. An important issue will be addressed: the problem of strontium isotope ratio measurement reliability and the problem of post-mortem alterations. Thus a basic part of this interdisciplinary project is dealing with the systematic evaluation of diagenetic changes of the microstructure in human bone samples - including sample uptake and preparation. Different invasive histological techniques will be applied for further clarification. Newly developed chemical methods give us the opportunity to obtain details on ancient population mobility also in skeletal series of extreme fragmentary character, which usually restricts the macro-morphological approach. Since it is evident that strontium in teeth is only incorporated during childhood whereas strontium uptake in bones is constant, an intra-individual comparison of bone and teeth samples will answer the question whether teeth are indeed 'archives of the childhood'. The introduction of an analytical system allowing online matrix separation by High Performance Ion Chromatography (HPIC) and subsequent measurement of strontium isotope ratios by means of HR-ICPMS is presented, optimized and established as method

  15. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of Oak tree-rings

    CSIR Research Space (South Africa)

    Loader, NJ

    2003-08-01

    Full Text Available The stable carbon isotope ratios (N13C) of whole wood, cellulose and acid-insoluble lignin from annual latewood increments of Quereus robur L., from modern and sub-fossil wood, were measured and their potential use as palaeo environmental indicators...

  16. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    Science.gov (United States)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  17. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  18. Alternatives to isotope ratio mass spectrometry for the measurement of deuterium content of body water

    International Nuclear Information System (INIS)

    Bluck, L.J.C.

    2000-01-01

    The measurement of breast milk intake using the isotope dilution techniques is now well established. The methodology involves the administration of a bolus of tracer followed by observation of the kinetics of its passage though the system. For example in the popular 'dose to the mother' method a dose of labeled water is administered to the mother, and over the following days samples of body fluids are taken and the concentration of tracer determined in order to establish the rate of loss of tracer from her body. Likewise samples are taken from the breast fed infant in order to determine the rates of tracer intake and subsequent loss. Deuterium is the tracer of choice for these experiments since it is non-radioactive, and therefore suitable for use in these vulnerable subject groups, and also because of its relative cheapness. Conventionally isotope ratio mass spectrometry (IRMS) has been used for the determination of the amount of deuterium in the body fluids. However this methodology is expensive (an instrument might typically cost US$ 150,000), and it requires a considerable amount of dedicated technical expertise for its operation. Consequently such instrumentation is not widely available, and this has limited the number and scope of studies using this technique. Recently there have been reports of possible alternative technologies for the determination of deuterium in body water which appear attractive because of the wider general availability of the equipment required. It is the purpose of this report to assess these reported methods for their suitability for breast milk intake measurements

  19. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA SBIR topic S1.07 In Situ Sensors for Lunar and Planetary Science, particularly the need for measuring isotopic ratios of the key...

  20. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  1. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA has fostered the more widespread use of a stable isotope technique to assess body composition in different population groups to address priority areas in public health nutrition in Member States. It has done this by supporting national and regional nutrition projects through its technical cooperation programme and coordinated research projects over many years. This publication was developed by an international group of experts to provide practical hands-on guidance in the use of this technique in settings where analysis of stable isotope ratios in biological samples is to be made by isotope ratio mass spectrometry. The publication is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical applications of state of the art methodologies to monitor changes in body composition can be found in IAEA Human Health Series No. 3, Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques

  2. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography–mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhiyuan; Wu, Mengqiu; Li, Yingchun; Zheng, Xiao; Liu, Huiying; Cheng, Xuefang [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Xu, Lin [Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009 (China); Wang, Guangji, E-mail: guangjiwang@hotmail.com [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Hao, Haiping, E-mail: hhp_770505@yahoo.com.cn [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China)

    2013-04-15

    Highlights: ► The peptide fingerprint map of NQO1 has been defined by using TripleTOF. ► Signature peptide of NQO1 can be quickly quantified within 10 min. ► Analysis is performed with non-isotopic analog and compared with isotopic method. ► This method is adequate for NQO1 quantitation from human cancer cells and tissues. -- Abstract: NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC–MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62–162 fmol μL{sup −1}. This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both