WorldWideScience

Sample records for non-thermal arc mode

  1. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong

    2016-01-01

    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  2. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    International Nuclear Information System (INIS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; Tok, A. I. Y.; Krishna, D. Siva Rama

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes. (plasma technology)

  3. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  4. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  5. Comparing two non-equilibrium approaches to modelling of a free-burning arc

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Cunha, M D

    2013-01-01

    Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other. (paper)

  6. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  7. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  8. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    Science.gov (United States)

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  9. Arc-textured metal surfaces for high thermal emittance space radiators

    International Nuclear Information System (INIS)

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 μm were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70

  10. Thermal conductivity in an argon arc at atmospheric pressure

    NARCIS (Netherlands)

    Bol, L.; Timmermans, C.J.; Schram, D.C.

    1984-01-01

    The thermal conductivity of an argon plasma has been determined in a phi 5 mm wall stabilized atmospheric argon arc in the temperature range from 10000 to 16000 K. The calculations are based on the energy balance, and include non-LTE effects like ambipolar diffusion and overpopulation of the ground

  11. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  12. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  13. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  14. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A non-equilibrium quenched plasma is prepared using a gliding-arc discharge generated between diverging electrodes and extended by a gas flow. It can be operated at atmospheric pressure and applied to plasma surface treatment to improve adhesion properties of material surfaces. In this work, glass......-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  15. Electrothermal efficiency, temperature and thermal conductivity

    Indian Academy of Sciences (India)

    A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  16. Novel non-equilibrium modelling of a DC electric arc in argon

    Science.gov (United States)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  17. Novel non-equilibrium modelling of a DC electric arc in argon

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Almeida, N A

    2016-01-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current–voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7–2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A. (paper)

  18. Modeling of thermal plasma arc technology FY 1994 report

    International Nuclear Information System (INIS)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces

  19. Investigation and control of dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    The uncontrolled arc plasma instabilities in suspension plasma spraying or solution precursor plasma spraying cause non-homogeneous plasma treatments of material during their flight and also on coatings during their formation. This paper shows that the arc motion in dc plasma torches mainly originates in two main modes of oscillation (Helmholtz and restrike modes). The emphasis is put on the restrike mode in which the time component is extracted after building up and applying a numerical filter to raw arc voltage signals. The dependence of re-arcing events on experimental parameters is analysed in the frame of a phenomenological restrike model. It is shown that when the restrike frequency reaches the Helmholtz one, both modes are locked together and a pulsed arc jet is generated. (paper)

  20. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Yatom, Shurik; Selinsky, Rachel S.

    2017-01-01

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, were characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.

  1. Comparison of Several Modes in Simple ARC Second-Order Filter

    Directory of Open Access Journals (Sweden)

    A. I. Rybin

    1994-07-01

    Full Text Available In this paper the popular, multiple-feedback, ARC single opamp, highpass second-order filter is proposed in several types of modes, namely voltage, current and hybrid ones. These modes are studied and compared in detail. Computer experimental results are given supporting the theory.

  2. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  3. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-01-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  4. SU-F-T-528: Relationship Between Tumor Size and Plan Quality Using FFF and Non-FFF Modes in Rapidarc

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F [Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China)

    2016-06-15

    Purpose: For a give PTV dose, beam-on time is shorter in the FFF than the non-FFF mode because of higher MU/min. Larger tumors usually require more complex intensity modulation, which might affect plan quality and total MU. We investigated the relationship between PTV size and plan quality using FFF and non-FFF modes. Methods: Two different PTV volumes (PTV and PTV+1 cm margin) were drawn in brain, lung and liver. 3-full to 7-partial arc (Rapidarc) of 6 MV, 1400 MU/min were studied. Plan quality was evaluated by: (a) DVH for PTV and normal tissues, (b) total MU and beam-on time, and (c) passing rate for IMRT plan QA. Results: For the same PTV coverage, DVH for normal tissue was the same or slightly lower in the FFF compared with non-FFF. Total MU was 13% higher in FFF than non-FFF in the 3-arc, 7 Gy treatment, but the difference became smaller when arc number increased to 6–7 for 10–24 Gy. Larger PTV did not affect the difference in the total MU. FFF required a short beam-on time and the ratio of FFF and non-FFF was 0.34 to 0.88 for 7- and 3-arc, respectively. For larger PTV, the ratio increased to 0.45–0.90. Ratio of total MU for large PTV was 3–8% lower in the non-FFF plans. Although the small difference in MU, beam-on time was 1.1 to-1.6 times longer in the 3- and 7-arc non-FFF plans. Plan verification showed the similar gamma index passing rate. Conclusion: While total MU was similar with FFF and non-FFF modes, the beam-on time was shorter in the FFF treatment. The advantage of FFF was greater in treatments with high dose per fraction using more arc numbers. For dose less than 10 Gy, using FFF and non-FFF modes, tumor size did not affect the relationship of total MU, beam-on time.

  5. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  6. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    International Nuclear Information System (INIS)

    Kim, Keun Su

    2009-01-01

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field

  7. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  8. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  9. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  10. Thermal Plasma Generators with Water Stabilized Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    2009-01-01

    Roč. 2, č. 1 (2009), s. 99-104 ISSN 1876-5343 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma torch * Gerdien arc Subject RIV: BL - Plasma and Gas Discharge Physics http://www.bentham.org/open/toppj/openaccess2.htm

  11. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  12. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Science.gov (United States)

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  13. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Du

    Full Text Available The characteristics of a series direct current (DC arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  14. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  15. Interelectrode plasma evolution in a hot refractory anode vacuum arc: Theory and comparison with experiment

    International Nuclear Information System (INIS)

    Beilis, I.I.; Goldsmith, S.; Boxman, R.L.

    2002-01-01

    In this paper a theoretical study of a hot refractory anode vacuum arc, which was previously investigated experimentally [Phys. Plasmas 7, 3068 (2000)], is presented. The arc was sustained between a thermally isolated refractory anode and a water-cooled copper cathode. The arc started as a multicathode-spot (MCS) vacuum arc and then switched to the hot refractory anode vacuum arc (HRAVA) mode. In the MCS mode, the cathodic plasma jet deposits a film of the cathode material on the anode. Simultaneously, the temperature of the thermally isolated anode begins to rise, reaching eventually a sufficiently high temperature to re-evaporate the deposited material, which is subsequently ionized in the interelectrode gap. The transition to the HRAVA mode is completed when the density of the interelectrode plasma consists mostly of ionized re-evaporated atoms--the anode plasma. The evolution of the HRAVA mode is characterized by the propagation of a luminous plasma plume from the anode to the cathode. The time dependent model of the various physical processes taking place during the transition to the HRAVA mode is represented by a system of equations describing atom re-evaporation, atom ionization through the interaction of the cathode jet and the interelectrode plasma with the anode vapor, plasma plume propagation, plasma radial expansion, plasma energy, and heavy particle density balance. The time dependence of the anode heat flux and the effective anode voltage were obtained by solving these equations. In addition, the time dependent plasma electron temperature, plasma density, anode potential drop, arc voltage, and anode temperature distribution were calculated and compared with previous measurements. It was shown that the observed decrease of the effective anode voltage with time during the mode transition is due to decrease of the heat flux incident on the anode surface from the cathode spot jets

  16. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  17. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  18. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  19. Heating of refractory cathodes by high-pressure arc plasmas: II

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D

    2003-01-01

    Solitary spots on infinite planar cathodes and diffuse and axially symmetric spot modes on finite cathodes of high-pressure arc discharges are studied in a wide range of arc currents. General features are analysed and extensive numerical results on planar and cylindrical tungsten cathodes of atmospheric-pressure argon arcs are given for currents of up to 100 kA. It is shown, in particular, that the temperature of cathode surface inside a solitary spot varies relatively weakly and may be estimated, to the accuracy of about 200-300 K, without actually solving the thermal conduction equation in the cathode body. Asymptotic behaviour of solutions for finite cathodes in the limiting case of high currents is found and confirmed by numerical results. A general pattern of current-voltage characteristics of various modes on finite cathodes suggested previously on the basis of bifurcation analysis is confirmed. A transition from the spot modes on a finite cathode in the limit of large cathode dimensions to the solitary spot mode on an infinite planar cathode is studied. It is found that the solitary spot mode represents a limiting form of the high-voltage spot mode on a finite cathode. A question of distinguishing between diffuse and spot modes on finite cathodes is considered

  20. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  1. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank

    2014-01-01

    on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows......A gliding arc is a quenched plasma that can be operated as a non-thermal plasma at atmospheric pressure and that is thus suitable for large-scale plasma surface treatment. For its practical industrial use the discharge should be extended stably in ambient air. A simple analytical calculation based...... that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  2. Current transfer in dc non-transferred arc plasma torches

    International Nuclear Information System (INIS)

    Ghorui, S; Sahasrabudhe, S N; Das, A K

    2010-01-01

    Fundamentals of current transfer to the anodes in dc non-transferred arc plasma torches are investigated. Specially designed anodes made of three mutually isolated sections and external dc axial magnetic fields of various strengths are utilized to explore the conditions for different diffused and constricted attachments of the arc with the anode. A number of new facts are revealed in the exercise. Under constricted attachment, formation of arc root takes place. Spontaneous and magnetically induced movements of the arc root, their dependence on the arc current and the strength of the external magnetic field, most probable arc root velocity, variation of the root velocity with strength of the applied magnetic field, the effect of swirl on the rotational speed of the arc root are some of the important features investigated. Two new techniques are introduced: one for measurement of the arc root diameter and the other for determination of the negative electric field in the boundary layer over the anode. While the first one exploits the rigid column behaviour of the arcs, the second one utilizes the shooting back of the residual electrons over an arc spot. Sample calculations are provided.

  3. MAGNETIC ARC WELDING STABILIZATION USING NON-CONSUMABLE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Павло Юрійович Сидоренко

    2017-06-01

    Full Text Available Results of development torch to magnetically operated   welding arc are defined. Changing the design of the electrode unit is provided the ability to create within the area of the arc magnetic field and induction given configuration without additional equipment. The features of the arc in an axial magnetic field which make it possible to avoid the welding process of unsteady abnormalities resulted in the inappropriate formation of defects in welds. Significant increase in the depth of  weld penetration is connected with the more concentrated magnetically operated   welding arc transmission energy to the product. It is concluded about the feasibility of using a designed torch for the implementation of modern technological processes non-consumable electrode welding.

  4. Discharge behavior of vacuum arc ion source working in pulse mode

    International Nuclear Information System (INIS)

    Tang Pingying; Dai Jingyi; Tan Xiaohua; Jin Dazhi; Liu Tie; Ding Bonan

    2005-01-01

    Discharge behavior of the vacuum arc ion source working in pulse mode was investigated using high-speed photography and spectrum diagnosis. The evolvement of cathode spot on hydrogen-impregnated electrode was captured by high-speed photography, and the emission spectra of cathode spot at different pulse currents were analyzed. The experimental results show that in most cases, only one cathode spot can be found in the discharge zone of vacuum arc ion source, and the spot moves a little during the same discharge. Temperature of the cathode spot may rise while the discharge current increases, and ultimately the density of hydrogen ion will be increased. At the same time, sputtering of the electrode is enhanced and the quality of ion plasma will be reduced. (authors)

  5. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Science.gov (United States)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  6. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    Science.gov (United States)

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  7. Thermal and Arc Flash Analysis of Electric Motor Drives in Distribution Networks

    OpenAIRE

    Nikolovski, Srete; Mlakić, Dragan; Alibašić, Emir

    2017-01-01

    The paper presents thermal analysis and arc flash analysis taking care of protection relays coordination settings for electric motor drives connected to the electrical network. Power flow analysis is performed to check if there are any voltage and loading violation conditions in the system. Fault analysis is performed to check the short circuit values and compute arc flash energy dissipated at industrial busbars to eliminate damage to electrical equipment and electrical shocks and hazard to p...

  8. The development of argon arc brazing with Cu-based filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Sun Zhenchao; Li Pengyuan; Pan Chuanjie; Hou Binglin; Han Shilei; Pei Yinyin; Long Weimin

    2012-01-01

    Thermal anchor is the key component of ITER magnet supports to maintain the low temperature for the nor mal operation of superconducting coils. During the advanced research of ITER thermal anchor attachment, dozens of brazing filler and several kinds of brazing technique have been developed and investigated. The test result shows that Cu-based alloy have the preferable mechanical properties at both room temperature and liquid nitrogen temperatures (77 K) for high brazing temperature. And it has a good weldability to 316LN. The brazing temperature of Cu-based filler is over 1000℃, but heat input is relatively low for shallower heating depth of argon arc brazing. Lower heat input is good for the control of brazing deformation. It is no need to clean after brazing because for argon arc brazing there is no bra- zing flux used. Arc brazing with Cu-based filler was chosen as the principal method for the attachment of thermal anchor. (authors)

  9. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    International Nuclear Information System (INIS)

    Choi, Sooseok; Watanabe, Takayuki; Li Tianming

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process. (plasma technology)

  10. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  11. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  12. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  13. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Stanley W. [Colorado School of Mines, Golden, CO (United States)

    1993-01-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  14. Thermal re-ignition processes of switching arcs with various gas-blast using voltage application highly controlled by powersemiconductors

    Science.gov (United States)

    Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.

    2018-05-01

    This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.

  15. Three-dimensional modelling of a dc non-transferred arc plasma torch

    International Nuclear Information System (INIS)

    Li Heping; Chen Xi

    2001-01-01

    Three-dimensional (3D) modelling results are presented concerning a direct current (dc) non-transferred arc plasma torch with axisymmetrical geometrical configuration and axisymmetrical boundary conditions. It is shown that the arc is locally attached at the anode surface of the plasma torch, and the heat transfer and plasma flow within the torch are of 3D features. The predicted arc root location at the anode surface and arc voltage of the torch are very consistent with corresponding experimental results. (author)

  16. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  17. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Mieno, T.; Takeguchi, M.

    2006-01-01

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  18. Maintaining Arc Consistency in Non-Binary Dynamic CSPs using Simple Tabular Reduction

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Ricci, Laurent

    2010-01-01

    CSPs use filtering techniques such as arc consistency, which also have been adapted to handle DCSPs with binary constraints. However, there exists only one algorithm targeting non-binary DCSPs (DnGAC4). In this paper we present a new algorithm DnSTR for maintaining arc consistency in DCSPs with non-binary...

  19. Change of the arc attachment mode and its effect on the lifetime in automotive high intensity discharge lamps

    Science.gov (United States)

    Alexejev, Alexander; Flesch, Peter; Mentel, Jürgen; Awakowicz, Peter

    2016-10-01

    In modern cars, the new generation Hg-free high intensity discharge (HID) lamps, the so called xenon lamps, take an important role. The long lifetime of these lamps is achieved by doping the tungsten electrodes with thorium. Thorium forms a dipole layer on the electrode surface, thus reducing the work function of tungsten. However, thoriating the electrodes is also an issue of trade and transport regulation, so a substitute is looked into. This work shows the influence of the arc attachment mode on the lifetime of the lamps. The mode of the arc attachment changes during the run-up phase of automotive HID lamps after a characteristic time period depending, i.e., on the filling of the lamps, which is dominated by scandium. It will be shown that this characteristic time period for the change of the attachment mode determines the long term performance of Hg-free xenon lamps. Measurements attributing the mode change to the scandium density in the filling are presented. The emitter effect of scandium will be suggested to be the reason of the mode change.

  20. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  1. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  2. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    International Nuclear Information System (INIS)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  3. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  4. On local thermal equilibrium and potential gradient vs current characteristic in wall-stabilized argon plasma arc at 0.1 atm pressure

    International Nuclear Information System (INIS)

    Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.

    1979-01-01

    In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)

  5. Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches

    International Nuclear Information System (INIS)

    Li Heping; Pfender, E; Chen, Xi

    2003-01-01

    In this paper, physical/mathematical models for the three-dimensional, quasi-steady modelling of the plasma flow and heat transfer inside a non-transferred DC arc plasma torch are described in detail. The Steenbeck's minimum principle (Finkelnburg W and Maecker H 1956 Electric arcs and thermal plasmas Encyclopedia of Physics vol XXII (Berlin: Springer)) is employed to determine the axial position of the anode arc-root at the anode surface. This principle postulates a minimum arc voltage for a given arc current, working gas flow rate, and torch configuration. The modelling results show that the temperature and flow fields inside the DC non-transferred arc plasma torch show significant three-dimensional features. The predicted anode arc-root attachment position and the arc shape by employing Steenbeck's minimum principle are reasonably consistent with experimental observations. The thermal efficiency and the torch power distribution are also calculated in this paper. The results show that the thermal efficiency of the torch always ranges from 30% to 45%, i.e. more than half of the total power input is taken away by the cathode and anode cooling water. The special heat transfer mechanisms at the plasma-anode interface, such as electron condensation, electron enthalpy and radiative heat transfer from the bulk plasma to the anode inner surface, are taken into account in this paper. The calculated results show that besides convective heat transfer, the contributions of electron condensation, electron enthalpy and radiation to the anode heat transfer are also important (∼30% for parameter range of interest in this paper). Additional effects, such as the non-local thermodynamic equilibrium plasma state near the electrodes, the transient phenomena, etc, need to be considered in future physical/mathematical models, including corresponding measurements

  6. SU-E-T-153: Burst-Mode Modulated Arc Therapy with Flattening-Filter-Free Beams Versus Flattening-Filtered Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, K; Lawton, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2015-06-15

    Purpose: To compare the dosimetry and delivery of burst-mode modulated arc radiotherapy using flattening-filter-free (FFF) and flattening-filtered (FF) beams. Methods: Burst-mode modulated arc therapy (mARC, Siemens) plans were generated for six prostate cases with FFF and FF beam models, using the Elekta Monaco v. 5.00 planning system. One 360-degree arc was used for five cases, and for one case two 360-degree coplanar arcs were used. The maximum number of optimization points (OPs) per arc was set to 91, and OPs with less than 4 MU were disregarded. All plans were delivered on the Siemens Artiste linear accelerator with 6MV FF (300 MU/min) and comparable-energy FFF (2000 MU/min, labeled as 7UF) beams. Results: For all cases studied, the plans with FFF beams exhibited DVHs for the PTV, rectum, and bladder that were nearly identical to those for the plans with FF beams. The FFF plan yielded reduced dose to the right femoral head for 5 cases, and lower mean dose to the left femoral head for 4 cases. For all but the two-arc case, the FFF and FF plans resulted in an identical number of segments. The total number of MUs was slightly lower for the FF plans for five cases. The total delivery time per fraction was substantially lower for the FFF plans, ranging from 25 to 50 percent among all cases, as compared to the FF plans. Conclusion: For mARC plans, FFF and FF beams provided comparable PTV coverage and rectum and bladder sparing. For the femoral heads, the mean dose was slightly lower in most cases when using the FFF beam. Although the flat beam plans typically required slightly fewer MUs, FFF beams required substantially less time to deliver a plan of similar quality. This work was supported by Siemens Medical Solutions and the MCW Cancer Center Fotsch Foundation.

  7. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  8. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  9. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  10. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  11. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  12. Manipulation and simulations of thermal field profiles in laser heat-mode lithography

    Science.gov (United States)

    Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long

    2017-12-01

    Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.

  13. Heat transfer modeling of double-side arc welding

    International Nuclear Information System (INIS)

    Sun Junsheng; Wu Chuansong

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  14. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  15. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  16. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  17. Resonant mode for a dc plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions. (paper)

  18. Numerical Prediction of the Influence of Process Parameters on Large Area Diamond Deposition by DC Arcjet with ARC Roots Rotating and Operating at Gas Recycling Mode

    Science.gov (United States)

    Lu, F. X.; Huang, T. B.; Tang, W. Z.; Song, J. H.; Tong, Y. M.

    A computer model have been set up for simulation of the flow and temperature field, and the radial distribution of atomic hydrogen and active carbonaceous species over a large area substrate surface for a new type dc arc plasma torch with rotating arc roots and operating at gas recycling mode A gas recycling radio of 90% was assumed. In numerical calculation of plasma chemistry, the Thermal-Calc program and a powerful thermodynamic database were employed. Numerical calculations to the computer model were performed using boundary conditions close to the experimental setup for large area diamond films deposition. The results showed that the flow and temperature field over substrate surface of Φ60-100mm were smooth and uniform. Calculations were also made with plasma of the same geometry but no arc roots rotation. It was clearly demonstrated that the design of rotating arc roots was advantageous for high quality uniform deposition of large area diamond films. Theoretical predictions on growth rate and film quality as well as their radial uniformity, and the influence of process parameters on large area diamond deposition were discussed in detail based on the spatial distribution of atomic hydrogen and the carbonaceous species in the plasma over the substrate surface obtained from thermodynamic calculations of plasma chemistry, and were compared with experimental observations.

  19. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  20. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  1. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    Science.gov (United States)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  2. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, B. [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Lawerence Livermore National Lab, Livermore, California 94550 (United States); Xu, X. Q. [Lawerence Livermore National Lab, Livermore, California 94550 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States)

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  3. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    Science.gov (United States)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.

    2018-01-01

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.

  4. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  5. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  6. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    Science.gov (United States)

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  7. Formation of self-organized anode patterns in arc discharge simulations

    International Nuclear Information System (INIS)

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic non-equilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant dc current between an axi-symmetric electrode configuration in the absence of external forcing. The number of spots, their size and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc–anode attachment. The results imply that heavy-species–electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges. (paper)

  8. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  9. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  10. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  11. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  12. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  13. An ab-initio coupled mode theory for near field radiative thermal transfer.

    Science.gov (United States)

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  14. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  15. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  16. Reflection of oblique electron thermal modes in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1980-04-01

    In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)

  17. Numerical study of ion thermal gradient driven modes

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Samain, A.

    1987-01-01

    Anomalous ion thermal confinement has been observed in tokamaks (1). The ion temperature gradient driven modes could provide a possible explanation of this fact. The goal of this paper is to examine the stability of such modes by a linear, analytical and numerical study. The value of the threshold parameter and the radial profiles of the modes are computed. The effects of the particles vertical drift due to the field curvature are discussed

  18. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation

    International Nuclear Information System (INIS)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-01-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs

  19. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  20. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  1. Completeness of non-normalizable modes

    International Nuclear Information System (INIS)

    Mannheim, Philip D; Simbotin, Ionel

    2006-01-01

    We establish the completeness of some characteristic sets of non-normalizable modes by constructing fully localized square steps out of them, with each such construction expressly displaying the Gibbs phenomenon associated with trying to use a complete basis of modes to fit functions with discontinuous edges. As well as being of interest in and of itself, our study is also of interest to the recently introduced large extra dimension brane-localized gravity program of Randall and Sundrum, since the particular non-normalizable mode bases that we consider (specifically the irregular Bessel functions and the associated Legendre functions of the second kind) are associated with the tensor gravitational fluctuations which occur in those specific brane worlds in which the embedding of a maximally four-symmetric brane in a five-dimensional anti-de Sitter bulk leads to a warp factor which is divergent. Since the brane-world massless four-dimensional graviton has a divergent wavefunction in these particular cases, its resulting lack of normalizability is thus not seen to be any impediment to its belonging to a complete basis of modes, and consequently its lack of normalizability should not be seen as a criterion for not including it in the spectrum of observable modes. Moreover, because the divergent modes we consider form complete bases, we can even construct propagators out of them in which these modes appear as poles with residues which are expressly finite. Thus, even though normalizable modes appear in propagators with residues which are given as their finite normalization constants, non-normalizable modes can just as equally appear in propagators with finite residues too-it is just that such residues will not be associated with bilinear integrals of the modes

  2. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    Science.gov (United States)

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  3. Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): Evidence of Arc-Type Magmatic Water (ATMW) participation

    Science.gov (United States)

    Dotsika, E.; Poutoukis, D.; Michelot, J. L.; Raco, B.

    2009-01-01

    The Aegean volcanic arc is the result of a lithosphere subduction process during the Quaternary time. Starting from the Soussaki area, from west to east, the arc proceeds through the islands of Egina, Methana, Milos, Santorini, the Columbus Bank, Kos and Nisyros. Volcano-tectonic activities are still pronounced at Santorini and Nisyros in form of seismic activity, craters of hydrothermal explosions, hot fumaroles and thermal springs. A significant number of cold water springs emerge in the vicinity of hot waters on these islands. Chemical and isotopic analyses were applied on water and fumaroles samples collected in different areas of the volcanic arc in order to attempt the assessment of these fluids. Stable isotopes of water and carbon have been used to evaluate the origin of cold and thermal water and CO 2. Chemical solute concentrations and isotopic contents of waters show that the fluids emerging in Egina, Soussaki, Methana and Kos areas represent geothermal systems in their waning stage, while the fluids from Milos, Santorini and Nisyros proceed from active geothermal systems. The δ 2H-δ 18O-Cl - relationships suggest that the parent hydrothermal liquids of Nisyros and Milos are produced through mixing of seawater and Arc-Type Magmatic Water (ATMW), with negligible to nil contribution of local ground waters and with very high participation of the magmatic component, which is close to 70% in both sites. A very high magmatic contribution to the deep geothermal system could occur at Santorini as well, perhaps with a percentage similar to Nisyros and Milos, but it cannot be calculated because of steam condensation heavily affecting the fumarolic fluids of Nea Kameni before the surface discharge. The parent hydrothermal liquid at Methana originates through mixing of local groundwaters, seawater and ATMW, with a magmatic participation close to 19%. All in all, the contribution of ATMW is higher in the central-eastern part of the Aegean volcanic arc than in the

  4. Modes of long crack growth under non-stationary temperature fields

    International Nuclear Information System (INIS)

    Tereshin, D.A.

    2012-01-01

    Highlights: ► Moving thermal stresses can result in much lengthier cracks than usually expected. ► Codirectional crack grows gradually along with thermal zone movement. ► Oppositely directed crack grows stepwise towards thermal tension movement. ► The total crack increment can be up to the whole region of thermal tension travel. - Abstract: The exploitation practice of structures under thermal loads evidences that the final length of a quasistatic crack can be considerably greater than the thermal tension zone, sometimes causing that the structure approaches complete fracture. This occurs in one or several cycles of a gradual crack growth due to the evolution of thermal field in time resulting in that fracture zone follows the moving tension zone. By the extreme example of quasistationary thermal stress field the set of quasistatic crack growth modes and their peculiarities for the case of moving thermal stresses are described here. These are modes developing both in the direction of the thermal stress field propagation and in the opposite direction. The critical condition of each mode is described, and the crack growth rates are estimated. The rational crack growth evaluation procedure is also proposed. The theoretical conclusions are supported by the experiment, which demonstrates the growth of long thermal cracks.

  5. Thermal analyses for the design of the ITER-NBI arc driven ion source

    International Nuclear Information System (INIS)

    Anaclerio, G.; Peruzzo, S.; Dal Bello, S.; Palma, M.D.; Nocentini, R.; Zaccaria, P.

    2006-01-01

    The design of the first ITER NB Injector and the ITER NB Test Facility is presently in progress in the framework of EFDA contracts with the contribution of several European Associations. One of the components currently studied by Consorzio RFX Team is the arc driven negative ion source, which is designed to produce a D - beam of 40 A at 1 MeV for 3600 s pulses, generated in the ion source via a surface production process in a caesium-seeded arc discharge of 790 kW total power. This paper will focus in particular on the thermal analyses carried out in order to evaluate the thermal behaviour in nominal operating conditions of the main components of the ion source: the arc-chamber and the filament cassette assembly. The study is based on hydraulic, thermo-mechanical and thermo-electrical calculations performed by means of 2D and 3D finite element models, with inputs coming partly from the ITER reference design documentation and partly from the design review activities presently in progress. Moreover a complete modelling of all the components of the beam source assembly by means of new 3D CAD models was carried out to demonstrate the feasibility of the proposed design. For the arc chamber, an assessment of the cooling circuit has been performed and hydraulic analyses have been carried out to calculate water flow rates and pressures inside the cooling channels. Thermo-mechanical analyses have been carried out considering several load cases and different water flow rates. The maximum and average temperatures of the arc chamber walls have been calculated to verify the operational conditions and the fulfilment of physics requirements for the negative ion generation. For the filament cassette assembly, an assessment of the effectiveness of the cooling system has been carried out considering two different design solutions: the first based on the reference design, with a dedicated active cooling system integrated in the filament cassette; the other based on a simplified

  6. Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Kumar, Pradip; Tiwari, Radhey Shyam; Oh, Il-Kwon

    2013-01-01

    In this article, a simple and cost-effective method to produce high-quality few-layer graphene (FLG) sheets (∼4 layers) have been achieved by the direct current arc discharge under argon atmosphere, using pure graphite rods as the electrodes. Ar was used as a buffer gas with pure graphite rods as anode and cathode electrodes. We explored the suitable conditions for producing FLG by changing the Ar gas pressure inside the arcing chamber. This method has several advantages over the previous methods to produce graphene for research applications. No toxic and hazardous intercalant was used for producing FLG in this process. The optimum Ar pressure was 500 Torr, for producing minimum number of FLG and this also shows the good thermal stability. The FLG product so obtained has been characterized by X-ray diffraction, scanning and electron microscopy, Raman and Fourier transform infrared spectroscopy. Thermal stabilities of FLG were determined by thermal gravimetric analysis

  7. Reconstruction of emission coefficients for a non-axisymmetric coupling arc by algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xiong Jun; Gao Hongming; Wu Lin

    2011-01-01

    A preliminary investigation of tomographic reconstruction of an asymmetric arc plasma has been carried out. The objective of this work aims at reconstructing emission coefficients of a non-axisymmetric coupling arc from measured intensities by means of an algebraic reconstruction technique (ART). In order to define the optimal experimental scheme for good quality with limited views, the dependence of the reconstruction quality on three configurations (four, eight, ten projection angles) are presented and discussed via a displaced Gaussian model. Then, the emission coefficients of a free burning arc are reconstructed by the ART with the ten-view configuration and an Abel inversion, respectively, and good agreement is obtained. Finally, the emission coefficient profiles of the coupling arc are successfully achieved with the ten-view configuration. The results show that the distribution of emission coefficient for the coupling arc is different from centrosymmetric shape. The ART is perfectly suitable for reconstructing emission coefficients of the coupling arc with the ten-view configuration, proving the feasibility and utility of the ART to characterize an asymmetric arc.

  8. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  9. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Guogang; Dong Jinlong; Liu Wanying; Geng Yingsan

    2014-01-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. (low temperature plasma)

  10. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  11. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  12. Fiber amplifiers under thermal loads leading to transverse mode instability

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power...

  13. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  14. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  15. Magnetic Method to Characterize the Current Densities in Breaker Arc

    International Nuclear Information System (INIS)

    Machkour, Nadia

    2005-01-01

    The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing

  16. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  17. Graphite electrode DC arc technology program for buried waste treatment

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Woskov, P.P.; Thomas, P.; Surma, J.E.; Titus, C.H.

    1994-01-01

    The goal of the program is to apply EPI's Arc Furnace to the processing of Subsurface Disposal Area (SDA) waste from Idaho National Engineering Laboratory. This is being facilitated through the Department of Energy's Buried Waste Integrated Demonstration (BWID) program. A second objective is to apply the diagnostics capability of MIT's Plasma Fusion Center to the understanding of the high temperature processes taking place in the furnace. This diagnostics technology has promise for being applicable in other thermal treatment processes. The program has two parts, a test series in an engineering-scale DC arc furnace which was conducted in an EPI furnace installed at the Plasma Fusion Center and a pilot-scale unit which is under construction at MIT. This pilot-scale furnace will be capable of operating in a continuous feed and continuous tap mode. Included in this work is the development and implementation of diagnostics to evaluate high temperature processes such as DC arc technology. This technology can be used as an effective stabilization process for Superfund wastes

  18. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  19. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2017-01-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed. (paper)

  20. Stability of Alfvén eigenmodes in the vicinity of auroral arc

    Science.gov (United States)

    Hiraki, Yasutaka

    2013-08-01

    The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.

  1. Improved cooler design of electric arc furnace refractory in mining industry using thermal analysis modeling and simulation

    International Nuclear Information System (INIS)

    Istadi, I.; Bindar, Y.

    2014-01-01

    Production of steel and nickel using the electric arc furnace should be focused on the intensification of energy. Improvement of energy efficiency of the most consuming facilities was achieved by improving the use of alternative energy minimization such as reducing the heat lost of hot gases, minimizing the heat radiated through refractory linings of metallurgical furnaces, and cooling the highly thermally stressed components. The refractory of electric arc furnace should be modified to achieve the best cooling system of the furnace. In this physical modeling and simulation works, four modification scenarios of wall refractory designs were simulated, i.e. refractory with basic design, refractory with deep plate coolers, refractory with extra plate coolers, and refractory with wall falling film coolers. Finally, the use of deep plate cooler and the existing waffle cooler system was considered to be the best design of efficient electric arc furnace operationally. - Highlights: • Electric arc furnace design should be focused on the intensification of energy. • Refractory of electric arc furnace were modified to achieve the best cooling system. • Four modification scenarios of the wall refractory designs were simulated. • Use of deep plate cooler and existing waffle cooler system is the best cooling

  2. Relationship between locked modes and thermal quenches in DIII-D

    Science.gov (United States)

    Sweeney, R.; Choi, W.; Austin, M.; Brookman, M.; Izzo, V.; Knolker, M.; La Haye, R. J.; Leonard, A.; Strait, E.; Volpe, F. A.; The DIII-D Team

    2018-05-01

    Locked modes are known to be one of the major causes of disruptions, but the physical mechanisms by which locking leads to disruptions are not well understood. Here we analyze the evolution of the temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial quenches are often observed to be an initial, distinct stage in the full thermal quench. Near the onset of partial quenches, locked island O-points are observed to align with each other on the midplane, and their widths are sufficient to overlap each other, as indicated by the Chirikov parameter. Energy conservation analysis of one partial thermal quench shows that the energy lost is both radiated in the divertor region, and conducted or convected to the divertor. Nonlinear resistive magnetohydrodynamic simulations support the interpretation of stochastic fields causing a partial axisymmetric collapse, though the simulated temperature profile exhibits less degradation than the experimental profiles. In discharges with minimum values of the safety factor above  ∼1.2, locked modes are observed to self-stabilize by inducing, possibly via double tearing modes, a minor disruption that removes their neoclassical drive. These high q min discharges often exhibit relatively low ratios of the plasma internal inductance to the safety factor at 95% of the poloidal flux, which might imply classical stability, in agreement with the decay of the mode when the neoclassical drive is removed.

  3. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  4. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  5. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  6. Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts

    Science.gov (United States)

    Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu

    2018-02-01

    Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.

  7. Ordinary mode instability associated with thermal ring distribution

    Science.gov (United States)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  8. Ordinary mode instability associated with thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, F.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  9. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  10. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  11. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  12. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  13. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  14. Interlamellar cracking of thermal barrier coatings with TGOs by non-standard four-point bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2011-09-25

    Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.

  15. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  16. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  17. Bifurcation theory of ac electric arcing

    International Nuclear Information System (INIS)

    Christen, Thomas; Peinke, Emanuel

    2012-01-01

    The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)

  18. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  19. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  20. Thermal/thermomechanical analyses for the room region with horizontal and vertial modes of emplacement

    International Nuclear Information System (INIS)

    1988-01-01

    Extensive thermal/thermomechanical analyses of the Site Characterization Plan-Conceptual Design at the Deaf Smith county Site, Texas, have been carried out for the room region with horizontal and vertical modes of emplacement. The main purpose of this study is to make a good comparison between these two modes of emplacement in this region. Homogeneous and nonhomogeneous strata under isothermal or transient temperature conditions cases were considered in the analyses. Furthermore, various pillar widths for the vertical mode emplacement were also taken into consideration. Only spent fuel (SF) waste was considered in this study. Finite element method was used throughout the analyses. The thermal responses were evaluated using SPECTROM-41 while the thermomechanical responses were calculated using SPECTROM-32. Thermal and thermomechanical comparisons between the two modes of emplacement for various cases were presented in this paper

  1. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  2. Arc is a flexible modular protein capable of reversible self-oligomerization

    Science.gov (United States)

    Myrum, Craig; Baumann, Anne; Bustad, Helene J.; Flydal, Marte Innselset; Mariaule, Vincent; Alvira, Sara; Cuéllar, Jorge; Haavik, Jan; Soulé, Jonathan; Valpuesta, José Maria; Márquez, José Antonio; Martinez, Aurora; Bramham, Clive R.

    2015-01-01

    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. PMID:25748042

  3. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  4. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    Science.gov (United States)

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. On the stringy nature of winding modes in noncommutative thermal field theories

    CERN Document Server

    Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim

    2000-01-01

    We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...

  6. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  7. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  8. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  9. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  10. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    International Nuclear Information System (INIS)

    Valensi, F; Pellerin, S; Castillon, Q; Zielinska, S; Boutaghane, A; Dzierzega, K; Pellerin, N; Briand, F

    2013-01-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO 2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO 2 and N 2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N 2 and disappears in globular transfer mode when CO 2 is added. Despite the temperature increase, the electron density decreases with CO 2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO 2 . Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account. (paper)

  11. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    Science.gov (United States)

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  13. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  14. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  15. Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes

    International Nuclear Information System (INIS)

    Peng, Jinqing; Lu, Lin; Yang, Hongxing; Ma, Tao

    2015-01-01

    Highlights: • A ventilated photovoltaic double-skin façade (PV-DSF) using semi-transparent a-Si was reported. • The impact of different ventilation modes on the power performance of PV-DSF was studied experimentally. • The SHGCs and U-values of PV-DSFs under different ventilation modes were calculated and compared. • An optimum operating strategy was proposed for this PV-DSF to achieve the best energy efficiency. - Abstract: This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum

  16. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    International Nuclear Information System (INIS)

    Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B

    2010-01-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  17. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  18. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  19. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  20. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  1. Nonlinear trapped electron mode and anomalous heat transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1982-01-01

    We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)

  2. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    Science.gov (United States)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  3. The stability of second sound waves in a rotating Darcy–Brinkman porous layer in local thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, I A; Elbashir, T B A, E-mail: ieltayeb@squ.edu.om, E-mail: elbashir@squ.edu.om [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat 123 (Oman)

    2017-08-15

    The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy–Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau–Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed. (paper)

  4. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

    Science.gov (United States)

    Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh

    2009-11-01

    Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

  5. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  6. Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: a planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT

    International Nuclear Information System (INIS)

    Uto, Megumi; Mizowaki, Takashi; Ogura, Kengo; Hiraoka, Masahiro

    2016-01-01

    Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. While the use of non-coplanar beams in volumetric-modulated arc therapy (VMAT) of malignant intracranial tumors has recently been reported, no dosimetric comparison has yet been made between VMAT using non-coplanar arcs (ncVMAT) and VMAT employing only coplanar arcs (coVMAT) among patients with craniopharyngiomas. We performed a planning study comparing dose distributions to the PTV, hippocampus, and other organs at risk (OAR) of dynamic conformal arc therapy (DCAT), coVMAT, and ncVMAT. DCAT, coVMAT, and ncVMAT plans were created for 10 patients with craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, and 99 % of each PTV was covered by 90 % of the prescribed dose. The maximum dose was held below 107 % of the prescribed dose. CoVMAT and ncVMAT plans were formulated to satisfy the following criteria: the doses to the hippocampus were minimized, and the doses to the OAR were similar to or lower than those of DCAT. The mean equivalent doses in 2-Gy fractions to 40 % of the volumes of the bilateral hippocampus [EQD 2 (40% hippos )] were 15.4/10.8/6.5 Gy for DCAT/coVMAT/ncVMAT, respectively. The EQD 2 (40% hippos ) for ncVMAT were <7.3 Gy, which is the threshold predicting cognitive impairment, as defined by Gondi et al.. The mean doses to normal brain tissue and the conformity indices were similar for the three plans, and the homogeneity indices were significantly better for coVMAT and ncVMAT compared with DCAT. NcVMAT is more appropriate than DCAT and coVMAT for

  7. An ArcGIS decision support tool for artificial reefs site selection (ArcGIS ARSS)

    Science.gov (United States)

    Stylianou, Stavros; Zodiatis, George

    2017-04-01

    Although the use and benefits of artificial reefs, both socio-economic and environmental, have been recognized with research and national development programmes worldwide their development is rarely subjected to a rigorous site selection process and the majority of the projects use the traditional (non-GIS) approach, based on trial and error mode. Recent studies have shown that the use of Geographic Information Systems, unlike to traditional methods, for the identification of suitable areas for artificial reefs siting seems to offer a number of distinct advantages minimizing possible errors, time and cost. A decision support tool (DSS) has been developed based on the existing knowledge, the multi-criteria decision analysis techniques and the GIS approach used in previous studies in order to help the stakeholders to identify the optimal locations for artificial reefs deployment on the basis of the physical, biological, oceanographic and socio-economic features of the sites. The tool provides to the users the ability to produce a final report with the results and suitability maps. The ArcGIS ARSS support tool runs within the existing ArcMap 10.2.x environment and for the development the VB .NET high level programming language has been used along with ArcObjects 10.2.x. Two local-scale case studies were conducted in order to test the application of the tool focusing on artificial reef siting. The results obtained from the case studies have shown that the tool can be successfully integrated within the site selection process in order to select objectively the optimal site for artificial reefs deployment.

  8. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  9. On non-extensive nature of thermal conductivity

    Indian Academy of Sciences (India)

    Abstract. In this paper we study non-extensive nature of thermal conductivity. It is observed that there is similarity between non-extensive entropic index and fractal dimension obtained for the silica aerogel thermal conductivity data at low temperature.

  10. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), Mérida 5101 (Venezuela, Bolivarian Republic of); Korte, Dorota; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.

  11. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  12. Thermal coupling and damage mechanisms of laser radiation on selected materials

    International Nuclear Information System (INIS)

    Schwirzke, F.; Jenkins, W.F.; Schmidt, W.R.

    1983-01-01

    High power laser beams interact with targets by a variety of thermal, impulse, and electrical effects. Energy coupling is considerably enhanced once surface electrical breakdown occurs. The laser heated plasma then causes surface damage via thermal evaporation, ion sputtering, and unipolar arcing. While the first two are purely thermal and mechanical effects, the last one, unipolar arcing, is an electrical plasma-surface interaction process which leads to crater formation, usually called laser-pitting, a process which was often observed but not well understood. Unipolar arcing occurs when a plasma of sufficiently high electron temperature interacts with a surface. Without an external voltage applied, many electrical micro-arcs burn between the surface and the plasma, driven by local variations of the sheath potential with the surface acting as both the cathode and anode. Laser induced unipolar arcing represents the most damaging and non-uniform plasma-surface interaction process since the energy available in the plasma concentrates towards the cathode spots. This causes cratering of the materials surface. The ejection of material in the form of small jets from the craters leads to ripples in the critical plasma density contour. This in turn contributes to the onset of plasma instabilities, small scale magnetic field generation and laser beam filamentation. The ejection of a plasma jet from the unipolar arc crater also causes highly localized shock waves to propagate into the target, softening it in the process. Thus, local surface erosion by unipolar arcing is much more severe than for uniform energy deposition

  13. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  14. Numerical simulation of a novel non-transferred arc plasma torch operating with nitrogen

    International Nuclear Information System (INIS)

    Hiremath, Gavisiddayya; Kandasamy, Ramachandran; Ganesh, Ravi

    2015-01-01

    High power plasma torches with higher electro-thermal efficiency are required for industrial applications. To increase the plasma power and electrothermal efficiency, conventional torches are being modified to operate with molecular gases such as air and nitrogen. Since increasing arc current enhances the heat loss to the anode, torches are being developed to operate under high voltage and low current. The plasma flow dynamics and electromagnetic coupling with plasma flow inside the torch etc. are highly complex and knowledge on the same is required to develop high torches with higher efficiency. Unfortunately detailed experimentation on the same is very difficult. Numerical modeling and simulation is one of the best tools to understand the physics involved in such complex processes. A 2D numerical model is developed to simulate the characteristics of the plasma inside the torch. Though plasma is not in local thermodynamic equilibrium (LTE) close to the electrodes, LTE is assumed everywhere in the plasma to avoid complex and time consuming calculations. Other valid assumptions used in the model are plasma flow is optically thin, laminar and incompressible. Flow, energy and electromagnetic equations are solved with appropriate boundary conditions and volume sources using SIMPLE algorithm with finite volume method. Temperature dependent thermophysical properties of nitrogen are used for the simulations. Simulations are carried out for different experimental conditions. The effects of arc current, gas flow rate of plasma generating gas and sheath gas injected above the bottom anode on the arc voltage, electrothermal efficiency of the torch, plasma temperature and plasma velocity are simulated. Predicted results are compared with experimental results. (author)

  15. 3D static and time-dependent modelling of a dc transferred arc twin torch system

    International Nuclear Information System (INIS)

    Colombo, V; Ghedini, E; Boselli, M; Sanibondi, P; Concetti, A

    2011-01-01

    The transferred arc plasma torch device consists of two electrodes generating a plasma arc sustained by means of an electric current flowing through the body of the discharge. Modelling works investigating transferred electric arc discharges generated between two suspended metallic electrodes, in the so-called twin torch configuration, are scarce. The discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics and needs a 3D description in order to be realistically predicted. The extended discharge length that goes from the tungsten pencil cathode to the flat copper anode without any particular confinement wall and the fluid dynamics and magnetic forces acting on the arc may induce an unsteady behaviour. In order to capture the dynamic behaviour of a twin torch discharge, a 3D time-dependent plasma arc model has been developed using a customized commercial code FLUENT form in both local thermodynamic equilibrium (LTE) and non-LTE. A two temperature (2T) model has been developed taking into account only the thermal non-equilibrium effects in argon plasma. The main differences between LTE and 2T models' results concern the increased extension of the horizontal section of the discharge and the predicted reduced (of about 60-80 V) voltage drop between the electrodes when using a 2T model.

  16. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  17. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  18. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.

    2010-01-01

    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of use...

  19. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  20. Graphite electrode DC arc furnace. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  1. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  2. Electrical and optical investigations on the low voltage vacuum arc

    International Nuclear Information System (INIS)

    Braic, M.; Braic, V.; Pavelescu, G.; Balaceanu, M.; Pavelescu, D.; Dumitrescu, G.; Gherendi, F.

    2002-01-01

    Preliminary investigations of a low voltage circuit breaker, adapted from a real industrial device, were carried out by electrical and optical methods. Electrical, parameters were measured in the high current arc period and in zero current moment (C.Z) and corroborated with the arc plasma spectroscopic investigations. For the first time in vacuum arc diagnostics, the paper presents results based on single shot time resolved emission spectroscopy around C.Z. The short-circuit current was produced in a special high power installation in order to reproduce exactly the short-circuit regimes developing in low voltage distribution networks. A stainless steel vacuum chamber with classical Cu-Cr electrodes was used. Tests were performed for different current values in the range 3 - 20 kA rms , the voltages being varied between 200 and 1000 V ac . Interruption processes in the different arc regimes (from the diffuse arc mode to the constricted column mode) were analyzed. The success of the arc interruption was analyzed in terms of electric arc energy achieved in the first current halfperiod. The results obtained were corroborated with arc plasma spectroscopic investigations. The emission spectroscopy setup, using an Acton spectrograph and an intensified CCD camera, allowed the spatial and time-resolved investigation of spectra emitted by the vacuum arc plasma. The first truly time-resolved spectroscopic measurements on a single half-period was proven to be a good method to investigate the vacuum arc. Using single shot time resolved spectroscopy around zero current on partial unsuccessful interruption we concluded that the Cu ions, more that Cr ions were responsible for the arc reignition. The financial support for this work comes from NATO-STI SfP /974083 and CORINT-Romania projects. (authors)

  3. Vacuum arc ion charge state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.

    1990-06-01

    We have measured vacuum arc ion charge state spectra for a wide range of metallic cathode materials. The charge state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. We have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. The arc was operated in a pulsed mode with pulse length 0.25 msec; arc current was 100 A throughout. This array of elements extends and completes previous work by us. In this paper the measured distributions are cataloged and compared with our earlier results and with those of other workers. We also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  4. Vacuum arc ion charge-state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.

    1991-01-01

    The authors have measured vacuum arc ion charge-state spectra for a wide range of metallic cathode materials. The charge-state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. They have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th, and U. The arc was operated in a pulsed mode with pulse length 0.25 ms; arc current was 100 A throughout. This array of elements extends and completes previous work by the authors. In this paper the measured distributions are cataloged and compared with their earlier results and those of other workers. They also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  5. On the Non-Thermal Energy Content of Cosmic Structures

    Directory of Open Access Journals (Sweden)

    Franco Vazza

    2016-11-01

    Full Text Available (1 Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales; (2 Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter; (3 Results: the impact of non-thermal energy (e.g., cosmic rays, magnetic fields and turbulent motions is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume; (4 Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles and of the origin of extragalactic magnetic fields.

  6. Simulation of particle nucleation and growth in transferred arc thermal plasma system

    International Nuclear Information System (INIS)

    Tak, A.K.; Das, A.K.

    2014-01-01

    A two dimensional model has been applied to analyze the arc-anode interaction and fluid flow in a transferred arc based system used for producing metal and ceramic nano-powder. Computational domain consists of an aluminium anode and a transferred arc plasma torch located in water cooled cylindrical chamber. Various user defined subroutines have been developed and interfaced to commercial CFD code to model the plasma flow in the torch and its interaction with anode. Computations were done for various arc currents and flow rates of plasma forming gas. Exchange of heat and current between plasma and anode is computed. Effect of electromagnetic forces on the fluid flow is analyzed. Spatial distribution of variables such as temperature, velocity, current density, Lorentz forces has also been computed. Simulations show a strong flow recirculation and resulting arc contraction near the anode surface. We have discussed how the change in fluid flow under electromagnetic forces will affect the rate of metal evaporation and flow of vapors in the plasma gas

  7. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  8. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  9. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  10. Numerical simulation of heat transfer and fluid flow in a DC plasma-arc device for waste thermal treatment

    International Nuclear Information System (INIS)

    Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi

    2010-01-01

    In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)

  11. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  12. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  13. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  14. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  15. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  16. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  17. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  18. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces

    International Nuclear Information System (INIS)

    Lin Shangchao; Buehler, Markus J

    2013-01-01

    The intrinsic interfacial thermal resistance at graphene/organic interfaces, as a result of mismatches in the phonon vibrational spectra of the two materials, diminishes the overall heat transfer performance of graphene/organic nanocomposites. In this paper, we use molecular dynamics (MD) simulations to design alkyl-pyrene molecules that can non-covalently functionalize graphene surfaces in contact with a model organic phase composed of octane. The alkyl-pyrene molecules possess phonon-spectra features of both graphene and octane and, therefore, can serve as phonon-spectra linkers to bridge the vibrational mismatch at the graphene/octane interface. In support of this hypothesis, we find that the best linker candidate can enhance the out-of-plane graphene/organic interfacial thermal conductance by ∼22%, attributed to its capability to compensate the low-frequency phonon mode of graphene. We also find that the length of the alkyl chain indirectly affects the interfacial thermal conductance through different orientations of these chains because they dictate the contribution of the out-of-plane high-frequency carbon–hydrogen bond vibrations to the overall phonon transport. This study advances our understanding of the less destructive non-covalent functionalization method and design principles of suitable linker molecules to enhance the thermal performance of graphene/organic nanocomposites while retaining the intrinsic chemical, thermal, and mechanical properties of pristine graphene. (paper)

  19. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    Science.gov (United States)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  20. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  1. Calorimeter probes for measuring high thermal flux. [in arc jets

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  2. Oblique propagation of electron thermal modes below the electron plasma frequency without boundary effects

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1981-08-01

    Propagation characteristics and refractive effects of an oblique electron thermal mode without boundary effects below the electron plasma frequency are studied experimentally and theoretically in an inhomogeneous magnetized plasma. The behavior of this mode observed experimentally was confirmed by the theoretical analysis based on a new type of ray theory. (author)

  3. Fermi arc mediated entropy transport in topological semimetals

    Science.gov (United States)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  4. Production of small U Alx alloy buttons in a non consumable electrode arc furnace

    International Nuclear Information System (INIS)

    Koshimizu, S.; Lima, L.F.C.P. de; Leal Neto, R.M.

    1994-01-01

    Some results are presented, concerning with composition and phases, in small buttons of U Al x (10 to 50 g) produced in a non consumable electrode arc furnace. The uranium metal utilised is natural one produced in the IPEN. The convenience of the fabrication of small buttons of U AL x is discussed. (author). 3 refs, 2 figs, 1 tab

  5. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  6. The role of ring current O+ in the formation of stable auroral red arcs

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Shelley, E.G.; Comfort, R.H.; Brace, L.H.

    1987-01-01

    Coulomb collisions between ring current protons and thermal electrons were first proposed by Cole (1965) as the energy source for stable auroral red (SAR) arcs. Recent observations have shown that the ring current and magnetospheric plasma contain significant amounts of heavy ions (Johnson et al., 1977; Young et al., 1977; Geiss et al., 1978; and others). In fact, the ring current is often dominated by heavy ions at those energies (E ≤ 17 keV) important for Coulomb collisions on SAR arc field lines (Kozyra et al., 1986a). Observations (during four SAR arcs in 1981) of thermal and energetic ion populations by the Dynamics Explorer 1 satellite in the magnetospheric energy source region and nearly simultaneous Langmuir probe measurements of enhanced electron temperatures by Dynamics Explorer 2 within the SAR arc at F region heights have allowed the authors to examine the role of heavy ions in the formation of SAR arcs. They find that (1) sufficient energy is transferred to the electron gas at high altitudes via Coulomb collisions between the observed ring current ions and thermal electrons to support the enhanced (SAR arc) F region electron temperatures measured on these field lines, (2) the latitudinal variation in the electron heating rates calculated using observed ion populations is consistent with the observed variation in electron temperature across the SAR arc, and (3) in all cases, ring current O + is the major source of energy for the SAR arcs. This implies a relationship between the heavy ion content of the magnetospheric plasma and the occurrence frequency and intensity of SAR arcs

  7. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Science.gov (United States)

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.

    2005-02-01

    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  8. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  9. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  10. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    Science.gov (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  11. Analysis of Non-contact Acousto Thermal Signature Data (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0321 ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) Amanda K. Criner AFRL/RX...October 2014 – 16 September 2015 4. TITLE AND SUBTITLE ANALYSIS OF NON-CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) 5a. CONTRACT NUMBER...words) The non-contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as

  12. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    International Nuclear Information System (INIS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-01-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, S t , (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between S t and the dose at half thickness, D m , measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the S t signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D iso , for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed D iso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time

  13. Etching Effect of an Atmospheric DC Arc Plasmatron

    International Nuclear Information System (INIS)

    Chun, Se Min; Kim, Ji Hun; Kang, In Je; Lee, Heon Ju

    2010-01-01

    Thermal plasmas (especially arc plasma) were extensively industrialized, principally by aeronautic sector. Cold plasma technologies have been developed in the microelectronics but their vacuum equipment limits their implantation. Plasmas used in dry etching, thin film deposition and surface treatment for display or semiconductor industries are operating at low pressures in very costly due to the use of vacuum equipment and vacuum components. Use of DC arc plasmatrons in welding, soldering, and cutting of metals is well known. A DC-arc plasmatron with high durability was reported to be a suitable device for etching silicon and photo-resist surfaces

  14. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... as one major limitation to the achievable power, causing degradation of the modal properties and preventing to obtain stable diffraction-limited output beam. In this paper, the effects of thermally induced refractive index change on the guiding properties of a double-cladding distributed modal filtering...

  15. Comparative Observation of Ar, Ar-H2 and Ar-N2 DC Arc Plasma Jets and Their Arc Root Behaviour at Reduced Pressure

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Li Teng; Chen Xi; Wu Chengkang

    2007-01-01

    Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch

  16. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  17. On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot

    Science.gov (United States)

    Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.

    2018-06-01

    Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.

  18. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    OpenAIRE

    Kechagias John; Petousis Markos; Vidakis Nectarios; Mastorakis Nikos

    2017-01-01

    Plasma Arc Cutting (PAC) is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min), torch standoff distance (mm), and arc voltage (volts). Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For ...

  19. Non-precision approach in manual mode

    Directory of Open Access Journals (Sweden)

    М. В. Коршунов

    2013-07-01

    Full Text Available Considered is the method of non-precision approach of an aircraft in the manual mode with a constant angle of path. Advantage of this method consists in the fact that the construction of approach with a constant angle of path provides the stable path of flight. It is also considered a detailed analysis of the possibility of the approach by the above-mentioned method. Conclusions contain recommendations regarding the use of the described method of non-precision approach during training flights.

  20. Assessment indices for uniform and non-uniform thermal environments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.

  1. Possible non-sexual modes of transmission of human papilloma virus.

    Science.gov (United States)

    Sabeena, Sasidharanpillai; Bhat, Parvati; Kamath, Veena; Arunkumar, Govindakarnavar

    2017-03-01

    There is strong evidence to suggest vertical and horizontal modes of transmission of human papilloma virus (HPV), an established etiologic agent of cervical cancer. Infants, children, and adults can acquire both high-risk and low-risk infections by birth or by close contact even though HPV is mainly transmitted sexually. A thorough review of the literature was performed to assess the possible non-sexual modes of transmission of HPV. An electronic search of databases for review articles, cross-sectional studies, cohort studies, and case reports on non-sexual modes of transmission among sexually unexposed women and children was carried out using search terms such as "human papilloma virus, HPV, transmission, horizontal transmission, vertical transmission, and fomites". Articles published between 1983 and 2015 were retrieved. Epidemiological and clinical data support various non-sexual modes of transmission especially at the time of birth and by close contact. Even though the role of fomites in the transmission of HPV is not well established, HPV-DNA positivity has been reported in transvaginal ultrasound probes and colposcopes after routine disinfection. Awareness needs to be spread among the public about alternate modes of transmission. For a proper understanding of the exact natural history of HPV infection acquired via the non-sexual route, long-term prospective studies need to be undertaken. © 2017 Japan Society of Obstetrics and Gynecology.

  2. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  3. Arc-discharge and magnetron sputtering combined equipment for nanocomposite coating deposition

    International Nuclear Information System (INIS)

    Koval, N.N.; Borisov, D.P.; Savostikov, V.M.

    2005-01-01

    It is known that characteristics of nanocomposite coatings produced by reactive magnetron sputtering undergo an essential influence on the following parameters such as original component composition of targets being sputtered, as well as abundance ratio of such components in the coatings deposited, relative content of inert and reactionary gases in a gas mixture used and a value of operating pressure in a chamber, substrate temperature, and a value of substrate bias potential, determining energy of ionized atoms, ionized atoms flow density, i.e. ion current density on a substrate. The multifactor character of production process of nanocomposite coatings with certain physical and mechanical properties demands a purposeful and complex control on all above-mentioned parameters. To solve such a problem, an arc-discharge and magnetron sputtering combined equipment including a vacuum chamber of approximately ∼ 0.5 m 3 with a built-in low-pressure plasma generator made on the basis of non-self-sustained discharge with a thermal cathode and a planar magnetron combined with two sputtered targets has been created. Construction of such a complex set-up provides both an autonomous mode of operation and simultaneous operation of an arc plasma generator and magnetron sputtering system. Magnetron sputtering of either one or two targets simultaneously is provided as well. An arc plasma generator enables ions current density control on a substrate in a wide range due to discharge current varying from 1 to 100 A. Energy of ions is also being controlled in a wide range by a negative bias potential from 0 to 1000 V applied to a substrate. The wide control range of gas plasma density of a arc discharge of approximately 10 9 -10 11 cm -3 and high uniformity of its distribution over the total volume of an operating chamber (about 15% error with regard to the mean value) provides a purposeful and simultaneous control either of magnetron discharge characteristics (operating pressure of

  4. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Lakhina, G S

    2005-01-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses

  5. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Sirirak, Reungruthai [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Medhesuwakul, Min [Plasma & Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  6. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    International Nuclear Information System (INIS)

    Sirirak, Reungruthai; Sarakonsri, Thapanee; Medhesuwakul, Min

    2015-01-01

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  7. Arc tracks on nanostructured surfaces after microbreakdowns

    International Nuclear Information System (INIS)

    Sinelnikov, D; Bulgadaryan, D; Kolodko, D; Kurnaev, V; Hwangbo, D; Ohno, N; Kajita, S

    2016-01-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope. (paper)

  8. Carbon deposition using an expanding cascaded arc d.c. plasma

    NARCIS (Netherlands)

    Beulens, J.J.; Buuron, A.J.M.; Schram, D.C.

    1991-01-01

    In this work a strongly flowing cascaded arc burning on an argon-hydrogen mixture is used to dissociate and ionize hydrocarbons which are injected inside a nozzle which is mounted in the anode of the arc. The thermal plasma (T ˜ 10 000 K, p ˜ 0.5 bar) will then expand supersonically into a vessel

  9. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  10. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  11. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  12. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    Science.gov (United States)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  13. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  14. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  15. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  16. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2017-06-01

    Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  17. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  18. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  19. Evaporative behavior of carbon with MPD Arc Jet

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Toshio; Madarame, Haruki; Okamoto, Koji [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Using the Magneto-Plasma-Dynamic Arc Jet (MPD Arc Jet) device, the plasma-material interaction during simulated plasma disruption was experimentally investigated. To clarify the effects of the evaporation, the isotropic graphite was used as a target. The thermal conductivity of the isotropic graphite was much higher than that of the pyrolytic graphite, resulting in smaller evaporation. The light intensity distribution during the simulated disruption for the isotropic graphite was quite different from that for the pyrolytic graphite. (author)

  20. Decommissioning: dismantling of thickwalled steel structures using the contact-arc-metal-drilling technique. Final report

    International Nuclear Information System (INIS)

    Bach, F.W.; Lindemaier, J.; Philipp, E.

    1998-01-01

    1. Status of the technology: Today austenitic steel components with a material thickness of more than 200 mm cannot be cut surely by using conventional thermal cutting techniques. A reduction of the wall thickness, by using an effective cutting technique with low restoring forces, is necessary but not available, now. 2. Objectives: Target of the project was the qualification of the thermal contact-arc-metal-drilling technique, based on the contact-arc-metal-cutting technique for the reduction of the wall thickness of steel components in preparation for other cutting techniques to finish the dismantling task if necessary. 3. Methode: Development of the contact-arc-metal-drilling technique for the production of deep (>200 mm) blind holes with non-circular cross sections. Optimization of the drilling parameters and quantification of the released emissions under a radiological aspect. Development of a monitoring system for the electrode wear and a device for changing weared electrodes automatically. 4. Result: The contact-arc-metal-drilling technique was qualified by producing blind holes with a depth of 230 mm. The aerosols, hydrosols and gas emissions of the process were quantified and various monitoring techniques for the wear of the electrode were tested. A pneumatically aided clamping and changing device for electrodes was designed and tested. 5. Applications: The designed clamping device with its integrated pneumatically aided electrode release can be adapted directly to a tool guiding machine. Using this cutting technique steel components with a material thickness of 230 mm can be reduced to a remaining wall thickness and the released emissions can be estimated. (orig.) [de

  1. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  2. Non linear microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here

  3. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  4. Non-thermal escape of molecular hydrogen from Mars

    Science.gov (United States)

    Gacesa, M.; Zhang, P.; Kharchenko, V.

    2012-05-01

    We present a detailed theoretical analysis of non-thermal escape of molecular hydrogen from Mars induced by collisions with hot atomic oxygen from the Martian corona. To accurately describe the energy transfer in O + H2(v, j) collisions, we performed extensive quantum-mechanical calculations of state-to-state elastic, inelastic, and reactive cross sections. The escape flux of H2 molecules was evaluated using a simplified 1D column model of the Martian atmosphere with realistic densities of atmospheric gases and hot oxygen production rates for low solar activity conditions. An average intensity of the non-thermal escape flux of H2 of 1.9 × 105 cm-2s-1 was obtained considering energetic O atoms produced in dissociative recombinations of O2+ ions. Predicted ro-vibrational distribution of the escaping H2 was found to contain a significant fraction of higher rotational states. While the non-thermal escape rate was found to be lower than Jeans rate for H2 molecules, the non-thermal escape rates of HD and D2 are significantly higher than their respective Jeans rates. The accurate evaluation of the collisional escape flux of H2 and its isotopes is important for understanding non-thermal escape of molecules from Mars, as well as for the formation of hot H2 Martian corona. The described molecular ejection mechanism is general and expected to contribute to atmospheric escape of H2 and other light molecules from planets, satellites, and exoplanetary bodies.

  5. A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES

    Directory of Open Access Journals (Sweden)

    K. M. Vasyliv

    2017-06-01

    Full Text Available Purpose. Development of a model-software complex (MSC for computer analysis of modes of the system of induction motors (IM of smoke exhausters of thermal power plant (TPP, the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON and induction motors and interdependence (in all possible combinations between: TON (from which motors powered and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants.

  6. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    Directory of Open Access Journals (Sweden)

    O. A. Vorozheeva

    2014-01-01

    Full Text Available Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is therefore necessary in the development phase of a new product. Accordingly, the aim of this work is the mathematical modeling and computational study of the thermal state of gaseous oxygen-methane propellant RDMT operating in pulse mode.In this paper we consider a model RDTM working on gaseous propellants oxygen-methane in pulse mode.To calculate the temperature field of the chamber wall of model RDMT under consideration is used the mathematical model of non-stationary heat conduction in a two-dimensional axisymmetric formulation that takes into account both the axial heat leakages and the nonstationary processes occurring inside the chamber during pulse operation of RDMT.As a result of numerical study of the thermal state of model RDMT, are obtained the temperature fields during engine operation based on convective, conductive, and radiative mechanisms of heat transfer from the combustion products to the wall.It is shown that the elements of flanges of combustion chamber of model RDMT act as heat sinks structural elements. Temperatures in the wall of the combustion chamber during the engine mode of operation are considered relatively low.Raised temperatures can also occur in the mixing head in the feeding area of the oxidant into the combustion chamber.During engine operation in the area forming the critical section, there is an intensive heating of a wall, which can result in its melting, which in turn will increase the minimum nozzle throat area and hence

  7. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  8. SU-E-T-539: Fixed Versus Variable Optimization Points in Combined-Mode Modulated Arc Therapy Planning

    International Nuclear Information System (INIS)

    Kainz, K; Prah, D; Ahunbay, E; Li, X

    2014-01-01

    Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91 OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred

  9. SU-E-T-539: Fixed Versus Variable Optimization Points in Combined-Mode Modulated Arc Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, K; Prah, D; Ahunbay, E; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91 OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.

  10. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    NARCIS (Netherlands)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J.J.

    2017-01-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top

  11. Circular arc structures

    KAUST Repository

    Bo, Pengbo; Pottmann, Helmut; Kilian, Martin; Wang, Wen Ping; Wallner, Johannes

    2011-01-01

    and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where

  12. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  13. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    Science.gov (United States)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  14. The arc power supply for the TEXTOR neutral injectors

    International Nuclear Information System (INIS)

    Schwarz, U.; Pfister, U.; Goll, O.; Wurslin, R.; Scherer, J.; Haubmann, S.

    1986-01-01

    The 24 single arcs in the plasma source of the TEXTOR neutral injector are supplied with an overall current of 1800 A at an arc voltage of 150 V DC. The current is switched on and off in less than 1 msec. The paper presents a new modular solution for such a power supply. Each arc is powered by a separately switched mode supply module. One single module consists of a diode rectifier bridge with a filter, a fast semiconductor switch, an inductance in series for stabilizing the current and a free-wheeling path. The layout of this power supply system is described in detail based on test results. Design features and technical data are given

  15. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  16. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  17. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    Science.gov (United States)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  18. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  19. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  20. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel

    Directory of Open Access Journals (Sweden)

    Marcin Adamiak

    2018-02-01

    Full Text Available This article presents the results of an examination of the properties of arc-sprayed aluminum on alloyed armor-grade steel. Thermal arc spraying was conducted with a EuTronic Arc Spray 4 wire arc sprayer. Aluminum wire 1.6 mm in diameter was used to produce dense, abrasion- and erosion-resistant coatings approx. 1.0 mm thick with and without nickel/5% aluminum-buffered subcoating. Aluminum coatings were characterized in accordance with ASTM G 65-00 abrasion resistance test, ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV0.1 hardness tests and metallographic analyses. Results demonstrate properties of arc-sprayed aluminum and aluminum-nickel material coatings that are especially promising in industrial applications where erosion-, abrasion- and corrosion-resistant coating properties are required.

  1. Spontaneous non-thermal leptogenesis in high-scale inflation models

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2006-11-01

    We argue that a non-thermal leptogenesis occurs spontaneously, without direct couplings of the inflation with right-handed neutrinos, in a wide class of high-scale inflation models such as the chaotic and hybrid inflation. It is only a finite vacuum expectation value of the inflaton, of more precisely, a linear term in the Kaehler potential, that is a prerequisite for the spontaneous non-thermal leptogenesis. To exemplify how it works, we show that a chaotic inflation model in supergravity naturally produces a right amount of baryon asymmetry via the spontaneous non-thermal leptogenesis. We also discuss the gravitino production from the inflation. (orig.)

  2. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    Science.gov (United States)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  3. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  4. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  5. Optimization and characterization of a Pilot-psi cascaded arc with non-LTE numerical simulation of Ar, H{sub 2} gases

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zahoor [National Tokamak Fusion Program, PO Box 3329, PAEC Islamabad (Pakistan); Goedheer, W J [FOM Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, POBox 1207, 3430 BE Nieuwegein (Netherlands)

    2009-02-01

    A numerical simulation code, PLASIMO, is used to model non-LTE plasmas in the cascaded arc for hydrogen and argon. The purpose of these simulations is to optimize the cascaded arc plasma source, which is used to produce a high density plasma column in Pilot-psi, a linear device to study plasma surface interaction processes. Results are compared with the experimental findings to validate the model. The effect of a change in the arc channel geometry on the ionization degree is studied. It is found that for the hydrogen arc an increase in length beyond 30 mm will not increase the ionization degree, in contrast to widening the arc. With an increase in radius from 2 mm to 5 mm for a 30 mm long arc the degree of ionization of hydrogen increases from 5.4 to 38. For the argon arc an increase both in the length and in the width increases the ionization degree. With an increase in length from 30 mm to 40 mm for a 2 mm wide arc the degree of ionization of argon increases from 14.5 to 17.1, whereas with an increase in radius from 2 mm to 5 mm for 30 mm long arc the same increases from 14.5 to 37.5. To simulate the influence of the wall material, the effect of hydrogen wall association on the degree of ionization and dissociation is studied. Wall association in the nozzle section, where heating is absent, significantly reduces the degree of dissociation, in agreement with the experimental data. In Pilot-psi, the arc is operated in a high magnetic field, so the effect of a magnetic field on the yield of Ar{sup +} and H{sup +} ions leaving the arc is also studied. It is found that with a 3 T magnetic field the Ar{sup +} yield increases from 1.6 x 10{sup 20} to 2.1 x 10{sup 20} (25% increase) while the H{sup +} yield increases from 1.4 x 10{sup 20} to 2.9 x 10{sup 20} (100% increase)

  6. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – A planning study

    International Nuclear Information System (INIS)

    Chan, Oscar S.H.; Lee, Michael C.H.; Hung, Albert W.M.; Chang, Amy T.Y.; Yeung, Rebecca M.W.; Lee, Anne W.M.

    2011-01-01

    Purpose: To compare the dosimetric performance of three different treatment techniques – conformal radiotherapy (CRT), double arcs volumetric modulated arc therapy (RapidArc, RA) and Hybrid-RapidArc (H-RA) for locally-advanced non-small cell lung cancer (NSCLC). Material and methods: CRT, RA and H-RA plans were optimized for 24 stage III NSCLC patients. The target prescription dose was 60 Gy. CRT consisted of 5–7 coplanar fields, while RA comprised of two 204 o arcs. H-RA referred to two 204 o arcs plus 2 static fields, which accounted for approximately half of the total dose. The plans were optimized to fulfill the departmental plan acceptance criteria. Results: RA and H-RA yielded a 20% better conformity compared with CRT. Lung volume receiving >20 Gy (V20) and mean lung dose (MLD) were the lowest in H-RA (V20 1.7% and 2.1% lower, MLD 0.59 Gy and 0.41 Gy lower than CRT and RA respectively) without jeopardizing the low-dose lung volume (V5). H-RA plans gave the lowest mean maximum spinal cord dose (34.4 Gy, 3.9 Gy < CRT and 2.2 Gy < RA plans) and NTCP of lung. Higher average MU per fraction (addition 52.4 MU) was observed with a reduced treatment time compared with CRT plans. Conclusion: The H-RA technique was superior in dosimetric outcomes for treating locally-advanced NSCLC compared to CRT and RA.

  7. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  8. Graphite electrode dc arc technology development for treatment of buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-02-01

    A ''National Laboratory-University-Industrial'' three-way partnership has been established between the Pacific Northwest Laboratory (PNL), Massachusetts Institute of Technology (MIT), and Electro-Pyrolysis, Inc. (EPI) to develop graphite electrode DC arc technology for the treatment of buried wastes. This paper outlines the PNL-MIT-EPI program describing a series of engineering-scale DC arc furnace tests conducted in an EPI furnace at the Plasma Fusion Center at MIT, and a description of the second phase of this program involving the design, fabrication, and testing of a pilot-scale DC arc furnace. Included in this work is the development and implementation of diagnostics to evaluate and optimize high temperature thermal processes such as the DC arc technology

  9. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  10. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    OpenAIRE

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is an important property for almost all applications involving heat transfer, ranging from energy and microelectronics to food processing and textiles. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate the thermal conductivity of any crystalline line compound from first principles [1,2] using expressions based on the phonon gas model (PGM)[3,4]. However, modeling of amorphous materials still has many open quest...

  11. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  12. Calibration of non-ideal thermal conductivity sensors

    Directory of Open Access Journals (Sweden)

    N. I. Kömle

    2013-04-01

    Full Text Available A popular method for measuring the thermal conductivity of solid materials is the transient hot needle method. It allows the thermal conductivity of a solid or granular material to be evaluated simply by combining a temperature measurement with a well-defined electrical current flowing through a resistance wire enclosed in a long and thin needle. Standard laboratory sensors that are typically used in laboratory work consist of very thin steel needles with a large length-to-diameter ratio. This type of needle is convenient since it is mathematically easy to derive the thermal conductivity of a soft granular material from a simple temperature measurement. However, such a geometry often results in a mechanically weak sensor, which can bend or fail when inserted into a material that is harder than expected. For deploying such a sensor on a planetary surface, with often unknown soil properties, it is necessary to construct more rugged sensors. These requirements can lead to a design which differs substantially from the ideal geometry, and additional care must be taken in the calibration and data analysis. In this paper we present the performance of a prototype thermal conductivity sensor designed for planetary missions. The thermal conductivity of a suite of solid and granular materials was measured both by a standard needle sensor and by several customized sensors with non-ideal geometry. We thus obtained a calibration curve for the non-ideal sensors. The theory describing the temperature response of a sensor with such unfavorable length-to-diameter ratio is complicated and highly nonlinear. However, our measurements reveal that over a wide range of thermal conductivities there is an almost linear relationship between the result obtained by the standard sensor and the result derived from the customized, non-ideal sensors. This allows for the measurement of thermal conductivity values for harder soils, which are not easily accessible when using

  13. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode

    International Nuclear Information System (INIS)

    Pourbagian, Mahdi; Habashi, Wagdi G.

    2015-01-01

    Highlights: • We introduce an efficient methodology for the optimization of a de-icing system. • We can replace the expensive CHT simulation by ROM without loosing much accuracy. • We propose different criteria affecting the energy usage and aerodynamic performance. • These criteria can significantly improve the performance of the de-icing system. - Abstract: Even if electro-thermal ice protection systems (IPS) consume less energy when operating in de-icing mode than in anti-icing mode, they still need to be optimized for energy usage. The optimization, however, should also take into account the effect of the de-icing system on the aerodynamic performance. The present work offers an optimization framework in which both thermal and aerodynamic viewpoints are taken into account in formulating various objective and constraint functions by considering the energy consumption, the thickness, the volume, the shape and the location of the accreted ice on the surface as the key parameters affecting the energy usage and the aerodynamic performance. The design variables include the power density and the activation time of the electric heating blankets. A derivative-free technique, called the mesh adaptive direct search (MADS) method, is used to carry out the optimization process, which would normally need a large number of unsteady conjugate heat transfer (CHT) calculations for the IPS simulation. To avoid such prohibitive computations, reduced-order modeling (ROM) is used to construct simplified low-dimensional CHT models. The approach is illustrated through several test cases, in which different combinations of objective and constraint functions, design variables and cycling sequence patterns are examined. In these test cases, the energy consumption is significantly reduced compared to the experiments by improving the spatial and temporal distribution of the thermal energy usage. The results show the benefits of the approach in bringing energy, safety and

  14. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  15. Isochoric thermal conductivity of solid carbon oxide: the role of phonons and 'diffusive' modes

    International Nuclear Information System (INIS)

    Konstantinov, V A; Manzhelii, V G; Revyakin, V P; Sagan, V V; Pursky, O I

    2006-01-01

    The isochoric thermal conductivity of solid CO was investigated in three samples of different densities in the interval from 35 K to the onset of melting. In α-CO the temperature dependence of the isochoric thermal conductivity is significantly weaker than Λ∝1/T; in β-CO it increases slightly with temperature. A quantitative description of the experimental results is given within the Debye model of thermal conductivity in the approximation of the corresponding relaxation times and which allows for the fact that the mean-free path of phonons cannot become smaller than half the phonon wavelength. On this consideration the heat is transported by both phonons and 'diffusive' modes

  16. Deviations from excitation equilibrium in optically thick mercury arc plasmas

    International Nuclear Information System (INIS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    1989-01-01

    Up to date mercury arcs at pressure greater than 1 atm have been investigated as plasma systems in local thermodynamic equilibrium (LTE) state. These studies have been motivated by the applications of mercury arcs, e.g., in the lighting industry. The LTE-assumption simplifies the use of spectroscopic diagnostics and the performance of species-concentration calculations. A high pressure mercury arc of about 1 atm had been considered in two possibilities: excitation and gas temperatures are the same, the electron temperature is higher and excitation and electron temperatures are the same, the gas temperature is lower. Recent measurements in mercury arcs reveal the existence of severe departures from thermal equilibrium and suggest the absence of excitation equilibrium in the axis and in the periphery in such an arc. The deviation from equilibrium leads to complicated distributions, such that the system cannot be described correctly by any single temperature. This becomes quite complicated when plasma inhomogeneity and strong reabsorption of the radiation are present

  17. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  18. Coupling of Higgs and Leggett modes in non-equilibrium superconductors.

    Science.gov (United States)

    Krull, H; Bittner, N; Uhrig, G S; Manske, D; Schnyder, A P

    2016-06-21

    In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.

  19. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    Science.gov (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  20. Biking and Walking: The Position of Non-Motorised Transport Modes in Transport Systems

    NARCIS (Netherlands)

    Rietveld, Piet

    2001-01-01

    Long run developments such as income growth and urban sprawl lead one to expect a continuous decline of thecontribution of non-motorised transport modes to the performance of transport systems. In terms of the total number of trips, non-motorised transport modes have retained high shares, however.

  1. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  2. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  3. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  4. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  5. Prompt ignition of a unipolar arc on helium irradiated tungsten

    International Nuclear Information System (INIS)

    Kajita, Shin; Takamura, Shuichi; Ohno, Noriyasu

    2009-01-01

    A fibreform nanostructured layer is formed on a tungsten surface by helium plasma bombardment. The helium fluence was of the order of 10 26 m -2 , and the surface temperature and incident ion energy during helium irradiation were, respectively, 1900 K and 75 eV. By irradiating a laser pulse to the surface in the plasma, a unipolar arc, which many people have tried to verify in well-defined experiments, is promptly initiated and continued for a much longer time than the laser pulse width. The laser pulse width (∼0.6 ms) and power (∼5 MJ m -2 ) are similar to the heat load accompanied by type-I edge localized modes (ELMs) in ITER. The unipolar arc is verified from an increase in the floating potential, a moving arc spot detected by a fast camera and arcing traces on the surface. This result suggests that the nanostructure on the tungsten surface formed by the bombardment of helium, which is a fusion product, could significantly change the ignition property of arcing, and ELMs become a trigger of unipolar arcing, which would be a great impurity source in fusion devices. (letter)

  6. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  7. A quantitative analysis of the effect of ELMs on H-mode thermal energy confinement in DIII-D

    International Nuclear Information System (INIS)

    Schissel, D.P.; Osborne, T.H.; Carlstrom, T.N.; Zohm, H.

    1992-06-01

    The desire to reach ignition in future tokamaks the energy confinement time critical parameter. The most promising enhanced (over L-mode) confinement regime is the H-mode, discovered on ASDEX with neutral beam heating, and then confirmed with various auxiliary heating sources on numerous machines. The knowledge of how H-mode τ E depends on different parameters is of chemical importance to the performance predictions for next generation devices. Inter-machine H-mode total and thermal energy confinement (τ th ) scalings, which are being utilized to predict ITER thermal energy confinement, have been created for discharges where the Edge Localized Mode (ELM) instability has not been present. Confinement scaling research hm concentrated on this ELM-free H-mode phase mostly owing to the difficulty of characterizing ELM behavior. To date, long pulse H-mode operation has only been achieved by utilizing ELMs to flush out unpurities and prevent radiative collapse of the discharge. Unfortunately, accompanying the ELMS is a decrease of the plasma stored energy due to the expulsion of particles near the edge of the discharge resulting in a reduction of the steep edge electron density gradient. In order to predict ITER's H-mode τ th in the presence of ELMS, an estimated 25% confinement degradation factor has been applied to the ELM-free predictions. Our work, summarized in this paper, indicates that this 25% reduction factor is too large and instead a value of approximately 15% would be more appropriate

  8. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  9. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    Science.gov (United States)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/PbMexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real

  10. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  11. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-01-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core

  12. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    Science.gov (United States)

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  13. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  14. Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries

    International Nuclear Information System (INIS)

    Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun

    2015-01-01

    The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied

  15. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  16. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  17. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  18. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    Science.gov (United States)

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  19. Contribution to immersed arc plasma study: applications to organic aqueous effluent decontamination and gasification

    International Nuclear Information System (INIS)

    Boudesocque, N.

    2007-07-01

    This work is concerned with decontamination and gasification of aqueous organic liquid waste by immersed thermal plasma technology. In this concept, the organic compounds are decomposed into gas by high temperature plasma. A quench of about 107-108 K/s, is obtained by immersion into a given effluent. Two kinds of arc plasma are studied. The first one is an immersed electrical arc stricken between two graphite electrodes. The second one is a plasma jet generated by a non-transferred plasma torch. For dilute liquid waste (1 g/L) containing molecules incompatible with conventional biological processes, the hydroxyl radicals (OH 0 ) are continuously produced by the plasma jet directly into the solution allowing complete molecule mineralization into carbon dioxide and water. The hetero-atoms, if present, are converted into solvated ions. The decomposition of the molecules, such as chloro-phenols and aniline, are studied. Considering the identified intermediate products, a reaction mechanism is proposed. For each tested molecules, their concentration decreased at least of 90 percent. Based on the 'gasosiphon' phenomenon, the experimental reactor insures the simultaneous recirculation of both gas and liquid phases. The hydrodynamic was studied using in situ high frequency imaging technology. A CFD code was applied for numerical simulation of the observed recirculation phenomena. The results were compared with obtained experimental data. In the case of concentrated liquid waste (≥ 100 g/L), syngas was produced by thermal cracking of organic molecules. The best measured composition of the gas is about 45% v/v of H 2 and 45 % v/v of CO when an electrical arc is used. The usability of both studied plasma types were investigated in this field. The experimental study was carried on using fructose and glucose solution (several hundreds g/L) as surrogated effluent. With a specific injection method, gasification rate is about 30 % with one way. Optical Emission Spectroscopy and

  20. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  1. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    Science.gov (United States)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  2. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  3. Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs Gamma Knife

    Directory of Open Access Journals (Sweden)

    Haisong eLiu

    2016-02-01

    Full Text Available Objectives: This study compares the dosimetry and efficiency of two modern radiosurgery (SRS modalities for multiple brain metastases (Gamma Knife and LINAC-based RapidArc/volumetric modulated arc therapy, with a special focus on the comparison of low dose spread.Methods: Six patients with three or four small brain metastases were used in this study. The size of targets varied from 0.1 ~ 10.5 cc. SRS doses were prescribed according to size of lesions. SRS plans were made using both Gamma Knife® Perfexion and a single-isocenter, multiple non-coplanar RapidArc®. Dosimetric parameters analyzed included RTOG conformity index (CI, gradient index (GI, 12 Gy isodose volume (V12Gy for each target, and the dose spread (Dspread for each plan. Dspread reflects SRS plan’s capability of confining radiation to within the local vicinity of the lesion and to not spread out to the surrounding normal brain tissues. Each plan has a dose (Dspread, such that once dose decreases below Dspread (on total tissue DVH, isodose volume starts increasing dramatically. Dspread is defined as that dose when volume increase first exceeds 20 cc per 0.1 Gy dose decrease. Results: RapidArc SRS has smaller CI (1.19 ±0.14 vs. 1.50 ± 0.16, p<0.001 and larger GI (4.77 ± 1.49 vs. 3.65 ± 0.98, p <0.01. V12Gy results were comparable (2.73 ± 1.38 cc vs. 3.06 ± 2.20 cc, p = 0.58. Moderate to lower dose spread, V6, V4.5, and V3, were also equivalent. Gamma Knife plans achieved better very low dose spread (≤3 Gy and also had slightly smaller Dspread, 1.9 Gy vs 2.5 Gy. Total treatment time for Gamma Knife is estimated between 60~100 min. Gamma Knife treatments are between 3~5 times longer compared to RapidArc treatment techniques.Conclusion: Dosimetric parameters reflecting prescription dose conformality (CI, dose fall off (GI, radiation necrosis indicator (V12Gy, and dose spread (Dspread were compared between Gamma Knife SRS and RapidArc SRS for multi-mets. RapidArc plans have

  4. Zero-modes of non-Abelian solitons in three-dimensional gauge theories

    International Nuclear Information System (INIS)

    Eto, Minoru; Gudnason, Sven Bjarke

    2011-01-01

    We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.

  5. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  6. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  7. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  8. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  9. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  10. Influence of DC arc current on the formation of cobalt-based nanostructures

    Science.gov (United States)

    Orpe, P. B.; Balasubramanian, C.; Mukherjee, S.

    2017-08-01

    The synthesis of cobalt-based magnetic nanostructures using DC arc discharge technique with varying arc current is reported here. The structural, morphological, compositional and magnetic properties of these nanostructures were studied as a function of applied arc current. Various techniques like X-ray diffraction, transmission electron microscopy, EDAX and vibrating sample magnetometry were used to carry out this study and the results are reported here. The results clearly indicate that for a given oxygen partial pressure, an arc current of 100 A favours the formation of unreacted cobalt atomic species. Also change in arc current leads to variation in phase, diversity in morphology etc. Other property changes such as thermal changes, mechanical changes etc. are not addressed here. The magnetic characterization further indicates that the anisotropy in shape plays a crucial role in deciding the magnetic properties of the nanostructured materials. We have quantified an interesting result in our experiment, that is, for a given partial pressure, 100 A arc current results in unique variation in structural and magnetic properties as compared to other arc currents.

  11. INFLUENCE OF TECHNOLOGICAL MODES OF MAGNETIC-ELECTRIC GRINDING ON MICROSTRUCTURE OF GAS-THERMAL SPRAYED NI–CR–B–SI-COATINGS

    Directory of Open Access Journals (Sweden)

    N. V. Spiridonov

    2009-01-01

    Full Text Available Influence of technological modes of magnetic-electric grinding on structural changes in a surface layer of gas-thermal sprayed coatings is investigated in the paper. The paper presents optimum modes of  coating roughing and finishing processes.

  12. Analysis of the characteristics of DC nozzle arcs in air and guidance for the search of SF6 replacement gas

    Science.gov (United States)

    Liu, J.; Zhang, Q.; Yan, J. D.; Zhong, J.; Fang, M. T. C.

    2016-11-01

    It is shown that the arc model based on laminar flow cannot predict satisfactorily the voltage of an air arc burning in a supersonic nozzle. The Prandtl mixing length model (PML) and a modified k-epsilon turbulence model (MKE) are used to introduce turbulence enhanced momentum and energy transport. Arc voltages predicted by these two turbulence models are in good agreement with experiments at the stagnation pressure (P 0) of 10 bar. The predicted arc voltages by MKE for P 0  =  13 bar and 7 bar are in better agreement with experiments than those predicted by PML. MKE is therefore a preferred turbulence model for an air nozzle arc. There are two peaks in ρC P of air at 4000 K and 7000 K due, respectively, to the dissociation of oxygen and that of nitrogen. These peaks produce corresponding peaks in turbulent thermal conductivity, which results in very broad radial temperature profile and a large arc radius. Thus, turbulence indirectly enhances axial enthalpy transport, which becomes the dominant energy transport process for the overall energy balance of the arc column at high currents. When the current reduces, turbulent thermal conduction gradually becomes dominant. The temperature dependence of ρC P has a decisive influence on the radial temperature profile of a turbulent arc, thus the thermal interruption capability of a gas. Comparison between ρC P for air and SF6 shows that ρC P for SF6 has peaks below 4000 K. This renders a distinctive arc core and a small arc radius for turbulent SF6, thus superior arc quenching capability. It is suggested, for the first time, that ρC P provides guidance for the search of a replacement switching gas for SF6.

  13. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  14. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  15. Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2014-01-01

    Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.

  16. Production of a large area diffuse arc plasma with multiple cathode

    International Nuclear Information System (INIS)

    Wang Cheng; Cui Hai-Chao; Li Wan-Wan; Liao Meng-Ran; Xia Wei-Dong; Xia Wei-Luo

    2017-01-01

    An arc channel at atmospheric pressure tends to shrink generally. In this paper, a non-transferred DC arc plasma device with multiple cathode is introduced to produce a large area arc plasma at atmospheric pressure. This device is comprised of a 42-mm diameter tubular chamber, multiple cathode which is radially inserted into the chamber, and a tungsten anode with a nozzle in its center. In argon/helium atmosphere, a large area and circumferential homogenous diffuse arc plasma, which fills the entire cross section surrounded by the cathode tips, is observed. Results show that the uniformity and stability of diffuse arc plasma are strongly related to the plasma forming gas. Based on these experimental results, an explanation to the arc diffusion is suggested. Moreover, the electron excitation temperature and electron density measured in diffuse helium plasma are much lower than those of constricted arc column, which indicates the diffuse helium plasma probably deviates from the local thermodynamic equilibrium state. Unlike the common non-transferred arc plasma devices, this device can provide a condition for axial-fed feedstock particles. The plasma device is attempted to spheroidize alumina powders by using the central axis to send the powder. Results show that the powder produced is usually a typical hollow sphere. (paper)

  17. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  18. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  19. A novel implementation of mARC treatment for non-dedicated planning systems using converted IMRT plans

    International Nuclear Information System (INIS)

    Dzierma, Yvonne; Nuesken, Frank; Licht, Norbert; Ruebe, Christian

    2013-01-01

    The modulated arc (mARC) technique has recently been introduced by Siemens as an analogue to VMAT treatment. However, up to now only one certified treatment planning system supports mARC planning. We therefore present a conversion algorithm capable of converting IMRT plans created by any treatment planning system into mARC plans, with the hope of expanding the availability of mARC to a larger range of clinical users and researchers. As additional advantages, our implementation offers improved functionality for planning hybrid arcs and provides an equivalent step-and-shoot plan for each mARC plan, which can be used as a back-up concept in institutions where only one linac is equipped with mARC. We present a feasibility study to outline a practical implementation of mARC plan conversion using Philips Pinnacle and Prowess Panther. We present examples for three different kinds of prostate and head-and-neck plans, for 6 MV and flattening-filter-free (FFF) 7 MV photon energies, which are dosimetrically verified. It is generally more difficult to create good quality IMRT plans in Pinnacle using a large number of beams and few segments. We present different ways of optimization as examples. By careful choosing the beam and segment arrangement and inversion objectives, we achieve plan qualities similar to our usual IMRT plans. The conversion of the plans to mARC format yields functional plans, which can be irradiated without incidences. Absolute dosimetric verification of both the step-and-shoot and mARC plans by point dose measurements showed deviations below 5% local dose, mARC plans deviated from step-and-shoot plans by no more than 1%. The agreement between GafChromic film measurements of planar dose before and after mARC conversion is excellent. The comparison of the 3D dose distribution measured by PTW Octavius 729 2D-Array with the step-and-shoot plans and with the TPS is well above the pass criteria of 90% of the points falling within 5% local dose and 3 mm distance

  20. Evaluating optical hazards from plasma arc cutting.

    Science.gov (United States)

    Glassford, Eric; Burr, Gregory

    2018-01-01

    The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.

  1. Non-thermal leptogenesis after Majoron hilltop inflation

    Science.gov (United States)

    Antusch, Stefan; Marschall, Kenneth

    2018-05-01

    We analyse non-thermal leptogenesis after models of Majoron hilltop inflation, where the scalar field that provides masses for the right-handed neutrinos and sneutrinos via its vacuum expectation value acts as the inflaton. We discuss different realisations of Majoron inflation models with different hilltop shapes and couplings to the right-handed (s)neutrinos. To study the non-thermally produced baryon asymmetry in these models, we numerically solve the relevant Boltzmann equations. In contrast to previous studies, we include the effects from resonant sneutrino particle production during preheating. We find that these effects can result in an enhancement of the produced baryon asymmetry by more than an order of magnitude. This can significantly change the favoured parameter regions of these models.

  2. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    Science.gov (United States)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  3. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  4. High thrust-to-power ratio micro-cathode arc thruster

    Directory of Open Access Journals (Sweden)

    Joseph Lukas

    2016-02-01

    Full Text Available The Micro-Cathode Arc Thruster (μCAT is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  5. Recent progress in the modelling of thermal plasma systems

    International Nuclear Information System (INIS)

    Xi Chen

    2002-01-01

    Plasma flow and heat transfer in thermal plasma systems are often of three-dimensional (3-D) features and cannot be well studied by use of a two-dimensional modelling approach. 3-D modelling studies are recently performed in our group. It is found that appreciable 3-D effects exist within non-transferred DC arc plasma torches even for the case with axisymmetrical external conditions. The key for the successful 3-D modelling of the non-transferred arc plasma torch is that the anode-nozzle wall is included in the computational domain. The predicted results are favorably compared with experimental observation. 3-D modelling of the plasma jets with lateral injection of particulate matter and its carrier gas also reveals distinct 3-D effects with the injection velocity and the distance between the carrier-gas injection-tube tip and the jet edge as critical parameters. The 3-D effects appreciably influence the trajectories and heating histories of particles injected into the plasma jet. (author)

  6. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  7. Non-thermal pressure in the outskirts of Abell 2142

    Science.gov (United States)

    Fusco-Femiano, Roberto; Lapi, Andrea

    2018-03-01

    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.

  8. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli

    2018-11-01

    The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  10. Evaluation of plasma arc welding capabilities and applications

    International Nuclear Information System (INIS)

    Mills, G.S.

    1978-01-01

    Unique capabilities of plasma arc welding in the keyhole mode are described, and the potential applicability of these capabilities to Rocky Flats production needs are evaluated. For the areas of potential benefits studied, the benefits of this welding technique either did not materialize or the complication of implementing the process in production was not warranted by the demonstrated benefits

  11. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  12. A study on changes in body surface temperature and thermal effect according to ultrasound mode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung Hee [Dept. of Radiology, Ilsin Christian Hospital, Busan (Korea, Republic of); Lee, Jin Soo [Dept. of Radiology, University Haeundae Paik Hospital, Busan (Korea, Republic of)

    2017-06-15

    Recently, as the number of high-risk pregnancies increases, the use of new techniques such as Doppler, which have higher acoustic power than in the past, has been increasingly used in prenatal diagnosis and guidelines have been set up by various organizations to prevent excessive exposure. Therefore, in this study, we tried to investigate the temperature change of the body surface for each test mode according to the long time ultrasound examination and to examine the exposure time which is not influenced by the thermal effect. B mode, C mode, and PD mode according to time, and the temperature difference between exposed and unexposed sites were compared. As a result, the B mode showed a significant difference in the temperature change from 10 minutes, 50 minutes after exposed, 20 minutes from the C mode, and 30 minutes from the PD mode (p<0.01). In all three modes, the temperature difference was different(p<0.000), and PD mode was the most sensitive to temperature change. Also, it was found that the temperature rise time was shortened with the increase of the ultrasonic exposure time. Therefore, it is recommended that ultrasonography to observe the embryo or fetus should be used only for diagnostic purposes, avoiding excessive test time.

  13. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  14. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  15. Optical property of few-mode fiber with non-uniform refractive index for cylindrical vector beam generation

    Science.gov (United States)

    Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin

    2016-10-01

    This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.

  16. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    Directory of Open Access Journals (Sweden)

    Kechagias John

    2017-01-01

    Full Text Available Plasma Arc Cutting (PAC is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min, torch standoff distance (mm, and arc voltage (volts. Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For each one of the three process parameters, three parameter levels were used. Analysis of means (ANOM and analysis of variances (ANOVA were performed in order for the effect of each parameter on the leaner dimensional accuracy to be assessed.

  17. Optimal partial-arcs in VMAT treatment planning

    International Nuclear Information System (INIS)

    Wala, Jeremiah; Salari, Ehsan; Chen Wei; Craft, David

    2012-01-01

    We present a method for improving the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial-arc with the lowest treatment time. The complete algorithm is called pmerge. Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 s. Treatment times using full arcs with vmerge are 211, 357 and 178 s. The mean doses to the critical structures for the vmerge and pmerge plans are kept within 5% of those in the initial plan, and the target volume covered by the prescription isodose is maintained above 98% for the pmerge and vmerge plans. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. We conclude that VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality, and that partial-arcs are most applicable to cases with non-centralized targets. (paper)

  18. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  19. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  20. Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K.H.; Garofalo, A.M.; Osborne, T.H.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Fenstermacher, M.E.; Orlov, D.M.

    2013-01-01

    Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from n = 3 fields to replace counter-I p torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with neutral beam injection (NBI) torque ranging continuously from counter-I p up to co-I p values of about 1 N m. This co-I p torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to rf wave heated plasmas. These n = 3 fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values ν ped * ∼0.08, β T ped ∼ 1%$ and β N = 2. Discharges have confinement quality H 98y2 = 1.3, exceeding the value required for ITER. Initial work with low q 95 = 3.4 QH-mode plasmas transiently reached fusion gain values of G = β N H 89 /q 95 2 =0.4, which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without n = 3 fields and with co-I p NBI; these shots exhibit co-I p plasma rotation and require NBI torque ⩾2 N m. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling–ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted torque from neoclassical toroidal viscosity. (paper)

  1. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  2. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  3. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  4. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  5. Plasma flow in a pressure pulsed argon cascade arc

    NARCIS (Netherlands)

    de Haas, J.C.M.; Bol, L.; Kroesen, G.M.W.; Timmermans, C.J.; Timmermans, C.J.

    1985-01-01

    Flowing thermal plasmas are frequently used e . g. in welding, cutting, plasma deposition and testing materials at high temperatures . In most of the applications the geometry is complex . In the cascade arc the argon plasma flows through a straight circular channel with a constant area. The study

  6. Study of non inductive current generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.

    1987-01-01

    The problem of non-thermal bremsstrahlung during lower hybrid current drive is considered. The proposed method shows the role of the Compton effects at low frequencies and allows us to establish the link between the emitted power and the absorbed power at high frequency. The non-thermal emission is considered as a kinematical mode conversion between the absorbed radio-frequency mode and the emitted X ray photons. The fast electrons diagnostics and the ways to reach the wave structure are shown. Kinetic and electromagnetic problems concerning current generation are described. The plasma properties and diagnostics in the case of a non inductive current generation are discussed [fr

  7. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.

    Directory of Open Access Journals (Sweden)

    Amanda Lee

    Full Text Available Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.

  8. Modelling of crater formation on anode surface by high-current vacuum arcs

    Science.gov (United States)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  9. Thermal plasmas: fundamental aspects

    International Nuclear Information System (INIS)

    Fauchais, P.

    2005-01-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10 4 and 10 6 Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10 20 and 10 24 m -3 and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  10. A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Yiwang Wang

    2017-11-01

    Full Text Available In this paper, a multifunctional isolated and non-isolated dual-mode low-power converter was designed for renewable energy conversion applications such as photovoltaic power generation to achieve different operating modes under bi-directional electrical conversion. The proposed topology consists of a bidirectional non-isolated DC/DC circuit and an isolated converter with a high-frequency transformer, which merge the advantages of both the conventional isolated converter and non-isolated converter with the combination of the two converter technologies. Compared with traditional converters, the multifunctional converter can not only realize conventional bi-directional functions, but can also be applied for many different operation modes and meet the high output/input ratio demands with the two converter circuits operating together. A novel control algorithm was proposed to achieve the various functions of the proposed converter. An experimental platform based on the proposed circuit was established. Both the simulation and experimental results indicated that the proposed converter could provide isolated and non-isolated modes in different applications, which could meet different practical engineering requirements.

  11. Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-05-15

    Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ{sub ⊥}) is presented. This model is used to derive χ{sub ⊥} at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ{sub ⊥} at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ{sub ⊥} are often attributed to turbulence driven transport, the reduction of the O-point χ{sub ⊥} is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ{sub ⊥} at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ{sub ⊥} at the O-point on NTM saturation.

  12. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    Science.gov (United States)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  13. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2015-01-01

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing......, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius...

  14. Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Johansen, Mette Marie

    2013-01-01

    The effects of thermally-induced refractive index change on the guiding properties of different large mode area fibers have been numerically analyzed. A simple but accurate model has been applied to obtain the refractive index change in the fiber cross-section, and a full-vector modal solver base...

  15. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  16. Arc structure of the DAM Jupiter Emission

    International Nuclear Information System (INIS)

    Leblanc, Y.

    1981-01-01

    An analysis of the dynamic spectra of the Jovian DAM emission (1.3--40 MHz) has been made from Voyager data; it appears that the different Jovian 'sources' can be defined by spectral chaaracteristics, rather than by occurrence probability. The non-Io emission consists of two families: vertex early arcs (VEA) and vertex late arcs (VLA). These two families are superimposed at all longitudes, but one is always more intense than the other. The characterics of the two families are specified; in particular, it is shown that the VEA family is more stable in time than the VLA family. The Io-controlled emission consists of the four sources already known from the ground-based observations in addition to a new source (Io-A')sp, identified by its dynamic spectrum alone. All of the sources are partially superimposed on non-Io emission. The (Io-B)sp and (Io-A')sp sources are made up of low-curvature arcs having low-frequency limits above 5 MHz. The high-frequency limit of the (Io-B)sp source is strongly modulated by Io-phase. The (Io-A)sp source has a specturm similar to the non-Io VLA emission. The other two sources, (Io-C)sp and (Io-D)sp, are not structured into well-defined arcs. A comparsion is made between the occurrence of these sources in the Io-CML plane with the sources defined from ground observations by probability of occurrence. Local time effects are observed only in the non-Io emission when compared before and after encounter. Before encounter, the VEA family is very weak and the VLA family very intense. After encounter, the opposite effect is observed. The Io-controlled sources are not affected by these local time effects

  17. Non-linear coupling of drift modes in a quadrupole

    International Nuclear Information System (INIS)

    Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.

    1990-01-01

    We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs

  18. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  19. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  20. Development of an omni-directional shear horizontal mode magnetostrictive patch transducer

    Science.gov (United States)

    Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin

    2018-04-01

    The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.

  1. Finite-Length Diocotron Modes in a Non-neutral Plasma Column

    Science.gov (United States)

    Walsh, Daniel; Dubin, Daniel

    2017-10-01

    Diocotron modes are 2D distortions of a non-neutral plasma column that propagate azimuthally via E × B drifts. While the infinite-length theory of diocotron modes is well-understood for arbitrary azimuthal mode number l, the finite-length mode frequency is less developed (with some exceptions), and is naturally of relevance to experiments. In this poster, we present an approach to address finite length effects, such as temperature dependence of the mode frequency. We use a bounce-averaged solution to the Vlasov Equation, in which the Vlasov Equation is solved using action-angle variables of the unperturbed Hamiltonian. We write the distribution function as a Fourier series in the bounce-angle variable ψ, keeping only the bounce-averaged term. We demonstrate a numerical solution to this equation for a realistic plasma with a finite Debye Length, compare to the existing l = 1 theory, and discuss possible extensions of the existing theory to l ≠ 1 . Supported by NSF/DOE Partnership Grants PHY1414570 and DESC0002451.

  2. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  3. Contribution to immersed arc plasma study: applications to organic aqueous effluent decontamination and gasification; Contribution a l'etude de plasmas d'arc immerge: applications a la decontamination et a la gazeification d'effluents organiques aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Boudesocque, N

    2007-07-15

    This work is concerned with decontamination and gasification of aqueous organic liquid waste by immersed thermal plasma technology. In this concept, the organic compounds are decomposed into gas by high temperature plasma. A quench of about 107-108 K/s, is obtained by immersion into a given effluent. Two kinds of arc plasma are studied. The first one is an immersed electrical arc stricken between two graphite electrodes. The second one is a plasma jet generated by a non-transferred plasma torch. For dilute liquid waste (1 g/L) containing molecules incompatible with conventional biological processes, the hydroxyl radicals (OH{sup 0}) are continuously produced by the plasma jet directly into the solution allowing complete molecule mineralization into carbon dioxide and water. The hetero-atoms, if present, are converted into solvated ions. The decomposition of the molecules, such as chloro-phenols and aniline, are studied. Considering the identified intermediate products, a reaction mechanism is proposed. For each tested molecules, their concentration decreased at least of 90 percent. Based on the 'gasosiphon' phenomenon, the experimental reactor insures the simultaneous recirculation of both gas and liquid phases. The hydrodynamic was studied using in situ high frequency imaging technology. A CFD code was applied for numerical simulation of the observed recirculation phenomena. The results were compared with obtained experimental data. In the case of concentrated liquid waste ({>=} 100 g/L), syngas was produced by thermal cracking of organic molecules. The best measured composition of the gas is about 45% v/v of H{sub 2} and 45 % v/v of CO when an electrical arc is used. The usability of both studied plasma types were investigated in this field. The experimental study was carried on using fructose and glucose solution (several hundreds g/L) as surrogated effluent. With a specific injection method, gasification rate is about 30 % with one way. Optical

  4. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  5. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  6. An arc facility for investigating non-LTE thermodynamic and transport phenomena in low and high pressure plasmas

    International Nuclear Information System (INIS)

    Sedghinisab, A.; Eddy, T.L.; Murray, R.T.

    1986-01-01

    This paper discusses a high pressure arc facility modified for computerized control and data acquisition to simplify measurements of non-LTE plasmas. The non-LTE methods have shown that numerous spectral lines and continuum must be accurately, precisely and quickly measured.The instrumentation uses a 1-m monochrometer with programmed wavelength slews and scans; oplasma scans; and monitoring of chamber pressure, current, voltages, and location. Multiple flows of various gases can be provided simultaneously. Plasma self absorption is determined via a concave back mirror and shutter with final alignment via computer plots. The raw data is corrected for absorption, zeroed, centered and smoothed. The net line intensity is then determined and Abeled prior to feeding into LTE or non-LTE analysis methods. Sample results are presented at 0.1,1 and 10 atm

  7. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  8. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  9. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  10. Modelling of gas-metal arc welding taking into account metal vapour

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, M; Fuessel, U; Hertel, M; Haessler, M [Institute of Surface and Manufacturing Technology, Technische Universitaet Dresden, D-01062 Dresden (Germany); Spille-Kohoff, A [CFX Berlin Software GmbH, Karl-Marx-Allee 90, 10243 Berlin (Germany); Murphy, A B [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2010-11-03

    The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielinska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.

  11. Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas

    NARCIS (Netherlands)

    Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; JET Contributors,

    2018-01-01

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH

  12. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    Loeb, A.; Sokcic-Kostic, M.; Eisenmann, B.; Prechtl, E.

    2007-01-01

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m 3 . Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  13. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    International Nuclear Information System (INIS)

    Cheng Shaoyong; Xiu Shixin; Wang Jimei; Shen Zhengchao

    2006-01-01

    The greenhouse effect of SF 6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters

  14. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    International Nuclear Information System (INIS)

    Mullin, Nic; Hobbs, Jamie K.

    2014-01-01

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used

  15. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    1996-02-01

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the

  16. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  17. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2017-05-15

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  18. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    International Nuclear Information System (INIS)

    Schneller, Mirjam Simone

    2013-01-01

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  19. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  20. Photobiomodulation with non-thermal lasers: Mechanisms of action and therapeutic uses in dermatology and aesthetic medicine.

    Science.gov (United States)

    Nestor, Mark; Andriessen, Anneke; Berman, Brian; Katz, Bruce E; Gilbert, Dore; Goldberg, David J; Gold, Michael H; Kirsner, Robert S; Lorenc, Paul Z

    2017-08-01

    Non-thermal laser therapy in dermatology, is a growing field in medical technology by which therapeutic effects are achieved by exposing tissues to specific wavelengths of light. The purpose of this review was to gain a better understanding of the science behind non-thermal laser and the evidence supporting its use in dermatology. A group of dermatologists and surgeons recently convened to review the evidence supporting the use of non-thermal laser for body sculpting, improving the appearance of cellulite, and treating onychomycosis. The use of non-thermal laser for body sculpting is supported by three randomized, double-blind, sham-controlled studies (N = 161), one prospective open-label study (N = 54), and two retrospective studies (N = 775). Non-thermal laser application for improving the appearance of cellulite is supported by one randomized, double-blind, sham-controlled study (N = 38). The use of non-thermal laser for the treatment of onychomycosis is supported by an analysis of three non-randomized, open-label studies demonstrating clinical improvement of nails (N = 292). Non-thermal laser is steadily moving into mainstream medical practice, such as dermatology. Although present studies have demonstrated the safety and efficacy of non-thermal laser for body sculpting, cellulite reduction and onychomycosis treatment, studies demonstrating the efficacy of non-thermal laser as a stand-alone procedure are still inadequate.

  1. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  2. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  3. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    Science.gov (United States)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  4. Non-Gaussian covariance of CMB B modes of polarization and parameter degradation

    International Nuclear Information System (INIS)

    Li Chao; Smith, Tristan L.; Cooray, Asantha

    2007-01-01

    The B-mode polarization lensing signal is a useful probe of the neutrino mass and to a lesser extent the dark energy equation of state as the signal depends on the integrated mass power spectrum between us and the last scattering surface. This lensing B-mode signal, however, is non-Gaussian and the resulting non-Gaussian covariance to the power spectrum could impact cosmological parameter measurements, as correlations between B-mode bins are at a level of 0.1. On the other hand, for temperature and E-mode polarization power spectra, the non-Gaussian covariance is not significant, where we find correlations at the 10 -5 level even for adjacent bins. When the power spectrum is estimated with roughly 5 uniformly spaced bins from l=5 to l=100 and 13 logarithmic uniformly spaced bins from l=100 to l=2000, the resulting degradation on neutrino mass and dark energy equation of state is about a factor of 2 to 3 when compared to the case where statistics are simply considered to be Gaussian. If we increase the total number of bins between l=5 and l=2000 to be about 100, we find that the non-Gaussianities only make a minor difference with less than a few percent correction to uncertainties of most cosmological parameters determined from the data. For Planck, the resulting constraints on the sum of the neutrino masses is σ Σm ν ∼0.2 eV and on the dark energy equation of state parameter we find that σ w ∼0.5. A post-Planck experiment can improve the neutrino mass measurement by a factor of 3 to 4

  5. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  6. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  7. The Effect of Flow Distribution on the Concentration of NO Produced by Pulsed Arc Discharge

    International Nuclear Information System (INIS)

    Hu Hui; Bao Bin; Wang Heli; Liang Haiyan; He Junjia; He Zhenghao; Li Jin

    2007-01-01

    As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO 2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power. The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO 2 could be controlled and the ratio of NO 2 /NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution

  8. Research on electric and thermal characteristics of plasma torch based on similarity theory

    International Nuclear Information System (INIS)

    Cheng Changming; Tang Deli; Lan Wei

    2007-01-01

    Configuration and working principle of a DC non-transferred plasma torch have been introduced. Based on similarity theory, connections between the electric-thermal characteristics and operational parameter such as flowing gas rate and arc power have been investigated. Calculation and experiment are compared. The results indicate that the calculation results are in agreement with experimental ones. The formulas can be used for plasma torch improvement and optimization. (authors)

  9. Spatial structure of the arc in a pulsed GMAW process

    International Nuclear Information System (INIS)

    Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D; Schnick, M; Häßler, M; Füssel, U; Rose, S

    2013-01-01

    A pulsed gas metal arc welding (GMAW) process of steel under argon shielding gas in the globular mode is investigated by measurements and simulation. The analysis is focussed on the spatial structure of the arc during the current pulse. Therefore, the radial profiles of the temperature, the metal vapour species and the electric conductivity are determined at different heights above the workpiece by optical emission spectroscopy (OES). It is shown that under the presence of metal vapour the temperature minimum occurs at the centre of the arc. This minimum is preserved at different axial positions up to 1 mm above the workpiece. In addition, estimations of the electric field in the arc from the measurements are given. All these results are compared with magneto-hydrodynamic simulations which include the evaporation of the wire material and the change of the plasma properties due to the metal vapour admixture in particular. The experimental method and the simulation model are validated by means of the satisfactory correspondence between the results. Possible reasons for the remaining deviations and improvements of the methods which should be aspired are discussed. (paper)

  10. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  11. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation; Eficiencia termica en soldadura de la aleacion AA6061-T6 por arco electrico indirecto modificado y digitalizacion de senales de intensidad de corriente

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-07-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs.

  12. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  13. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    International Nuclear Information System (INIS)

    Kim, J.Y.; Horton, W.; Coppi, B.

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity χ i have the opposite shapes with those obtained from the ion temperature gradient mode (η i mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal η i mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal η i mode, and that the observed reduction of χ i (r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the χ i . It is shown the new formula fits well the observed χ i (r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula

  14. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    Directory of Open Access Journals (Sweden)

    Muhammad Masood ul Hassan

    2009-04-01

    Full Text Available High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1µm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /o/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 x 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron

  15. Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor

    Energy Technology Data Exchange (ETDEWEB)

    Bui Hung Thang; Phan Ngoc Hong; Phan Hong Khoi; Phan Ngoc Minh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: minhpn@ims.vast.ac.vn

    2009-09-01

    One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5 deg. C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.

  16. Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor

    Science.gov (United States)

    Thang, Bui Hung; Hong, Phan Ngoc; Khoi, Phan Hong; Minh, Phan Ngoc

    2009-09-01

    One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5°C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.

  17. Application of multiwall carbon nanotubes for thermal dissipation in a micro-processor

    International Nuclear Information System (INIS)

    Bui Hung Thang; Phan Ngoc Hong; Phan Hong Khoi; Phan Ngoc Minh

    2009-01-01

    One of the most valuable properties of the carbon nanotubes materials is its high thermal conductivity with 2000 W/m.K (compared to thermal conductivity of Ag 419 W/m.K). It suggested an approach in applying the CNTs in thermal dissipation media to improve the performance of computer processors and other high power electronic devices. In this research, the multiwall carbon nanotubes (MWCNTs) made by thermal chemical vapour deposition (CVD) at our laboratory was employed as the heat dissipation media in a microprocessor a Personal Computer with configuration: Intel Pentium IV 3.066 GHz, 512Mb of RAM and Windows XP Service Pack 2 Operating System. We directly measured the temperature of the microprocessor during the operation of the computer in two modes: 100% usage CPU mode and over-clocking mode. The measured results showed that when using our thermal dissipation media (a mixture of the mentioned commercial thermal compound and 2 wt.%. MWCNTs), the temperature of the microprocessor decreased 5 deg. C, and the time for increasing the temperature of the microprocessor was three times longer than that when using commercial thermal compound. In over-clocking mode, the processor speed reached 3.8 GHz with 165 MHz of system bus clock speed; it was 1.24 times higher than that in non over-clocking mode. The results confirmed a promising way of using MWCNTs as the thermal dissipation media for microprocessor and high power electronic devices.

  18. Non-Grey Radiation Modeling using Thermal Desktop/Sindaworks TFAWS06-1009

    Science.gov (United States)

    Anderson, Kevin R.; Paine, Chris

    2006-01-01

    This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring's Thermal Desktop(Registered TradeMark) Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined. Representative results from a parametric trade study of a radiation shield comprised of a series of v-grooved shaped deployable panels is used to illustrate the capabilities of the SindaWorks non-grey radiation thermal analysis software using emissivities with temperature and wavelength dependency modeled via a Hagen-Rubens relationship.

  19. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  20. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features

    Science.gov (United States)

    Samaraweera, Nalaka; Larkin, Jason M.; Chan, Kin L.; Mithraratne, Kumar

    2018-06-01

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard–Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green–Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon–surface scatterings as the nanowire’s cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen–Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  1. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.

    1983-06-01

    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  2. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  3. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  4. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  5. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    Science.gov (United States)

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p arc-lamp-based system currently used.

  6. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  7. AdS/CFT correspondence, quasinormal modes, and thermal correlators in N=4 SYM

    OpenAIRE

    Nunez, Alvaro; Starinets, Andrei O.

    2003-01-01

    We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green's functions of ${\\cal N=4}$ SU(N) SYM theory in the limit of large N and large 't Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory...

  8. Nonequilibrium phenomena and determination of plasma parameters in the hot core of the cathode region in free-burning arc discharges

    International Nuclear Information System (INIS)

    Kuehn, Gerrit; Kock, Manfred

    2007-01-01

    We present spectroscopic measurements of plasma parameters (electron density n e , electron temperature T e , gas temperature T g , underpopulation factor b) in the hot-core region in front of the cathode of a low-current, free-burning arc discharge in argon under atmospheric pressure. The discharge is operated in the hot-core mode, creating a hot cathode region with plasma parameters similar to high-current arcs in spite of the fact that we use comparatively low currents (less than 20 A). We use continuum emission and (optically thin) line emission to determine n e and T e . We apply relaxation measurements based on a power-interruption technique to investigate deviations from local thermodynamic equilibrium (LTE). These measurements let us determine the gas temperature T g . All measurements are performed side-on with charge-coupled-device cameras as detectors, so that all measured plasma parameters are spatially resolved after an Abel inversion. This yields the first ever spatially resolved observation of the non-LTE phenomena of the hot core in the near-cathode region of free-burning arcs. The results only partly coincide with previously published predictions and measurements in the literature

  9. Bounds of thermal stability of infinite cylindrical structures with non-uniform internal heat generation

    International Nuclear Information System (INIS)

    Gadalla, M.A.

    1992-01-01

    This paper presents an overview analyses of the thermal instability or thermal viability of infinite cylindrical structures with non-linear and non-uniform internal heat generation. The structure may be subjected to different and combined boundary conditions. An analytical solution is obtained for the generalized problem in spite of the non-linearity and the non-homogeneity of the source term. Four case studies with different boundary conditions are presented. The analyses show that the critical parameter for thermal stability may be though of as an altitude of surface below which the cylindrical structure will be thermally stable and performance worthy. The results also show that the bounds of thermal stability of a cylindrical structure system (solid or hollow) is eminently determined by the boundary conditions to which the system is subjected and can significantly alter the life-span of the structure

  10. The Swift BAT Perspective on Non-Thermal Emission in HIFLUGCS Galaxy Clusters

    Science.gov (United States)

    Wik, Daniel R.

    2011-01-01

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. Until recently, comprehensive surveys of hard X-ray emission from clusters were not possible; instead, individually proposed-for. long observations would be collated from the archive. With the advent of the Swift BAT all sky survey, any c1u,;ter's emission above 14 keV can be probed with nearly uniform sensitivity. which is comparable to that of RXTE, Beppo-SAX, and Suzaku with the 58-month version of the survey. In this work. we search for non-thermal excess emission above the exponentially decreasing, high energy thermal emission in the flux-limited HIFLUGCS sample. The BAT emission from many of the detected clusters is marginally extended; we are able to extract the total flux for these clusters using fiducial models for their spatial extent. To account for thermal emission at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both the thermal and non-thermal spectral components can be determined simultaneou,;ly in joint fits. We find marginally significant IC components in 6 clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single temperature

  11. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  12. Electron arc therapy: Influence of heterogeneities on dose to blood-forming organs

    International Nuclear Information System (INIS)

    Leavitt, D.D.; Gibbs, F.A.; Moeller, J.H.

    1986-01-01

    Electron arc therapy has been used successfully to treat extended chest wall surfaces after mastectomy. Treatment is frequently given simultaneously with chemotherapy. Although the primary electron arc treatment volume consists only of the chest wall and mediastinum, dose is accumulated at the isocenter of rotation due to the photon contamination of the arcing electron beam. Additionally, higher energy electron fields which are occasionally used over segments of the arc may contribute to the dose at isocenter if the electron range has been extended due to passage through a low-density heterogeneity such as lung. In some patient setups, the isocenter may intersect blood-forming organs, such as the vertebral bodies. Thermoluminescent dosimetry has been used to measure the dose at isocenter for the following setups: polystyrene phantom, polystyrene phantom covered by 1-cm-thick lead cast, polystyrene phantom with cork insert to simulate lung, and phantom plus cork insert plus lead cast. For the 9-MeV treatment mode, dose at isocenter per 90 0 of arc (as a percentage of maximum tumor dose) is as follows: phantom, 6.5%; phantom plus lead, 5%; phantom plus cork, 8%; and phantom plus cork plus lead, 6%. These values must be scaled by the size of the arc to estimate dose at isocenter in actual treatments. Computer calculation showed good agreement with these measured values, indicating that the computerized treatment plans can be used as a predictor of electron arc dose to blood-forming organs

  13. Thermal-Chemical Model Of Subduction: Results And Tests

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  14. Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K. H.; Garofalo, A. M; Osborne, T. H.; Schaffer, M. J.; Snyder, P. B.; Solomon, W. M.; Park, J.-K.; Fenstermacher, M. E.

    2012-01-01

    Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-I p torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-I p to up to co-I p values of 1-1.3 Nm. This co-I p torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of ν ped * and β N ped . These discharges exhibited confinement quality H 98y2 =1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q 95 =3.4 have reached fusion gain values of G=β N H 89 /q 95 2 =0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-I p torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

  15. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    International Nuclear Information System (INIS)

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  16. Thermal Equilibrium Dynamic Control Based on DPWM Dual-Mode Modulation of High Power NPC Three-Level Inverter

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2016-01-01

    Full Text Available In some special applications of NPC three-level inverters, such as mine hoist, there exist special conditions of overloading during the whole hoisting process and large overload in starting stage, during which the power-loss calculation of power devices and thermal control are important factors affecting the thermal stability of inverters. The principles of SVPWM and DPWM were described in this paper firstly, based on which the dynamic power losses of the two modulations of hoist in single period were calculated. Secondly, a thermal equilibrium dynamic control based on DPMW dual-mode modulation was proposed, which can switch the modulation dynamically according to the change of dynamic power loss to realize dynamic control of power loss and thermal equilibrium of inverter. Finally, simulation and experiment prove the effectiveness of the proposed strategy.

  17. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  18. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    Science.gov (United States)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  19. Thermally induced diffraction losses for a Gaussian pump beam and optimization of the mode-to-pump ratio in an end-pumped Nd:GdVO4 laser

    International Nuclear Information System (INIS)

    Wang, Y T; Li, W J; Pan, L L; Yu, J T; Zhang, R H

    2013-01-01

    The analytical model of thermally induced diffraction losses for a Gaussian pump beam are derived as functions of the mode-to-pump ratio and pump power in end-pumped Nd-doped lasers considering the energy transfer upconversion effects. The mode-to-pump ratio is optimized based on it. The results show that the optimum mode-to-pump ratio with the thermally induced diffraction losses is less than 0.65, and it is less than the results in which the thermally induced diffraction losses are neglected. The theoretical model is applied to a diode-end-pumped Nd:GdVO 4 laser operating at 1342 nm, and the theoretical calculations are in good agreement with the experimental results. (paper)

  20. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  1. The cathode material for a plasma-arc heater

    Science.gov (United States)

    Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.

    1983-11-01

    The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.

  2. Use of various ionization modes for the study of molecules of biological interest

    International Nuclear Information System (INIS)

    Forest, E.

    1987-01-01

    For the last ten years a revolutionary advance in mass spectrometry applied to molecules of biological interest occurred, chiefly concerning ionization with the emergence of many new modes allowing non volatile, polar or thermally labile sample analysis. Some examples of spectra obtained on high mass molecules such as vitamins, protein fragments, porphyrins (chlorophyll or hemoglobin active site), polysaccharides, are presented using some of the new modes [fr

  3. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ali E; Lima, Marcio H; Baughman, Ray H [Alan G MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Silverman, Edward M, E-mail: Ali.Aliev@utdallas.edu [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2010-01-22

    The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3{omega} technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower ({kappa}{sub MWNT} = 600 {+-} 100 W m{sup -1} K{sup -1}) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m{sup -1} K{sup -1}. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m{sup -1} K{sup -1} comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.

  4. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    Science.gov (United States)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  5. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  6. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.; Rashidov, Y.K. et al.

    2014-01-01

    The results of the model-based study of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield are presented. The article is aimed at determining daily variations in the air temperature of the heated premise on typical heating season days and analyzing the optimization of the thermal capacity of the short-term (daily) thermal battery of the heating system on this basis. (author)

  7. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  8. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control

    Science.gov (United States)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.

    2017-12-01

    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  9. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  10. The dual-electrode DC arc furnace-modelling brush arc conditions

    OpenAIRE

    Reynolds, Q.G.

    2012-01-01

    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  11. Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect

    Science.gov (United States)

    Nozariasbmarz, Amin; Dsouza, Kelvin; Vashaee, Daryoosh

    2018-02-01

    It is rather strange and not fully understood that some materials decrystallize when exposed to microwave radiation, and it is still debatable if such a transformation is a thermal or non-thermal effect. We hereby report experimental evidences that weight the latter effect. First, a single crystal silicon wafer exposed to microwaves showed strong decrystallization at high temperature. Second, when some areas of the wafer were masked with metal coating, only the exposed areas underwent decrystallization. Transmission electron microscopy analysis, x-ray diffraction data, and thermal conductivity measurements all indicated strong decrystallization, which occurred in the bulk of the material and was not a surface effect. These observations favor the existence of a non-thermal microwave effect.

  12. Simultaneous rocket and radar measurements of currents in an auroral arc

    International Nuclear Information System (INIS)

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  13. Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits

    International Nuclear Information System (INIS)

    Smietana, M; Bock, W J; Mikulic, P; Chen, J

    2011-01-01

    This paper presents an investigation of the sensing properties of long-period gratings (LPGs) written with the electric-arc technique in commonly used standard germanium-doped Corning SMF28 and boron co-doped Fibercore PS1250/1500 fibers. In order to increase the sensitivity of the LPGs, we studied and established for each fiber the writing parameters allowing for the coupling of the highest possible order of cladding modes at a resonance wavelength around λ = 1550 nm. The sensitivity of the LPGs to refractive index, to temperature and to hydrostatic pressure was investigated. The experimental results were supported by extensive numerical simulations. Thanks to the well-established and precisely controlled arc-writing process, we were able to reduce the minimum period of the gratings down to 345 and 221 µm, respectively, for LPGs based on the SMF28 and PS1250/1500 fibers. To the best of our knowledge, these are the shortest periods ever achieved for these fibers using the arc-manufacturing technique. The pressure sensitivities of 13 and 220 pm bar −1 are the highest ever measured for LPGs written in the SMF28 and PS1250/1500 fibers, respectively. Moreover, a reduction in the diameters of the SMF28 fiber induced by the arc was found, which significantly affected the distribution of resonances generated by the coupled cladding modes

  14. Thermal structure and geodynamics of subduction zones

    Science.gov (United States)

    Wada, Ikuko

    The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid

  15. The vacuum in non-inertial systems

    International Nuclear Information System (INIS)

    Soto, F.; Cocho, G.; Villarreal, C.; Hacyan, S.; Sarmiento, A.

    1987-01-01

    A brief presentation of the attemps made by our group on understanding the physics of the thermal effects appearing in quantum field theory in the non-inertial frames or in curved spacetime is made. The idea of the vacuum field being directly responsible for the thermal effects in non-inertial frames is introduced and explored; the thermal distributions observed from a non-inertial frame are due to the Doppler distortion undergone by the vacuum field. To support this idea we use the results obtained by T.H. Boyer in stochastic field theory, and further on we develop a formalism which leads to consistent results. We also show that the thermal character of the denominators in the distributions, appearing in quantum field theory in non-inertia frames, is directly linked to the discreteness originated by confining the space where the field is being quantized. This confinement implies the absence of some long wave modes, which in turn implies a modification of the states density in phase space. (author)

  16. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields

  17. Parity non-conservation in the capture of polarized thermal neutrons

    DEFF Research Database (Denmark)

    Warming, Inge Elisabeth

    1969-01-01

    The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect.......The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect....

  18. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  19. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  20. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  1. A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching

    International Nuclear Information System (INIS)

    Chen, Fang; Zhou, Jianzhong; Wang, Chao; Li, Chunlong; Lu, Peng

    2017-01-01

    Wind power is a type of clean and renewable energy, and reasonable utilization of wind power is beneficial to environmental protection and economic development. Therefore, a short-term hydro-thermal-wind economic emission dispatching (SHTW-EED) problem is presented in this paper. The proposed problem aims to distribute the load among hydro, thermal and wind power units to simultaneously minimize economic cost and pollutant emission. To solve the SHTW-EED problem with complex constraints, a modified gravitational search algorithm based on the non-dominated sorting genetic algorithm-III (MGSA-NSGA-III) is proposed. In the proposed MGSA-NSGA-III, a non-dominated sorting approach, reference-point based selection mechanism and chaotic mutation strategy are applied to improve the evolutionary process of the original gravitational search algorithm (GSA) and maintain the distribution diversity of Pareto optimal solutions. Moreover, a parallel computing strategy is introduced to improve the computational efficiency. Finally, the proposed MGSA-NSGA-III is applied to a typical hydro-thermal-wind system to verify its feasibility and effectiveness. The simulation results indicate that the proposed algorithm can obtain low economic cost and small pollutant emission when dealing with the SHTW-EED problem. - Highlights: • A hybrid algorithm is proposed to handle hydro-thermal-wind power dispatching. • Several improvement strategies are applied to the algorithm. • A parallel computing strategy is applied to improve computational efficiency. • Two cases are analyzed to verify the efficiency of the optimize mode.

  2. Arc Voltage Fluctuation in DC Laminar and Turbulent Plasma Jets Generation

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Wu Chengkang

    2006-01-01

    Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc

  3. Electromagnetic Transport From Microtearing Mode Turbulence

    International Nuclear Information System (INIS)

    Guttenfelder, W.; Candy, J.; Kaye, S.M.; Nevins, W.M.; Wang, E.; Bell, R.E.; Hammett, G.W.; LeBlanc, B.P.; Mikkelsen, D.R.; Yuh, H.

    2011-01-01

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  4. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  5. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  6. Energetic electron propagation in the decay phase of non-thermal flare emission

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Tsap, Yuri T., E-mail: huangj@nao.cas.cn [Crimean Astrophysical Observatory of Kyiv National Taras Shevchenko University, 98409 Crimea, Nauchny (Ukraine)

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  7. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  8. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  9. Plasma arc and thermal lance techniques for cutting concrete and steel

    International Nuclear Information System (INIS)

    Bargagliotti, A.; Caprile, L.; Piana, F.; Tolle, E.

    1986-01-01

    The plasma arc technique is used today in industrial practice for any metal, but mainly for cutting stainless steel, carbon steel and aluminium. In air the maximum thickness that was cut in the performed tests was 150 mm, both with ferritic and austenitic steel. Underwater the maximum thickness cut was 103 mm. The two types of torch used in the tests are those used today: the plasma-shaped electrode torch (WIPC) and the pointed electrode torch (DMC-GRUEN). Two different types of gas were compared: an argon-nitrogen mixture and an argon-hydrogen mixture. The second mixture adopted results in less dust emission. The production of dust and aerosols also depends on the cutting speed, on the kind of steel, but mainly on the environmental conditions; it is reduced up to 500 times under water. Dust and aerosols can, jeopardize the efficiency of the system; moreover, the ambient air can have high-level radiation fields. Indirect and direct protections are needed (shields, remote control, robots, etc.). Tentative procedures for dismantling two types of BWR reactor are examined. Two series of tests demonstrated the feasibility of cutting the most geometrically difficult parts of the reactor internals. The thermal lance technique is used in industrial practice mainly for dismantling large reinforced concrete structures. This technique can be applied to dismantle nuclear facilities, even though it can cause some problems due to the gases, fumes and lapilli produced. In addition, the cost of this technique seems to be generally higher than the cost of other techniques. From the analyses done, the conclusion seems that both the above techniques are feasible for dismantling a nuclear power plant (NPP). The best solution is probably to analyse the different dismantling possibilities and problems and problems of each case

  10. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  11. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  12. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  13. On the Trail of Joan of Arc

    Directory of Open Access Journals (Sweden)

    Linda Joyce Forristal

    2013-12-01

    Full Text Available The year 2012 marked the 600th anniversary of the birthday of Joan of Arc (Fr., Jeanne d’Arc (1412–1431. Tributes to this national heroine can be found all over France. There are literally countless statues, streets and restaurants named after her and many sites dedicated to her life. However, despite widespread social and mechanical reproduction and cultural naming in relation to the Maid of Orléans, there is no official network or integrated signage in France to promote cultural heritage tourism to the numerous Joan of Arc sites and festivals, even though her life and death, by any measure, were seminal events in the country’s history. Unfortunately, the pilgrim who wants to follow or intersect with Joan of Arc’s trail through France, for cultural, historical or religious reasons, must do so without much help. Using Actor Network Theory and Site Sacralization Theory as framing devices, this paper explores human actors and tangible and intangible non-human factors that may have contributed to the lack of a unified tourism product despite the existence of an adequate Joan of Arc tourismscape. Insights gleaned from this research include Joan’s conflicted status as both/either saint and/or patriot, the existence of no cooperation or linkage between Joan of Arc sites, and cautious French tourism development policies. Several possible scenarios are suggested as suitable means to help implement or foster the creation of an on-the-ground or virtual Joan of Arc trail or tour.

  14. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    asymmetry drive the water ow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed......Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through...... Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by flxing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial...

  15. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  16. Non-linear vibrational modes in biomolecules: A periodic orbits description

    International Nuclear Information System (INIS)

    Kampanarakis, Alexandros; Farantos, Stavros C.; Daskalakis, Vangelis; Varotsis, Constantinos

    2012-01-01

    Graphical abstract: Vibrational frequency shifts in Fe IV = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: ► Periodic orbits are extended to multidimensional potentials of biomolecules. ► Highly anharmonic vibrational modes and center-saddle bifurcations are detected. ► Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole–Fe IV = O species.

  17. Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Zhao Chunnong; Ju Li; Blair, David G [School of Physics, University of Western Australia, Crawley, WA6009 (Australia)

    2006-03-02

    Using a conventional mode-cleaner with the output beam taken through a diagonal mirror it is impossible to achieve a non-astigmatic output. The geometrical astigmatism of triangular mode-cleaners for gravitational wave detectors can be self-compensated by thermally induced astigmatism in the mirrors substrates. We present results from finite element modelling of the temperature distribution of the suspended mode-cleaner mirrors and the associated beam profiles. We use these results to demonstrate and present a self-compensated mode-cleaner design. We show that the total astigmatism of the output beam can be reduced to 5x10{sup -3} for {+-}10% variation of input power about a nominal value when using the end mirror of the cavity as output coupler.

  18. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.

  19. Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers

    Science.gov (United States)

    Yin, Jianchong; Wen, Jianxiang; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun

    2011-12-01

    Reducing the radiation-induced transmission loss in low water peak single mode fiber (LWP SMF) has been investigated by using photo-bleaching method with 980nm pump light source and using thermal-bleaching method with temperature control system. The results show that the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively with the help of photo-bleaching or thermal-bleaching. Although the effort of photo-bleaching is not as significant as thermal-bleaching, by using photo-bleaching method, the loss of fiber caused by radiation-induced defects can be reduced best up to 49% at 1310nm and 28% at 1550nm in low pre-irradiation condition, the coating of the fiber are not destroyed, and the rehabilitating time is just several hours, while self-annealing usually costs months' time. What's more, the typical high power LASER for photo-bleaching can be 980nm pump Laser Diode, which is very accessible.

  20. Plan quality comparison between 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy for the treatment of multiple brain metastases.

    Science.gov (United States)

    Yoshio, Kotaro; Mitsuhashi, Toshiharu; Wakita, Akihisa; Kitayama, Takahiro; Hisazumi, Kento; Inoue, Daisaku; Shiode, Tsuyoki; Akaki, Shiro; Kanazawa, Susumu

    2018-01-04

    To compare the plans of 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy (VMA-SRT) for multiple brain metastases and to investigate the cutoff value for the tumor number and volume for 6-arc rather than 4-arc VMA-SRT. We identified 24 consecutive multiple-target cases (3 to 19 targets in each case) with 189 total targets. We constructed plans using both 4- and 6-arc noncoplanar VMA-SRT. The prescribed dose was 36 Gy/6 fr, and it was delivered to 95% of the planning target volume (PTV). The plans were evaluated for the dose conformity using the Radiation Therapy Oncology Group and Paddick conformity indices (RCI and PCI), fall-off (Paddick gradient index [PGI]), and the normal brain dose. The median (range) RCI, PCI, and PGI was 0.94 (0.92 to 0.99), 0.89 (0.77 to 0.94), and 3.75 (2.24 to 6.54) for the 4-arc plan and 0.94 (0.91 to 0.98), 0.89 (0.76 to 0.94), and 3.65 (2.24 to 6.5) for the 6-arc plan, respectively. The median (range) of the normal brain dose was 910.3 cGy (381.4 to 1268.9) for the 4-arc plan and 898.8 cGy (377 to 1252.9) for the 6-arc plan. The PGI of the 6-arc plan was significantly superior to that of the 4-arc plan (p = 0.0076), and the optimal cutoff values for the tumor number and volume indicative of 6-arc (and not 4-arc) VMA-SRT were cases with ≥ 5 metastases and a PTV of ≥ 12.9 mL, respectively. The PCI values, however, showed no significant difference between the 2 plans. We believe these results will help in considering the use of 6-arc VMA-SRT for multiple brain metastases. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Super-broadband non-diffraction guiding modes in photonic crystals with elliptical rods

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W Y; Wang, T B; Yin, C P; Dong, J W; Leng, F C; Wang, H Z, E-mail: stswhz@mail.sysu.edu.c [State Key Laboratory of Optoelectronic Materials and Technologies, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275 (China)

    2010-02-24

    Non-diffraction guiding modes covering the full broad band of a photonic crystal with elliptical rods for TM mode are reported in this paper. All such modes can be used to effectively guide electromagnetic waves since they have near-zero group velocity components along the {Gamma}X' direction. In the fourth dispersion surface of the photonic crystal, the two wide flat regions spanning the first Brillouin zone possess unique properties: one dimension corresponds to a broad band, while the other corresponds to full incident angles of 0-90{sup 0}. These properties have many potential applications; as an example, here a broadband all-angle supercollimation with a bandwidth of 169 nm around 1550 nm is demonstrated. For the inverted structure of elliptical holes in a dielectric, similar results can be achieved over 140 nm around 1550 nm for TE mode.

  2. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.

    Science.gov (United States)

    Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-09-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

  3. Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile

    Science.gov (United States)

    Burns, Dale H.; de Silva, Shanaka L.; Tepley, Frank; Schmitt, Axel K.; Loewen, Matthew W.

    2015-07-01

    large volume Purico ignimbrite. This upper crustal MASH zone would act as an efficient filter to any parental compositions precluding them from the eruption record. As magmatic flux and thermal energy wanes, crustal isotherms would relax leading to greater thermal contrast between parental magmas, upper crust, and remnant felsic magmas stored in the upper crust. These changes are manifested in the preservation of textural and compositional heterogeneity and the survival of less isotopically enriched magmas in the upper crust. The chemical imprint of these arc-scale changes in magma dynamics is recorded at all scales from bulk rock to intra-crystalline. The distinct magma dynamics and chemical signatures of the two modes of arc magmatism detailed here should provide a model for investigations of mature continental arc evolution through time and space.

  4. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  5. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  6. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  7. Engaging ArcForm in Science and Technology Studies

    DEFF Research Database (Denmark)

    Allsopp, Benjamin Brink

    ArcForm is a non-linear form of general-purpose human language. It is designed as an alternative to paragraphs of text for intellectual collaboration (Allsopp 2013). It combines three areas of notational value. 1) It is similar to natural language (NL): both in its expressiveness and in the way...... not only the relations between the objects of various sciences and technologies, but simultaneously map the interrelations of these relations with social, political, and cultural objects. Furthermore in relation to the second way, the article describes how shared ArcForm maps may support dispersed STS...

  8. High throughput integrated thermal characterization with non-contact optical calorimetry

    Science.gov (United States)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  9. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    Science.gov (United States)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  10. Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shujing; Song Feng; Cai Hong; Li Teng; Tian Bin; Wu Zhaohui; Tian Jianguo [Photonics Center, Nankai University, Tianjin 300071 (China); Key Laboratory of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials (Ministry of Education), Nankai University, Tianjin 300457 (China)

    2008-02-07

    The theoretical values of the thermal focal length and laser beam waist are derived from the theoretical model and transformation theory, respectively. The values of thermal focal length, laser beam waist and the far field divergence angle were experimentally measured in a laser diode (LD) pumped erbium-ytterbium(Er-Yb)-codoped phosphate microchip glass laser. As an extension of thermal effect studies, we investigate the role of thermal lens on beam quality and the mode matching between the pump and the laser, which affects laser efficiency in TEM{sub 00} operation. The study shows that the experimental data are in good agreement with the theoretical predictions.

  11. Investigation of Mode I fracture toughness of red Verona marble after thermal treatment

    Directory of Open Access Journals (Sweden)

    Daniela Scorza

    2015-10-01

    Full Text Available The present paper aims to assess the effect of freeze/thaw cycles on fracture behaviour of a natural stone: the red Verona marble. A wide variety of specimen types and methods to determine Mode I fracture toughness of natural stones are available in the literature and, in this context, the model originally proposed for plain concrete, i.e. the Two-Parameter Model (TPM, is adopted. Such a method is able to take into account the slow nonlinear crack growth occurring before the peak load, typical of quasi-brittle materials, with the advantage of easy specimen preparation and simple test configuration. In the present paper, the atmospheric ageing is simulated by means of thermal pre-treatments consisting of freeze/thaw cycles. Experimental tests are carried out using three-point bending Single-Edge Notched (SEN specimens, according to the TPM procedure. The effects of thermal treatment on both mechanical and fracture parameters are examined in terms of elastic modulus and fracture toughness, respectively

  12. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  13. arcControlTower: the System for Atlas Production and Analysis on ARC

    International Nuclear Information System (INIS)

    Filipcic, Andrej

    2011-01-01

    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  14. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    Science.gov (United States)

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  15. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)

  16. Broadband non-polarizing beam splitter based on guided mode resonance effect

    Science.gov (United States)

    Ma, Jian-Yong; Xu, Cheng; Qiang, Ying-Huai; Zhu, Ya-Bo

    2011-10-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm~1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.

  17. Proceedings of the second workshop on thermal-non-thermal interactions in solar flares [TNT-II

    International Nuclear Information System (INIS)

    Phillips, K.J.H.

    1989-09-01

    The Second Workshop on the theme of Thermal-Non-thermal Interactions in Solar Flares (TNT-II) was held at Somerville College, University of Oxford, England, during the week of April 10-14, 1989. The keynote address, gave a view of the problems still outstanding with regard to soft and hard X-ray observations of flares. The gathering broke up into four subgroups. The subjects under discussion were: large-scale magnetic field phenomena, flare dynamics, energy release and deposition, and global energy balance. (author)

  18. Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes

    International Nuclear Information System (INIS)

    He, Wei; Zhou, JinZhi; Chen, Chi; Ji, Jie

    2014-01-01

    Highlights: • Thermoelectric heating system driven by heat pipe PV/T system was built and test. • Theoretical analysis has been done and simulation results have been validated by experiments. • The energetic efficiency and exergetic efficiency in summer and winter operation mode was analyzed and compared. - Abstract: This paper presents theoretical and experimental investigations of the winter operation mode of a thermoelectric cooling and heating system driven by a heat pipe photovoltaic/thermal (PV/T) panel. And the energy and exergy analysis of this system in summer and winter operation modes are also done. The winter operation mode of this system is tested in an experimental room which temperature is controlled at 18 °C. The results indicate the average coefficient of performance (COP) of thermoelectric module of this system can be about 1.7, the electrical efficiency of the PV/T panel can reach 16.7%, and the thermal efficiency of this system can reach 23.5%. The energy and exergy analysis show the energetic efficiency of the system in summer operation mode is higher than that of it in winter operation mode, but the exergetic efficiency in summer operation mode is lower than that in winter operation mode, on the contrary

  19. CBCT-Guided Rapid Arc for stereotactic ablative radiotherapy (SABR) in lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fandino, J. M.; Silva, M. C.; Izquierdo, P.; Candal, A.; Diaz, I.; Fernandez, C.; Gesto, C.; Poncet, M.; Soto, M.; Triana, G.; Losada, C.; Marino, A.

    2013-07-01

    Stereotactic ablative radiotherapy has emerged as a standard treatment option for stage I non-small cell lung cancer in patients unfit for surgery, or who refuse surgery. An increasing number of prospective phase I/II trials, as well as large single and multicenter studies have reported local control rates to be in excess of 85% for early stage non-small cell lung cancer. Volumetric arc therapy RapidArc with tumor-based image guidance technique will be presented as well as our preliminary observations. (Author)

  20. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  1. Effect of Thermal Fields on the Structure of Corrosion-Resistant Steels Under Different Modes of Laser Treatment

    Science.gov (United States)

    Tarasova, T. V.; Gusarov, A. V.; Protasov, K. E.; Filatova, A. A.

    2017-11-01

    The influence of temperature fields on the structure and properties of corrosion-resistant chromium steels under different modes of laser treatment is investigated. A model of heat transfer under laser impact on target is used to plot thermal fields and cycles and cooling rates. It is shown that the model used for computing thermal fields gives tentative geometric sizes of the fusion zones under laser treatment and selective laser fusion. The cooling rate is shown to have decisive influence on the structure of corrosion-resistant steels after laser treatment with surface fusion in devices for pulsed, continuous, and selective laser melting.

  2. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  3. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  4. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    Science.gov (United States)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  5. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    Science.gov (United States)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  6. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    Science.gov (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.

    2004-03-01

    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  7. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  8. Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Tianbao Cheng

    2014-01-01

    Full Text Available The transient temperature distribution of the ultrahigh-temperature ceramic (UHTC thermal protection system (TPS of hypersonic vehicles is calculated using finite volume method. Convective cooling enables a balance of heat increment and loss to be achieved. The temperature in the UHTC plate at the balance is approximately proportional to the surface heat flux and is approximately inversely proportional to the convective heat transfer coefficient. The failure modes of the UHTCs are presented by investigating the thermal stress field of the UHTC TPS under different thermal environments. The UHTCs which act as the thermal protection materials of hypersonic vehicles can fail because of the tensile stress at the lower surface, an area above the middle plane, and the upper surface as well as because of the compressive stress at the upper surface. However, the area between the lower surface and the middle plane and a small area near the upper surface are relatively safe. Neither the compressive stress nor the tensile stress will cause failure of these areas.

  9. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  10. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  11. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  12. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Ravikumar

    2017-09-01

    Full Text Available Brookhaven National Laboratory (BNL has proposed to build an electron ion collider (EIC as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC. A part of the new design is to use superconducting radio frequency (SRF cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  13. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Science.gov (United States)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  14. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    Science.gov (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  15. Cracking generated by arc welding; La fissuration consecutive a l'operation de soudage a l'arc

    Energy Technology Data Exchange (ETDEWEB)

    Carpreau, J.M. [LaMSID UMR EDF-CNRS-CEA 2832, 78 - Chatou (France)

    2010-07-01

    During welding, rapid localized heat transients lead to thermal cycles, resulting in changes in the local metallurgy and mechanical loading of the components to be joined. Depending on the materials, these changes may generate cracks, making the weld structure unable to resist in-service loading. Analysis of various cracking mechanisms showed the role of the thermomechanical loading of the weld or HAZ during cooling after arc welding. Hence, prediction of cracking is based on the calculation of the thermomechanical stress, which often gives an estimated range, or from a mechanistically-based phenomenological approach. (author)

  16. DC arc plasma disposal of printed circuit board

    International Nuclear Information System (INIS)

    Huang Jianjun; Shenzhen Univ., Shenzhen; Shi Jiabiao; Meng Yuedong; Liu Zhengzhi

    2004-01-01

    A new solid waste disposal technology setup with DC arc plasma is presented. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled high-temperature pyrolysis, the thermal destruction and recovery process. The results of vitrification of the circuit board are presented. The properties of vitrified product including hardness and leaching test results are presented. The final product (vitrified material) and air emission from the plasma treatment is environmentally acceptable. (authors)

  17. The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2

    Science.gov (United States)

    Ivanova, P.; Linkevics, O.; Cers, A.

    2015-12-01

    The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.

  18. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  19. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  20. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)