WorldWideScience

Sample records for non-target herbicide resistance

  1. Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population.

    Science.gov (United States)

    Zhao, Bochui; Fu, Danni; Yu, Yang; Huang, Chengtian; Yan, Kecheng; Li, Pingsheng; Shafi, Jamil; Zhu, He; Wei, Songhong; Ji, Mingshan

    2017-08-01

    Sagittaria trifolia L. is one of the most competitive weeds in rice fields in northeastern China. The continuous use of acetolactate synthase (ALS)-inhibitors has led to the evolution of herbicide resistant S. trifolia. A subpopulation BC1, which was derived from the L1 population, was analyzed using DNA sequencing and ALS enzyme activity assays and levels of resistance to five ALS-inhibiting herbicides was determined. DNA sequencing and ALS enzyme assays revealed no amino acid substitutions and no significant differences in enzyme sensitivity between susceptible and resistant populations. Whole-plant dose-response experiments showed that the BC1 population exhibited different levels of resistance (resistance ratios ranging from 2.14 to 51.53) to five ALS herbicides, and the addition of malathion (P450 inhibitor) to bensulfuron-methyl, penoxsulam and bispyribac-sodium strongly reduced the dry weight accumulation of the BC1 population compared with the effects of the three herbicides alone. The results of the present study demonstrated that the BC1 population has evolved non-target-site resistance to ALS-inhibiting herbicides. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass

    Directory of Open Access Journals (Sweden)

    Arnaud Duhoux

    2017-08-01

    Full Text Available Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass to the major herbicides inhibiting acetolactate-synthase (ALS pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their

  3. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass).

    Science.gov (United States)

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS

  4. Impact of non-target-site-resistance on herbicidal activity of imazamox on blackgrass (Alopecurus myosuroides Huds. in comparison to other ALS-graminicides

    Directory of Open Access Journals (Sweden)

    Sievernich, Bernd

    2014-02-01

    Full Text Available A black-grass (Alopecurus myosuroides Huds. resistance-monitoring conducted by BASF in 2010 - 2012 revealed a high number of accessions with resistance against imazamox. However, application of imazamoxbased products in a winter crop was limited to winter beans in France and United Kingdom only until the introduction of the Clearfield®-production system in autumn 2012 in winter oilseed rape. It is therefore assumed that the resistance mechanisms were probably selected by the frequent use of ACCase- and ALSinhibitors in winter crop rotations during the last 2 decades. Resistance level for each product-biotype combination was calculated according the “R”-classification system (S, R?, RR, RRR by directly comparing the product performance on a biotype versus untreated control. Majority of resistant biotypes did not show a target-site mutation at the known codon Pro197 or Trp574. In order to better evaluate the impact of Non-Target-Site-Resistance (NTSR on the activity of BEYOND (imazamox, ATLANTIS WG (mesosulfuron+iodosulfuron and ABAK (pyroxsulam, biotypes who have shown an ALS-target-site mutation were removed from further analysis. At the dose rate of 35 g ai/ha BEYOND provided good activity on susceptible biotypes of black-grass almost matching up with ATLANTIS WG and ABAK. However, activity of BEYOND declined stronger on biotypes classified as R? or RR for that product, while ATLANTIS WG and ABAK hardly showed any decline in control on this group of biotypes when applied at the recommended dose rate. It is assumed that the underlying NTSR-mechanism is not effective enough yet to confer resistance to ATLANTIS WG and ABAK, but on BEYOND. In contrast, biotypes classified as R? for ATLANTIS WG did show a stronger impact on the activity of BEYOND and ABAK then of ATLANTIS WG. These differences in control level probably do translate into differences in selection pressure as well.

  5. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass)

    OpenAIRE

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; D?lye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non...

  6. Contribution of non-target-site resistance in imidazolinone-resistant Imisun sunflower

    Directory of Open Access Journals (Sweden)

    Gabriela Breccia

    2017-08-01

    Full Text Available ABSTRACT The first commercial herbicide-resistant trait in sunflower (Helianthus annuus L. is known as ‘Imisun’. Imidazolinone resistance in Imisun cultivars has been reported to be genetically controlled by a major gene (known as Imr1 or Ahasl1-1 and modifier genes. Imr1 is an allelic variant of the Ahasl1 locus that codes for the acetohydroxyacid synthase, which is the target site of these herbicides. The mechanism of resistance endowed by modifier genes has not been characterized and it could be related to non-target-site resistance. The objective of this study was to evaluate the role of cytochrome P450 monooxygenases (P450s in Imisun resistance. The response to imazapyr herbicide in combination with P450s inhibitor malathion was evaluated in 2 Imisun lines, IMI-1 and RHA426. Malathion reduced herbicide efficacy in both lines, but IMI-1 was affected in a greater extent. A significant reduction in plant growth in response to P450s inhibitors 1-aminobenzotriazole and piperonyl butoxide treatment was detected in the Imisun line HA425. The increased susceptibility to imazapyr after P450s-inhibitor treatment indicates that herbicide metabolism by P450s is a mechanism involved in Imisun resistance. These results also suggest the involvement of different P450s isozymes in endowing resistance to imazapyr in Imisun cultivars.

  7. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts

    Science.gov (United States)

    Elizabeth E. Crone; Marilyn Marler; Dean E. Pearson

    2009-01-01

    Invasive species are one of the leading threats to biodiversity worldwide. Therefore, chemical herbicides are increasingly used to control invasive plants in natural and semi-natural areas. Little is known about the non-target impacts of these chemicals on native species. We conducted an experiment to test the demographic effects of the herbicide picloram on a native...

  8. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  10. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  11. Effects of herbicides on non-target plants: How do effects in standard plant tests relate to effects in natural habitats?

    DEFF Research Database (Denmark)

    Strandberg, Beate; Bruus, Marianne; Kjær, Christian

    areas where risk assessment seems to be insufficient. The most extensive conclusion is that seed production is a more sensible end-point for risk assessment of herbicides than the currently used end-point biomass. Crop species, in general, were not less sensitive to herbicides than non-target species......The report presents the results on effects of herbicides on plants found in natural habitats within the agricultural land. Furthermore, it evaluates whether the current risk assessment of herbicides represents an adequate safeguard for protection of these species and habitats. We found several....... Finally, we found that interactions between species are important for their responses to herbicides....

  12. Comparisons of Herbicide Treated and Cultivated Herbicide-Resistant Corn

    OpenAIRE

    H. Arnold Bruns; Hamed K. Abbas

    2010-01-01

    Four glyphosate resistant corn (Zea mays L.) hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI) and dry matter accumulation (DMA) were collected on a weekly basis beginning at growth stage V3 and terminating at anthesi...

  13. Comparisons of Herbicide Treated and Cultivated Herbicide-Resistant Corn

    Directory of Open Access Journals (Sweden)

    H. Arnold Bruns

    2010-01-01

    Full Text Available Four glyphosate resistant corn (Zea mays L. hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI and dry matter accumulation (DMA were collected on a weekly basis beginning at growth stage V3 and terminating at anthesis. Crop growth rates (CRGs and relative growth rates (RGRs were calculated. Plots were later harvested, yield and yield component data collected, and kernel samples analyzed for aflatoxin and fumonisin. Leaf area index, DMA, CRG, and RGR were not different among the herbicide treated plots and from those that were cultivated. Curves for LAI and DMA were similar to those previously reported. Aflatoxin and fumonisin were relatively low in all plots. Herbicide application or the lack thereof had no negative impact on the incidence of kernel contamination by these two mycotoxins. Herbicides, especially glyphosate on resistant hybrids, have no negative effects on corn yields or kernel quality in corn produced in a humid subtropical environment.

  14. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  15. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  16. The intensity of non-target site mechanisms influences the level of resistance of sourgrass to glyphosate

    Directory of Open Access Journals (Sweden)

    Flávia Regina da Costa

    2014-02-01

    Full Text Available Non-target site mechanisms are involved in the resistance of sourgrass (Digitaria insularis to glyphosate. Studies on the 14C-glyphosate absorption and translocation as well as the detection of glyphosate and its metabolites in sourgrass plants were carried out under controlled conditions to investigate if the differential response of resistant sourgrass biotypes (R1 and R2 is derived from the intensity of non-target site mechanisms involved in the resistance to glyphosate. Different pattern of absorption was observed between S (susceptible and R2 from 12 up to 48 hours after treatment with glyphosate (HAT, and between S and R1 just at 12 HAT. The initial difference in glyphosate absorption among the biotypes did not maintained at 96 HAT and afterwards. Smaller amount of herbicide left the treated leaf into the rest of shoot and roots in R2 (25% than in S (58% and R1 (52%. In addition, slight difference in glyphosate translocation was observed between S and R1. We found high percentage (81% of glyphosate in the S biotype up to 168 HAT, while just 44% and 2% of glyphosate was recovered from R1 and R2 plant tissues. In addition, high percentage of glyphosate metabolites was found in R2 (98% and R1 (56% biotypes, while a very low percentage (11% was found in the S biotype. As previous studies indicated resistant factors of 3.5 and 5.6 for R1 and R2, respectively, we conclude that the differential response of sourgrass biotypes is derived from the intensity of the non-target site mechanisms involved in the resistance to glyphosate.

  17. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands: Non Target Site Resistance and Target Site Resistance in Relation to Resistance Levels.

    Directory of Open Access Journals (Sweden)

    Enzo Bracamonte

    2016-12-01

    of a proline to serine change in Cu-R1, Do-R1 Do-R2. The above-mentioned results indicate that high resistance values are determined by the number of defense mechanisms (target-site and non-target-site resistance possessed by the different P. hysterophorus accessions, concurrently.

  18. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose

  19. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia and associated algae are altered by temperature

    Directory of Open Access Journals (Sweden)

    Fabian Baier

    2016-11-01

    Full Text Available Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1 on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura and associated algae communities under two temperature regimes (15 vs. 20 °C. Results Herbicide contamination reduced tail growth (−8%, induced the occurrence of tail deformations (i.e. lacerated or crooked tails and reduced algae diversity (−6%. Higher water temperature increased tadpole growth (tail and body length (tl/bl +66%, length-to-width ratio +4% and decreased algae diversity (−21%. No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological

  20. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  1. Dinitroaniline herbicide resistance and the microtubule cytoskeleton.

    Science.gov (United States)

    Anthony; Hussey

    1999-03-01

    Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.

  2. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  3. Expanding the eco-evolutionary context of herbicide resistance research.

    Science.gov (United States)

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  4. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae from Argentina

    Directory of Open Access Journals (Sweden)

    Cristina Mónica Montagna

    2012-06-01

    Full Text Available Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold and deltamethrin (162-fold and a small increase in resistance to the organophosphate azinphos methyl (2-fold were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  5. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    Science.gov (United States)

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  6. The effect of the herbicide glyphosate on non-target spiders: Part I. Direct effects on Lepthyphantes tenuis under laboratory conditions.

    Science.gov (United States)

    Haughton, A J; Bell, J R; Wilcox, A; Boatman, N D

    2001-11-01

    We examined the toxic effects of glyphosate to adult female Lepthyphantes tenuis (Araneae, Linyphiidae), a common spider of agricultural habitats. The overspray technique was used to investigate the effect of the herbicide on forty individuals in each of six glyphosate treatments (2160, 1440, 1080, 720, 360 and 180 g ha-1) and a distilled water control. Spiders collected from the wild were individually placed in exposure chambers and checked every 24 h over a 72-h experimental period. Mortality of L tenuis remained at less than 10% in all treatments at 24 and 48 h after spray application, and only increased marginally (to 13%) after 72 h. These results support other limited data which suggest that glyphosate is 'harmless' to non-target arthropods. More extended laboratory testing to investigate any side-effects of glyphosate on the life history of L tenuis and other non-beneficial invertebrates is required.

  7. Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina.

    Science.gov (United States)

    Larran, Alvaro S; Palmieri, Valeria E; Perotti, Valeria E; Lieber, Lucas; Tuesca, Daniel; Permingeat, Hugo R

    2017-12-01

    Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance. We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653. This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Cross-resistance to herbicides in annual ryegrass (lolium rigidum)

    International Nuclear Information System (INIS)

    Christopher, J.T.; Powles, S.B.; Liljegren, D.R.; Holtum, J.A.M.

    1991-01-01

    Lolium rigidum Gaud. biotype SLR31 is resistant to the herbicide diclofop-methyl and cross-resistant to several sulfonylurea herbicides. Wheat and the cross-resistant ryegrass exhibit similar patterns of resistance to sulfonylurea herbicides, suggesting that the mechanism of resistance may be similar. Cross-resistant ryegrass is also resistant to the wheat-selective imidazolinone herbicide imazamethabenz. The cross-resistant biotype SLR31 metabolized [phenyl-U- 14 C]chlorsulfuron at a faster rate than a biotype which is susceptible to both diclofop-methyl and chlorsulfuron. A third biotype which is resistant to diclofop-methyl but not to chlorsulfuron metabolized chlorsulfuron at the same rate as the susceptible biotype. The increased metabolism of chlorsulfuron observed in the cross-resistant biotype is, therefore, correlated with the patterns of resistance observed in these L. rigidum biotypes. During high performance liquid chromatography analysis the major metabolite of chlorsulfuron in both susceptible and cross-resistant ryegrass coeluted with the major metabolite produced in wheat. The major product is clearly different from the major product in the tolerant dicot species, flax (Linium usitatissimum). The elution pattern of metabolites of chlorsulfuron was the same for both the susceptible and cross-resistant ryegrass but the cross-resistant ryegrass metabolized chlorsulfuron more rapidly. The investigation of the dose response to sulfonylurea herbicides at the whole plant level and the study of the metabolism of chlorsulfuron provide two independent sets of data which both suggest that the resistance to chlorsulfuron in cross-resistant ryegrass biotype SLR31 involves a wheat-like detoxification system

  9. Are herbicide-resistant crops the answer to controlling Cuscuta?

    Science.gov (United States)

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  10. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  11. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    Science.gov (United States)

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  12. Limited fitness costs of herbicide-resistance traits in Amaranthus tuberculatus facilitate resistance evolution

    Science.gov (United States)

    The fitness cost of herbicide resistance (HR) in the absence of herbicide selection plays a key role in HR evolution. Quantifying the fitness cost of resistance, however, is challenging, and there exists a knowledge gap in this area. A synthetic Amaranthus tuberculatus population segregating for fiv...

  13. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry.

  14. Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population.

    Science.gov (United States)

    Chen, Jinyi; Yu, Qin; Owen, Mechelle; Han, Heping; Powles, Stephen

    2018-04-01

    The pre-emergence dinitroaniline herbicides (such as trifluralin and pendimethalin) are vital to Australian no-till farming systems. A Lolium rigidum population collected from the Western Australian grain belt with a 12-year trifluralin use history was characterised for resistance to dinitroaniline, acetyl CoA carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides. Target-site resistance mechanisms were investigated. This L. rigidum population exhibited 32-fold resistance to trifluralin, as compared with the susceptible population. It also displayed 12- to 30-fold cross-resistance to other dinitroaniline herbicides (pendimethalin, ethalfluralin and oryzalin). In addition, this population showed multiple resistance to commonly used post-emergence ACCase- and ALS-inhibiting herbicides. Two target-site α-tubulin gene mutations (Val-202-Phe and Thr-239-Ile) previously documented in other dinitroaniline-resistant weed species were identified, and some known target-site mutations in ACCase (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg) and ALS (Pro-197-Gln/Ser) were found in the same population. An agar-based Petri dish screening method was established for the rapid diagnosis of resistance to dinitroaniline herbicides. Evolution of target-site resistance to both pre- and post-emergence herbicides was confirmed in a single L. rigidum population. The α-tubulin mutations Val-202-Phe and Thr-239-Ile, documented here for the first time in L. rigidum, are likely to be responsible for dinitroaniline resistance in this population. Early detection of dinitroaniline herbicide resistance and integrated weed management strategies are needed to maintain the effectiveness of dinitroaniline herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici.

    Directory of Open Access Journals (Sweden)

    Yang Bi

    Full Text Available This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had developed a novel non-target-site-based resistance to zoxamide. Analysis of the segregation ratio of zoxamide-resistance in the sexual progeny of the sensitive isolates PCAS1 and PCAS2 indicated that the resistance to zoxamide was controlled by one or more recessive nuclear genes. Furthermore, the segregation of resistance in the F1, F2, and BC1 progeny was in accordance with the theoretical ratios of the χ(2 test (P>0.05, which suggested that the resistance to zoxamide was controlled by two recessive genes, and that resistance to zoxamide occurred when at least one pair of these alleles was homozygous. This implies that the risk of zoxamide-resistance in P. capsici is low to moderate. Nevertheless this potential for resistance should be monitored closely, especially if two compatible mating types co-exist in the same field.

  16. Effects of herbicide and nitrogen fertilizer on non-target plant reproduction and indirect effects on pollination in Tanacetum vulgare (Asteraceae)

    DEFF Research Database (Denmark)

    Dupont, Yoko Luise; Strandberg, Beate; Damgaard, Christian Frølund

    2018-01-01

    and nitrogen fertilizer on reproductive features of Tanacetum vulgare (Asteraceae). The study was carried out in an experimental set-up, in which plots of 7x7 m were treated with one of six treatments: four levels of the herbicide glyphosate (0%, 1%, 5%, and 25% of label rate of 1440 g a.i. ha-1) without...

  17. Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance.

    Science.gov (United States)

    Tehranchian, Parsa; Nandula, Vijay; Jugulam, Mithila; Putta, Karthik; Jasieniuk, Marie

    2018-04-01

    Glyphosate, paraquat and acetyl CoA carboxylase (ACCase)-inhibiting herbicides are widely used in California annual and perennial cropping systems. Recently, glyphosate, paraquat, and ACCase- and acetolactate synthase (ALS)-inhibitor resistance was confirmed in several Italian ryegrass populations from the Central Valley of California. This research characterized the possible mechanisms of resistance. Multiple-resistant populations (MR1, MR2) are resistant to several herbicides from at least three modes of action. Dose-response experiments revealed that the MR1 population was 45.9-, 122.7- and 20.5-fold, and the MR2 population was 24.8-, 93.9- and 4.0-fold less susceptible to glyphosate, sethoxydim and paraquat, respectively, than the susceptible (Sus) population. Accumulation of shikimate in Sus plants was significantly greater than in MR plants 32 h after light pretreatments. Glyphosate resistance in MR plants was at least partially due to Pro106-to-Ala and Pro106-to-Thr substitutions at site 106 of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS gene copy number and expression level were similar in plants from the Sus and MR populations. An Ile1781-to-Leu substitution in ACCase gene of MR plants conferred a high level of resistance to sethoxydim and cross-resistance to other ACCase-inhibitors. Radiolabeled herbicide studies and phosphorimaging indicated that MR plants had restricted translocation of 14 C-paraquat to untreated leaves compared to Sus plants. This study shows that multiple herbicide resistance in Italian ryegrass populations in California, USA, is due to both target-site and non-target-site resistance mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Resistência de plantas daninhas aos herbicidas Weed resistance to herbicides

    Directory of Open Access Journals (Sweden)

    Pedro J. Christoffoleti

    1994-01-01

    Full Text Available A resistência de plantas daninhas aos herbicidas ocorre em função de um processo evolutivo. O desenvolvimento de biótipos de plantas daninhas resistentes é imposto pela agricultura moderna, através da pressão de seleção causada pelo uso intensivo dos herbicidas. O conhecimento dos mecanismos e fatores que favorecem o aparecimento de biótipos de plantas daninhas resistentes é fundamental para que técnicas de manejo sejam utilizadas no sentido de evitar ou retardar o aparecimento de plantas resistentes em uma área. São poucos os relatos ou citações de literatura no Brasil. Sendo assim, este trabalho de revisão procura relatar os principais avanços e descobertas na área de plantas daninhas resistentes aos herbicidas.Weed herbicide resistance has evolved from weed evolution. The modern agriculture is responsible for this evolution because of the intensive use of herbicides. The knowledge of mechanisms and factors that influence the weed herbicide resistance play an important role in the weed manegement techniques used to avoid or delay herbicide resistance appearence. There are not many report or scientific papers about herbi cide resistance in Brasil. Therefore, this literature review aims to provide information about the main advances and discoveries in the field of weed herbicide resistance.

  19. Analysis of the metabolic resistance of Ambrosia artemisiifolia L. to the herbicides action

    Directory of Open Access Journals (Sweden)

    Y.V. Lykholat

    2018-03-01

    Full Text Available Action and aftereffect of the herbicides with different modes of action on the common ragweed population were studied in the field and greenhouse experiments. Activation of glutathione S-transferase has been detected due to the action of herbicides Harness and Guardian-Tetra both in leaves of juvenile plants and in ragweed seeds, which indicates intensive detoxification of herbicides during weed ontogenesis. Electrophoretic analysis showed that four components in protein spectra of ragweed seeds were inherent in seeds collected from herbicides-treated plants only. Using the method of isoelectric focusing, three specific peroxidase isoforms associated with a certain mechanism of herbicidal action on the parent plants were found in leaves of the next generation plants. The results confirm the intensive adaptive changes in A. artemisiifolia population that could provide the metabolic resistance to different modes of the herbicide action. Keywords: Common ragweed, Metabolic resistance, Herbicide, Mode of action, Isoforms, Isoelectric

  20. Relationship between weed dormancy and herbicide rotations: implications in resistance evolution.

    Science.gov (United States)

    Darmency, Henri; Colbach, Nathalie; Le Corre, Valérie

    2017-10-01

    It is suggested that selection for late germinating seed cohorts is significantly associated with herbicide resistance in some cropping systems. In turn, it is conceivable that rotating herbicide modes of action selects for populations with mutations for increased secondary dormancy, thus partially overcoming the delaying effect of rotation on resistance evolution. Modified seed dormancy could affect management strategies - like herbicide rotation - that are used to prevent or control herbicide resistance. Here, we review the literature for data on seed dormancy and germination dynamics of herbicide-resistant versus susceptible plants. Few studies use plant material with similar genetic backgrounds, so there are few really comparative data. Increased dormancy and delayed germination may co-occur with resistance to ACCase inhibitors, but there is no clear-cut link with resistance to other herbicide classes. Population shifts are due in part to pleiotropic effects of the resistance genes, but interaction with the cropping system is also possible. We provide an example of a model simulation that accounts for genetic diversity in the dormancy trait, and subsequent consequences for various cropping systems. We strongly recommend adding more accurate and detailed mechanistic modelling to the current tools used today to predict the efficiency of prevention and management of herbicide resistance. These models should be validated through long-term experimental designs including mono-herbicide versus chemical rotation in the field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia

    International Nuclear Information System (INIS)

    Saari, L.L.; Cotterman, J.C.; Primiani, M.M.

    1990-01-01

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I 50 to susceptible I 50 ) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [ 14 C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K m values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme

  2. Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops.

    Science.gov (United States)

    Ammann, Klaus

    2005-08-01

    Biodiversity is threatened by agriculture as a whole, and particularly also by traditional methods of agriculture. Knowledge-based agriculture, including GM crops, can reduce this threat in the future. The introduction of no-tillage practices, which are beneficial for soil fertility, has been encouraged by the rapid spread of herbicide-tolerant soybeans in the USA. The replacement of pesticides through Bt crops is advantageous for the non-target insect fauna in test-fields. The results of the British Farm Scale experiment are discussed. Biodiversity differences can mainly be referred to as differences in herbicide application management.

  3. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Ecological review of black-grass (Alopecurus myosuroides Huds. propagation abilities in relationship with herbicide resistance

    Directory of Open Access Journals (Sweden)

    Maréchal, PY.

    2012-01-01

    Full Text Available Alopecurus myosuroides Huds. (black-grass has always been a major concern for cereal growers, and the development of herbicide resistance does not improve the situation. This review article summarizes the different traits involved in the dispersal pattern of herbicide resistant black-grass individuals within a susceptible field population. Therefore, the whole life cycle of black-grass is depicted from the seed to the seed. From the early vegetative development to the seed falling, every stage is described, taking into account how herbicide resistance can influence or exert a different impact compared to susceptible plants.

  5. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Microevolution of ALS inhibitor herbicide resistance in loose silky bentgrass (Apera spica-venti)

    DEFF Research Database (Denmark)

    Babineau, Marielle

    , the ALS resistant biotypes have a fitness advantage over the susceptible biotype in time to germination and time to flowering and seed production growth stages. This study increased the understanding of the spatial, phenotypic, genetic and ecological processes and consequences in ALS herbicide resistance......-neighborhood experiments were conducted with ALS resistant and susceptible populations with a randomized genetic background, vegetative and reproductive growth stages were compared. The results show a large variation in the response of neighboring populations to ALS herbicide. Multiple resistance is observed between ALS...... from known metabolic herbicide resistance pathways, such as cytochrome P450s, ABC-transporters, UDP-glycosyltransferase and glutathione S-transferase, are identified and quantified. Different gene families are up-regulated at different times after herbicide treatment. In low competition conditions...

  7. Crops with target-site herbicide resistance for Orobanche and Striga control.

    Science.gov (United States)

    Gressel, Jonathan

    2009-05-01

    It is necessary to control root parasitic weeds before or as they attach to the crop. This can only be easily achieved chemically with herbicides that are systemic, or with herbicides that are active in soil. Long-term control can only be attained if the crops do not metabolise the herbicide, i.e. have target-site resistance. Such target-site resistances have allowed foliar applications of herbicides inhibiting enol-pyruvylshikimate phosphate synthase (EPSPS) (glyphosate), acetolactate synthase (ALS) (e.g. chlorsulfuron, imazapyr) and dihydropteroate synthase (asulam) for Orobanche control in experimental conditions with various crops. Large-scale use of imazapyr as a seed dressing of imidazolinone-resistant maize has been commercialised for Striga control. Crops with two target-site resistances will be more resilient to the evolution of resistance in the parasite, if well managed.

  8. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  9. Effects of seed mixture sowing with resistant and susceptible rice on population dynamics of target planthoppers and non-target stemborers and leaffolders.

    Science.gov (United States)

    Li, Zhuo; Wan, Guijun; Wang, Long; Parajulee, Megha N; Zhao, Zihua; Chen, Fajun

    2018-07-01

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impact on both target and non-target pests worldwide. In this study, we examined the potential effects of six seed mixture ratios of insect-resistance dominance [100% (R100), 95% (S05R95), 90% (S10R90), 80% (S20R80), 60% (S40R60), and 0% (S100)] on target and non-target pests in a 2-year field trial in southern China. The occurrence of the target pests Nilaparvata lugens and Sogatella furcifera decreased with an increase in the ratio of resistant rice, and mixture ratios with ≥90% resistant rice significantly increased the pest suppression efficiency, with the lowest occurrences of the non-target pests Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis for S100 and S10R90 seed mixture ratios. Furthermore, there were no significant differences in the 1000-grain dry weight and grain yield between R100 and other treatments with ≥80% resistant seeds in the mixture (S20R80, S10R90 and S05R95). S10R90 produced a good yield and provided the most effective control of both target and non-target pests, with the potential to significantly reduce the application of chemical pesticides for integrated pest management in paddy fields. It is further presumed that the strategy of seed mixture with resistant and susceptible rice would be advantageous for rice yield stability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Resistance risk assessment within herbicide authorisation--a call for sensitivity data.

    Science.gov (United States)

    Ulber, Lena; Nordmeyer, Henning; Zwerger, Peter

    2013-02-01

    In most European countries, the risk of herbicide resistance is assessed as part of the authorisation of herbicides in accordance with EPPO Standard PP 1/213(2). Because the susceptibility of weed populations to a certain herbicide may vary greatly, one part of resistance risk assessment is the testing for sensitivity variation among different populations of target weed species with a high resistance risk. This paper emphasises the importance of sensitivity data provision with regard to the recent EU Regulation (EC) 1107/2009 concerning the placing of plant protection products on the market and outlines the main technical requirements for sensitivity data. A useful principle is that sensitivity data should be provided for all herbicides with a high resistance risk regardless of whether resistance has already evolved against the herbicidal substance. Methodical details regarding the generation of sensitivity data are discussed, together with remaining questions that will need to be addressed if a harmonised assessment of herbicide resistance risk is to be achieved. Copyright © 2012 Society of Chemical Industry.

  11. In-field frequencies and characteristics of oilseed rape with double herbicide resistance.

    Science.gov (United States)

    Dietz-Pfeilstetter, Antje; Zwerger, Peter

    2009-01-01

    When growing different transgenic herbicide-resistant oilseed rape cultivars side by side, seeds with multiple herbicide resistance can arise, possibly causing problems for the management of volunteer plants. Large-scale field experiments were performed in the years 1999/2000 and 2000/2001 in order to investigate the frequencies and the consequences of the transfer of herbicide resistance genes from transgenic oilseed rape to cultivars grown on neighboring agricultural fields. Transgenic oilseed rape with resistance to glufosinate-ammonium (LibertyLink, LL) and with glyphosate resistance (RoundupReady, RR), respectively, was sown in adjacent 0.5 ha plots, surrounded by about 8 ha non-transgenic oilseed rape. The plots and the field were either in direct contact (0.5 m gap width) or they were separated by 10 m of fallow land. Seed samples taken during harvest in the transgenic plots at different distances were investigated for progeny with resistance to the respective other herbicide. It was found that outcrossing frequencies were reduced to different extents by a 10 m isolation distance. In addition to pollen-mediated transgene flow as a result of outcrossing, we found considerable seed-mediated gene flow by adventitious dispersal of transgenic seeds through the harvesting machine. Volunteer plants with double herbicide resistance emerging in the transgenic plots after harvest were selected by suitable applications of the complementary herbicides Basta and Roundup Ultra. In both years, double-resistant volunteers were largely restricted to the inner edges of the plots. Expression analysis under controlled laboratory conditions of double-resistant plants generated by manual crosses revealed stability of transgene expression even at elevated temperatures. Greenhouse tests with double-resistant oilseed rape plants gave no indication that the sensitivity to a range of different herbicides is changed as compared to non-transgenic oilseed rape.

  12. Development of herbicide resistance in black-grass (Alopecurus myosuroides in Bavaria

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2016-02-01

    Full Text Available Black-grass (Alopecurus myosuroides is one of the most important grass weeds in Bavaria. Chemical weed control with high efficacy is very important in crops like winter cereals, oilseed rape and maize. Crop rotations with more winter cereals, reduced soil cultivation and e.g. contract harvesting enhanced distribution of blackgrass in arable farming regions. Effects of herbicide resistance were observed since the last 20 years. The blackgrass herbicide resistance is well observed by the official plant protection service of Bavaria. A wide experience of resistance tests shows the development of resistant black-grass and provides an opportunity for future prospects in resistance dynamics.

  13. iMAR: An Interactive Web-Based Application for Mapping Herbicide Resistant Weeds.

    Directory of Open Access Journals (Sweden)

    Silvia Panozzo

    Full Text Available Herbicides are the major weed control tool in most cropping systems worldwide. However, the high reliance on herbicides has led to environmental issues as well as to the evolution of herbicide-resistant biotypes. Resistance is a major concern in modern agriculture and early detection of resistant biotypes is therefore crucial for its management and prevention. In this context, a timely update of resistance biotypes distribution is fundamental to devise and implement efficient resistance management strategies. Here we present an innovative web-based application called iMAR (interactive MApping of Resistance for the mapping of herbicide resistant biotypes. It is based on open source software tools and translates into maps the data reported in the GIRE (Italian herbicide resistance working group database of herbicide resistance at national level. iMAR allows an automatic, easy and cost-effective updating of the maps a nd provides two different systems, "static" and "dynamic". In the first one, the user choices are guided by a hierarchical tree menu, whereas the latter is more flexible and includes a multiple choice criteria (type of resistance, weed species, region, cropping systems that permits customized maps to be created. The generated information can be useful to various stakeholders who are involved in weed resistance management: farmers, advisors, national and local decision makers as well as the agrochemical industry. iMAR is freely available, and the system has the potential to handle large datasets and to be used for other purposes with geographical implications, such as the mapping of invasive plants or pests.

  14. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  15. Is hormesis an underestimated factor in the development of herbicide resistance?

    Directory of Open Access Journals (Sweden)

    Belz, Regina G.

    2014-02-01

    Full Text Available The growing impact of herbicide resistant weeds increasingly affects weed management and the delay of resistance evolution has become a major task of chemical weed control. Hormesis and, thus, the phenomenon that low doses of herbicides can boost weed growth could be of importance in this regard since the recommended field rate may represent a low dose for weeds that have evolved resistance to the applied herbicide and, thus, a potential hormetic dose. Applying the field rate may thus not only directly select resistant biotypes, it may also indirectly promote the success and spread of resistant biotypes via hormesis. Nevertheless, hormetic effects in resistant weeds are hitherto merely randomly observed and, thus, a clear quantitative basis to judge the significance of hormesis for resistance evolution is lacking. Therefore, this study aimed at quantifying the degree and frequency of herbicide hormesis in sensitive and resistant weed species in order to provide a first indication of whether the phenomenon deserves consideration as a potential factor contributing to the development of herbicide resistance. In germination assays complete dose-response experiments were conducted with sensitive and resistant biotypes of Matricaria inodora (ALS-target-site resistant; treated with iodosulfuron-methyl-sodium/mesosulfuron-methyl, Eleusine indica (glyphosateresistant; treated with glyphosate, and Chenopodium album (triazine/triazinone-target-site resistant; treated with terbuthylazine. After 10 days of cultivation under controlled conditions plant growth was analyzed by measuring shoot/root length and mass. Results indicated that herbicide hormesis occurred on average with a total frequency of 29% in sensitive/resistant biotypes with an average growth increase of 53% occurring typically within a dose zone exceeding 350fold. Hormetic effects occurred, however, very variable and only for specific endpoints and not plant growth in general. If such a

  16. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L.

    Science.gov (United States)

    Boutsalis, P; Powles, S B

    1995-07-01

    A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 1∶2∶1 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.

  17. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs 1

    Science.gov (United States)

    Vaughn, Kevin C.; Marks, M. David; Weeks, Donald P.

    1987-01-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:16665371

  18. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs.

    Science.gov (United States)

    Vaughn, K C; Marks, M D; Weeks, D P

    1987-04-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative.

  19. Epigenetic regulation – contribution to herbicide resistance in weeds?

    Czech Academy of Sciences Publication Activity Database

    Markus, C.; Pečinka, Aleš; Karan, R.; Barney, J. N.; Merotto, A.

    2018-01-01

    Roč. 74, č. 2 (2018), s. 275-281 ISSN 1526-498X Institutional support: RVO:61389030 Keywords : DNA methylation * epigenetic s * gene expression * gene regulation * herbicide detoxification * plant stress response Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.253, year: 2016

  20. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  1. Plant breeding by using radiation mutation - Selection of herbicide-resistant cell lines by using {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Yeon [Sunchun University, Sunchun (Korea); Seo, Yong Weon [Korea University, Seoul (Korea)

    2000-04-01

    In order to develop the herbicide resistant cell lines, micro calli derived from rice anther culture and mature seed of wheat cultivars were irradiated with gamma rays. 1) The callus was dedifferentiated by 7 or 21 day pretreatment at 7 deg. C in two rice cultivars, Ilpumbyeo ad Dongjinbyeo. 2) To check the optimum concentration of herbicide, three herbicides were tested with micro calli. 3) The optimum dose of gamma ray to seeds of wheat seemed to be from 100 to 150 Gy. 4) AFLP and RAPD technique were established to develope herbicide resistant molecular marker in rice. 34 refs., 10 figs., 5 tabs. (Author)

  2. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico.

    Science.gov (United States)

    Dominguez-Valenzuela, Jose Alfredo; Gherekhloo, Javid; Fernández-Moreno, Pablo Tomás; Cruz-Hipolito, Hugo Enrique; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; De Prado, Rafael

    2017-06-01

    Following the introduction of glyphosate-resistant (GR)-cotton crops in Mexico, farmers have relied upon glyphosate as being the only herbicide for in-season weed control. Continuous use of glyphosate within the same year and over multiple successive years has resulted in the selection of glyphosate resistance in Palmer amaranth (Amarantus palmeri). Dose-response assays confirmed resistance in seven different accessions. The resistance ratio based on GR 50 values (50% growth reduction) varied between 12 and 83. At 1000 μM glyphosate, shikimic acid accumulation in the S-accession was 30- to 2-fold higher at compared to R-accessions. At 96 h after treatment, 35-44% and 61% of applied 14 C-glyphosate was taken up by leaves of plants from R- and S-accessions, respectively. At this time, a significantly higher proportion of the glyphosate absorbed remained in the treated leaf of R-plants (55-69%) compared to S-plants (36%). Glyphosate metabolism was low and did not differ between resistant and susceptible plants. Glyphosate was differentially metabolized to AMPA and glyoxylate in plants of R- and S-accessions, although it was low in both accessions (glyphosate collected from GR-cotton crops from Mexico. This is the first study demonstrating glyphosate-resistance in Palmer amaranth from Mexico. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Powles, Stephen B

    2016-09-01

    Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Investigating Resistance of Wild Mustard (Sinapis arvensis L. ‎Populations to Tribenuron-Methyl Herbicide

    Directory of Open Access Journals (Sweden)

    ‎ Mehdi Afshari

    2017-05-01

    Full Text Available Tribenuron-methyl is commonly used for post emergence control of broad leaf weeds in wheat fields. In order to survey suspicious resistant weeds in wheat fields to this herbicide thirty-eight fields of Kermanshah province were investigated during 2012- 2013. Seeds of suspected resistance of wild mustard were gathered and tested in a randomized complete blocks design experiment with three replications. First, for early detection of herbicide resistance, the suspected population was screened using discriminating dose of tribenuron-methyl. Determining of the resistance degree was conducted by whole plant bioassay tests using dose-response curves. The resistance mechanisms were assayed by molecular methods, especially using the ALS gene cloning by PJET1.2/blunt Vector. For susceptible populations, the concentration required for complete control was 10.4 g ai ha-1 tribenuron-methyl. Also, in screening tests 50% of populations as resistant populations were identified. According to the Beckie and Tardif, it was found that 57.8% of these population did have a very high degree of resistance, 31.5% with high resistance and 10/5% with low resistance degree. GR50 of the resistant weeds was also increased as compared to sensitive weed, which indicates resistance in this province, Thus to control the resistant populations Z15, this amount increased to 1309 g ai ha-1.The results of DNA sequencing showed that mutation by replacing proline amino acid at position Ala122 causes resistance based on target-site mutation.

  5. Multiple mechanisms increase levels of resistance in Rapistrum rugosum to ALS herbicides

    Directory of Open Access Journals (Sweden)

    Zhara M Hatami

    2016-02-01

    Full Text Available Rapistrum rugosum (turnip weed is a common weed of wheat fields in Iran, which is most often controlled by tribenuron-methyl (TM, a sulfonylurea (SU belonging to the acetolactate synthase (ALS inhibiting herbicides group. Several cases of unexplained control failure of R. rugosum by TM have been seen, especially in Golestan province-Iran. Hence, there is lack of research in evaluation of the level of resistance of the R. rugosum populations to TM, using whole plant dose–response and enzyme assays, then investigating some potential resistance mechanisms Results revealed that the resistance factor (RF for resistant (R populations was 2.5 to 6.6 fold higher than susceptible (S plant. Neither foliar retention, nor 14C-TM absorption and translocation were the mechanisms responsible for resistance in turnip weed. Metabolism of TM was the second resistant mechanism in two populations (Ag-R5 and G-1, in which three metabolites were found. The concentration of TM for 50% inhibition of ALS enzyme activity in vitro showed a high level of resistance to the herbicide (resistance factors were from 28 to 38 and cross-resistance to sulfonyl-aminocarbonyl-triazolinone (SCT, pyrimidinyl-thiobenzoate (PTB and triazolopyrimidine (TP, with no cross-resistance to imidazolinone (IMI. Substitution Pro 197 to Ser 197 provided resistance to four of five ALS-inhibiting herbicides including SU, TP, PTB and SCT with no resistance to IMI. These results documented the first case of R. rugosum resistant population worldwide and demonstrated that both RST and NRST mechanisms are involved to the resistance level to TM.

  6. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing

    Directory of Open Access Journals (Sweden)

    Mir A. Iquebal

    2017-06-01

    the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance.Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.

  7. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    Science.gov (United States)

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  9. Tubulin-isotype analysis of two grass species-resistant to dinitroaniline herbicides.

    Science.gov (United States)

    Waldin, T R; Ellis, J R; Hussey, P J

    1992-09-01

    Trifluralin-resistant biotypes of Eleusine indica (L.) Gaertn. (goosegrass) and Setaria viridis (L.) Beauv. (green foxtail) exhibit cross-resistance to other dinitroaniline herbicides. Since microtubules are considered the primary target site for dinitroaniline herbicides we investigated whether the differential sensitivity of resistant and susceptible biotypes of these species results from modified tubulin polypeptides. One-dimensional and two-dimensional polyacrylamide gel electrophoresis combined with immunoblotting using well-characterised anti-tubulin monoclonal antibodies were used to display the family of tubulin isotypes in each species. Seedlings of E. indica exhibited four β-tubulin isotypes and one α-tubulin isotype, whereas those of S. viridis exhibited two β-tubulin and two α-tubulin isotypes. Comparison of the susceptible and resistant biotypes within each species revealed no differences in electrophoretic properties of the multiple tubulin isotypes. These results provide no evidence that resistance to dinitroaniline herbicides is associated with a modified tubulin polypeptide in these biotypes of E. indica or S. viridis.

  10. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    Science.gov (United States)

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  11. MAINTAINING LONG-TERM MANAGEMENT: Herbicide-resistant weeds challenge some signature cropping systems

    Directory of Open Access Journals (Sweden)

    Bradley D. Hanson

    2014-10-01

    Full Text Available Invasive and endemic weeds pose recurring challenges for California land managers. The evolution of herbicide resistance in several species has imposed new challenges in some cropping systems, and these issues are being addressed by UC Cooperative Extension farm advisors, specialists and faculty. There are currently 24 unique herbicide-resistant weed biotypes in the state, dominated by grasses and sedges in flooded rice systems and, more recently, glyphosate-resistant broadleaf and grass weeds in tree and vine systems, roadsides and glyphosate-tolerant field crops. Weed scientists address these complex issues using approaches ranging from basic physiology and genetics research to applied research and extension efforts in grower fields throughout the state. Although solutions to herbicide resistance are not simple and are affected by many biological, economic, regulatory and social factors, California stakeholders need information, training and solutions to address new weed management problems as they arise. Coordinated efforts conducted under the Endemic and Invasive Pests and Disease Strategic Initiative directly address weed management challenges in California's agricultural industries.

  12. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  13. Pleiotropic effects of herbicide-resistance genes on crop yield: a review.

    Science.gov (United States)

    Darmency, Henri

    2013-08-01

    The rapid adoption of genetically engineered herbicide-resistant crop varieties (HRCVs)-encompassing 83% of all GM crops and nearly 8% of the worldwide arable area-is due to technical efficiency and higher returns. Other herbicide-resistant varieties obtained from genetic resources and mutagenesis have also been successfully released. Although the benefit for weed control is the main criteria for choosing HRCVs, the pleiotropic costs of genes endowing resistance have rarely been investigated in crops. Here the available data of comparisons between isogenic resistant and susceptible varieties are reviewed. Pleiotropic harmful effects on yield are reported in half of the cases, mostly with resistance mechanisms that originate from genetic resources and mutagenesis (atrazine in oilseed rape and millet, trifluralin in millet, imazamox in cotton) rather than genetic engineering (chlorsulfuron and glufosinate in some oilseed rape varieties, glyphosate in soybean). No effect was found for sethoxydim and bromoxynil resistance. Variable minor effects were found for imazamox, chlorsulfuron, glufosinate and glyphosate resistance. The importance of the breeding plan and the genetic background on the emergence of these effects is pointed out. Breeders' efforts to produce better varieties could compensate for the yield loss, which eliminates any possibility of formulating generic conclusions on pleiotropic effects that can be applied to all resistant crops. © 2013 Society of Chemical Industry.

  14. Distribution of Multipple Herbicide Resistant Eleusine Indica L. Gaertn. an Oil Palm Estate in North Sumatera

    OpenAIRE

    syahputra, ahmad bayu; Purba, Edison Purba; Hasanah, Yaya Hasanah

    2016-01-01

    Goosegrass (Eleusine indica) in a block of oil palm Estate at Serdang Bedagai, North Sumatera had been controlled using glyphosate and paraquat for more than 26 years continuously. Recently, it had been reported that the two herbicides failed to control the population. The estate consists of 4000 Ha or 437 blocks which had slightly different history in weed management. The objective of this study was to determine the distribution Eleusine indica Resistant to glyphosate and paraquat in the oil...

  15. Primisulfuron herbicide-resistant tobacco plants: mutant selection in vitro by adventitious shoot formation from cultured leaf discs

    International Nuclear Information System (INIS)

    Harms, C.T.; DiMaio, J.J.; Jayne, S.M.; Middlesteadt, L.A.; Negrotto, D.V.; Thompson-Taylor, H.; Montoya, A.L.

    1991-01-01

    A simple procedure has been developed for the rapid and direct selection of herbicide-resistant mutant plants. The procedure uses adventitious shoot formation from suitable explants, such as leaf discs, on a shoot-inducing culture medium containing a toxic herbicide concentration. Resistant green shoots were thus isolated from tobacco (Nicotiana tabacum L.) leaf explants cultured on medium containing 100 μg 1−1 primisulfuron, a new sulfonylurea herbicide. Resistant shoots were recovered from both haploid and diploid explants after UV mutagenesis, as well as without mutagenic treatment. Three mutant plants of separate origin were further analyzed biochemically and genetically. Their acetohydroxyacid synthase (AHAS) enzyme activity was less inhibited by sulfonylurea herbicides than that of unselected, sensitive wild type plants. The extent of inhibition of the AHAS enzyme among the three mutants was different for different sulfonylurea and imidazolinone herbicides suggesting different sites were affected by each mutation. Herbicide tolerance was scored for germinating seedling populations and was found to be inherited as a single dominant nuclear gene. Adventitious shoot formation from cultured leaf discs was used to determine the cross tolerance of mutant plants to various herbicidal AHAS inhibitors. The usefulness of this rapid and direct scheme for mutant selection based on adventitious shoot formation or embryogenesis is discussed. (author)

  16. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  17. Inheritance of resistance to anti-microtubule dinitroaniline herbicides in an "intermediate" resistant biotype of Eleusine indica (Poaceae).

    Science.gov (United States)

    Zeng, L; Baird, W V

    1999-07-01

    Inheritance of resistance to the anti-microtubule dinitroaniline herbicides was investigated in a goosegrass biotype displaying an intermediate level of resistance (I). Reciprocal crosses were made between the I biotype and previously characterized susceptible (S) or resistant (R) biotypes. Eight F(1) hybrids were identified, and F(2) populations were produced by selfing. The dinitroaniline-herbicide response phenotype (DRP) of F(1) plants, and F(2) seedlings was determined using a root-growth bioassay. The DRP of F(1) plants of S × I was "susceptible" (i.e., identical to the S parental plants), and the DRP of F(1) plants of I × R was "intermediate" (i.e., identical to the I parental plants). Nonparental phenotypes were not observed in F(1) plants. Results indicated susceptibility to be dominant over intermediate resistance and intermediate resistance to be dominant over high resistance. Analysis of reciprocal crosses ruled out any role for cytoplasmic inheritance. When treated at the discriminating concentration (e.g., 0.28 ppm oryzalin), F(2) seedlings of S × I were classified as either S or I phenotype, and F(2) seedlings of I × R were classified as either I or R phenotype. Again, nonparental phenotypes were not observed. The 3:1 (S:I or I:R) segregation ratios in F(2) seedlings were consistent across all eight F(2) families. The results show that dinitroaniline herbicide resistance in the I biotype of goosegrass is inherited as a single, nuclear gene. Furthermore, it suggests that dinitroaniline resistance in goosegrass is controlled by three alleles at a single locus (i.e., Drp-S, Drp-i, and Drp-r).

  18. Will the Amaranthus tuberculatus Resistance Mechanism to PPO-Inhibiting Herbicides Evolve in Other Amaranthus Species?

    Directory of Open Access Journals (Sweden)

    Chance W. Riggins

    2012-01-01

    Full Text Available Resistance to herbicides that inhibit protoporphyrinogen oxidase (PPO has been slow to evolve and, to date, is confirmed for only four weed species. Two of these species are members of the genus Amaranthus L. Previous research has demonstrated that PPO-inhibitor resistance in A. tuberculatus (Moq. Sauer, the first weed to have evolved this type of resistance, involves a unique codon deletion in the PPX2 gene. Our hypothesis is that A. tuberculatus may have been predisposed to evolving this resistance mechanism due to the presence of a repetitive motif at the mutation site and that lack of this motif in other amaranth species is why PPO-inhibitor resistance has not become more common despite strong herbicide selection pressure. Here we investigate inter- and intraspecific variability of the PPX2 gene—specifically exon 9, which includes the mutation site—in ten amaranth species via sequencing and a PCR-RFLP assay. Few polymorphisms were observed in this region of the gene, and intraspecific variation was observed only in A. quitensis. However, sequencing revealed two distinct repeat patterns encompassing the mutation site. Most notably, A. palmeri S. Watson possesses the same repetitive motif found in A. tuberculatus. We thus predict that A. palmeri will evolve resistance to PPO inhibitors via the same PPX2 codon deletion that evolved in A. tuberculatus.

  19. Recovery of herbicide-resistant Azuki bean [ Vigna angularis (Wild ...

    African Journals Online (AJOL)

    ... of the bar gene as determined by assaying for resistance to bialaphos applied directly to leaves. This result demonstrates the feasibility of introducing potentially useful agronomic traits into azuki bean through genetic engineering. Key Words: Agrobacterium tumefaciens, bar gene, bialaphos, transgenic, Vigna angulazris.

  20. Mutants with increased resistance to herbicide in Guinea corn Sorghum bicolor (L.) Moench

    International Nuclear Information System (INIS)

    Odeigah, P.G.C.; Adewoyin, A.F.; Obatayo, O.O.

    1990-01-01

    Sorghum is an important staple food in many tropical countries. In Nigeria, it is extensively cultivated for food and, in recent times, as raw material for the brewing, baking and starch-making industries. We have investigated the possibilities of breeding crop cultivars of Sorghum with improved seed protein, amylase activities and resistance to herbicide by means of induced mutation. Seeds were treated by soaking them in an aqueous solution of ethyl methane sulphonate (EMS) 8 or 64 mM at room temperature 3, 6, 9, 12, 15 or 24 hours. After the treatment, the seeds were briefly rinsed in water and transferred to petri dishes containing moist filter paper for germination. The seedlings were later transplanted to loamy sand soil in plastic trays. M, seedlings were grown to maturity in the greenhouse. The M 1 contained plants with variegated leaves and other morphological abnormalities. Only the progenies of normal plants were grown for further generations. Resistance to Igran 500 E.G. (2-tert-butylamino-4-ethylamino-6-methylthio-striazine; from Ciba Geigy) was tested in M 2 seedlings by mixing 1 part per 100 (by volume) of the herbicide with the soil a day before sowing the seeds. Preliminary screening of 2,500 M 2 plants revealed a number of morphological and leaf colour mutations. 50 seedlings were more resistant to the herbicide but no seedling resistance was observed in the parent cultivar. There was a 23.43% reduction in seedling weight of the M 2 lines grown in soil treated with Igran 500, whereas the reduction in seedling weight of the original cultivar was 42.46%. The resistant M 2 seedlings had longer and better roots

  1. Approaches to early detection of herbicide resistance in Apera spica-venti regarding intra- and inter-field situations

    DEFF Research Database (Denmark)

    Schulz, Andrea; Mathiassen, Solvejg K; de Mol, Friederike

    2014-01-01

    at answering the questions: (1) Can the intra-field distribution of an Apera spica-venti population be used to indicate the first steps in the evolution of resistance? Is the selection of field populations based on casual observations of farmers an approach to get a reasonable overview on the resistance status...... differences in the susceptibility of samples collected within the same field. Herbicide efficacy was not plant density-dependent, but it was related to spatial plant distribution depending on the processing direction in the field. The inter-field situation survey confirmed resistance to at least one herbicide......, resistance was only confirmed in 56% of the fields in which farmers suspected resistance indicating that poor herbicide performance can be caused by other reasons as for example poor environmental conditions....

  2. Double mutation in eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides

    Science.gov (United States)

    Anthony; Hussey

    1999-06-01

    The repeated use of dinitroaniline herbicides on the cotton and soybean fields of the southern United States has resulted in the appearance of resistant biotypes of one of the world's worst weeds, Eleusine indica. Two biotypes have been characterized, a highly resistant (R) biotype and an intermediate resistant (I) biotype. In both cases the resistance has been attributed to a mutation in alpha-tubulin, a component of the alpha/beta tubulin dimer that is the major constituent of microtubules. We show here that the I-biotype mutation, like the R-biotype mutation shown in earlier work, can confer dinitroaniline resistance on transgenic maize calli. The level of resistance obtained is the same as that for E. indica I- or R-biotype seedlings. The combined I- and R-biotype mutations increase the herbicide tolerance of transgenic maize calli by a value close to the summation of the maximum herbicide tolerances of calli harbouring the single mutations. These data, taken together with the position of the two different mutations within the atomic structure of the alpha/beta tubulin dimer, imply that each mutation is likely to exert its effect by a different mechanism. These mechanisms may involve increasing the stability of microtubules against the depolymerizing effects of the herbicide or changing the conformation of the alpha/beta dimer so that herbicide binding is less effective, or a combination of both possibilities.

  3. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  4. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum.

    Directory of Open Access Journals (Sweden)

    Iñigo Loureiro

    Full Text Available The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum. A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction. Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.

  5. Production of herbicide-resistant coffee plants (Coffea canephora P.) via Agrobacterium tumefaciens-mediated transformation

    OpenAIRE

    Ribas, Alessandra Ferreira; Kobayashi, Adilson Kenji; Pereira, Luiz Filipe Protasio; Vieira, Luiz Gonzaga Esteves

    2006-01-01

    Transgenic plants of Coffea canephora P. resistant to the herbicide ammonium glufosinate were regenerated from leaf explants after co-culture with Agrobacterium tumefaciens strain EHA105 harboring pCambia3301, a plasmid that contains the bar and the uidA genes both under control of 35S promoter. Direct somatic embryogenesis was induced on basal medium contained ¼ strength macro salts and half strength micro salts of MS medium, organic constituents of B5 medium and 30 g.L-1 sucrose supp...

  6. Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean.

    Science.gov (United States)

    Ghio, Cecilia; Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-12-01

    The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level. Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1-4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.

  7. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  8. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  9. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt; Narasimhan, Meena L.; Merzaban, Jasmeen; Bressan, Ray A.; Weller, Steve; Gehring, Christoph A

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  10. Resurrection of glyphosate resistant palmer amaranth control in conservation tillage dicamba tolerant cotton; soil health salvation using herbicide technology

    Science.gov (United States)

    Conservation agriculture hecterage in the mid-south and southeastern US has decreased because of herbicide resistant and other hard to control weeds. Producers have increasingly utilized tillage, the majority either using a moldboard plow to deeply bury weed seed and decrease emergence, or ‘vertica...

  11. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    Science.gov (United States)

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and

  12. Development of antibiotic marker-free creeping bentgrass resistance against herbicides.

    Science.gov (United States)

    Lee, Ki-Won; Kim, Ki-Yong; Kim, Kyung-Hee; Lee, Byung-Hyun; Kim, Jin-Seog; Lee, Sang-Hoon

    2011-01-01

    Herbicide-resistant creeping bentgrass plants (Agrostis stolonifera L.) without antibiotic-resistant markers were produced by Agrobacterium-mediated transformation. Embryogenic callus tissues were infected with Agrobacterium tumefaciens EHA105, harboring the bar and the CP4-EPSPS genes for bialaphos and glyphosate resistance. Phosphinothricin-resistant calli and plants were selected. Soil-grown plants were obtained at 14-16 weeks after transformation. Genetic transformation of the selected, regenerated plants was validated by PCR. Southern blot analysis revealed that at least one copy of the transgene was integrated into the genome of the transgenic plants. Transgene expression was confirmed by Northern blot. CP4-EPSPS protein was detected by ELISA. Transgenic plants remained green and healthy when sprayed with Basta, containing 0.5% glufosinate ammonium or glyphosate. The optimized Agrobacterium-mediated transformation method resulted in an average of 9.4% transgenic plants. The results of the present study suggest that the optimized marker-free technique could be used as an effective and reliable method for routine transformation, which may facilitate the development of varieties of new antibiotic-free grass species.

  13. A new approach for weed control in a cucurbit field employing an attenuated potyvirus-vector for herbicide resistance.

    Science.gov (United States)

    Shiboleth, Y M; Arazi, T; Wang, Y; Gal-On, A

    2001-12-14

    Expression of bar, a phosphinothricin acetyltransferase, in plant tissues, leads to resistance of these plants to glufosinate ammonium based herbicides. We have created a bar expressing, attenuated zucchini yellow mosaic potyvirus-vector, AGII-Bar, to enable herbicide use in cucurbit fields. The parental vector, ZYMV-AGII, has been rendered environmentally safe by both disease-symptom attenuation and aphid-assisted virus transmission abolishment. The recombinant AGII-Bar virus-encoding cDNA, when inoculated on diverse cucurbits was highly infectious, accumulated to similar levels as AGII, and elicited attenuated AGII-like symptoms. Potted cucurbits inoculated with AGII-Bar became herbicide resistant about a week post-inoculation. Herbicide resistance was sustained in squash over a period of at least 26 days and for at least 60 days in cucumber grown in a net-house under commercial conditions. To test the applicability of AGII-Bar use in a weed-infested field, a controlled experiment including more than 450 plants inoculated with this construct, was performed. Different dosages of glufosinate ammonium were sprayed, 2 weeks after planting, on the foliage of melons, cucumbers, squash, and watermelons. AGII-Bar provided protection to all inoculated plants, of every variety tested, at each dosage applied, including the highest doses that totally eradicated weeds. This study demonstrates that AGII-Bar can be utilized to facilitate weed control in cucurbits and exemplifies the practical potential of attenuated virus-vector use in agriculture.

  14. Non-specific activities of the major herbicide-resistance gene BAR.

    Science.gov (United States)

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  15. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Generation of Resistance to the Diphenyl Ether Herbicide, Oxyfluorfen, via Expression of the Bacillus subtilis Protoporphyrinogen Oxidase Gene in Transgenic Tobacco Plants.

    Science.gov (United States)

    Choi, K W; Han, O; Lee, H J; Yun, Y C; Moon, Y H; Kim, M; Kuk, Y I; Han, S U; Guh, J O

    1998-01-01

    In an effort to develop transgenic plants resistant to diphenyl ether herbicides, we introduced the protoporphyrinogen oxidase (EC 1.3.3.4) gene of Bacillus subtilis into tobacco plants. The results from a Northern analysis and leaf disc assay indicate that the expression of the B. subtilis protoporphyrinogen oxidase gene under the cauliflower mosaic virus 35S promoter generated resistance to the diphenyl ether herbicide, oxyfluorfen, in transgenic tobacco plants.

  17. Controlling herbicide-susceptible, -tolerant and -resistant weeds with microbial bioherbicides

    Science.gov (United States)

    The management of weeds is a necessary but expensive challenge. Public concerns of health, safety, and sustainability have increased interest in reducing the use of synthetic chemicals for weed control. Alternatives to chemical herbicides, such as bioherbicides, may offer an alternative to herbicide...

  18. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species.

    Science.gov (United States)

    Fernández, Pablo; Alcántara, Ricardo; Osuna, María D; Vila-Aiub, Martin M; Prado, Rafael De

    2017-05-01

    In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD 50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR 50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Mechanism of isoproturon resistance in Phalaris minor: in silico design, synthesis and testing of some novel herbicides for regaining sensitivity.

    Science.gov (United States)

    Singh, Durg Vijay; Adeppa, Kuruba; Misra, Krishna

    2012-04-01

    Isoproturon, 3-p-cumenyl-1 dimethylurea was the only herbicide controlling Phalaris minor, a major weed growing in wheat fields till the early 1980s. Since it has acquired resistance against isoproturon, like other substituted urea herbicides, where the identified target site for isoproturon is in the photosynthetic apparatus at D1 protein of Photosystem-II (PS-II). Nucleotide sequence of susceptible and resistant psbA gene of P. minor has been reported to have four point mutations. During the present work D1 protein of both susceptible and resistant biotypes of P Minor has been modeled. Transmembrane segments of amino acids were predicted by comparing with the nearest homolog of bacterial D1 protein. Volume and area of active site of both susceptible and resistant biotypes has been simulated. Isoproturon was docked at the active site of both, susceptible and resistant D1 proteins. Modeling and simulation of resistance D1 protein indicates that the resistance is due to alteration in secondary structure near the binding site, resulting in loss in cavity area, volume and change in binding position, loss of hydrogen bonds, hydrophobic interaction and complete loss of hydrophobic sites. To regain sensitivity in resistant biotype new derivatives of isoproturon molecules have been proposed, synthesized and tested. Among the 17 derivatives we found that the N-methyl triazole substituted isoproturon is a potential substitute for isoproturon.

  20. Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942

    OpenAIRE

    Brusslan, Judy; Haselkorn, Robert

    1989-01-01

    The transformable cyanobacterium, Synechococcus sp. PCC7942, was used to study the genetics of resistance to the herbicide diuron. In wild-type cells, diuron binds to one of the core proteins, called D1, of photosystem II reaction centres. This binding prevents the transfer of electrons from QA, the primary quinone acceptor, to QB, which is necessary to create the charge separation that drives ATP synthesis. A single amino acid substitution in the D1 protein reduces diuron binding and confers...

  1. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: I. Soil-Inversion, High-Residue Cover Crops and Herbicide Regimes

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2012-11-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil-inversion, cover crops and herbicide regimes for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. The main plots were two soil-inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. The subplots were three cover crop treatments: crimson clover, cereal rye and winter fallow; and sub subplots were four herbicide regimes: preemergence (PRE alone, postemergence (POST alone, PRE + POST and a no herbicide check (None. The PRE herbicide regime consisted of a single application of pendimethalin at 0.84 kg ae ha−1 plus fomesafen at 0.28 kg ai ha−1. The POST herbicide regime consisted of a single application of glufosinate at 0.60 kg ai ha−1 plus S-metolachlor at 0.54 kg ai ha−1 and the PRE + POST regime combined the prior two components. At 2 weeks after planting (WAP cotton, Palmer amaranth densities, both BR and WR, were reduced ≥90% following all cover crop treatments in the IT. In the NIT, crimson clover reduced Palmer amaranth densities >65% and 50% compared to winter fallow and cereal rye covers, respectively. At 6 WAP, the PRE and PRE + POST herbicide regimes in both IT and NIT reduced BR and WR Palmer amaranth densities >96% over the three years. Additionally, the BR density was reduced ≥59% in no-herbicide (None following either cereal rye or crimson clover when compared to no-herbicide in the winter fallow. In IT, PRE, POST and PRE + POST herbicide regimes controlled Palmer amaranth >95% 6 WAP. In NIT, Palmer amaranth was controlled ≥79% in PRE and ≥95% in PRE + POST herbicide regimes over three years. POST herbicide regime following NIT was not very consistent. Averaged across three years, Palmer amaranth controlled ≥94% in PRE and PRE + POST herbicide regimes regardless of cover crop. Herbicide regime effect on cotton yield was highly significant; the maximum cotton yield was

  2. Production of herbicide-resistant coffee plants (Coffea canephora P. via Agrobacterium tumefaciens-mediated transformation

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Ribas

    2006-01-01

    Full Text Available Transgenic plants of Coffea canephora P. resistant to the herbicide ammonium glufosinate were regenerated from leaf explants after co-culture with Agrobacterium tumefaciens strain EHA105 harboring pCambia3301, a plasmid that contains the bar and the uidA genes both under control of 35S promoter. Direct somatic embryogenesis was induced on basal medium contained ¼ strength macro salts and half strength micro salts of MS medium, organic constituents of B5 medium and 30 g.L-1 sucrose supplemented with 5µM N6 - (2-isopentenyl-adenine (2-iP. Ten µM ammonium glufosinate was used for putative transgenic somatic embryos selection. Presence and integration of the bar gene were confirmed by PCR and Southern blot analysis. Selected transgenic coffee plants sprayed with up to 1600 mg.L-1 of FinaleTM, a herbicide containing glufosinate as the active ingredient, retained their pigmentation and continued to grow normally during ex vitro acclimation.Plantas transgênicas de Coffea canephora P resistentes ao herbicida glufosinato de amônio foram regeneradas a partir de explantes foliares co-cultivados com Agrobacterium tumefaciens EHA105 contendo o plasmídio pCambia3301 que contém os genes bar e uidA ambos sob controle do promotor 35S. Embriogênese somática direta foi induzida no meio contendo ¼ da concentração de macro, metade da concentração de micronutrientes do meio MS, constituintes orgânicos do meio B5 e 30 g.L-1 de sacarose suplementado com 5µM N6 - (2-isopentenil-adenina (2-iP e 10 µM de glufosinato de amônio para seleção de embriões transgênicos putativos. A presença e a integração do gene bar foram confirmados pelas análises de PCR e Southern blot. As plantas transgênicas selecionadas de café, pulverizadas com 1600 mg.L-1 do herbicida FinaleTM que contém glufosinato como ingrediente ativo, mantiveram a coloração e continuaram crescendo normalmente na aclimatação ex vitro.

  3. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  5. Overlapping Residual Herbicides for Control of Photosystem (PS) II- and 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibitor-Resistant Palmer amaranth (Amaranthus palmeri S. Watson) in Glyphosate-Resistant Maize

    Science.gov (United States)

    Chahal, Parminder S.; Ganie, Zahoor A.; Jhala, Amit J.

    2018-01-01

    A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12–15% control with PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE

  6. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal.

    Science.gov (United States)

    Latif, Ayesha; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Shahid, Naila; Bajwa, Kamran Shehzad; Ashraf, Muhammad Aleem; Abbas, Malik Adil; Azam, Muhammad; Shahid, Ahmad Ali; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-09-17

    Cotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study. Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control. The present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.

  7. Cofirmation of resistance in littleseed canarygrass (phalaris minor retz) to accase inhibitors in central punjab-pakistan and alternative herbicides for its management

    International Nuclear Information System (INIS)

    Abbas, T.; Burgos, N. R.; Nadeem, M. A.; Matloob, A.; Farooq, N.; Chauhan, B. S.

    2017-01-01

    Littleseed canarygrass (Phalaris minor) infests wheat and other winter crops in Pakistan and many other countries. Studies were conducted in Pakistan to confirm littleseed canarygrass resistance to fenoxaprop-P-ethyl and to appraise the efficacy of other postemergence herbicides against this grassy weed. A field survey was conducted to collect putative fenoxaprop-resistant seeds from various districts of the central Punjab in March 2015. Dose-response assays were conducted in the greenhouse to confirm resistance to fenoxaprop. The response of fenoxaprop-resistant littleseed canarygrass to diverse herbicide molecules like clodinafop-propargyl, metribuzin, pinoxaden, and sulfosulfuron was also evaluated in further dose-response bioassays. All accessions manifested variable resistance to fenoxaprop, which ranged from 2.52- to 6.00-fold. The resistant accessions also showed low-level cross-resistance (two-fold) to clodinafop. Metribuzin, pinoxaden, and sulfosulfuron were still effective in controlling fenoxaprop-resistant canarygrass. This is the first scientific documentation of resistance to ACCase inhibitor herbicides in central Punjab, Pakistan. The use of alternative herbicides in conjunction with other agronomic practices is crucial for sustainable wheat production in the country. (author)

  8. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    Science.gov (United States)

    Wach, Michael; Hellmich, Richard L; Layton, Raymond; Romeis, Jörg; Gadaleta, Patricia G

    2016-08-01

    Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.

  9. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    Science.gov (United States)

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  11. COMPETITIVE ABILITY OF WHEAT IN ASSOCIATION WITH BIOTYPES OF Raphanus raphanistrum L. RESISTANT AND SUSCEPTIBLE TO ALS-INHIBITOR HERBICIDES

    Directory of Open Access Journals (Sweden)

    Leandro Oliveira da Costa

    2015-04-01

    Full Text Available The occurrence of Raphanus raphanistrum ALS herbicide-resistant in wheat crops causes crop yield losses, which makes it necessary to understand the factors that influence the interference of this weed to develop safer management strategies. This study aimed to evaluate the competitive ability of wheat in coexistence with biotypes of R. raphanistrum that are resistant (R biotype and susceptible (S biotypes to ALS herbicides and to determine whether there are differences in the competitiveness of these biotypes. The experiments were conducted in a greenhouse using a completely randomized design with four replications. The treatments were placed in pots and arranged in replacement series for three experiments (1 - wheat with the R biotype; 2 - wheat with the S biotype; and 3 - the R biotype with the S biotype at the following ratios: 100:0, 75:25, 50:50, 25:75, and 0:100. The competitiveness was analyzed through diagrams applied to replacement experiments and competitiveness indices, including the evaluation of the shoot dry matter of the plants (experiments 1, 2, and 3 and the leaf area (experiment 3. The R and S biotypes significantly decreased the shoot dry matter of the wheat cultivar and demonstrated superior competitive ability compared with the culture. The interspecific competition was more important for the wheat and for the S biotype. The competitiveness of the R biotype compared to the S biotype was similar, with synergism in the leaf area production, which indicates the predominant intraspecific competition exhibited by the R biotype.

  12. Study on the Efficacy of Some Current Herbicides for Control of Resistant and Susceptible Canarygrass (Phalaris spp. Biotypes to Acetyl CoA Carboxylase (ACCase Inhibitors

    Directory of Open Access Journals (Sweden)

    e Zand

    2011-02-01

    Full Text Available Abstract Two separate greenhouse experiments were conducted in the greenhouse facilities of the Iranian Plant Protection Research Institute, Tehran, to study the efficacy of some herbicides to control of resistant and susceptible P. minor and P. paradoxa biotypes. In each experiment, resistant and susceptible biotypes were treated separately by 19 herbicide treatments. Treatments included 10 ACCase inhibitors, 6 Acetolactate Synthase (ALS inhibitors, prosulfocarb, flamprop-M-isopropyl, isoproturon plus diflufenican and a non-sprayed control. To evaluate the effects of treatments, different characteristics including percent damage based on EWRC scores at 15 and 30 days after spraying, percentage of survived plants after spraying relative to before spraying, and percentage of dry weight and wet weight of individual plants relative to control were studied. Results showed that the susceptible biotypes of P. minor were best controlled by clodinafop propargyl and pinoxaden at 450 ml/ha while pinoxaden at 450 ml/ha and cycloxydim were best options for control of the resistant biotype. Among ALS inhibitors, iodosulfuron plus mesosulfuron could control susceptible and resistant biotypes of P. minor very effectively and semi-satisfactory, respectively. Iodosulfuron plus mesosulfuron and sulfosulfuron plus metsulfuron could remarkably reduce the wet weight of individual plants compared to control so that the plants were not damaging any more. Among other herbicides, isoproturon plus diflufenican could control the susceptible and resistant biotypes semi-satisfactory and very effectively, respectively. Keywords: Herbicide resistance, ACCase inhibitors, ALS inhibitors

  13. Biodegradation of glyphosate herbicide in vitro using bacterial ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Full Length Research Paper ... Glyphosate is a compound used as herbicide in the control and/or killing of grasses and herbaceous plants. ... Because of its toxicity to non-target organisms, there is need to decontaminate.

  14. Resistence of Euphorbia Heterophylla L. to ALS-inhibiting herbicides in soybean Resistência de Euphorbia Heterophylla L. aos herbicidas inibidores da ALS na cultura da soja

    Directory of Open Access Journals (Sweden)

    Gerson Augusto Gelmini

    2005-10-01

    Full Text Available Herbicides are widely used in soybean for weed control, and the selection pressure attributed to the repeated use of herbicides with similar modes of action on the same site has caused selection for resistant biotypes within and among previously susceptible species, such as Euphorbia heterophylla L., in relation to ALS enzyme inhibitors, in the states of Paraná, Rio Grande do Sul, and São Paulo, Brazil. Seeds of E. heterophylla were collected to examine possible new cases of resistant populations and to test alternative herbicide treatments to manage these populations, in the Caarapó region, State of Mato Grosso do Sul, Brazil, in areas where plants of this species have survived continuous herbicide applications. The experiment was carried out under greenhouse conditions, where biotypes with a history of suspected resistance were compared with a known susceptible biotype. Several post-emergence herbicides were sprayed at zero, one, two, four, and eight times the recommended field application rates. Twenty days after application, plants were harvested, and control percentage and fresh weight were determined to establish dose-response curves, in the aim to obtain the resistance factor using CD50 and RD50 data. The chlorimuron-ethyl resistance factor values for the control percentage and fresh weight parameters were higher than 16.5 and 16.9, respectively, while imazethapyr showed resistance factors higher than 25.0 and 23.5, respectively. The resistant biotype showed different resistance levels to chlorimuron-ethyl and imazethapyr, showing cross-resistance to the sulfonylurea and imidazolinone groups. Nevertheless, this biotype was effectively controlled by fomesafen (250 g ha-1, lactofen (120 g ha-1, flumiclorac-pentyl (40 g ha-1, glufosinate-ammonium (150 g ha-1, and glyphosate (360 g ha-1.Os herbicidas constituem a principal medida de controle de plantas daninhas na cultura da soja, mas através da pressão de seleção, o uso contínuo e

  15. Natural compounds as next-generation herbicides.

    Science.gov (United States)

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation.

    Science.gov (United States)

    Deng, Wei; Yang, Qian; Zhang, Yongzhi; Jiao, Hongtao; Mei, Yu; Li, Xuefeng; Zheng, Mingqi

    2017-03-01

    Acetolactate synthase (ALS) is the common target of ALS-inhibiting herbicides, and target-site ALS mutations are the main mechanism of resistance to ALS-inhibiting herbicides. In this study, ALS1 and ALS2 genes with full lengths of 2004bp and 1998bp respectively were cloned in individual plants of susceptible (S) or resistant (R) flixweed (Descurainia sophia L.) populations. Two ALS mutations of Pro-197-Thr and/or Trp-574-Leu were identified in plants of three R biotypes (HB24, HB30 and HB42). In order to investigate the function of ALS isozymes in ALS-inhibiting herbicide resistance, pHB24 (a Pro-197-Thr mutation in ALS1 and a wild type ALS2), pHB42 (a Trp-574-Leu mutation in ALS1 and a wild type ALS2) and pHB30 (a Trp-574-Leu mutation in ALS1 and a Pro-197-Thr mutation in ALS2) subpopulations individually homozygous for different ALS mutations were generated. Individuals of pHB30 had mutations in each isozyme of ALS and had higher resistance than pHB24 and pHB42 populations containing mutations in only one ALS isozyme. Moreover, the pHB24 had resistance to SU, TP and SCT herbicides, whereas pHB24 and pHB42 had resistance to these classes of herbicides as well as IMI and PTB herbicides. The sensitivity of isolated ALS enzyme to inhibition by herbicides in these populations correlated with whole plant resistance levels. Therefore, reduced ALS sensitivity resulting from the mutations in ALS was responsible for resistance to ALS-inhibiting herbicides in flixweed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    OpenAIRE

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identi...

  18. Manejo da Planta Daninha Brachiaria plantaginea Resistente aos herbicidas Inibidores da ACCase Management of the Weed Brachiaria plantaginea Resistant to ACCase Inhibitor Herbicides

    Directory of Open Access Journals (Sweden)

    P.J. Christoffoleti

    2001-04-01

    study a population of alexandergrass (Brachiaria plantaginea resistant to ACCase inhibitor herbicides (ariloxyphenoxypropionic and cyclohexanodiones, usually sprayed on soybean under the conservation tillage system. Two experiments were conducted, one under field conditions, comparing the efficacy of non-selective herbicides to ACCase inhibitors, and another under greenhouse conditions, using ACCase inhibitors with nitrogenous additives in the spray solution. Resistant seeds were collected from a site of suspected resistant population, and compared to a population of alexandergrass that had never been sprayed with ACCase inhibitors, the susceptible population. The experiment with non-selective herbicides was conducted under field conditions, but plants were confined to pots of 50 L capacity, avoiding the dissemination of the seeds to adjacent areas. It was then concluded that resistant plants did not show multiple resistance to non selective herbicides with alternative mechanisms of action, with glyphosate, paraquat, paraquat + diuron, MSMA and glufosinate alternative herbicides being possible to be used to control the weed during the winter to manage populations of alexandergrass resistant to ACCase inhibitor herbicides. The additive experiment was conducted under greenhouse conditions in pots, using seeds from the same populations used in the non selective experiment. The herbicides tested were ACCase inhibitors, and the additive treatments were ammonium sulfate and urea. It was then concluded that the additives did not enhance ACCase inhibitor herbicide efficacy in neither of the alexandergrass populations.

  19. A study on compatibilities on transgenic herbicide-resistant rice with wild relatives by using autoradiography of 32P labeled pollen

    International Nuclear Information System (INIS)

    Liu Linli; Qiang Sheng; Song Xiaoling

    2004-01-01

    To evaluate the possibility of gene flow through observation of the sexual compatibilities of transgenic herbicide-resistant rice with wild relative by using isotope tracer to label pollen grains, the experiments on radioactivity, tracer mode, autoradiography film and time were conducted. Better procedure was to label pollen grains of transgenic herbicide-resistant rice by culturing the rice in a 1.48 x 10 7 Bq/L 32 P nutrient liquid, to pollinate the labelled pollen grains on the stigmas of barnyard grass (Echinochloa crusgalli var. mitis), Oryza officinalis and weedy rice (Oryza sativa) respectively, and then 3 hour later, to fix these pistils on a piece of glass plate and cover the film of Luck 400 on it for autoradiography. The autoradiographs show that the tube of the transgenic rice's pollens cannot penetrate the stigma of barnyard grass and arrive at embryo sacs to fertilize, so that the possibility of gene flow between them is the lowest; the tube of the labelled pollens can penetrate the stigma of O officinalis and enter the style but can not arrive at embryo sacs to fertilize, so the possibility of gene flow between them is relatively low; and the pollen tube can arrive at the embryo sacs of the weedy rice, so that the possibility of gene flow is relatively high from transgenic herbicide-resistant rice to weedy rice. (authors)

  20. Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow.

    Science.gov (United States)

    Karn, Elizabeth; Jasieniuk, Marie

    2017-07-01

    Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of glyphosate resistance in L. perenne in perennial cropping systems of northwest California and to inform management, we investigated the frequency of glyphosate resistance and the genetic diversity and structure of 14 populations. The sampled populations contained frequencies of resistant plants ranging from 10% to 89%. Analyses of neutral genetic variation using microsatellite markers indicated very high genetic diversity within all populations regardless of resistance frequency. Genetic variation was distributed predominantly among individuals within populations rather than among populations or sampled counties, as would be expected for a wide-ranging outcrossing weed species. Bayesian clustering analysis provided evidence of population structuring with extensive admixture between two genetic clusters or gene pools. High genetic diversity and admixture, and low differentiation between populations, strongly suggest the potential for spread of resistance through gene flow and the need for management that limits seed and pollen dispersal in L. perenne .

  1. The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice1[W][OPEN

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D.; Huang, Zhongyun; Hyma, Katie E.; Gealy, David R.; Caicedo, Ana L.

    2014-01-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. PMID:25122473

  2. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    Science.gov (United States)

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  3. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.

  4. NON-TARGET AND ECOSYSTEM IMPACTS FROM GENETICALLY MODIFIED CROPS CONTAINING PLANT INCORPORATED PROTECTANTS (PIPS)

    Science.gov (United States)

    The risk of unintended and unexpected adverse impacts on non-target organisms and ecosystems is a key issue in environmental risk assessment of PIP crop plants. While there has been considerable examination of the effects of insect resistant crops on certain non-target organisms...

  5. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  6. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside

    Science.gov (United States)

    Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2016-01-01

    ABSTRACT Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports. PMID:26838503

  7. Control of ALS resistant volunteer oil seed rape and other dicotyledonous weeds with GF-145, a new cereal herbicide product containing isoxaben and florasulam

    Directory of Open Access Journals (Sweden)

    Becker, Jörg

    2014-02-01

    Full Text Available GF-145 contains the active ingredients isoxaben (610 g ai/kg and florasulam (40 g ai/kg and is formulated as a Wettable Granule (WG. The active ingredients are found in commercial products such as Primus™2 (florasulam, Starane XL™ (fluroxypyr + florasulam, Ariane C™ (fluroxypyr + florasulam + clopyralid or Flexidor™ (isoxaben. While florasulam has been widely used in cereal crops in recent years, isoxaben offers a new mode of action (MOA for use in German cereal herbicides even when considering that Flexidor™ has had regulatory approval in 1988 to 1991. The MOA of isoxaben is inhibition of cellulose synthesis (HRAC class L, while florasulam inhibits Acetolactate Synthase (ALS and is a representative of the HRAC class B. It is known that florasulam works through uptake by green leaves. Isoxaben is a herbicide with soil activity and with a very low activity when foliar applied, except on some species in the cruciferae family. GF-145 is intended to be applied in the autumn in cereals (wheat, barley, rye, triticale for the control of ALS resistant volunteer oil seed rape and annual dicotyledonous weeds including Matricaria spp., Stellaria media, Papaver rhoeas, Capsella bursa-pastoris, Myosotis arvensis, Lamium spp., Galium aparine, Veronica spp. and others when applied at early post-emergence from BBCH 10 to 13 of the crop. The use rate in winter cereals is 95 g product/ha (58 g ai/ha isoxaben plus 3.75 g ai/ha florasulam. Field trials conducted in previous years confirmed excellent selectivity in all cereal crops and efficacy trials initiated in autumn 2012 show that GF-145 provides excellent and superior control to ALS resistant oil seed rape that was better than straight florasulam and other ALS active ingredients. GF-145 adds a new MOA to the cereal herbicide portfolio and controls volunteer oil seed rape, cruciferous weeds and broad-leaved weeds and is more robust than florasulam based products that do not contain isoxaben.

  8. Impact of transgene genome location on gene migration from herbicide-resistant wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host).

    Science.gov (United States)

    Rehman, Maqsood; Hansen, Jennifer L; Mallory-Smith, Carol A; Zemetra, Robert S

    2017-08-01

    Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. BC 1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC 1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC 1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  10. Biotechnology approaches to developing herbicide tolerance ...

    African Journals Online (AJOL)

    The use of herbicides has revolutionized weed control in many crop production systems. However, with the increasing development of weed resistances to many popular selective herbicides, the need has arisen to rethink the application of chemical weed control. Approaches to maintain the efficiency of chemical weed ...

  11. Discovery of new herbicide modes of action with natural phytotoxins

    Science.gov (United States)

    About 20 modes of action (MOAs) are utilized by commercial herbicides, and almost 30 years have passed since the last new MOA was introduced. Rapidly increasing evolution of resistance to herbicides with these MOAs has greatly increased the need for herbicides with new MOAs. Combinatorial chemistry ...

  12. Molecular investigations of the soil, rhizosphere and transgenic glufosinate-resistant rape and maize plants in combination with herbicide (Basta) application under field conditions.

    Science.gov (United States)

    Ernst, Dieter; Rosenbrock-Krestel, Hilkea; Kirchhof, Gudrun; Bieber, Evi; Giunaschwili, Nathela; Müller, Rüdiger; Fischbeck, Gerhard; Wagner, Tobias; Sandermann, Heinrich; Hartmann, Anton

    2008-01-01

    A field study was conducted during 1994 to 1998 on the Experimental Farm Roggenstein, near Fürstenfeldbruck, Bavaria, Germany to determine the effect of transgenic glufosinate-resistant rape in combination with the herbicide Basta [glufosinate-ammonium, phosphinothricin, ammonium (2RS)-2-amino-4-(methylphosphinato) butyric acid] application on soil microorganisms and the behaviour of the synthetic transgenic DNA in response to normal agricultural practice. No influence of Basta on microbial biomass could be detected. The phospholipid fatty acid analysis of soil extracts showed no difference between Basta application and mechanical weed control, whereas conventional herbicide application revealed a different pattern. Basta application resulted in a changed population of weeds with a selective effect for Viola arvensis. During senescence, transgenic rape DNA was degraded similar to endogenous control DNA. After ploughing the chopped plant material in the soil, transgenic as well as endogenous control DNA sequences could be detected for up to 4 weeks for rape and up to 7 months for maize, whereas PCR analysis of composted transgenic maize revealed the presence of the transgene over a period of 22 months.

  13. Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue

    CSIR Research Space (South Africa)

    Girgi, M

    2002-01-01

    Full Text Available systems in cereals. In the early 1990?s genetic transformation using immature embryos as explants was successful in rice (Christou et al. 1991), sorghum (Casas et al. 1993) and wheat (Vasil et al. 1992). Yet, the genetic transformation of pearl millet...). The de- velopment of a low-cost method will form the basis for future genetic enhancement of this crop for the benefit of India and Sub-Saharan Africa. Five geneti- cally independent transgenic plants were identified by selection with the herbicide Basta...

  14. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  15. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Science.gov (United States)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  16. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.

    Science.gov (United States)

    Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K

    1996-01-01

    Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.

  17. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  18. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  19. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows

  20. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of

  1. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  2. SCIENTIFIC FOUNDATION FOR RISK ASSESSMENTS TO PROTECT NON-TARGET PLANTS FROM HERBICIDES

    Science.gov (United States)

    SCIENCE QUESTIONS:EPA's Office of Pesticides Programs (OPP) requires scientifically credible information and methods to assess health and ecological risks from chemical pesticides. However the suite of standard bioassays and approaches available to OPP to determine these ...

  3. ATR-dependent bystander effects in non-targeted cells

    International Nuclear Information System (INIS)

    Burdak-Rothkamm, S.

    2007-01-01

    Complete text of publication follows. Radiation induced non-targeted bystander effects have been reported for a range of endpoints including the induction of γH2AX foci which serve as a marker for DNA double strand breaks. We have recently reported the induction of γH2AX foci in non-targeted bystander cells up to 48 hours after irradiation and the involvement of reactive oxygen species (ROS) and TGF-beta 1 in the induction of γH2AX foci (Oncogene (2007) 26:993-1002). Here, we wanted to determine the role of the PI3-like kinases ATM, ATR and DNA-PK in DNA damage signalling in bystander cells. Conditioned medium from T98G cells irradiated with 2 Gy of X-rays was transferred onto non-irradiated cells that were subsequently analysed for the induction of γH2AX, ATR and 53BP1 foci as well as clonogenic survival. Irradiated T98G glioma cells generated signals that induced γH2AX and 53BP1 foci in cells treated with the conditioned medium from irradiated cells. These foci co-localised with ATR foci. Inhibition of ATM and DNA-PK could not suppress the induction of bystander γH2AX foci whereas the mutation of ATR in Seckel cells abrogated bystander foci induction. A restriction of bystander foci to the S-phase of the cell cycle both in T98G cells and in ATR- proficient fibroblasts was observed. These results identify ATR as a central player within the bystander signalling cascade leading to γH2AX and 53BP1 foci formation, and suggest a mechanism of DNA damage induction in non-targeted cells. Further investigations have shown decreased clonogenic cell survival in bystander T98G and ATR wild-type fibroblasts. ATR mutated Seckel cells and also ATM-/- fibroblasts were resistant to this effect suggesting a role for both ATR and ATM in the bystander signalling cascade with regard to cell survival. Taken together, these observations support a hypothesis of DNA damage-induced accumulation of stalled replication forks in bystander cells which are subsequently processed by

  4. Resistência de biótipos de Euphorbia heterophylla l. Aos herbicidas inibidores da enzima ALS utilizados na cultura de soja Resistance of Euphorbia heterophylla l. Biotypes to ALS enzyme inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    GERSON AUGUSTO GELMINI

    2001-01-01

    Full Text Available Os herbicidas constituem-se na principal medida de controle de plantas daninhas na cultura de soja; no entanto, a pressão de seleção causada pelo uso contínuo de produtos com o mesmo mecanismo de ação pode provocar a seleção de biótipos resistentes, como ocorreu com Euphorbia heterophylla L., que se mostrou resistente aos herbicidas inibidores da enzima acetolactato sintase (ALS em áreas dos Estados do Paraná e Rio Grande do Sul. Para comprovar possíveis novos casos, bem como alternativas para prevenção e manejo, coletaram-se sementes de plantas de E. heterophylla L., na região de Assis (SP, que sobreviveram a tratamentos, em que esses herbicidas foram sistematicamente aplicados nos últimos anos. Desenvolveu-se o experimento em casa de vegetação, comparando-se o biótipo resistente ao suscetível, quando submetido aos diversos herbicidas aplicados em pós-emergência. Aplicaram-se quando as plantas encontravam-se no estádio de duas a quatro folhas verdadeiras, nas doses zero, uma, duas, quatro e oito vezes a recomendada. Aos 20 dias após a aplicação, avaliaram-se os parâmetros relativos ao controle e produção de fitomassa epígea visando ao estabelecimento de curvas de doses-resposta, à obtenção dos fatores de resistência com base nos valores da DL50 e GR50, e à verificação da ocorrência de resistência múltipla. O biótipo resistente apresentou diferentes níveis de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. No entanto, foi eficientemente controlado nos tratamentos com fomesafen (250 g.ha-1, lactofen (120 g.ha-1, flumiclorac-pentil (40 g.ha-1, glufosinato de amônio (150 g.ha-1 e glyphosate (360 g.ha-1.Herbicides are the main tool for weed control in soybean crop, but the selection pressure attributed to the repeated application of the same herbicides and the same mechanism of action can

  5. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  6. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  7. Herbicide injury induces DNA methylome alterations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gunjune Kim

    2017-07-01

    Full Text Available The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

  8. Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine.

    Science.gov (United States)

    Khalil, Samah R; Reda, Rasha M; Awad, Ashraf

    2017-08-01

    The present study evaluated the immunotoxicological effects of the herbicide atrazine (ATZ) at sub-lethal concentrations and the potential ameliorative influence of Spirulina platensis (SP) over a sub-chronic exposure period on Cyprinus carpio L., also known as common carp. Common carp was sampled after a 40-days exposure to ATZ (428 μg/L) and SP (1%), individually or in combination to assess the non-specific immune response, changes in mRNA expression of immune-related genes [lysozyme (LYZ), immunoglobulin M (IgM), and complement component 3 (C3)] in the spleen, and inflammatory cytokines (interleukins IL-1ß and IL-10) in the head kidney using real-time PCR. Additionally, disease resistance to Aeromonas sobria was evaluated. The results revealed that ATZ exposure caused a significant decline in most of the hematological variables, lymphocyte viability, and lysozyme and bactericidal activity. Moreover, ATZ increased the susceptibility to disease, reflected by a significantly lower post-challenge survival rate of the carp. ATZ may induce dysregulated expression of immune-related genes leading to downregulation of mRNA levels of IgM and LYZ in the spleen. However, expression of C3 remained unaffected. Of the cytokine-related genes examined, IL-1B was up-regulated in the head kidney. In contrast, the expression of IL-10 gene was down-regulated in the ATZ-exposed group. The SP supplementation resulted in a significant improvement in most indices; however, these values did not match with that of the controls. These results may conclude that ATZ affects both innate and adaptive immune responses through the negative transcriptional effect on genes involved in immunity and also due to the inflammation of the immune organs. In addition, dietary supplements with SP could be useful for modulation of the immunity in response to ATZ exposure, thereby presenting a promising feed additive for carps in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja Resistance of Bidens subalternans to the acetolactate synthase inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    G.A. Gelmini

    2002-08-01

    Full Text Available O uso contínuo e prolongado de produtos com o mesmo mecanismo de ação pode provocar a manifestação de biótipos resistentes. Para verificar possíveis novos casos de resistência, bem como alternativas para prevenção e manejo, foram coletadas sementes de Bidens subalternans na região de São Gabriel D' Oeste-MS, em plantas que sobreviveram a tratamentos em que inibidores da ALS foram sistematicamente utilizados. Em experimento conduzido em vasos em casa de vegetação, o biótipo com histórico de resistente foi comparado ao suscetível quando submetido aos diversos herbicidas com diferentes mecanismos de ação usados em pós-emergência, os quais foram aplicados nas doses de zero, uma, duas, quatro e oito vezes a recomendada. Decorridos 20 dias, foram avaliadas a porcentagem de controle e a produção da fitomassa verde, visando estabelecimento de curvas de dose-resposta e obtenção dos fatores de resistência. O biótipo oriundo de área com histórico de aplicações repetidas de inibidores da ALS apresentou elevado nível de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando ser portador de resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. Entretanto, esse biótipo foi eficientemente controlado pelos herbicidas fomesafen, lactofen, bentazon, glufosinato de amônio e glyphosate.The continuous and prolonged use of products with the same mechanism of action can provoke the manifestation of resistant biotypes. In horder to verify possible new cases, as well as alternatives for prevention and control, seeds of Bidens subalternans were collected at São Gabriel D' Oeste (MS region at plants that survived continuous treatments which sistematically ALS inhibitors. Through an experiment performed in pots inside a greenhouse, a resistant biotype was compared to a susceptible one when submitted to herbicides with different mechanisms of action and applied at post emergence

  10. Plantas transgênicas resistentes aos herbicidas: situação e perspectivas Resistant transgenic plants to the herbicide: situation and perspectives

    Directory of Open Access Journals (Sweden)

    Patrícia Andréa Monquero

    2005-01-01

    DNA inserted into their cells from another organism. In some cases, this organism may be from a other individue of the same species, or from another species with which they would not normally cross-breed. The use of genetic modification in plant breeding aims to: increase crop yields beyond the maximum for existing varieties; reduce post-harvest losses; make crops more tolerant to environment stresses; make crops that use efficiently nitrogen and phosphorous; improve nutritional value of foods; produce plants that are resistant to certain herbicide, pests or diseases; develop alternative resources for industry such as fuels and pharmaceuticals. Many consumers are concerned that genetic modification isn't natural and believe that conventional breeding is better than GMOs because it follows the principles of natural selection, or uses natural mutations. However, it is also possible to produce undesirable combinations of genes by conventional breeding. Several concerns are associated with the use of herbicide-tolerant crops. Those include: (a drift to nearby susceptible plants; (b herbicide-resistant crops becoming weedy and difficult to control; (c illegal use of seeds; (d negative public reaction to genetic engineer; (e hybridization between GM crop plants and their wild relatives; and (g increased selection for resistant weed biotypes or tolerant species. The generation of genetically modified organisms has fomented a controversial debate in various sectors of our society. Yet we must be cautious before generalizing the use of transgenics since each case should be analyzed regarding both its particular advantages and drawbacks, and contribution to the improvement of life quality.

  11. Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides

    Directory of Open Access Journals (Sweden)

    Tatyana Eugenivna KOPYTCHUK

    2012-05-01

    Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.

  12. Efficacy and economics of different herbicides in aerobic rice system ...

    African Journals Online (AJOL)

    Aerobic rice system, the most promising irrigation water saving rice production technology, is highly impeded by severe weed pressure. Weed control through the use of same herbicide causes development of herbicide resistant weed biotypes and serious problem in weed management. This study was aimed at finding out ...

  13. Photosensitized herbicidal action

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, A; Nachtigall, G W [American Cyanamid Co., Stamford, Conn.

    1975-12-01

    The herbicidal action produced by the colorless hydrocarbon fluoranthene sprayed on the leaves of growing plants did not occur when uv radiation was removed from the light to which the plants are exposed. If the uv component of the light under which the plants were grown was augmented, the herbicidal effect of fluoranthene was increased. The mechanism of this photodynamic action is discussed.

  14. Improvements in the use of aquatic herbicides and establishment of future research directions

    Science.gov (United States)

    Getsinger, K.D.; Netherland, M.D.; Grue, C.E.; Koschnick, T.J.

    2008-01-01

    Peer-reviewed literature over the past 20 years identifies significant changes and improvements in chemical control strategies used to manage nuisance submersed vegetation. The invasive exotic plants hydrilla (Hydrilla verticillata L.f. Royle) and Eurasian watermilfoil (Myriophyllum spicatum L.) continue to spread and remain the plant species of greatest concern for aquatic resource managers at the national scale. Emerging exotic weeds of regional concern such as egeria (Egeria densa Planch.), curlyleaf pondweed (Potamogeton crispus L.), and hygrophila (Hygrophila polysperma (Roxb.) T. Anders), as well as native plants such as variable watermilfoil (Myriophyllum heterophyllum Michx), and cabomba (Cabomba caroliniana Gray) are invasive outside their home ranges. In addition, there is always the threat of new plant introductions such as African elodea (Lagarosiphon major (Ridley) Moss) or narrow-leaf anacharis (Egeria najas Planchon). The registration of the bleaching herbicide fluridone in the mid 1980s for whole-lake and large-scale management stimulated numerous lines of research involving reduction of use rates, plant selectivity, residue monitoring, and impacts on fisheries. In addition to numerous advances, the specificity of fluridone for a single plant enzyme led to the first documented case of herbicide resistance in aquatic plant management. The resistance of hydrilla to fluridone has stimulated a renewed interest by industry and others in the registration of alternative modes of action for aquatic use. These newer chemistries tend to be enzyme-specific compounds with favorable non-target toxicity profiles. Registration efforts have been facilitated by increased cooperation between key federal government agencies that have aquatic weed control and research responsibilities, and regulators within the U.S. Environmental Protection Agency (USEPA). We reviewed past and current research efforts to identify areas in need of further investigation and to establish

  15. Studies of Non-Targeted Effects of Ionising Radiation

    International Nuclear Information System (INIS)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae

    2006-01-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  16. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  17. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    Science.gov (United States)

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  18. Photosynthetic Performance of the Imidazolinone Resistant Sunflower Exposed to Single and Combined Treatment by the Herbicide Imazamox and an Amino Acid Extract

    Directory of Open Access Journals (Sweden)

    Dobrinka Anastasova Balabanova

    2016-10-01

    Full Text Available The herbicide imazamox may provoke temporary yellowing and growth retardation in IMI-R sunflower hybrids, more often under stressful environmental conditions. Although photosynthetic processes are not the primary sites of imazamox action, they might be influenced; therefore, more information about the photosynthetic performance of the herbicide-treated plants could be valuable for a further improvement of the Clearfield technology. Plant biostimulants have been shown to ameliorate damages caused by different stress factors on plants, but very limited information exists about their effects on herbicide-stressed plants. In order to characterize photosynthetic performance of imazamox-treated sunflower IMI-R plants, we carried out experiments including both single and combined treatments by imazamox and a plant biostimulants containing amino acid extract. We found that imazamox application in a rate of 132 μg per plant (equivalent of 40 g active ingredient ha-1 induced negative effects on both light-light dependent photosynthetic redox reactions and leaf gas exchange processes, which was much less pronounced after the combined application of imazamox and amino acid extract.

  19. Annual Herbicide Loadings

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and...

  20. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    Science.gov (United States)

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  1. EFSA Panel on Genetically Modified Organisms (GMO); Scientific Opinion on application (EFSAGMO- NL-2007-39) for the placing on the market of insect resistant and herbicide tolerant genetically modified maize MON89034 x MON88017 for food and feed uses, import and processing under Regulation (EC

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin

    This opinion reports on an evaluation of a risk assessment for placing on the market the genetically modified herbicide tolerant and insect resistant maize MON89034 x MON88017 for food and feed uses, import and processing. Conventional breeding methods were used in the production of maize MON89034...

  2. Effects of neonicotinoids and fipronil on non-target invertebrates.

    Science.gov (United States)

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large

  3. Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.

    Science.gov (United States)

    Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S

    2018-03-01

    Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rationale for a natural products approach to herbicide discovery.

    Science.gov (United States)

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. Published 2012 by John Wiley & Sons, Ltd.

  5. Effects of herbicides on fish

    DEFF Research Database (Denmark)

    Solomon, Keith R.; Dalhoff, Kristoffer; Volz, David

    2013-01-01

    Herbicides are used to control weeds and are usually targeted to processes and target sites that are specific to plants. As a result, most herbicides are not acutely toxic to fish. Exceptions to this general rule are uncouplers of oxidative phosphorylation and some herbicides that interfere...... with cell division. Chronic and sublethal effects have been studied for some herbicides, but fewer data are available for these effects than for acute effects. The sublethal effects of herbicides that have been studied include reproduction, stress, olfaction, and behavior. Although some of these responses......, and reproduction. As with all pesticides, herbicides may have indirect effects in fish. These effects are mediated by herbicide-induced changes in food webs or in the physical environment. Indirect effects can only occur if direct effects occur first and would be mediated by the killing of plants by herbicides...

  6. Herbicide options for hardwood management

    Science.gov (United States)

    Andrew W. Ezell; A. Brady Self

    2016-01-01

    The use of herbicides in hardwood management presents special problems in that many of the most effective herbicides are either designed to control hardwoods or the product is not labeled for such applications. Numerous studies involving herbicide application in hardwoods have been completed at Mississippi State University. This paper is a compilation of results from...

  7. Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates.

    Science.gov (United States)

    Lavtižar, Vesna; Berggren, Kristina; Trebše, Polonca; Kraak, Michiel H S; Verweij, Rudo A; van Gestel, Cornelis A M

    2016-09-01

    The insecticide chlorantraniliprole (CAP) is gaining importance in agricultural practice, but data on its possible negative effects on non-target organisms is severely deficient. This study therefore determined CAP toxicity to non-target soil invertebrates playing a crucial role in ecosystem functioning, including springtails (Folsomia candida), isopods (Porcellio scaber), enchytraeids (Enchytraeus crypticus) and oribatid mites (Oppia nitens). In sublethal toxicity tests in Lufa 2.2 soil, chronic exposure to CAP concentrations up to 1000 mg/kgdw did not affect the survival and reproduction of E. crypticus and O. nitens nor the survival, body weight and consumption of P. scaber. In contrast, the survival and reproduction of F. candida was severely affected, with an EC50 for effects on reproduction of 0.14 mg CAP/kgdw. The toxicity of CAP to the reproduction of F. candida was tested in four different soils following OECD guideline 232, and additionally in an avoidance test according to ISO guideline 17512-2. A significantly lower toxicity in soils rich in organic matter was observed, compared to low organic soils. Observations in the avoidance test with F. candida suggest that CAP acted in a prompt way, by affecting collembolan locomotor abilities thus preventing them from escaping contaminated soil. This study shows that CAP may especially pose a risk to non-target soil arthropods closely related to insects, while other soil invertebrates seem rather insensitive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterisation of glufosinate resistance mechanisms in Eleusine indica.

    Science.gov (United States)

    Jalaludin, Adam; Yu, Qin; Zoellner, Peter; Beffa, Roland; Powles, Stephen B

    2017-06-01

    An Eleusine indica population has evolved resistance to glufosinate, a major post-emergence herbicide of global agriculture. This population was analysed for target-site (glutamine synthetase) and non-target-site (glufosinate uptake, translocation and metabolism) resistance mechanisms. Glutamine synthetase (GS) activity extracted from susceptible (S) and resistant (R*) plants was equally sensitive to glufosinate inhibition, with IC 50 values of 0.85 mm and 0.99 mm, respectively. The extractable GS activity was also similar in S and R* samples. Foliar uptake of [ 14 C]-glufosinate did not differ in S and R* plants, nor did glufosinate net uptake in leaf discs. Translocation of [ 14 C]-glufosinate into untreated shoots and roots was also similar in both populations, with 44% to 47% of the herbicide translocated out from the treated leaf 24 h after treatment. The HPLC and LC-MS analysis of glufosinate metabolism revealed no major metabolites in S or R* leaf tissue. Glufosinate resistance in this resistant population is not due to an insensitive GS, or increased activity, or altered glufosinate uptake and translocation, or enhanced glufosinate metabolism. Thus, target-site resistance is likely excluded and the exact resistance mechanism(s) remain to be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  10. Adsorption of sugar beet herbicides to Finnish soils.

    Science.gov (United States)

    Autio, Sari; Siimes, Katri; Laitinen, Pirkko; Rämö, Sari; Oinonen, Seija; Eronen, Liisa

    2004-04-01

    Three sugar beet herbicides, ethofumesate, phenmedipham and metamitron, are currently used on conventional sugar beet cultivation, while new varieties of herbicide resistant (HR) sugar beet, tolerant of glyphosate or glufosinate-ammonium, are under field testing in Finland. Little knowledge has so far been available on the adsorption of these herbicides to Finnish soils. The adsorption of these five herbicides was studied using the batch equilibrium method in 21 soil samples collected from different depths. Soil properties like organic carbon content, texture, pH and partly the phosphorus and oxide content of the soils were tested against the adsorption coefficients of the herbicides. In general, the herbicides studied could be arranged according to their adsorption coefficients as follows: glyphosate>phenmedipham>ethofumesate approximately glufosinate-ammonium>metamitron, metamitron meaning the highest risk of leaching. None of the measured soil parameters could alone explain the adsorption mechanism of these five herbicides. The results can be used in model assessments of risk for leaching to ground water resulting from weed control of sugar beet in Finland.

  11. selective herbicide glyphosate

    African Journals Online (AJOL)

    Aghomotsegin

    2016-05-04

    May 4, 2016 ... concentrations of the test chemical at 0.625, 1.25, 2.5, 5 and 10 mg/L, respectively. The percentage growth rate ... production, processing, storage, transport or marketing of ... Herbicides commonly known as weed-killers are.

  12. Effects of the herbicide metsulfuron-methyl on a plant community, including seed germination success in the F1 generation

    NARCIS (Netherlands)

    Nelemans, J.B.; Wijngaarden, van René P.A.; Roessink, Ivo; Arts, Gertie H.P.

    2017-01-01

    A field trial was set up to simulate a field margin environment to analyze sub-lethal effects of the herbicide metsulfuron-methyl on several endpoints of non-target terrestrial plants (NTTPs). Both vegetative and reproductive endpoints were evaluated. The experiment was conducted in an

  13. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  15. Some important questions connected with non-targeted effects

    International Nuclear Information System (INIS)

    Baverstock, Keith; Belyakov, Oleg V.

    2010-01-01

    This paper briefly reviews the highlights of experimental evidence that led to the adoption of the term 'non-targeted' to describe new effects induced by ionising radiation that did not fit the classical radiobiological paradigm, principally genomic instability and bystander effect, identifying the reports that were most influential on the subsequent course of radiobiological research. The issue of appropriate terminology for the new effects is discussed. Particular emphasis is placed on the inheritance of genomic instability, where there are issues concerning which effects should be considered as transgenerational. Finally, in respect of the question as to whether these new effects are likely to have an impact on human health is addressed. It is concluded that there is a need for a clearer terminology to facilitate research progress, that real health effects cannot be ruled out and that therefore there is a need for new paradigms not only for radiobiology but also for risk assessment and radiological protection.

  16. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review.

    Science.gov (United States)

    Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De

    2017-04-10

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.

  17. Herbicide spring treatments for the control of brome grasses (Bromus spp. in winter cereals

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The efficacy of different ALS-inhibiting herbicides for the control of brome species (Bromus spp. was tested in three field trials in the year 2010 – 2012 in the region of North-West-Bavaria Franken. As a result of the trials the standard herbicide Attribut (Propoxycarbazone was confirmed for the control of brome. In case of infestation with brome and black grass the herbicide Broadway (Pyroxsulam offers a certain control of both problematic grass weeds. This illustrates the high dependency of sufficient brome control in winter cereals on the effectiveness of specific ALS-Inhibitor herbicides. Because of the high risk of herbicide resistance to ACCaseand ALS-inhibiting herbicides in brome, integrated weed management is essential for the sustainable control of brome in winter cereals, respectively winter wheat.

  18. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  19. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  20. Radiation responses of stem cells: targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Waring, E.J.; Prise, K.M.

    2015-01-01

    Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal. (authors)

  1. The future impacts of non-targeted effects.

    Science.gov (United States)

    Bright, Scott; Kadhim, Munira

    2018-04-11

    Ionizing radiation was traditionally thought to exert its detrimental effects through interaction with sensitive cellular targets, nuclear DNA being of most importance. This theory has since merged with a more recently described radiation response called non-targeted effects (NTE). This review will briefly look at the various types of NTE and the potential implications they may have for radiobiology research and its applications. The most well-known NTE are genomic instability (GI) and bystander effects (BE). Other NTE include abscopal effects, which are similar to bystander effects but are generally based in a clinical environment with immune involvement as the defining feature. Currently, our understanding of NTE is limited to certain signaling pathways/molecules, and as yet there is no theory that describes or can accurately predict the occurrence or outcome of these NTE. There are numerous groups investigating these processes in vitro and in vivo, and thus steady progress is being made. Developing a deeper understanding of NTE has potential impacts for therapy and diagnosis, safer occupational exposures, space flight and our general understanding of radiation biology.

  2. Herbicidal treatments for control of Papaver somniferum L.

    Science.gov (United States)

    Horowitz, M

    1980-01-01

    Fifty-five commercially available herbicides were evaluated for possible use to destroy illicit opium poppy crops (Papaver somniferum). In the first stage, herbicides were sprayed on poppy plants grown in containers. The following compounds killed poppy plants: (a) herbicides with typical foliar activity--amitrole, bromoxynil, 2,4-D, glyphosate, ioxynil and paraquat; and (b) herbicides with root and foliar activity--the triazines ametryn, atrazine, metribuzin, prometryn, simazine and terbutryn; the substituted ureas benzthiazuron, chloroxuron, diuron, fluometuron, linuron, methabenzthiazuron, neburon and phenobenzuron; and the miscellaneous compounds karbutilate, methazole, oxadiazon and pyrazon. Severe but sublethal injury was caused by cycloate, EPTC, molinate, pobulate, cacodylate + MSMA, ethofumesate, perfluidone and phenmedipham. Abnormal development of vegetative or reproductive parts of the plant was induced by benefin, butralin, dinitramine, pendimethalin, trifluralin, diphenamid, napropamide, dalapon and propham. Efficient herbicides with negligible persistence in soil at the doses applied were evaluated on poppy plants in the field at various stages of growth. Small plants were severely injured by 2,4-D, killed rapidly by bromoxynil, ioxynil, paraquat (in mixture + diquat), and more slowly by glyphosate and metribuzin. The resistance to herbicides increased with the age of the poppy plant. Severe damage with partial kill of developed plants was obtained with bromoxynil, ioxynil, glyphosate, and paraquat + diquat; the last treatment produced the fastest effect.

  3. Herbicidas alternativos para controle de biótipos de Conyza bonariensis e C. canadensis resistentes ao glyphosate Alternative herbicides to control glyphosate-resistant biotypes of Conyza bonariensis and C. canadensis

    Directory of Open Access Journals (Sweden)

    M.S. Moreira

    2010-01-01

    Full Text Available Após sucessivos anos, aplicações do herbicida glyphosate em pomares de citros no Estado de São Paulo selecionaram biótipos resistentes de Conyza bonariensis e C. canadensis. Na ocorrência de plantas daninhas resistentes em uma área agrícola, tornam-se necessárias mudanças nas práticas de manejo para obtenção de adequado controle das populações resistentes, bem como para a redução da pressão de seleção sobre outras espécies. Assim, este trabalho foi realizado com o objetivo de identificar herbicidas alternativos para controle de biótipos de Conyza spp. resistentes ao herbicida glyphosate, com aplicações em diferentes estádios fenológicos da planta daninha. Três experimentos foram conduzidos em campo, em pomares de citros em formação, sobre plantas de buva em estádio fenológico de dez folhas e no pré-florescimento. Para plantas no estádio de dez folhas, controle satisfatório foi obtido com aplicações de glyphosate + bromacil + diuron (1.440 + 1.200 + 1.200 g ha-1, glyphosate + atrazina (1.440 + 1.500 g ha-1 e glyphosate + diuron (1.440 + 1.500 g ha-1. Quando em estádio de pré-florescimento de Conyza spp., a aplicação do herbicida amônio-glufosinato, na dose de 400 g ha-1, isolado ou associado a MSMA, bromacil+diuron, metsulfuron, carfentrazone e paraquat, foi a alternativa viável para controle dos biótipos resistentes ao glyphosate.After successive years, glyphosate applications on São Paulo-Brazil citrus orchards selected resistant biotypes of Conyza bonariensis and C. canadensis. The occurrence of herbicide-resistant weed biotypes at some agricultural area makes it necessary to change the management practices to reach effective control of the selected resistant populations, as well as to reduce selection pressure on the other species. Thus, this work aimed to identify the alternative herbicides to control glyphosate-resistant biotypes of Conyza spp., with applications at different weed phenological

  4. Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae).

    Science.gov (United States)

    C Zanuncio, José; C Lacerda, Mabio; Alcántara-de la Cruz, Ricardo; P Brügger, Bruno; Pereira, Alexandre I A; F Wilcken, Carlos; E Serrão, José; S Sediyama, Carlos

    2018-01-01

    The increase of agricultural areas with glyphosate-resistant (GR) crops, and use of this herbicide in Brazil, makes necessary to assess its impacts on non-target organisms. The objective was to evaluate the development, reproduction and life table parameters of Podisus nigrispinus (Heteroptera: Pentatomidae) reared on GR-soybean plants treated with glyphosate formulations (Zapp-Qi, Roundup-Transorb-R and Roundup-Original) at the recommended field dose (720g acid equivalent ha -1 ). Glyphosate formulations had no affect on nymph and adult weight of this predator. Fourth instar stage was shortest with Zapp Qi. Egg-adult period was similar between treatments (26 days) with a survival over 90%. Zapp-Qi and Roundup-Transorb-R (potassium-salt: K-salt) reduced the egg, posture and nymph number per female, and the longevity and oviposition periods of this predator. Podisus nigrispinus net reproductive rate was highest in GR-soybean plants treated with Roundup-Original (isopropylamine-salt: IPA-salt). However, the duration of one generation, intrinsic and finite increase rates, and time to duplicate the population, were similar between treatments. Glyphosate toxicity on P. nigrispinus depends of the glyphosate salt type. IPA-salt was least harmless to this predator. Formulations based on K-salt altered its reproductive parameters, however, the development and population dynamic were not affect. Therefore, these glyphosate formulations are compatible with the predator P. nigrispinus with GR-soybean crop. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens.

    Science.gov (United States)

    Rowen, David J; Templeman, Michelle A; Kingsford, Michael J

    2017-09-01

    Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC 50 for jellyfish growth was 0.35 μg L -1 for Diuron and 17.5 μg L -1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L -1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Non-cancer diseases and non-targeted effects

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Guido, E-mail: guido.hildebrandt@med.uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, 04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, 18059 Rostock (Germany)

    2010-05-01

    It is well established that moderate to high doses of radiation can increase the occurrence also of a variety of non-cancer effects in exposed individuals, but for radiation protection purposes it has generally been assumed that there is a threshold of dose below which no significant non-cancer effects (apart from hereditary disease) arise. In recent years, there is growing epidemiological evidence of excess risk of late occurring cardiovascular disease at much lower radiation doses and occurring over much longer intervals after radiation exposure without a clear cut threshold. However, the epidemiological evidence available so far for non-cancer health effects after exposure to moderate or low radiation doses is suggestive rather than persuasive. The mechanisms of radiation-induced vascular disease induction are far away from being understood. However, it seems to be very likely that inflammatory responses are involved. Recent experimental studies by Stewart et al. could demonstrate that high dose exposure to the cardiovascular system is associated with an earlier onset and accelerated development of macrophage-rich, inflammatory atherosclerotic lesions prone to intra-plaque hemorrhage and may also cause a decrease in myocardial perfusion. Both, macro-vascular and micro-vascular radiation effects involve the endothelium and pro-inflammatory signalling cascades. If modulation of inflammatory response is arguably also the most likely cause of radiation-induced cardiovascular disease after low dose exposure, this also implies a role for non-targeted radiation effects. In the absence of a convincing mechanistic explanation of the currently available epidemiological evidence for radiation-induced cardiovascular risk at low radiation doses, caution is required in the interpretation of the statistical associations. On the other hand, the possibility of such a causal explanation cannot be reliably excluded. Further epidemiological and biological evidence from currently

  7. Effect of malachite green toxicity on non target soil organisms.

    Science.gov (United States)

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    Science.gov (United States)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  9. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate

    2014-01-01

    on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy...... height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were......Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based...

  10. Comparison of herbicide regimes and the associated potential enviromental effects of glyphosate-resistant crops versus what they replace in Europe

    NARCIS (Netherlands)

    Kleter, G.A.; Harris, C.; Stephenson, G.R.; Unsworth, J.

    2008-01-01

    While cultivation of transgenic crops takes place in seven of the EU member states, this constitutes a relatively limited part of the total acreage planted to these crops worldwide. The only glyphosate-resistant (GR) crop grown commercially until recently has been soybean in Romania. In addition,

  11. Manejo de Conyza bonariensis resistente ao glyphosate: coberturas de inverno e herbicidas em pré-semeadura da soja Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding

    Directory of Open Access Journals (Sweden)

    F.P. Lamego

    2013-06-01

    Full Text Available Conyza bonariensis tornou-se a principal planta daninha da cultura da soja no Sul do Brasil, em decorrência da evolução para resistência ao herbicida glyphosate. O objetivo deste trabalho foi avaliar o efeito de diferentes coberturas de inverno e da associação de manejo de dessecação pré-semeadura da soja, visando ao controle de C. bonariensis resistente ao glyphosate. Um experimento foi conduzido em campo, na safra 2010/2011. Os tratamentos foram conduzidos em esquema de parcelas subdivididas, em que as coberturas de inverno foram alocadas nas parcelas principais: aveia-preta, nabo, ervilhaca, azevém, trigo e pousio. Nas subparcelas, foram alocados os tratamentos de manejo de dessecação pré-semeadura da soja: glyphosate (720 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha‑1 e roçada. O nabo foi a espécie de cobertura que produziu o maior volume de massa seca durante o inverno, enquanto a ervilhaca foi a que apresentou maior efeito supressor sobre a germinação e o desenvolvimento inicial de C. bonariensis. Associações de glyphosate com 2,4-D ou chlorimuron-ethyl, seguidas da aplicação sequencial de paraquat + diuron, causaram maior redução na infestação de C. bonariensis.Conyza bonariensis became the main weed in soybean crop in Southern Brazil, as a consequence of the evolution of resistance to the herbicide glyphosate. The objective of this work was to evaluate the effect of different winter cover crops and the association of burn-down herbicides on the control of glyphosate-resistant C. bonariensis. A field experiment was conducted in the 2010/2011 season. The treatments were arranged in a split-plot scheme, with the winter

  12. Herbicides in environmental pollution

    International Nuclear Information System (INIS)

    Qureshi, M.J.; Haq, A.; Maqbool, U.

    1997-01-01

    Herbicide effectiveness on the most pernicious weeds including cyperus rotundus may be limited because spray droplets are not well retained or because penetration and/or translocation is restricted. As a result, chemical pollute the environment and is hazardous to the human health. Monitoring studies ad undertaken to check that the flate and environmental effects of herbicides under field condition are consistent with prediction. Studies on /sup 14/-glyphosate in Cyperus rotundus using radiotracer methods indicated that out of five formulations studies formulation No.3 was the best from penetration point of view of the chemical whereas formulation No. 4 with the high dose showed effective retention and uniform translocation of the chemical after five days of the treatment. Cuticular penetration and translocation of glyphosate in the formulations with or without surfactants have also been studied in C. rotundus. It is also concluded that synperonic surfactants, diesel oil or glycerol did not influence the translocation of glyphosate within the weed. The translocation mainly occurred down swards and accumulated in the plant parts located below the treated zone. (author)

  13. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    Science.gov (United States)

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  14. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status

    Directory of Open Access Journals (Sweden)

    Enzo R. Bracamonte

    2017-11-01

    Full Text Available The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba.

  15. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.

    Science.gov (United States)

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996-2012). During this time, weed control practices in these crops relative to the 'conventional alternative' have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of

  16. Rapeseed with tolerance to the non selective herbicide glufosinate ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, E. [Hoechst Schering AgrEvo GmbH, Frankfurt am Main (Germany)

    1998-12-31

    Weed control with herbicides is essential to grow rapeseed. Glufosinate Ammonium is used as a non selective herbicide successfully in many countries for over 10 years. It conforms well with ever increasing safety standards for human beings, animals and the environment. The tolerance of rapeseed and other crop plants was achieved by genetic modification. A resistance gene (PAT or BAR) was transfered into previously susceptible rapeseed plants. This new approach allowed the development of Glufosinate Ammonium as an almost ideal selective herbicide. In cooperation with major seed companies and by own breeding programmes new Glufosinate tolerant rapeseed varieties and hybrids are developed. Data on metabolism, toxicity, residues, efficacy etc. were generated to get registration for the selective herbicide use. In addition various studies were done for safety assessments of the PAT gene and the modified rapeseed. In spring 1995 Canadian authorities granted worldwide the first approvals for the selective use of Glufosinate Ammonium (trademark Liberty) and Glufosinate tolerant (trademark and logo Liberty Link) spring rapeseed (Canola). After a successful launch in 1995 about 150.000 ha of Liberty Link Canola were grown and treated with Liberty in 1996. The Liberty Link Canola growers were very well satisfied. In a grower survey 84% stated that they will definitely use the Liberty Link System again. In Europe registrations for Glufosinate Ammonium as a selective herbicide and for the first Glufosinate tolerant rapeseed varieties are expected in the course of 1997. The Liberty Link System will be launched in rapeseed most probably in 1998. (orig.)

  17. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2008-07-01

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  18. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  19. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Vittorio Filì

    2011-02-01

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  20. Effect of Temperature and Chemical Additives on the Efficacy of the Herbicides Glufosinate and Glyphosate in Weed Management of Liberty-Link and Roundup-Ready Soybeans

    OpenAIRE

    Pline, Wendy Ann

    1999-01-01

    The introduction of herbicide resistant crops offers producers many more options for weed control systems. These crops allow environmentally safe, non-selective herbicides to be used as selective herbicides, broadening the spectrum of weeds controlled, while not harming the crop. As these crops are very new on the market, investigation of their performance under various environmental conditions as well as in various weed control programs is needed. Liberty-link ® soybeans are resistant t...

  1. A built-in mechanism to mitigate the spread of insect-resistance and herbicide-tolerance transgenes into weedy rice populations.

    Directory of Open Access Journals (Sweden)

    Chengyi Liu

    Full Text Available BACKGROUND: The major challenge of cultivating genetically modified (GM rice (Oryza sativa at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea. The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. METHODOLOGY/PRINCIPAL FINDINGS: An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m(2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F(2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13 and two weedy rice strains (PI-63 and PI-1401. CONCLUSIONS/SIGNIFICANCE: Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations.

  2. A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations

    Science.gov (United States)

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    Background The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. Methodology/Principal Findings An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Conclusions/Significance Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations. PMID:22359609

  3. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Genetic Analysis of Hybrid Progenies of High Quality Soybean Cultivars with Transgenic Herbicide-resistance Soybean Cultivars%优质大豆品种与抗除草剂转基因大豆品种杂种后代的遗传分析

    Institute of Scientific and Technical Information of China (English)

    高中利; 朱洪德; 刘敏; 于洪久

    2011-01-01

    The genetic cross program was designed by four common best soybean lines and three transgenic herbicide-resistant soybean lines to study the heritability and combing ability for yield and quality and so forth. The results demonstrated that the herbicide-resistant gene Bar was dominant inheritance in F1, the additive effects were mainly responsible for the heredity of each character. The pods and seeds of Nongda 35306 had higher GCA effect, the combinations Nongda 15751 × TSB2、Nongda 35306 × TSB4 can be developed for high yield and super quality combinations. The research laid a foundation for the effective use of the transgenic herbicide-resistant soybean.%通过利用4个普通优质大豆品种与3个抗除草剂转基因大豆品种进行组配,采用4×3 NCIⅠ遗传交配设计,对产量、品质等性状的遗传力和配合力进行分析.结果表明:抗除草剂Bar基因能在F代得到显性遗传,抗除草剂转基因大豆各性状以加性遗传效应为主,农大35306单株荚数和单株粒数一般配合力效应值最高,农大15751×TSB2、农大35306×TSB4等组合可作为高产优质抗除草剂组合进一步对比选择.

  5. Herbicidal cyanoacrylates with antimicrotubule mechanism of action.

    Science.gov (United States)

    Tresch, Stefan; Plath, Peter; Grossmann, Klaus

    2005-11-01

    The herbicidal mode of action of the new synthetic cyanoacrylates ethyl (2Z)-3-amino-2-cyano-4-ethylhex-2-enoate (CA1) and its isopropyl ester derivative CA2 was investigated. For initial characterization, a series of bioassays was used indicating a mode of action similar to that of mitotic disrupter herbicides such as the dinitroaniline pendimethalin. Cytochemical fluorescence studies including monoclonal antibodies against polymerized and depolymerized tubulin and a cellulose-binding domain of a bacterial cellulase conjugated to a fluorescent dye were applied to elucidate effects on cell division processes including mitosis and microtubule and cell wall formation in maize roots. When seedlings were root treated with 10 microM of CA1 or CA2, cell division activity in meristematic root tip cells decreased within 4 h. The chromosomes proceeded to a condensed state of prometaphase, but were unable to progress further in the mitotic cycle. The compounds caused a complete loss of microtubular structures, including preprophase, spindle, phragmoplast and cortical microtubules. Concomitantly, in the cytoplasm, an increase in labelling of free tubulin was observed. This suggests that the herbicides disrupt polymerization and microtubule stability, whereas tubulin synthesis or degradation appeared not to be affected. In addition, cellulose labelling in cell walls of root tip cells was not influenced. The effects of CA1 and CA2 were comparable with those caused by pendimethalin. In transgenic Arabidopsis plants expressing a green fluorescent protein-microtubule-associated protein4 fusion protein, labelled arrays of cortical microtubules in living epidermal cells of hypocotyls collapsed within 160 min after exposure to 10 microM CA1 or pendimethalin. Moreover, a dinitroaniline-resistant biotype of goosegrass (Eleusine indica (L) Gaertn) with a point mutation in alpha-tubulin showed cross-resistance against CA1 and CA2. The results strongly indicate that the cyanoacrylates are

  6. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    Science.gov (United States)

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  7. The implementation of flipped classroom model in CIE in the environment of non-target language

    Science.gov (United States)

    Xiao, Renfei; Mustofa, Ali; Zhang, Fang; Su, Xiaoxue

    2018-01-01

    This paper sets a theoretical framework that it’s both feasible and indispensable of flipping classroom in Chinese International Education (CIE) in the non-target language environments. There are mainly three sections included: 1) what is flipped classroom and why it becomes inevitable existence; 2) why should we flip the classroom in CIE environments, especially in non-target language environments; 3) take Pusat Bahasa Mandarin Universitas Negeri Surabaya as an instance to discuss the application of flipped classroom in non-target language environments.

  8. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  10. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    OpenAIRE

    Johannes Carl Gottlieb Ottow; Gero Benckiser; Ferisman Tindaon

    2011-01-01

    Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlormethylpyrazole phosphate = ClMPP and dicyandiamide = DCD) on non target microbial processes in soils. Side effects and dose response curve of three NIs were quanti...

  11. Ethical reflections on herbicide resistant crops

    DEFF Research Database (Denmark)

    Madsen, Kathrine Hauge; Sandøe, Peter

    2005-01-01

    The introduction of genetically modified (GM) crops has caused a fierce public debate in Europe.Much of the controversy centres on possible risks to the environment. A specific problem here is thatrisk perception of the scientific experts differs from that of the public. In this paper, risks asso...

  12. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Mariano Fracchiolla

    2007-12-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  13. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  14. Non Target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    Directory of Open Access Journals (Sweden)

    Pablo Tomas Fernandez-Moreno

    2016-08-01

    Full Text Available Sterile wild oat (Avena sterilis L. is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage before the beginning of summer period (due to the possibility of intense drought stress. In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha-1 for exposed (E and un-exposed (UE glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE, while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica and Lolium rigidum.

  15. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    Science.gov (United States)

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  16. Environmental Statement. Disposition of Orange Herbicide by Incineration

    Science.gov (United States)

    1974-11-01

    remote as possible from both residential and industrial population centers and from land currently in agronomic pro- duction., Vegetation should be...sparse, of little agronomic value, and of species resistant to the phenoxyacetic acid herbicides contained in Orange or to the pyrolytic products of...each to induce intoxication . The above results are summarized in Table 11-7. b. Behavior in Humans: Gehring et al., (1973) studied the effects of 2,4,5-T

  17. Herbicide Glyphosate Impact to Earthworm (E. fetida

    Directory of Open Access Journals (Sweden)

    Greta Dajoraitė

    2016-10-01

    Full Text Available Glyphosate is a broad spectrum weed resistant herbicide. Glyphosate may pose negative impact on land ecosystems because of wide broad usage and hydrofilic characteristic. The aim of this study was to investigate negative effects of glyphosate on soil invertebrate organisms (earthworm Eisenia fetida. The duration of experiment was 8 weeks. The range of the test concentrations of glyphosate were: 0,1, 1, 5, 10, 20 mg/kg. To investigate the glyphosate impact on earthworm Eisenia fetida the following endpoints were measured: survival, reproduction and weight. The exposure to 20 mg/kg glyphosate has led to the 100% mortality of earthworms. Glyphosate has led to decreased E. fetida reproduction, the cocoons were observed only in the lowest concentration (0,1 mg/kg. In general: long-term glyphosate toxicity to earthworms (E. fetida may be significant.

  18. [WMN: a negative ERPs component related to working memory during non-target visual stimuli processing].

    Science.gov (United States)

    Zhao, Lun; Wei, Jin-he

    2003-10-01

    To study non-target stimuli processing in the brain. Features of the event-related potentials (ERPs) from non-target stimuli during selective response task (SR) was compared with that during visual selective discrimination (DR) task in 26 normal subjects. The stimuli consisted of two color LED flashes (red and green) appeared randomly in left (LVF) or right (RVF) visual field with same probability. ERPs were derived at 9 electrode sites on the scalp under 2 task conditions: a) SR, making switch response to the target (NT) stimuli from LVF or RVF in one direction and making no response to the non-target (NT) ones; b) DR, making switching response to T stimuli differentially, i.e., to the left for T from LVF and to the right for T from RVF. 1) the non-target stimuli in DR conditions, compared with that in SR condition, elicited smaller P2 and P3 components and larger N2 component at the frontal brain areas; 2) a significant negative component, named as WMN (working memory negativity), appeared in the non-target ERPs during DR in the period of 100 to 700 ms post stimulation which was predominant at the frontal brain areas. According to the major difference between brain activities for non-target stimuli during SR and DR, the predominant appearance of WMN at the frontal brain areas demonstrated that the non-target stimulus processing was an active process and was related to working memory, i.e., the temporary elimination and the retrieval of the response mode which was stored in working memory.

  19. Non-targeted effects of ionising radiation. Proceedings of the RISC-RAD specialised training course

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-12-01

    The training course 'Non-targeted effects of ionising radiation' took place at the STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland 14-16 February 2005. Proceeding of this course is collected in this volume. The idea of the course was to convene a number of scientists leading in the area of non-targeted effects of ionising radiation with the aim to outline their visions for the role of these effects and outline the future directions of radiation research on the basis of their expertise. The course was supported by the RISC-RAD IP FI6R-CT-2003-508842, Euratom specific programme for research and training on nuclear energy, 6th FP of the EC. The main objectives of the training course were: (1) to clarify the mechanisms of non-targeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to look if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to clarify if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) address the issue of individual susceptibility and other factors modifying non-targeted responses; (5) attempt to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) and finally to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects

  20. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  1. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  2. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  3. Herbicide Persistence in Seawater Simulation Experiments.

    Directory of Open Access Journals (Sweden)

    Philip Mercurio

    Full Text Available Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR. The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities. Very little degradation was recorded over the standard 60 d period (Experiment 1 so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated

  4. Herbicide Persistence in Seawater Simulation Experiments

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  5. Community composition of target vs. non-target fungi in fungicide treated wheat

    DEFF Research Database (Denmark)

    Knorr, Kamilla; Jørgensen, Lise Nistrup; Justesen, Annemarie Fejer

    2012-01-01

    disease in wheat and within the last decade, new aggressive strains of yellow rust has caused severe epidemics that lead to substantial yield losses. This study explored the community composition of target versus non-target fungi in yellow rust infected wheat as affected by treatment timing and dose......Fungicide treatments are common control strategies used to manage fungal pathogens in agricultural fields, however, effects of treatments on the composition of total fungal communities, including non-target fungi, in the phyllosphere is not well known. Yellow rust (Puccinia striiformis) is a common...

  6. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  7. Non-targeted and delayed effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Zuo Yahui; Tong Jian

    2007-01-01

    Non-targeted and delayed effects are relative phenomena in cellular responses to ionizing radiation. These effects (bystander effects, genomic instability and adaptive responses) have been studied most extensively for radiation exposures. It is clear that adaptive responses, bystander effects and genomic instability will play an important role in the low dose-response to radiation. This review will provide a synthesis of the known, and proposed interrelationships amongst low-dose cellular responses to radiation, It also will examine the potential biological significance of non-targeted and delayed effects of exposure to ionizing radiation. (authors)

  8. Study on the non-target effect of ionizing radiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Wang Yan; Li Deguan; Liu Jianfeng; Chu Liping; Liu Qiang

    2008-01-01

    Objective: To assess the non-target effect of ionizing radiation by single cell gel electrophoresis (SCGE). Methods: Cross incubated the irradiated( 137 Cs; 2Gy) or non-irradiated lymphocytes of human peripheral blood in the irradiated or non-irradiated plasma respectively, then, assess the DNA damage of lymphocytes using SCGE analysis. Results: The lymphocytes incubated in the irradiated plasma presented more obvious DNA damage than the incubated in the non-irradiated plasma dose (P<0.05). Conclusion: The non-target effect of ionizing radiation can be assessed by SCGE, and the results confirm that cytokines may play a great role in it. (authors)

  9. Non-targeted effects of ionising radiation (note). A new European integrated project, 2006-2010

    International Nuclear Information System (INIS)

    Salomaa, S.; Wright, E.G.; Hildebrandt, G.; Kadhim, M.; Little, M.P.; Prise, K.M.; Belyakov, O.V.

    2007-01-01

    Complete text of publication follows. The general objectives of the NOTE project are: (1) to investigate the mechanisms of nontargeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to investigate if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to investigate if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) to investigate individual susceptibility and other factors modifying non-targeted responses; (5) to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects. The NOTE brings together 19 major European and Canadian groups involved in the discovery, characterisation and mechanistic investigation of non-targeted effects of ionising radiation in cellular, tissue and animal models. The NOTE research activities are organised in six work packages. Four work packages (WPs 2-5) are problem-oriented, focussing on major questions relevant for the scientific basis of the system of radiation protection: WP2 Mechanisms of non-targeted effects, WP3 Non-cancer diseases, WP4 Factors modifying non-targeted responses, WP5 Modelling of non-targeted effects. The integration activities provided by WP6 strengthen the collaboration by supporting the access to infrastructures, mobility and training. WP7 provides dissemination and exploitation activities in the form of workshops and a public website. Managerial activities (WP1) ensure the organisation and structures for decision making, monitoring of progress, knowledge management and efficient flow of information and financing. Coordinator of the NOTE project is Prof

  10. Overview of glyphosate-resistant weeds worldwide.

    Science.gov (United States)

    Heap, Ian; Duke, Stephen O

    2018-05-01

    Glyphosate is the most widely used and successful herbicide discovered to date, but its utility is now threatened by the occurrence of several glyphosate-resistant weed species. Glyphosate resistance first appeared in Lolium rigidum in an apple orchard in Australia in 1996, ironically the year that the first glyphosate-resistant crop (soybean) was introduced in the USA. Thirty-eight weed species have now evolved resistance to glyphosate, distributed across 37 countries and in 34 different crops and six non-crop situations. Although glyphosate-resistant weeds have been identified in orchards, vineyards, plantations, cereals, fallow and non-crop situations, it is the glyphosate-resistant weeds in glyphosate-resistant crop systems that dominate the area infested and growing economic impact. Glyphosate-resistant weeds present the greatest threat to sustained weed control in major agronomic crops because this herbicide is used to control weeds with resistance to herbicides with other sites of action, and no new herbicide sites of action have been introduced for over 30 years. Industry has responded by developing herbicide resistance traits in major crops that allow existing herbicides to be used in a new way. However, over reliance on these traits will result in multiple-resistance in weeds. Weed control in major crops is at a precarious point, where we must maintain the utility of the herbicides we have until we can transition to new weed management technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Sensor-based assessment of herbicide effects

    DEFF Research Database (Denmark)

    Streibig, Jens Carl; Rasmussen, Jesper; Andújar, D.

    2014-01-01

    Non-destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days...... after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron-methyl. The objective was to compare ED50s for crops and weeds derived...... by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide...

  12. Sorption behaviour of herbicides in soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Wiendl, F.M.; Ruegg, E.F.; Instituto Biologico, Sao Paulo

    1988-01-01

    Environmental contamination by herbicides is related with the sorption phenomenon of these compounds in the soils. The behaviour of paraquat, 2,4-D and diuron was studied in soils with different physico-chemical properties, through the Freundlich adsorption and desorption isotherms, using 14 C-radiolabeled herbicides. Results of the range of the adsorption-desorption of each herbicide was related mainly with the chemical characteristics of these compounds. (author) [pt

  13. Delivery of calibration workshops covering herbicide application equipment : final report.

    Science.gov (United States)

    2014-03-31

    Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...

  14. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry.

    Science.gov (United States)

    Hakme, E; Lozano, A; Gómez-Ramos, M M; Hernando, M D; Fernández-Alba, A R

    2017-10-01

    This work presents a non-targeted screening approach for the detection and quantitation of contaminants in bees and pollen, collected from the same hive, by GC-EI-ToF-MS. It consists of a spectral library datasets search using a compound database followed by a manual investigation and analytical standard confirmation together with semi-quantitation purposes. Over 20% of the compounds found automatically by the library search could not be confirmed manually. This number of false positive detections was mainly a consequence of an inadequate ion ratio criterion (±30%), not considered in the automatic searching procedure. Eight compounds were detected in bees and pollen. They include insecticides/acaricides (chlorpyrifos, coumaphos, fluvalinate-tau, chlorfenvinphos, pyridaben, and propyl cresol) at a concentration range of 1-1207 μg kg -1 , herbicides (oxyfluorfen) at a concentration range of 212-1773 μg kg -1 and a growth regulator hormone (methoprene). Some compounds were detected only in pollen; such as herbicides (clomazone), insecticides/acaricides and fungicides used to control Varroa mites as benzylbenzoate, bufencarb, allethrin, permethrin, eugenol and cyprodinil. Additional compounds were detected only in bees: flamprop-methyl, 2-methylphenol (2-49 μg kg -1 ) and naphthalene (1-23 μg kg -1 ). The proposed method presents important advantages as it can avoid the use of an unachievable number of analytical standards considered target compounds "a priori" but not present in the analyzed samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  16. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  17. Non-targeted plasma metabolome of early and late lactation gilts

    Science.gov (United States)

    Female pigs nursing their first litter (first-parity gilts) have increased energy requirements not only to support their piglets, but they themselves are still maturing. Non-targeted plasma metabolomics were used to investigate the differences between (1) post-farrowing and weaning (early or late l...

  18. Effects of suction-dredging for cockles on non-target fauna in the Wadden Sea

    NARCIS (Netherlands)

    Hiddink, JG

    2003-01-01

    Suction dredging for cockles removes large cockles from tidal flats and may also cause mortality of non-target fauna and make the habitat less suitable for some species. This study examines whether suction dredging for cockles on tidal flats of the Dutch Wadden Sea had affected densities of

  19. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    International Nuclear Information System (INIS)

    Wood, R.D.; Hutchinson, F.

    1984-01-01

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr + host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage. (author)

  20. Impact of parathion exposure on some biochemical parameters in rabbit as a non target organism

    Directory of Open Access Journals (Sweden)

    Nagat Aly

    2015-03-01

    Conclusion: The results indicated that changes in body and organ weights have been used as indicators of adverse effects of parathion and also alteration in tested enzymes activity can be used as relevant biomarkers for monitoring toxicity due to parathion exposure in non target organisms.

  1. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.D.; Hutchinson, F. (Yale Univ., New Haven, CT (USA). Dept. of Molecular Biophysics and Biochemistry)

    1984-03-05

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr/sup +/ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.

  2. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  3. Indirect Effects of Functional Communication Training on Non-Targeted Disruptive Behavior

    Science.gov (United States)

    Schieltz, Kelly M.; Wacker, David P.; Harding, Jay W.; Berg, Wendy K.; Lee, John F.; Padilla Dalmau, Yaniz C.; Mews, Jayme; Ibrahimovic, Muska

    2011-01-01

    The purpose of this study was to evaluate the effects of functional communication training (FCT) on the occurrence of non-targeted disruptive behavior. The 10 participants were preschool-aged children with developmental disabilities who engaged in both destructive (property destruction, aggression, self-injury) and disruptive (hand flapping,…

  4. Effects of neonicotinoids and fipronil on non-target invertebrates : Environmental Science and Pollution Research

    NARCIS (Netherlands)

    Pisa, L.W.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Downs, C.A.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; McField, M.; Morrissey, C.A.; Noome, D.A.; Settele, J.; Simon-Delso, N.; Stark, J.D.; Van der Sluijs, J.P.; Van Dyck, H.; Wiemers, M.

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal

  5. Can an aquatic macrophyte bioaccumulate glyphosate? A watershed scale study using a non-target hydrophyte Ludwigia peploides

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The hydrophyte Ludwigia peploides is widely distributed in South America streams, and therefore, it can be used as a biomonitor for pesticides used in agricultural production. Glyphosate is one of the main pesticides used in Argentina. This has resulted in its occurrence in non-target wetland ecosystems. The objectives of this study were to: 1) establish and validate an extraction and quantification methodology for glyphosate in L.peploides plants, and 2) evaluated the role of this species as a glyphosate biomonitor in the agricultural watershed of the El Crespo stream. For the first objective, we collected plant material in the field. The leaves were dissected and oven dried at 60° C, grinded and sieved through a 0.5 mm mesh. Different solutions were tested for the extraction step. Labeled glyphosate was used as an internal standard to evaluate the recovery rate and the matrix effect of the different extraction methods. Glyphosate was derivatized with FMOC-Cl and then quantified by ultra-performance liquid chromatography (UPLC) coupled to a mass tandem spectrometer (MS/MS). The method based on an aqueous phase extraction step 0.01 mg/mL of activated carbon as a clean-up to decrease the matrix interference had a recovery of 117 ± 20% and the matrix effect was less than 20%. This method was used to analyze the glyphosate levels in L.peploides in the El Crespo stream. For the second objective, plants of L.peploides were collected on March 2016 in eight monitoring sites of the stream from the headwaters to the stream mouth. Surface water and sediments samples were collected at the same time to calculate the bioconcentration factors (BCFs) and biota-sediment bioaccumulation factors (BSAFs). The BCFs ranged between 28.57 - 280 L/Kg and the BSAFs ranged between 2.52- 30.66 at different sites. These results indicate that L.peploides can bioaccumulated glyphosate in its leaves and the major bioavailability is given mainly by the herbicide molecules present in surface

  6. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  7. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    Science.gov (United States)

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  8. Response of Saw Palmetto to Three Herbicides

    Science.gov (United States)

    J.L. Michael; D.G. Neary

    1985-01-01

    Saw palmetto [Serona repens (Bartram) Small] can be controlled with herbicides. Garion® 4E1/2 and Brush Killer® 800 were evaluated for effectiveness againest saw palmetto when they were applied at three rates in April, June, and August. Oust® was tested at three rates in April only. Herbicides were not effective with April...

  9. SELECTIVITY OF DIFFERENT HERBICIDES TO COWPEA

    Directory of Open Access Journals (Sweden)

    Francisco Aires Sizenando Filho2

    2013-12-01

    1.5 = recommended rate + half the recommended rate. At the end of the experiment it was found that: the cowpea showed phytotoxicity to use herbicide among 14 and 21 AAD; the herbicides diuron and metolachlor showed a rate "middle" in control weed, while the pendimethalin wasn't efficient for those function.

  10. Herbicide residues in grapes and wine.

    Science.gov (United States)

    Ying, G G; Williams, B

    1999-05-01

    The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.

  11. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  12. Imazapyr (herbicide) seed dressing increases yield, suppresses ...

    African Journals Online (AJOL)

    from damage. In 1998/99 season, a trial was initiated at Chitedze Research Station under artificial infection, to evaluate the effects of seed dressing with imazapyr (an acetolactate synthase {ALS} inhibiting herbicide) using three seed treatment methods (coating, priming or drenching) and three herbicide rates (15, 30 and 45 ...

  13. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  14. Environmental toxicology: Degradation of herbicides

    International Nuclear Information System (INIS)

    Corbin, F.T.; Monaco, T.J.; Bjelk, L.A.

    1991-01-01

    This chapter focuses on the advances that have been made for the quantitative analysis of radiotracers in thin-layer chromatography through the development of computer controlled imaging proportional counters (IPC). IPC has been developed to give high sensitivity digital data from an entire TLC separation in one measurement. The imaging capability provides a 100 percent improvement over mechanical scanners. Sensitivity is 100 DPM or less with 14 C and higher energy isotopes. Investigations of herbicide metabolism in plant cell suspension cultures are presented with procedures for the use of this technique

  15. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric

    2013-01-01

    and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly......Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects....... Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE...

  16. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action.

    Science.gov (United States)

    Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa

    2017-07-01

    The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha -1 . The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y II , and F v /F m ) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    International Nuclear Information System (INIS)

    Pellissier, Loïc; Wisz, Mary S; Strandberg, Beate; Damgaard, Christian

    2014-01-01

    Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were not phylogenetically conserved. Species richness also decreased with increasing levels of nitrogen and glyphosate. Our results suggest that predicting the cumulative effects of agrochemicals is more complex than anticipated due to their distinct selection of traits that may or may not be conserved phylogenetically. Precautionary efforts to mitigate drift of agricultural chemicals into semi-natural habitats are warranted to prevent unforeseeable biodiversity shifts. (paper)

  18. Effects of seed mixture sowing with transgenic Bt rice and its parental line on the population dynamics of target stemborers and leafrollers, and non-target planthoppers.

    Science.gov (United States)

    Li, Zhuo; Li, Li-Kun; Liu, Bin; Wang, Long; Parajulee, Megha N; Chen, Fa-Jun

    2018-01-24

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impacts on both target and non-target pests. In this study, we examined the potential effects of intra-specific seed mixture sowing with transgenic Bt rice (Bt) and its parental non-transgenic line (Nt) (100% Bt rice [Bt 100 ], 5% Nt+95% Bt [Nt 05 Bt 95 ], 10% Nt+90% Bt [Nt 10 Bt 90 ], 20% Nt+80% Bt [Nt 20 Bt 80 ], 40% Nt+60% Bt [Nt 40 Bt 60 ] and 100% Nt rice [Nt 100 ]) on target and non-target pests in a 2-year field trial in southern China. The occurrence of target pests, Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis, decreased with the increased ratio of Bt rice, and the mixture ratios with more than 90% Bt rice (Bt 100 and Nt 05 Bt 95 ) significantly increased the pest suppression efficiency, with the lowest occurrences of non-target planthoppers, Nilaparvata lugens and Sogatella furcifera in Nt 100 and Nt 05 Bt 95 . Furthermore, there were no significant differences in 1000-grain dry weight and grain dry weight per 100 plants between Bt 100 and Nt 05 Bt 95 . Seed mixture sowing of Bt rice with ≤10% (especially 5%) of its parent line was sufficient to overcome potential compliance issues that exist with the use of block or structured refuge to provide most effective control of both target and non-target pests without compromising the grain yield. It is also expected that the strategy of seed mixture sowing with transgenic Bt rice and the non-transgenic parental line would provide rice yield stability while decreasing the insecticide use frequency in rice production. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  19. Impact of genetically modified maize expressing Cry 3Bb1 on some non-target arthropods

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Svobodová, Zdeňka; Habuštová, Oxana; Půža, Vladimír; Sehnal, František

    2012-01-01

    Roč. 8, č. 10 (2012), s. 5124-5131 ISSN 1819-544X R&D Projects: GA MZe QH91093 Grant - others:projekt MOBITAG(CZ) REGPOT-2008-1, GA 229518 Institutional support: RVO:60077344 Keywords : MON 88017 * Cry3Bb1 * non-target organisms Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection http://www.aensiweb.com/jasr/jasr/2012/5124-5131.pdf

  20. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  1. Study of target and non-target interplay in spatial attention task.

    Science.gov (United States)

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  2. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  3. Morphological Effect of Non-targeted Biomolecule-Modified MNPs on Reticuloendothelial System.

    Science.gov (United States)

    Li, Xiao; Hu, Yan; Xiao, Jie; Cheng, Dengfeng; Xiu, Yan; Shi, Hongcheng

    2015-12-01

    Magnetic nanoparticles (MNPs) with special morphology were commonly used as biomaterials, while morphological effects of non-targeted biomolecule-modified MNPs on biological behaviors were still unclear. In this research, spherical and rod-like Fe3O4 in a comparable size were synthesized and then surface-modified by bovine serum albumin (BSA) as a model of non-targeted biomolecule-modified MNPs. Morphological effects were featured by TEM and quantification of in vitro phagocytic uptake, as well as the in vivo quantification of particles in reticuloendothelial system (RES)-related organs of normal Kunming mice. For these non-targeted BSA-modified MNPs, intracellular distributions were the same, but the rod-like MNPs were more likely to be uptake by macrophages; furthermore, the BSA-modified MNPs gathered in RES-related organs soon after intravenous injection, but the rod-like ones were expelled from the lung more quickly and expelled from the spleen more slowly. These preliminary results may be referable if MNPs or other similar biomolecule-modified nanoparticles were used.

  4. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  5. Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia.

    Science.gov (United States)

    Cha, Thye San; Najihah, Mohamed Ghazani; Sahid, Ismail Bin; Chuah, Tse Seng

    2014-05-01

    Eleusine indica (goosegrass) populations resistant to fluazifop, an acetyl-CoA carboxylase (ACCase: EC6.4.1.2)-inhibiting herbicide, were found in several states in Malaysia. Dose-response assay indicated a resistance factor of 87.5, 62.5 and 150 for biotypes P2, P3 and P4, respectively. DNA sequencing and allele-specific PCR revealed that both biotypes P2 and P3 exhibit a single non-synonymous point mutation from TGG to TGC that leads to a well known Trp-2027-Cys mutation. Interestingly, the highly resistant biotype, P4, did not contain any of the known mutation except the newly discovered target point Asn-2097-Asp, which resulted from a nucleotide change in the codon AAT to GAT. ACCase gene expression was found differentially regulated in the susceptible biotype (P1) and highly resistant biotype P4 from 24 to 72h after treatment (HAT) when being treated with the recommended field rate (198gha(-1)) of fluazifop. However, the small and erratic differences of ACCase gene expression between biotype P1 and P4 does not support the 150-fold resistance in biotype P4. Therefore, the involvement of the target point Asn-2097-Asp and other non-target-site-based resistance mechanisms in the biotype P4 could not be ruled out. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Design, Synthesis, and Herbicidal Activity of Pyrimidine-Biphenyl Hybrids as Novel Acetohydroxyacid Synthase Inhibitors.

    Science.gov (United States)

    Li, Ke-Jian; Qu, Ren-Yu; Liu, Yu-Chao; Yang, Jing-Fang; Devendar, Ponnam; Chen, Qiong; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

    2018-04-18

    The issue of weed resistance to acetohydroxyacid synthase (EC 2.2.1.6, AHAS) inhibitors has become one of the largest obstacles for the application of this class of herbicides. In a continuing effort to discover novel AHAS inhibitors to overcome weed resistance, a series of pyrimidine-biphenyl hybrids (4aa-bb and 5aa-ah) were designed and synthesized via a scaffold hopping strategy. Among these derivatives, compounds 4aa ( K i = 0.09 μM) and 4bb ( K i = 0.02 μM) displayed higher inhibitory activities against Arabidopsis thaliana AHAS than those of the controls bispyribac ( K i = 0.54 μM) and flumetsulam ( K i = 0.38 μM). Remarkably, compounds 4aa, 4bb, 5ah, and 5ag exhibited excellent postemergence herbicidal activity and a broad spectrum of weed control at application rates of 37.5-150 g of active ingredient (ai)/ha. Furthermore, 4aa and 4bb showed higher herbicidal activity against AHAS inhibitor-resistant Descurainia sophia, Ammannia arenaria, and the corresponding sensitive weeds than that of bispyribac at 0.94-0.235 g ai/ha. Therefore, the pyrimidine-biphenyl motif and lead compounds 4aa and 4bb have great potential for the discovery of novel AHAS inhibitors to combat AHAS-inhibiting herbicide-resistant weeds.

  7. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.).

    Science.gov (United States)

    Chesworth, J C; Donkin, M E; Brown, M T

    2004-02-25

    The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- microg/l and 10-day EC50 values of 1.1 and 3.2 microg/l, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 microg/l, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of

  8. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    Science.gov (United States)

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  9. Kommentarer til opdateret risikovurdering og ansøgning. Gossypium hirsutum (281-24-236/3006-210-23), Insect resistance by Bt-toxin (lepidoptera) X Insect resistance by Bt-toxin (coleoptera); herbicide tolerance to glyphosate. Modtaget 03-04-2006, deadline 02-05-2006, svar 07-04-2006

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta; Strandberg, Morten Tune; Christensen, Christian Dam

    2006-01-01

    tolerante over for insektangreb fra larver af forskellige sommerfuglearter. Desuden indeholder bomulden et gen, der gør den tolerant overfor glufosinat-ammonium herbicider. Bomulden søges kun godkendt til import af frø samt forarbejdning og anvendelse til dyrefoder og fødevarer, men ikke til dyrkning eller...

  10. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates

    Czech Academy of Sciences Publication Activity Database

    Hoyerová, Klára; Hošek, Petr; Quareshy, M.; Li, J.; Klíma, Petr; Kubeš, Martin; Yemm, A. A.; Neve, P.; Tripathi, A.; Bennett, M.J.; Napier, R. M.

    2018-01-01

    Roč. 217, č. 4 (2018), s. 1625-1639 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA16-19557S; GA MŠk LD15137 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin transport * cheminformatics * herbicide * herbicide resistance * molecular field maps * pharmacophore * structure–activity relationship * uptake carrier Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  11. Metabolism of the herbicide glufosinate-ammonium in plant cell cultures of transgenic (rhizomania-resistant) and non-transgenic sugarbeet (Beta vulgaris), carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium).

    Science.gov (United States)

    Müller, B P; Zumdick, A; Schuphan, I; Schmidt, B

    2001-01-01

    The metabolism of the herbicide glufosinate-ammonium was investigated in heterotrophic cell suspension and callus cultures of transgenic (bar-gene) and non-transgenic sugarbeet (Beta vulgaris). Similar studies were performed with suspensions of carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium). 14C-labelled chemicals were the (racemic) glufosinate, L-glufosinate, and D-glufosinate, as well as the metabolites N-acetyl L-glufosinate and 3-(hydroxymethylphosphinyl)propionic acid (MPP). Cellular absorption was generally low, but depended noticeably on plant species, substance and enantiomer. Portions of non-extractable residues ranged from 0.1% to 1.2% of applied 14C. Amounts of soluble metabolites resulting from glufosinate or L-glufosinate were between 0.0% and 26.7% of absorbed 14C in non-transgenic cultures and 28.2% and 59.9% in transgenic sugarbeet. D-Glufosinate, MPP and N-acetyl L-glufosinate proved to be stable. The main metabolite in transgenic sugarbeet was N-acetyl L-glufosinate, besides traces of MPP and 4-(hydroxymethylphosphinyl)butanoic acid (MPB). In non-transgenic sugarbeet, glufosinate was transformed to a limited extent to MPP and trace amounts of MPB. In carrot, D stramonium and D purpurea, MPP was also the main product; MPB was identified as a further trace metabolite in D stramonium and D purpurea.

  12. Mixtures of herbicides and metals affect the redox system of honey bees.

    Science.gov (United States)

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessing risks to non-target species during poison baiting programs for feral cats.

    Directory of Open Access Journals (Sweden)

    Tony Buckmaster

    Full Text Available Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus. These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.

  14. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    Science.gov (United States)

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  15. Assessing risks to non-target species during poison baiting programs for feral cats.

    Science.gov (United States)

    Buckmaster, Tony; Dickman, Christopher R; Johnston, Michael J

    2014-01-01

    Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus). These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV) that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii) was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.

  16. Evaluation of a non-targeted "Omic"' approach in the safety assessment of genetically modified plants

    DEFF Research Database (Denmark)

    Metzdorff, Stine Broeng; Kok, E. J.; Knuthsen, Pia

    2006-01-01

    -time PCR, and High Performance Liquid Chromatography. Analysis by cDNA microarray was used as a non-targeted approach for the identification of potential unintended effects caused by the transformation. The results revealed that, although the transgenic lines possessed different types of integration events...... has the potential to become a useful tool for screening of unintended effects, but state that it is crucial to have substantial information on the natural variation in traditional crops in order to be able to interpret "ornics" data correctly within the framework of food safety assessment strategies...

  17. Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture.

    Science.gov (United States)

    Kraehmer, Hansjoerg; Laber, Bernd; Rosinger, Chris; Schulz, Arno

    2014-11-01

    The purpose of modern industrial herbicides is to control weeds. The species of weeds that plague crops today are a consequence of the historical past, being related to the history of the evolution of crops and farming practices. Chemical weed control began over a century ago with inorganic compounds and transitioned to the age of organic herbicides. Targeted herbicide research has created a steady stream of successful products. However, safeners have proven to be more difficult to find. Once found, the mode of action of the safener must be determined, partly to help in the discovery of further compounds within the same class. However, mounting regulatory and economic pressure has changed the industry completely, making it harder to find a successful herbicide. Herbicide resistance has also become a major problem, increasing the difficulty of controlling weeds. As a result, the development of new molecules has become a rare event today. © 2014 American Society of Plant Biologists. All Rights Reserved.

  18. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2017-08-01

    Full Text Available Non-target-site resistance (NTSR to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol. population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK, water-only control (WCK, and mesosulfuron-methyl treatment (T of R and susceptible (S. Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450 genes, two glutathione S-transferase (GST genes, two glucosyltransferase (GT genes, two ATP-binding cassette (ABC transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence

  19. The effect of lindane on non-target fauna in a maize agro-ecosystem in Zambia

    International Nuclear Information System (INIS)

    Deedat, Y.D.; Chanda, S.; Chivundu, A.M.; Kalembe, G.; Mecha, C.D.

    1997-01-01

    The effect of lindane on non-target fauna in a maize agro-ecosystem was studied in Zambia in 1992 and 1993. While lindane was effective against the stalk borers, a target pest, it also affected other non-target fauna. Ants, spiders and springtails were significantly reduced. However the effect was only transient and lasted for approximately two months. Lindane appeared to have no real effect on aerial non-target fauna or on soil inhabiting microorganisms. (author). 8 refs, 6 tabs

  20. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    Science.gov (United States)

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  2. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  3. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  4. Assessment of Total Risk on Non-Target Organisms in Fungicide Application for Agricultural Sustainability

    Directory of Open Access Journals (Sweden)

    Ali Musa Bozdogan

    2014-02-01

    Full Text Available In Turkey, in 2010, the amount of pesticide (active ingredient; a.i. used in agriculture was about 23,000 metric tons, of which approximately 32% was fungicides. In 2012, 14 a.i. were used for fungus control in wheat cultivation areas in Adana province, Turkey. These a.i. were: azoxystrobin, carbendazim, difenoconazole, epoxiconazole, fluquinconazole, prochloraz, propiconazole, prothioconazole, pyraclostrobin, spiroxamine, tebuconazole, thiophanate-methyl, triadimenol, and trifloxystrobin. In this study, the potential risk of a.i. on non-target organisms in fungicide application of wheat cultivation was assessed by The Pesticide Occupational and Environmental Risk (POCER indicators. In this study, the highest human health risk was for fluquinconazole (Exceedence Factor (EF 1.798 for human health, whereas the fungicide with the highest environmental risk was propiconazole (EF 2.000 for the environment. For non-target organisms, the highest potential risk was determined for propiconazole when applied at 0.1250 kg a.i. ha-1 (EF 2.897. The lowest total risk was for azoxystrobin when applied at  0.0650 kg a.i. ha-1 (EF 0.625.

  5. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE (registered trademark) and Scythe (registered trademark)

    Science.gov (United States)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season- long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of potential organic herbicides on weed control efficacy, crop injury, and y...

  6. Structure identification by Mass Spectrometry Non-Targeted Analysis using the US EPA’s CompTox Chemistry Dashboard

    Science.gov (United States)

    Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...

  7. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China

    Science.gov (United States)

    Transgenic Bt rice expressing the protoxin proteins derived from Bacillus thuringiensis Berliner (Bt) have been developed since 1989. Their ecological risks toward non-target organisms have been investigated. However, these studies were conducted individually, yielding inconsistent conclusions and u...

  8. Weed control in distress – can all weeds still be controlled with herbicides in future?

    Directory of Open Access Journals (Sweden)

    Drobny, Hans G.

    2016-02-01

    Full Text Available The introduction and availability of highly active and selective herbicides in all important field crops, in the last decades, enabled the simplification and money saving in crop rotations and agronomic measures. This resulted in respective specialized and adapted weed populations, and consequently an increasing selection of resistant populations. Since the introduction of the ALS-inhibitors (starting 1985 and the 4-HPPD-inhibitors (2001, no new MoA-Classes were registered, and there are none in the registration process. Several established herbicides were not registered or re-registered in the EU, or were severely restricted in their application. The cost and the risk to develop and register a new selective herbicide in the EU are hardly justified, in relation to their market potential. The only solution on problem fields, with resistant populations, is to change the agronomic practices, like crop rotation, soil tillage, seeding time, etc., as a precautionary principle also on still „normal“ fields. The different advising institutions have to integrate these aspects into their recommendations, besides the proper herbicide management.

  9. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    OpenAIRE

    Amar R Marathe; Anthony J Ries; Vernon J Lawhern; Vernon J Lawhern; Brent J Lance; Jonathan eTouryan; Kaleb eMcDowell; Hubert eCecotti

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  10. The effect of target and non-target similarity on neural classification performance: a boost from confidence

    OpenAIRE

    Marathe, Amar R.; Ries, Anthony J.; Lawhern, Vernon J.; Lance, Brent J.; Touryan, Jonathan; McDowell, Kaleb; Cecotti, Hubert

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  11. Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions

    Science.gov (United States)

    Rattner, Barnett A.; Mastrota, F. Nicholas; van den Brink, Nico; Elliott, J.; Shore, R.; Rattner, B.

    2018-01-01

    Much of our understanding of anticoagulant rodenticide toxicity to non-target wildlife has been derived from molecular through whole animal research and registration studies in domesticated birds and mammals, and to a lesser degree from trials with captive wildlife. Using these data, an adverse outcome pathway identifying molecular initiating and anchoring events (inhibition of vitamin K epoxide reductase, failure to activate clotting factors), and established and plausible linkages (coagulopathy, hemorrhage, anemia, reduced fitness) associated with toxicity, is presented. Controlled exposure studies have demonstrated that second-generation anticoagulant rodenticides (e.g., brodifacoum) are more toxic than first- and intermediate-generation compounds (e.g., warfarin, diphacinone), however the difference in potency is diminished when first- and intermediate-generation compounds are administered on multiple days. Differences in species sensitivity are inconsistent among compounds. Numerous studies have compared mortality rate of predators fed prey or tissue containing anticoagulant rodenticides. In secondary exposure studies in birds, brodifacoum appears to pose the greatest risk, with bromadiolone, difenacoum, flocoumafen and difethialone being less hazardous than brodifacoum, and warfarin, coumatetralyl, coumafuryl, chlorophacinone and diphacinone being even less hazardous. In contrast, substantial mortality was noted in secondary exposure studies in mammals ingesting prey or tissue diets containing either second- or intermediate-generation compounds. Sublethal responses (e.g., prolonged clotting time, reduced hematocrit and anemia) have been used to study the sequelae of anticoagulant intoxication, and to some degree in the establishment of toxicity thresholds or toxicity reference values. Surprisingly few studies have undertaken histopathological evaluations to identify cellular lesions and hemorrhage associated with anticoagulant rodenticide exposure in non-target

  12. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs.

    Science.gov (United States)

    Leite, Germano L D; de Paulo, Paula D; Zanuncio, José C; Tavares, Wagner De S; Alvarenga, Anarelly C; Dourado, Luan R; Bispo, Edilson P R; Soares, Marcus A

    2017-01-02

    Selective agrochemicals including herbicides that do not affect non-target organisms such as natural enemies are important in the integrated pest management (IPM) programs. The aim of this study was to evaluate the herbicide toxicity, selectivity and hormesis of nicosulfuron, recommended for the corn Zea mays L. (Poaceae) crop, on 10 Trichogrammatidae (Hymenoptera) species. A female of each Trichogramma spp. or Trichogrammatoidea annulata De Santis, 1972 was individually placed in plastic test tubes (no choice) with a cardboard containing 45 flour moth Anagasta ( = Ephestia) kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs. Parasitism by these natural enemies was allowed for 48 h and the cardboards were sprayed with the herbicide nicosulfuron at 1.50 L.ha -1 , along with the control (only distilled water). Nicosulfuron reduced the emergence rate of Trichogramma bruni Nagaraja, 1983 females, but increased that of Trichogramma pretiosum Riley, 1879, Trichogramma acacioi Brun, Moraes and Smith, 1984 and T. annulata females. Conversely, this herbicide increased the emergence rate of Trichogramma brasiliensis Ashmead, 1904, T. bruni, Trichogramma galloi Zucchi, 1988 and Trichogramma soaresi Nagaraja, 1983 males and decreased those of T. acacioi, Trichogramma atopovilia Oatman and Platner, 1983 and T. pretiosum males. In addition, nicosulfuron reduced the sex ratio of T. galloi, Trichogramma bennetti Nagaraja and Nagarkatti, 1973 and T. pretiosum and increased that of T. acacioi, T. bruni, T. annulata, Trichogramma demoraesi Nagaraja, 1983, T. soaresi and T. brasiliensis. The herbicide nicosulfuron was "harmless" (class 1, <30% reduction) for females and the sex ratio of all Trichogrammatidae species based on the International Organization for Biological Control (IOBC) classification. The possible hormesis effect of nicosulfuron on Trichogrammatidae species and on the bacterium Wolbachia sp. (Rickettsiales: Rickettsiaceae) was also discussed.

  13. BELVEDERE® Extra – a new high performance- herbicide in beets

    Directory of Open Access Journals (Sweden)

    Donati, Alexandra

    2014-03-01

    Full Text Available Common lambsquarters, cleavers, ladysthumb and wild buckwheat, chamomile, mercury, foolsparsleey and volunteer rapes are only some of the most important weeds in fooder and sugar beets. For the control of classical weed societies farmers can fall back on a limited number of active ingredients. Generally, Phenmedipham (PMP, Desmedipham (DMP and Ethofumesate are the basis of a spray sequence. They are complemented with other active ingredients depending on the specific weed situation. The newly formulated BELVEDERE® Extra combines the three mentioned active ingredients in an optimal ratio. Hence, the herbicide covers a very broad weed spectrum with an excellent efficacy on Common lambsquarters, cleavers, ladysthumb and wild buckwheat. BELVEDERE® EXTRA is a liquid, selective, and systemic herbicide. It is formulated as suspoemulsion so that a high efficacy is achieved while preserving a very good selectivity. The product allows for flexible control of leaf activity as an additive (e.g. OLEO FC is appended. Ethofumesate, which is mainly effective via the roots of the plant, belongs to a different HRAC group than Phenmedipham and Desmedipham. The high concentration of 200 g/L Ethofumesate leads to an effective resistance management especially regarding Fathen and other important weeds. Since 23rd of September 2013 BELVEDERE® extra is registered for post emergence splitting application (3 applications against annual dicotyledonous weeds. The maximum application rate per treatment is 1,3 L/ha. In combination with GOLTIX® TITAN® (Metamitron + Quinmerac or Goltix® Gold (Metamitron the weed spectrum is broadened. Basically, a timely application whose application rates are adapted to the location is essential for a good efficacy of beet herbicides.

  14. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    Directory of Open Access Journals (Sweden)

    Amar R Marathe

    2015-08-01

    Full Text Available Brain computer interaction (BCI technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in similar neural activity between the two classes. It is unknown how current neural-based target classification algorithms perform when qualitatively similar target and non-target images are presented. This study address this question by comparing behavioral and neural classification performance across two conditions: first, when targets were the only infrequent stimulus presented amongst frequent background distracters; and second when targets were presented together with infrequent non-targets containing similar visual features to the targets. The resulting findings show that behavior is slower and less accurate when targets are presented together with similar non-targets; moreover, single-trial classification yielded high levels of misclassification when infrequent non-targets are included. Furthermore, we present an approach to mitigate the image misclassification. We use confidence measures to assess the quality of single-trial classification, and demonstrate that a system in which low confidence trials are reclassified through a secondary process can result in improved performance.

  15. Biosafety research for non-target organism risk assessment of RNAi-based GE plants

    Science.gov (United States)

    Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220

  16. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Lorenz, Claudia; Pflugmacher, Stephan; Nuetzmann, Gunnar; Kloas, Werner; Wiegand, Claudia

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 μg L -1 ) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 μg L -1 ) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: → Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. → Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. → Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. → mRNA induction of heat shock protein 70 after one week prove protein damage.

  17. Effects of the light goose conservation order on non-target waterfowl distribution during spring migration

    Science.gov (United States)

    Dinges, Andrew J.; Webb, Elisabeth B.; Vrtiska, Mark P.

    2015-01-01

    The Light Goose Conservation Order (LGCO) was initiated in 1999 to reduce mid-continent populations of light geese (lesser snow geese Chen caerulescens and Ross's geese C. rossi). However, concern about potential for LGCO activities (i.e. hunting activities) to negatively impact non-target waterfowl species during spring migration in the Rainwater Basin (RWB) of Nebraska prompted agency personnel to limit the number of hunt days each week and close multiple public wetlands to LGCO activities entirely. To evaluate the effects of the LGCO in the RWB, we quantified waterfowl density at wetlands open and closed to LGCO hunting and recorded all hunter encounters during springs 2011 and 2012. We encountered a total of 70 hunting parties on 22 study wetlands, with over 90% of these encounters occurring during early season when the majority of waterfowl used the RWB region. We detected greater overall densities of dabbling ducks Anas spp., as well as for mallards A. platyrhynchos and northern pintails A. acuta on wetlands closed to the LGCO. We detected no effects of hunt day in the analyses of dabbling duck densities. We detected no differences in mean weekly dabbling duck densities among wetlands open to hunting, regardless of weekly or cumulative hunting encounter frequency throughout early season. Additionally, hunting category was not a predictor for the presence of greater white-fronted geese Anser albifronsin a logistic regression model. Given that dabbling duck densities were greater on wetlands closed to hunting, providing wetlands free from hunting disturbance as refugia during the LGCO remains an important management strategy at migration stopover sites. However, given that we did not detect an effect of hunt day or hunting frequency on dabbling duck density, our results suggest increased hunting frequency at sites already open to hunting would likely have minimal impacts on the distribution of non-target waterfowl species using the region for spring

  18. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  19. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J.

    2017-01-01

    of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops...... are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM...... with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries...

  20. studies on transition metal complexes of herbicidal compounds. ii

    African Journals Online (AJOL)

    a

    derivative of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine, atrazine (ATZ) --- a well known herbicide has ... development while the other is the metal ion associated degradation or deactivation of the herbicides .... Colour M.p./decomp.

  1. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  2. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  3. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster.

    Science.gov (United States)

    Sarkar, Saurabh; Roy, Sumedha

    2017-10-13

    Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration

  4. [Double-ambient CO2 concentration affects the growth, development and sucking behavior of non-target brown plant hopper Nilaparvata lugens fed on transgenic Bt rice.

    Science.gov (United States)

    Lu, Yong Qing; Dai, Yang; Yu, Xiu Ying; Yu, Fu-Lan; Jiang, Shou Lin; Zhou, Zong Yuan; Chen, Fa Jun

    2018-02-01

    In recent years, the two issues of climate change including elevated CO 2 etc., and resistance of transgenic Bt crops against non-target insect pests have received widespread attention. Elevated CO 2 can affect the herbivorous insects. To date, there is no consensus about the effect of elevated CO 2 on the suck-feeding insect pests (non-target insect pests of transgenic Bt crops). Its effects on the suck-feeding behavior have rarely been reported. In this study, CO 2 levels were set up in artificial climate chamber to examined the effects of ambient (400 μL·L -1 ) and double-ambient (800 μL·L -1 ) CO 2 levels on the suck-feeding behavior, growth, development, and reproduction of the non-target insect pest of transgenic Bt rice, brown planthopper, Nilaparvata lugens. The results showed that CO 2 level significantly affected the egg and nymph duration, longevity and body mass of adults, and feeding behavior of the 4th and 5th instar nymphs, while had no effect on the fecundity of N. lugens. The duration of eggs and nymphs, and the longevity of female adults were significantly shortened by 4.0%, 4.2% and 6.6% respectively, the proportion of the macropterous adults was significantly increased by 11.6%, and the body mass of newly hatched female adults was significantly decreased by 2.2% by elevated CO 2 . In addition, elevated CO 2 significantly enhanced the stylet puncturing efficiency of the 4th and 5th instar nymphs of N. lugens. The duration ofphloem ingestion of the N4b waveform was significantly prolonged by 60.0% and 50.1%, and the frequency significantly was increased by 230.0% and 155.9% for the 4th and 5th instar nymphs of N. lugens by elevated CO 2 , respectively. It was concluded that double-ambient CO 2 could promote the growth and development of N. lugens through enhancing its suck-feeding, shorten the generation life-span and increase the macropertous adults' proportion of N. lugens. Thus, it could result in the occurrence of non-target rice

  5. Effects of herbicides on /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Beta vulgaris (sugar beet) and Chenopodium album

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, G; Guenther, G [Paedagogische Hochschule Karl Liebknecht, Potsdam (German Democratic Republic)

    1979-01-01

    10/sup -4/ - 10/sup -6/ molar solutions of herbicides (atrazine, 2,4-D, desmetryne, diallate, diquat, feuron, lenacil, NaTa, paraquat, phenmedipham, prometryne, propham, pyrazone, and simazine) cause similar inhibitory effects on the photosynthetic /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Chenopodium album and Beta vulgaris. Correlatdion between inhibition and herbicide resistance of the whole plants could be realized for lenacil only.

  6. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  7. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  8. Herbicide Orange Site Characterization Study, Eglin AFB

    Science.gov (United States)

    1987-01-01

    F THIS PAGE Availabilit o this r is sp f o.n" the reverse of fo cove* . - .’.r. 717 CSAT CO ES ’SU JEC TE MS Coninu onrevrseif ece~ar an idntiy b...of Hardstand 7 and Surface Water Drainages ......... 4 3 Hardstand 7 Herbicide Oran&e Storage Locations .............. 5 4 Concentrations (in ppb) of...insoluble in water . The formula contained an approximate 50/50 mixture of the herbicides 2,4-dichlorophenoxyacetic acid (2,4,-D) and 2,4,5

  9. Efeito de herbicidas sobre agentes fitopatogênicos = Effect of herbicides on phytopathogenic agents

    Directory of Open Access Journals (Sweden)

    Daniel Dias Rosa

    2010-07-01

    Full Text Available Na agricultura moderna, diversas tecnologias auxiliam no aumento daprodutividade, sendo o herbicida uma delas, mas existem consequências atreladas ao seu uso, como os diversos efeitos sobre organismos não alvos. Neste trabalho, objetivou-se verificar esses efeitos sobre agentes fitopatogênicos, assim como avaliar o efeito do herbicida glyphosate sobre diversas doenças, em plantas de soja transgênicas.Verificou-se forte ação fungicida com o uso do herbicida glyphosate, assim como os outros avaliados “in vitro”, sobre os fungos testados, e os mesmos resultados foram observados nas plantas em condição de campo.In modern agriculture, several technologies have helped increase productivity, and herbicide is one of them. However, there are consequences linked to its use, such as the various effects on non-target organisms. The purpose of this work was to verify these effects on phytopathogenic agents, as well as assess the effect of glyphosate on diseases in transgenic soybean. There was a strong fungicide action using glyphosate herbicide as well as with the others evaluated in vitro regarding fungi tested. The same results were observed in plants in field conditions.

  10. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  11. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  12. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will

  13. Does Non-Targeted Community CPR Training Increase Bystander CPR Frequency?

    Science.gov (United States)

    Uber, Amy; Sadler, Richard C; Chassee, Todd; Reynolds, Joshua C

    2018-05-01

    Only 37% of out-of-hospital cardiac arrests (OHCA) receive bystander Cardiopulmonary resuscitation (CPR) in Kent County, MI. In May 2014, prehospital providers offered one-time, point-of-contact compression-only CPR training to 2,253 passersby at 7 public locations in Grand Rapids, Michigan. To assess the impact of this intervention, we compared bystander CPR frequency and clinical outcomes in regions surrounding training sites before and after the intervention, adjusting for prehospital covariates. We aimed to assess the effect of this broad, non-targeted intervention on bystander CPR frequency, type of CPR utilized, and clinical outcomes. We also tested for differences in geospatial variation of bystander CPR and clinical outcomes clustered around training sites. Retrospective, observational, before-after study of adult, EMS-treated OHCA in Kent County from January 1, 2010 to December 31, 2015. We generated a 5-kilometer radius surrounding each training site to estimate any geospatial influence that training sites might have on bystander CPR frequency in nearby OHCA cases. Chi-squared, Fisher's exact, and t-tests assessed differences in subject features. Difference-in-differences analysis with generalized estimating equation (GEE) modeling assessed bystander CPR frequency, adjusting for training site, covariates (age, sex, witnessed, shockable rhythm, public location), and clustering around training sites. Similar modeling tested for changes in bystander CPR type, return of spontaneous circulation (ROSC), survival to hospital discharge, and cerebral performance category (CPC) of 1-2 at hospital discharge. We included 899 cases before and 587 cases post-intervention. Overall, we observed no increase in the frequency of bystander CPR or favorable clinical outcomes. We did observe an increase in compression-only CPR, but this was paradoxically restricted to OHCA cases falling outside radii around training sites. In adjusted modeling, the bystander CPR training

  14. Assessing the Economic Impact of inversion tillage, cover crops, and herbicide regimes in palmer amaranth (Amaranthus palmeri) infested cotton

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) producers in Alabama and across the Cotton Belt are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers are increasingly relying on production methods that raise production costs, such as add...

  15. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  16. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    Science.gov (United States)

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and plot scales enable to evaluate the sources areas of pesticide off-site transport.

  17. Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    International Nuclear Information System (INIS)

    Shueng, Pei-Wei; Lin, Shih-Chiang; Chang, Hou-Tai; Chong, Ngot-Swan; Chen, Yu-Jen; Wang, Li-Ying; Hsieh, Yen-Ping; Hsieh, Chen-Hsi

    2009-01-01

    The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT), a new image-guided intensity modulated radiotherapy (IMRT), delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs) occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy

  18. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  19. Non-targeted effects of radiation exposure: recent advances and implications

    International Nuclear Information System (INIS)

    Kadhim, M.A.; Hill, M.A.

    2015-01-01

    The target theory of radiation-induced effects has been challenged by numerous studies, which indicate that in addition to biological effects resulting from direct DNA damage within the cell, a variety of non-DNA targeted effects (NTE) may make important contributions to the overall outcome. Ionising radiation induces complex, global cellular responses, such as genomic instability (GI) in both irradiated and never-irradiated 'bystander' cells that receive molecular signals produced by irradiated cells. GI is a well-known feature of many cancers, increasing the probability of cells to acquire the 'hallmarks of cancer' during the development of tumours. Although epidemiological data include contributions of both direct and NTE, they lack (i) statistical power at low dose where differences in dose response for NTE and direct effects are likely to be more important and (ii) heterogeneity of non-targeted responses due to genetic variability between individuals. In this article, NTE focussing on GI and bystander effects were critically examined, the specific principles of NTE were discussed and the potential influence on human health risk assessment from low-dose radiation was considered. (authors)

  20. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers.

    Science.gov (United States)

    Schaeffer, Robert N; Vannette, Rachel L; Brittain, Claire; Williams, Neal M; Fukami, Tadashi

    2017-04-01

    Nectar mediates interactions between plants and pollinators in natural and agricultural systems. Specialized microorganisms are common nectar inhabitants, and potentially important mediators of plant-pollinator interactions. However, their diversity and role in mediating pollination services in agricultural systems are poorly characterized. Moreover, agrochemicals are commonly applied to minimize crop damage, but may present ecological consequences for non-target organisms. Assessment of ecological risk has tended to focus on beneficial macroorganisms such as pollinators, with less attention paid to microorganisms. Here, using culture-independent methods, we assess the impact of two widely-used fungicides on nectar microbial community structure in the mass-flowering crop almond (Prunus dulcis). We predicted that fungicide application would reduce fungal richness and diversity, whereas competing bacterial richness would increase, benefitting from negative effects on fungi. We found that fungicides reduced fungal richness and diversity in exposed flowers, but did not significantly affect bacterial richness, diversity, or community composition. The relative abundance of Metschnikowia OTUs, nectar specialists that can impact pollination, was reduced by both fungicides. Given growing recognition of the importance of nectar microorganisms as mediators of plant-pollinator mutualisms, future research should consider the impact of management practices on plant-associated microorganisms and consequences for pollination services in agricultural landscapes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

    Science.gov (United States)

    Sánchez, Gerardo; Besada, Cristina; Badenes, María Luisa; Monforte, Antonio José; Granell, Antonio

    2012-01-01

    Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes. PMID:22761719

  2. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Prise, K.M.; Michael, B.D.; Mothersill, C.

    2002-01-01

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  3. Involvement of ways of death receptors in the target and non target effects of ionizing radiations

    International Nuclear Information System (INIS)

    Luce, A.

    2008-10-01

    Delayed cell death by mitotic catastrophe is a frequent mode of breast cancer cell death after γ-irradiation. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, TRAIL and TNF-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Receptors of the three pathways are over expressed early after irradiation and sensitize cells to apoptosis, whereas their ligands are over expressed three to four days after γ-irradiation, leading to apoptosis of the irradiated cells through a mitotic catastrophe. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands which can induce the death of sensitive bystander cells. Altogether, these results define the molecular basis of the delayed cell death induced by targeted and non-targeted effects of γ-irradiation. (author)

  4. Non-target activity detection by post-radioembolization yttrium-90 PET/CT: Image assessment technique and case examples

    Directory of Open Access Journals (Sweden)

    Yung Hsiang eKao

    2014-02-01

    Full Text Available High-resolution yttrium-90 (90Y imaging of post-radioembolization microsphere biodistribution may be achieved by conventional positron emission tomography with integrated computed tomography (PET/CT scanners that have time-of-flight capability. However, reconstructed 90Y PET/CT images have high background noise, making non-target activity detection technically challenging. This educational article describes our image assessment technique for non-target activity detection by 90Y PET/CT which qualitatively overcomes the problem of background noise. We present selected case examples of non-target activity in untargeted liver, stomach, gallbladder, chest wall and kidney, supported by angiography and 90Y bremsstrahlung single photon emission computed tomography with integrated computed tomography (SPECT/CT or technetium-99m macroaggregated albumin SPECT/CT.

  5. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  6. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  7. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  8. Effect of herbicides on microbiological properties of soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada A.

    2002-01-01

    Full Text Available Microorganisms decompose herbicides and they may serve as bioindicators of soil changes following herbicide application. Certain microbial species may be used as bioherbicides. This study has shown that Azotobacter is most sensitive to herbicide application; it is, therefore, a reliable indicator of the biological value of soil. The numbers of this group of nitrogen-fixing bacteria decrease considerably in the period of 7-14 days after herbicide application. Simultaneously, the numbers of Actinomycetes and less so of fungi increase, indicating that these microorganisms use herbicides as sources of biogenous elements. Rate of herbicidal decomposition depends on the properties of the preparation applied herbicide dose as well as on the physical and chemical soil properties, soil moisture and temperature, ground cover, agrotechnical measures applied and the resident microbial population.

  9. Glycerine associated molecules with herbicide for controlling ...

    African Journals Online (AJOL)

    ciganinha”, belongs to the family Bignoniaceae. The only way to control this plant species in crop fields is by the application of herbicides on the stump or directly on the stem. The present study aimed to analyze the effect of glycerine in controlling A.

  10. Glyphosate resistance in common ragweed (Ambrosia artemisiifolia L.)from Mississippi, USA

    Science.gov (United States)

    Glyphosate is one of the most commonly used broad-spectrum herbicides over the last 40 years. Due to widespread adoption of glyphosate-resistant (GR) crop technology, especially, corn, cotton, and soybean, several weed species in agronomic situations have developed resistance to this herbicide. Rese...

  11. Impact of weed control strategies on resistance evolution in Alopecurus myosuroides – a long-term field trial

    Directory of Open Access Journals (Sweden)

    Ulber, Lena

    2016-02-01

    Full Text Available The impact of various herbicide strategies on populations of Alopecurus myosuroides is investigated in a longterm field trial situated in Wendhausen (Germany since 2009. In the initial years of the field experiment, resistant populations were selected by means of repeated application of the same herbicide active ingredients. For the selection of different resistance profiles, herbicides with actives from different HRAC groups were used. The herbicide actives flupyrsulfuron, isoproturon und fenoxaprop-P were applied for two years on large plots. In a succeeding field trial starting in 2011, it was investigated if the now existing resistant field populations could be controlled by various herbicide strategies. Eight different strategies consisting of various herbicide combinations were tested. Resistance evolution was investigated by means of plant counts and molecular genetic analysis.

  12. Growth stage of Phalaris minor Retz. and wheat determines weed control and crop tolerance of four post-emergence herbicides

    Directory of Open Access Journals (Sweden)

    Rubia Rasool

    2017-04-01

    Full Text Available Phalaris minor Retz. has evolved multiple herbicide resistance in wheat growing areas in northwestern India. An understanding of the effect of growth stage on herbicide tolerance of wheat and control of P. minor will help in selecting the most appropriate herbicide for different situations. The weed control and crop safety of four commonly used wheat herbicides (sulfosulfuron, pinoxaden, fenoxaprop plus metribuzin and mesosulfuron plus iodosulfuron, each applied at four different wheat growth stages was investigated in field studies for two years. P. minor plants were at 1, 2-3, 3-4 and 7-8 leaf stages when the herbicides were applied at Zadok 12-Z12, Z13, Z21 and Z23 stages of wheat, respectively. Sulfosulfuron application at Z12 and Z13 wheat stages (before first irrigation, provided >80% control of P. minor and produced wheat grain yield (4.5-4.7 t/ha similar to the weed-free check (4.9 t/ha in both years. Pinoxaden, fenoxaprop plus metribuzin and mesosulfuron plus iodosulfuron application at Z12 and Z13 wheat stages recorded significantly lower wheat grain yield (3.62-3.95 t/ha due to poor weed control, crop toxicity or both. All the four herbicides were equally effective on P. minor when applied at Z21 wheat stage. At Z23 wheat stage, pinoxaden gave >90% control of P. minor and the highest wheat grain yield (4.82 t/ha. The results are expected to allow changes in the current recommendation of the timing of post-emergence herbicides for the management of P. minor in wheat.

  13. Non-targeted glycosidic profiling of international wines using neutral loss-high resolution mass spectrometry.

    Science.gov (United States)

    Barnaba, C; Dellacassa, E; Nicolini, G; Nardin, T; Serra, M; Larcher, R

    2018-07-06

    Many metabolites naturally occur as glycosides, since sugar moieties can be crucial for their biological activity and increase their water solubility. In the plant kingdom they may occur as glycosides or sugar esters, depending on precursor chemical structure, and in wine they have traditionally attracted attention due to their organoleptic properties, such as astringency and bitterness, and because they affect the colour and aroma of wines. A new approach directed at detailed description of glycosides in a large selection of monovarietal wines (8 samples each of Pinot Blanc, Muller Thurgau, Riesling, Traminer, Merlot, Pinot Noir and Cabernet Sauvignon) was developed by combining high performance liquid chromatography with high resolution tandem mass spectrometry. Analytical separation was performed on an Accucore™ Polar Premium LC column, while mass analysis was performed in negative ion mode with an non-targeted screening approach, using a Full MS/AIF/NL dd-MS 2 experiment at a resolving power of 140,000 FWHM. Over 280 glycoside-like compounds were detected, of which 133 (including low-molecular weight phenols, flavonoids and monoterpenols) were tentatively identified in the form of pentose (6), deoxyhexose (17), hexose (73), hexose-pentose (16), hexose-deoxyhexose (7), dihexose (5) and hexose ester (9) derivatives. It was not possible to univocally define the corresponding chemical structure for the remaining 149 glycosides. Non-parametric statistical analysis showed it was possible to well characterise the glycosylated profile of all red and Traminer wines, while the identified glycosides were almost entirely lacking in Pinot Blanc, Riesling and Muller Thurgau wines. Also Tukey's Honestly Significant Difference test (p wines from each other according to their glycosylated profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Nestler, Holger; Groh, Ksenia J.; Schönenberger, René; Behra, Renata; Schirmer, Kristin; Eggen, Rik I.L.; Suter, Marc J.-F.

    2012-01-01

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  15. Rapid response for invasive waterweeds at the arctic invasion front: Assessment of collateral impacts from herbicide treatments

    Science.gov (United States)

    Sethi, Suresh; Carey, Michael P.; Morton, John M.; Guerron-Orejuela, Edgar; Decino, Robert; Willette, Mark; Boersma, James; Jablonski, Jillian; Anderson, Cheryl

    2017-01-01

    The remoteness of subarctic and arctic ecosystems no longer protects against invasive species introductions. Rather, the mix of urban hubs surrounded by undeveloped expanses creates a ratchet process whereby anthropogenic activity is sufficient to introduce and spread invaders, but for which the costs of monitoring and managing remote ecosystems is prohibitive. Elodea spp. is the first aquatic invasive plant to become established in Alaska and has potential for widespread deleterious ecological and economic impacts. A rapid eradication response with herbicides has been identified as a priority invasion control strategy. We conducted a multi-lake monitoring effort to assess collateral impacts from herbicide treatment for Elodea in high latitude systems. Variability in data was driven by seasonal dynamics and natural lake-to-lake differences typical of high latitude waterbodies, indicating lack of evidence for systematic impacts to water quality or plankton communities associated with herbicide treatment of Elodea. Impacts on native macrophytes were benign with the exception of some evidence for earlier onset of leaf senescence for lily pads(Nuphar spp.) in treated lakes. We observed a substantial increase in detected native flora richness after Elodea was eradicated from the most heavily infested lake, indicating potential for retention of native macrophyte communities if infestations are addressed quickly. While avoiding introductions through prevention may be the most desirable outcome, these applications indicated low risks of non-target impacts associated with herbicide treatment as a rapid response option for Elodea in high latitude systems.

  16. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Holger [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Groh, Ksenia J.; Schoenenberger, Rene; Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); Eggen, Rik I.L. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Suter, Marc J.-F., E-mail: suter@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland)

    2012-04-15

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  17. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  18. EPA’s Non-Targeted Analysis Research Program: Expanding public data resources in support of exposure science

    Science.gov (United States)

    Suspect screening (SSA) and non-targeted analysis (NTA) methods using high-resolution mass spectrometry (HRMS) offer new approaches to efficiently generate exposure data for chemicals in a variety of environmental and biological media. These techniques aid characterization of the...

  19. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments.

    Science.gov (United States)

    Schollée, Jennifer E; Bourgin, Marc; von Gunten, Urs; McArdell, Christa S; Hollender, Juliane

    2018-05-25

    Ozonation and subsequent post-treatments are increasingly implemented in wastewater treatment plants (WWTPs) for enhanced micropollutant abatement. While this technology is effective, micropollutant oxidation leads to the formation of ozonation transformation products (OTPs). Target and suspect screening provide information about known parent compounds and known OTPs, but for a more comprehensive picture, non-target screening is needed. Here, sampling was conducted at a full-scale WWTP to investigate OTP formation at four ozone doses (2, 3, 4, and 5 mg/L, ranging from 0.3 to 1.0 gO 3 /gDOC) and subsequent changes during five post-treatment steps (i.e., sand filter, fixed bed bioreactor, moving bed bioreactor, and two granular activated carbon (GAC) filters, relatively fresh and pre-loaded). Samples were measured with online solid-phase extraction coupled to liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) using electrospray ionization (ESI) in positive and negative modes. Existing non-target screening workflows were adapted to (1) examine the formation of potential OTPs at four ozone doses and (2) compare the removal of OTPs among five post-treatments. In (1), data processing included principal component analysis (PCA) and chemical knowledge on possible oxidation reactions to prioritize non-target features likely to be OTPs. Between 394 and 1328 unique potential OTPs were detected in positive ESI for the four ozone doses tested; between 12 and 324 unique potential OTPs were detected in negative ESI. At a specific ozone dose of 0.5 gO 3 /gDOC, 27 parent compounds were identified and were related to 69 non-target features selected as potential OTPs. Two OTPs were confirmed with reference standards (venlafaxine N-oxide and chlorothiazide); 34 other potential OTPs were in agreement with literature data and/or reaction mechanisms. In (2), hierarchical cluster analysis (HCA) was applied on profiles detected in positive ESI mode across the

  20. The non-targeted effects of radiation are perpetuated by exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Irons, Sarah [Insect Virus Research Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Luo, Ping [Izon Science Ltd., The Oxford Science Park, Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA (United Kingdom); Carter, David [Chromatin and non-coding RNA, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Goodwin, Edwin [The New Mexico Consortium, Los Alamos, NM 87544 (United States); Kadhim, Munira, E-mail: mkadhim@brookes.ac.uk [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom)

    2015-02-15

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  1. The non-targeted effects of radiation are perpetuated by exosomes

    International Nuclear Information System (INIS)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim; Irons, Sarah; Luo, Ping; Carter, David; Goodwin, Edwin; Kadhim, Munira

    2015-01-01

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  2. Quantitative modeling of responses to chronic ionizing radiation exposure using targeted and non-targeted effects.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available The biological effects of chronic ionizing radiation exposure can be difficult to study, but important to understand in order to protect the health of occupationally-exposed persons and victims of radiological accidents or malicious events. They include targeted effects (TE caused by ionizations within/close to nuclear DNA, and non-targeted effects (NTE caused by damage to other cell structures and/or activation of stress-signaling pathways in distant cells. Data on radiation damage in animal populations exposed over multiple generations to wide ranges of dose rates after the Chernobyl nuclear-power-plant accident are very useful for enhancing our understanding of these processes. We used a mechanistically-motivated mathematical model which includes TE and NTE to analyze a large published data set on chromosomal aberrations in pond snail (Lymnaea stagnalis embryos collected over 16 years from water bodies contaminated by Chernobyl fallout, and from control locations. The fraction of embryo cells with aberrations increased dramatically (>10-fold and non-linearly over a dose rate range of 0.03-420 μGy/h (0.00026-3.7 Gy/year. NTE were very important for describing the non-linearity of this radiation response: the TE-only model (without NTE performed dramatically worse than the TE+NTE model. NTE were predicted to reach ½ of maximal intensity at 2.5 μGy/h (0.022 Gy/year and to contribute >90% to the radiation response slope at dose rates <11 μGy/h (0.1 Gy/year. Internally-incorporated 90Sr was possibly more effective per unit dose than other radionuclides. The radiation response shape for chromosomal aberrations in snail embryos was consistent with data for a different endpoint: the fraction of young amoebocytes in adult snail haemolymph. Therefore, radiation may affect different snail life stages by similar mechanisms. The importance of NTE in our model-based analysis suggests that the search for modulators of NTE-related signaling pathways

  3. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    Science.gov (United States)

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  4. Hydrolytic Activation Kinetics of the Herbicide Benzobicyclon in Simulated Aquatic Systems.

    Science.gov (United States)

    Williams, Katryn L; Tjeerdema, Ronald S

    2016-06-22

    Herbicide resistance is a growing concern for weeds in California rice fields. Benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has proven successful against resistant rice field weeds in Asia. A pro-herbicide, BZB forms the active agent, benzobicyclon hydrolysate (BH), in water; however, the transformation kinetics are not understood for aquatic systems, particularly flooded California rice fields. A quantitative experiment was performed to assess the primary mechanism and kinetics of BZB hydrolysis to BH. Complete conversion to BH was observed for all treatments. Basic conditions (pH 9) enhanced the reaction, with half-lives ranging from 5 to 28 h. Dissolved organic carbon (DOC) hindered transformation, which is consistent with other base-catalyzed hydrolysis reactions. BH was relatively hydrolytically stable, with 18% maximum loss after 5 days. Results indicate BZB is an efficient pro-herbicide under aqueous conditions such as those of a California rice field, although application may be best suited for fields with recirculating tailwater systems.

  5. Bio stimulation for the Enhanced Degradation of Herbicides in Soil

    International Nuclear Information System (INIS)

    Kanissery, R.G; Sims, G.K

    2011-01-01

    Cleanup of herbicide-contaminated soils has been a dire environmental concern since the advent of industrial era. Although microorganisms are excellent degraders of herbicide compounds in the soil, some reparation may need to be brought about, in order to stimulate them to degrade the herbicide at a faster rate in a confined time frame. Bio stimulation through the appropriate utilization of organic amendments and nutrients can accelerate the degradation of herbicides in the soil. However, effective use of bio stimulants requires thorough comprehension of the global redox cycle during the microbial degradation of the herbicide molecules in the soil. In this paper, we present the prospects of using bio stimulation as a powerful remediation strategy for the rapid cleanup of herbicide-polluted soils.

  6. Hazard and risk of herbicides for marine microalgae.

    Science.gov (United States)

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Environmental and health effects of the herbicide glyphosate.

    Science.gov (United States)

    Van Bruggen, A H C; He, M M; Shin, K; Mai, V; Jeong, K C; Finckh, M R; Morris, J G

    2018-03-01

    The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  9. Occurrence of dichloroacetamide herbicide safeners and co-applied herbicides in midwestern U.S. streams

    Science.gov (United States)

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2018-01-01

    Dichloroacetamide safeners (e.g., AD-67, benoxacor, dichlormid, and furilazole) are co-applied with chloroacetanilide herbicides to protect crops from herbicide toxicity. While such safeners have been used since the early 1970s, there are minimal data about safener usage, occurrence in streams, or potential ecological effects. This study focused on one of these research gaps, occurrence in streams. Seven Midwestern U.S. streams (five in Iowa and two in Illinois), with extensive row-crop agriculture, were sampled at varying frequencies from spring 2016 through summer 2017. All four safeners were detected at least once; furilazole was the most frequently detected (31%), followed by benoxacor (29%), dichlormid (15%), and AD-67 (2%). The maximum concentrations ranged from 42 to 190 ng/L. Stream detections and concentrations of safeners appear to be driven by a combination of timing of application (spring following herbicide application) and precipitation events. Detected concentrations were below known toxicity levels for aquatic organisms.

  10. Uses of thaxtomin and thaxtomin compositions as herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Koivunen, Marja; Marrone, Pamela

    2016-12-27

    There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems.

  11. Phalaris minor control, resistance development and strategies for ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... strategies for integrated management of resistance to fenoxaprop-ethyl ... 1University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan. ... However, tillage method, planting time, method of herbicide.

  12. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    Science.gov (United States)

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  13. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.

    Science.gov (United States)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per

    2017-06-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.

  14. Scientific Opinion on the assessment of potential impacts of genetically modified plants on non-target organisms

    DEFF Research Database (Denmark)

    Arpaia, Salvatore; Bartsch, Detlef; Delos, Marc

    The European Food Safety Authority (EFSA) asked the Panel on Genetically Modified Organisms to establish a self-tasking Working Group with the aim of (1) producing a scientific review of the current guidance of the GMO Panel for Environmental Risk Assessment (ERA), focusing on the potential impacts...... of GM plants on Non-Target Organisms (NTOs), (2) proposing criteria for NTOs selection, and (3) providing advise on standardized testing methodology. This initiative was undertaken in response to a need and request from a wide range of stakeholders, including the European Commission and Member States....... In first instance, the self-tasking Working Group on Non-Target Organisms (EFSA NTO WG) mainly considered impacts of GM plants on invertebrate species, but also took account of ecosystem functions that could be altered. The EFSA NTO WG considered the necessity for clear and objective protection goals...

  15. Non-target effects of the entomopathogenic fungus Metarhizium brunneum (BIPESCO 5/F52) on predatory arthropods

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete

    females in the presence of M. brunneum revealed that gravid A. aphidimyza are able to perceive the risk posed by M. brunneum and react to that by choosing a pathogen-free site for offspring. In conclusion, non-target effects of M. brunneum on predatory arthropods may be expected. However, knowledge......The overall objective of this PhD thesis was to investigate the interactions that may occur when combining natural enemies of an herbivore. This was done by assessing the non-target effects of the generalist entomopathogenic fungus Metarhizium brunneum on four different predatory arthropods...... of the life cycles of the predatory arthropods and the optimal timing for releasing the natural enemies can reduce the risk of antagonistic interactions. Findings confirm that A. aphidimyza females are able to change their oviposition behavior in the presence of the entomopathogen. It furthermore confirms...

  16. Non-target trials with Pseudomonas fluorescens strain CL145A, a lethal control agent of dreissenid mussels (Bivalvia: Dreissenidae

    Directory of Open Access Journals (Sweden)

    Daniel P. Molloy

    2013-01-01

    Full Text Available In an effort to develop an efficacious and environmentally safe method for managing zebra mussels (Dreissena polymorpha and quaggamussels (Dreissena rostriformis bugensis, we initiated a research project investigating the potential use of bacteria and their naturalmetabolic products as biocontrol agents. This project resulted in the discovery of an environmental isolate lethal to dreissenid mussels,Pseudomonas fluorescens strain CL145A (Pf-CL145A. In previous published reports we have demonstrated that: 1 Pf-CL145A’s mode ofaction is intoxication (not infection; 2 natural product within ingested bacterial cells lyse digestive tract epithelial cells leading to dreisseniddeath; and 3 high dreissenid kill rates (>90% are achievable following treatment with Pf-CL145A cells, irrespective of whether thebacterial cells are dead or alive. Investigating the environmental safety of Pf-CL145A was also a key element in our research efforts, andherein, we report the results of non-target trials demonstrating Pf-CL145A’s high specificity to dreissenids. These acute toxicity trials weretypically single-dose, short-term (24-72 h exposures to Pf-CL145A cells under aerated conditions at concentrations highly lethal todreissenids (100 or 200 mg/L. These trials produced no evidence of mortality among the ciliate Colpidium colpoda, the cladoceran Daphniamagna, three fish species (Pimephales promelas, Salmo trutta, and Lepomis macrochirus, and seven bivalve species (Mytilus edulis,Pyganodon grandis, Pyganodon cataracta, Lasmigona compressa, Strophitus undulatus, Lampsilis radiata, and Elliptio complanata. Lowmortality (3-27% was recorded in the amphipod Hyalella azteca, but additional trials suggested that most, if not all, of the mortality couldbe attributed to some other unidentified factor (e.g., possibly particle load or a water quality issue rather than Pf-CL145A’s dreissenidkillingnatural product. In terms of potential environmental safety, the results of

  17. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    E.Y. Kong

    2016-08-01

    Full Text Available The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio, as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP. The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf revealed through acridine orange (AO staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.

  18. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-07-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  19. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus.

    Directory of Open Access Journals (Sweden)

    Javier Atalah

    Full Text Available Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m(-2. Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m(-2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests.

  20. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    Science.gov (United States)

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  1. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    International Nuclear Information System (INIS)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-01-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  2. Simultaneous quantification of tumor uptake for targeted and non-targeted liposomes and their encapsulated contents by ICP-MS

    Science.gov (United States)

    Cheng, Zhiliang; Zaki, Ajlan Al; Hui, James Z; Tsourkas, Andrew

    2012-01-01

    Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually. PMID:22882145

  3. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  4. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  5. Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco.

    Science.gov (United States)

    Qualls, Whitney A; Müller, Gunter C; Khallaayoune, Khalid; Revay, Edita E; Zhioua, Elyes; Kravchenko, Vasiliy D; Arheart, Kristopher L; Xue, Rui-De; Schlein, Yosef; Hausmann, Axel; Kline, Daniel L; Beier, John C

    2015-02-08

    The persistence and geographical expansion of leishmaniasis is a major public health problem that requires the development of effective integrated vector management strategies for sand fly control. Moreover, these strategies must be economically and environmentally sustainable approaches that can be modified based on the current knowledge of sand fly vector behavior. The efficacy of using attractive toxic sugar baits (ATSB) for sand fly control and the potential impacts of ATSB on non-target organisms in Morocco was investigated. Sand fly field experiments were conducted in an agricultural area along the flood plain of the Ourika River. Six study sites (600 m x 600 m); three with "sugar rich" (with cactus hedges bearing countless ripe fruits) environments and three with "sugar poor" (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB, containing the toxin, dinotefuran. ATSB applications were made either with bait stations or sprayed on non-flowering vegetation. Control sites were established in both sugar rich and sugar poor environments. Field studies evaluating feeding on vegetation treated with attractive (non-toxic) sugar baits (ASB) by non-target arthropods were conducted at both sites with red stained ASB applied to non-flowering vegetation, flowering vegetation, or on bait stations. At both the sites, a single application of ATSB either applied to vegetation or bait stations significantly reduced densities of both female and male sand flies (Phlebotomus papatasi and P. sergenti) for the five-week trial period. Sand fly populations were reduced by 82.8% and 76.9% at sugar poor sites having ATSB applied to vegetation or presented as a bait station, respectively and by 78.7% and 83.2%, respectively at sugar rich sites. The potential impact of ATSB on non-targets, if applied on green non-flowering vegetation and bait stations, was low for all non-target groups as only 1% and 0.7% were stained with non-toxic bait

  6. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Science.gov (United States)

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in ...

  7. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae)

    Science.gov (United States)

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability o...

  8. Predicting herbicidal plant mortality with mobile photosynthesis meters

    NARCIS (Netherlands)

    Kempenaar, C.; Lotz, L.A.P.; Snel, J.F.H.; Smutny, V.; Zhang, H.J.

    2011-01-01

    Herbicide dose optimisation, i.e. maximising weed control and crop yield with herbicide dose, is an important part of integrated weed management strategies. However, the adoption of optimised dose technology and variable rate application has been limited because of the relatively long period between

  9. Herbicide volatilization trumps runoff losses, a multi-year investigation

    Science.gov (United States)

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  10. In vitro screening of selected herbicides on rhizosphere mycoflora ...

    African Journals Online (AJOL)

    In vitro screening of five selected herbicides at different concentrations on rhizosphere mycoflora from yellow pepper (capsicum annum L var. Nsukka yellow) seedlings at Nsukka were investigated. The herbicides employed for this study were Paraquat, Glyphosate, Primextra, Atrazine and Linuron. The isolated rhizosphere ...

  11. Effects of acetochlor (herbicide) on the survival and avoidance ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... These results suggested that acetochlor residues had negligible effects on P. birmanica and L. terrestris. Michalkova and Pekar (2009) and Yardim and Edwards (1998) also reported negligible effects of herbicide (glyphosate) on Pardosa agrestis. Although, we also observed negligible effects of herbicide.

  12. Estimation of herbicide bioconcentration in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Cerdeira

    2015-04-01

    Full Text Available Sugarcane is an important crop for sugar and biofuel production in Brazil. Growers depend greatly on herbicides to produce it. This experiment used herbicide physical-chemical and sugarcane plant physiological properties to simulate herbicide uptake and estimate the bioconcentration factor (BCF. The (BCF was calculated for the steady state chemical equilibrium between the plant herbicide concentration and soil solution. Plant-water partition coefficient (sugarcane bagasse-water partition coefficient, herbicide dilution rate, metabolism and dissipation in the soil-plant system, as well as total plant biomass factors were used. In addition, we added Tebuthiuron at rate of 5.0kg a.i. ha-1 to physically test the model. In conclusion, the model showed the following ranking of herbicide uptake: sulfentrazone > picloram >tebuthiuron > hexazinone > metribuzin > simazine > ametryn > diuron > clomazone > acetochlor. Furthermore, the highest BCF herbicides showed higher Groundwater Ubiquity Score (GUS index indicating high leaching potential. We did not find tebuthiuron in plants after three months of herbicide application

  13. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  14. economics of herbicide weed management in wheat in ethiopia ...

    African Journals Online (AJOL)

    ACSS

    Effective use of herbicides for the control of annual grass and broadleaf weeds in wheat (Triticum aestivum L.) was not a reality in Ethiopia, until in recent years. This study aimed at evaluating different post-emergence herbicides against annual grasses and broadleaf weeds in wheat for selection and incorporation into an ...

  15. Effect of four herbicides on microbial population, soil organic matter ...

    African Journals Online (AJOL)

    The effect of four herbicides (atrazine, primeextra, paraquat and glyphosate) on soil microbial population, soil organic matter and dehydrogenase activity was assessed over a period of six weeks. Soil samples from cassava farms were treated with herbicides at company recommended rates. Soil dehydrogenase activity was ...

  16. Integrated Effect of Seeding Rate, Herbicide Dosage and ...

    African Journals Online (AJOL)

    yield reductions of 26 to 63% across four bread wheat cultivars at 90 weed seedlings m-2 in. Ethiopia. Before herbicides were widely available, farmers employed cultural measures to manage weed population. Wild oat management systems have evolved to the point that producers rely on herbicides to the virtual exclusion ...

  17. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    Science.gov (United States)

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  18. Evaluation of generic and branded herbicides : technical report.

    Science.gov (United States)

    2015-03-01

    As with other generic brand products in the marketplace, generic herbicides often have a lower initial product cost than : their brand-name counterparts. While the purchase price of herbicides is important to TxDOT, it is essential to look at : more ...

  19. Selective Herbicides for Cultivation of Eucalyptus urograndis Clones

    Directory of Open Access Journals (Sweden)

    Patrick J. Minogue

    2015-01-01

    Full Text Available Competition control is essential for successful eucalyptus plantation establishment, yet few selective herbicides have been identified. Five herbicides, flumioxazin, imazamox, imazapic, oxyfluorfen, and sulfometuron methyl, were evaluated for selective weed control in the establishment of genetically modified frost tolerant Eucalyptus urograndis clones. Herbicides were applied at two or three rates, either before or after weed emergence, and compared to a nontreated control and to near-complete weed control obtained with glyphosate directed sprays. Applications prior to weed emergence were most effective for weed control and, with the exception of imazapic, all resulted in enhanced eucalyptus growth relative to the nontreated control. Among postemergent treatments, only imazamox enhanced stem volume. Among selective herbicide treatments, preemergent 2240 g ha−1 oxyfluorfen produced the best growth response, resulting in stem volume index that was 860% greater than the nontreated control, although only 15% of the volume index obtained with near-complete weed control. Imazapic was the most phytotoxic of all herbicides, resulting in 40% mortality when applied preemergent. Survival was 100% for all other herbicide treatments. This research found the previously nontested herbicides imazamox and imazapic to be effective for selective weed control and refined application rate and timing of five herbicides for use in clonal plantations.

  20. Hazard and risk of herbicides for marine microalgae

    International Nuclear Information System (INIS)

    Sjollema, Sascha B.; MartínezGarcía, Gema; Geest, Harm G. van der; Kraak, Michiel H.S.; Booij, Petra; Vethaak, A. Dick; Admiraal, Wim

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol ® 1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. - Highlights: • The hazard of herbicides for microalgae is compound and species specific. • In general a low risk although occasional potential effect levels are reached. • Current legislation does not protect marine microalgae sufficiently. - The hazard of herbicides in the coastal waters is compound and species specific and although the general risk in the field is low, occasionally potential effect levels are reached

  1. Quantitative Fractal Evaluation of Herbicide Effects on the Water-Absorbing Capacity of Superabsorbent Polymers

    Directory of Open Access Journals (Sweden)

    Renkuan Liao

    2014-01-01

    Full Text Available The water absorption capacity of superabsorbent polymers (SAPs is important for agricultural drought resistance. However, herbicides may leach into the soil and affect water absorption by damaging the SAP three-dimensional membrane structures. We used 100-mesh sieves, electron microscopy, and fractal theory to study swelling and water absorption in SAPs in the presence of three common herbicides (atrazine, alachlor, and tribenuron-methyl at concentrations of 0.5, 1.0, and 2.0 mg/L. In the sieve experiments it was found that 2.0 mg/L atrazine reduces the capacity by 9.64–23.3% at different swelling points; no significant diminution was observed for the other herbicides or for lower atrazine concentrations. We found that the hydrogel membrane pore distributions have fractal characteristics in both deionized water and atrazine solution. The 2.0 mg/L atrazine destroyed the water-retaining polymer membrane pores and reduced the water-absorbing mass by modifying its three-dimensional membrane structure. A linear correlation was observed between the fractal analysis and the water-absorbing mass. Multifractal analysis characterized the membrane pore distribution by using the range of singularity indexes Δα (relative distinguishing range of 16.54–23.44%, which is superior to single-fractal analysis that uses the fractal dimension D (relative distinguishing range of 2.5–4.0%.

  2. Sorption of Pharmaceuticals, Heavy Metals, and Herbicides to Biochar in the Presence of Biosolids.

    Science.gov (United States)

    Bair, Daniel A; Mukome, Fungai N D; Popova, Inna E; Ogunyoku, Temitope A; Jefferson, Allie; Wang, Daoyuan; Hafner, Sarah C; Young, Thomas M; Parikh, Sanjai J

    2016-11-01

    Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science

  3. Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment.

    Science.gov (United States)

    Niemeyer, Júlia Carina; de Santo, Fernanda Benedet; Guerra, Naiara; Ricardo Filho, Altair Maçaneiro; Pech, Tatiani Maria

    2018-05-01

    Despite glyphosate-based herbicides are widely used in agriculture, forestry and gardens, little is known about its effects on non-target organisms. The present work evaluated the ecotoxicity of four formulated products (Roundup ® Original, Trop ® , Zapp ® Qi 620 and Crucial ® ) on soil invertebrates. Screening ecotoxicity tests were carried out with soil and oat straw collected in a field experiment, besides laboratory-spiked soils. Screening tests included avoidance behaviour of earthworms (Eisenia andrei), collembolans (Folsomia candida) and isopods (Porcellio dilatatus) in single and multispecies tests; reproduction of collembolans (F. candida), and bait lamina in field. Non-avoidance behaviour was observed in standard tests (earthworms) in soil, neither in multispecies tests (earthworm + isopods) using oat straw, while for collembolans it occurred for the product Zapp ® Qi 620 even at the recommended dose. Reproduction of F. candida was not impaired even at high doses in laboratory-spiked soils. Feeding activity on bait lamina test was impaired in treatment corresponding to the red label product, Crucial ® . Results showed the relevance of bait lamina test on screening the impact of herbicides in the field. The findings highlight the importance of considering different formulations for the same active ingredient in risk assessment of pesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  5. Sublethal effects of herbicides on the biomass and seed production of terrestrial non-crop plant species, influenced by environment, development stage and assessment date

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne; Lotz, Lambertus A.P.; Kropff, Martin J.J.

    2009-01-01

    Guidelines provided by the OECD and EPPO allow the use of single-species tests performed in greenhouses to assess the risk of herbicides to non-target terrestrial plant communities in the field. The present study was undertaken to investigate the use of greenhouse data to determine effects of herbicides with a different mode of action on the biomass, seed production and emergence of field-grown plants. In addition, a single species approach was compared with a mixed species approach. Effects on the biomass of greenhouse and field-grown plants were found to be related at different effect levels, indicating that it might be possible to translate results from greenhouse studies to field situations. However, the use of single-species tests may not be valid. The response of a single plant species to sublethal herbicide dosages differed to the response of the same species grown in a mixture with other species. - The use of single-species greenhouse tests in the ecological risk assessment of crop protection products may only be valid for single species in the field, not for vegetations.

  6. Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles.

    Science.gov (United States)

    de Oliveira, Cristiane Ronchi; Fraceto, Leonardo Fernandes; Rizzi, Gisele Miglioranza; Salla, Raquel Fernanda; Abdalla, Fábio Camargo; Costa, Monica Jones; Silva-Zacarin, Elaine Cristina Mathias

    2016-04-01

    The use of agrochemicals in agriculture is intense and most of them could be carried out to aquatic environment. Nevertheless, there are only few studies that assess the effects of these xenobiotics on amphibians. Clomazone is an herbicide widely used in rice fields, where amphibian species live. Thus, those species may be threatened by non-target exposure. However, nanoparticles are being developed to be used as a carrier system for the agrochemicals. Such nanoparticles release the herbicide in a modified way, and are considered to be more efficient and less harmful to the environment. The aim of this study was to comparatively evaluate the effect of clomazone in its free form and associated with nanoparticles, in the liver of bullfrog tadpoles (Lithobates catesbeianus) when submitted to acute exposure for 96 h. According to semi-quantitative analysis, there was an increase in the frequency of melanomacrophage centres, in the accumulation of eosinophils and in lipidosis in the liver of experimental groups exposed to clomazone - in its free form and associated with nanoparticles - in comparison with the control group, and the nanotoxicity of chitosan-alginate nanoparticles. The increase of melanomacrophage centres in all exposed groups was significant (P hepatic responses. Moreover, these results provided important data about the effect of the clomazone herbicide and organic nanoparticles, which act as carriers of agrochemicals, on the bullfrog tadpole liver. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Selectivity and stability of herbicides and herbicide combinations for the grain yield of maize (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-09-01

    Full Text Available Abstract. The research was conducted during 2012 - 2014 on pellic vertisol soil type. Under investigation was cycloxydim tolerant maize hybrid Ultrafox duo (Zea mays L.. Factor A included the years of investigation. Factor B included no treated check and 3 soil-applied herbicides – Adengo 465 SC (isoxaflutol + tiencarbazon – 440 ml/ha, Wing P (pendimethalin + dimethenamid – 4 l/ha and Lumax 538 SC (S-metolachlor + terbuthylazine + mesotrione – 4 l/ha. Factor C included no treated check and 5 foliar-applied herbicides – Stellar 210 SL (topramezon + dicamba – 1 l/ha, Principal plus (nicosulfuron + rimsulfuron + dicamba – 380 g/ha, Ventum WG (foramsulfuron + iodosulfuron – 150 g/ha, Monsun active OD (foramsulfuron + tiencarbazon – 1.5 l/ha and Laudis OD (tembotrione – 2 l/ha. In addition to these variants by conventional technology for maize growing one variant by Duo system technology is also included in the experiment. It includes soil-applied herbicide Merlin flex 480 SC (isoxaflutole – 420 g/ha and tank mixture of antigraminaceous herbicide Focus ultra (cycloxydim - 2 l/ha + antibroadleaved herbicide Kalam (tritosulfuron + dicamba – 300 g/ha. It is found that herbicide combination of soil-applied herbicide Merlin flex with tank mixture Focus ultra + Kalam by Duo system technology leads to obtaining high grain yield. High yields of maize grain are also obtained by herbicide combinations Lumax + Principal plus, Lumax + Laudis and Wing + Principal plus. The most unstable are the non-treated check and single use of soilapplied herbicides Adengo, Wing and Lumax. Technologically the most valuable are herbicide combination Merlin flex + Focus ultra + Kalam by Duo system technology, followed by combinations of foliar-applied herbicides Principal plus and Laudis with soil-applied herbicides Adengo, Wing and Lumax by conventional technology. Single use of herbicides has low estimate due to must to combine soil-applied with foliar

  8. Biotransformation and biomonitoring of phenylurea herbicide diuron.

    Science.gov (United States)

    Sharma, Priyanka; Suri, C Raman

    2011-02-01

    A Gram-positive, Micrococcus sp. strain PS-1 isolated from diuron storage site was studied for its capability of biotransformation of phenylurea herbicide diuron to a secondary metabolite, 1-(3,4-dichlorophenyl)urea (DCPU) for bioconjugation and antibody development applications. The metabolite formed associated with profound changes in bacterial cell morphology demonstrated increase in the degradation kinetics of diuron in presence of small quantity of a surfactant. The synthesized metabolite identified by chromatographic and mass spectrometry techniques was conjugated with carrier protein, and used as an immunogen for antibodies production. The generated antibody was highly specific, demonstrating excellent sensitivity against diuron. The antibody was used as receptor molecules in standard fluorescence immunoassay (FIA) format showing detection limit of 0.01 ng/mL in the optimum working concentration range of diuron with good signal precision (∼2%). The study presented first time the degradation pathway of herbicide by specific microorganism to synthesize hapten for bioconjugation and immunoassay development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Selectivity of herbicides in crambe crop

    Directory of Open Access Journals (Sweden)

    Guilherme Sasso Ferreira Souza

    2014-02-01

    Full Text Available The low productivity of crambe can be associated with many factors, among these, the competition with weeds, which reduces the yield, harvest affects and contributes to the increase in seed moisture. Therefore, this study aimed to evaluate the tolerance of crambe plants cv. FMS Brilhante to herbicides applied in preplant incorporated (PPI, preemergence (PRE, and postemergence (POST. The study was installed in a green-house and the treatments consisted of the herbicide application in: pre-plant incorporated ofdiclosulam, flumetsulam, metribuzin, and trifluralin;preemergence applicationof atrazine, diclosulam, diuron, flumetsulam, metribuzim, S-metolachlor, sulfentrazone, and trifluralin; and postemergence application ofbentazon, carfentrazone-ethyl, clefoxydim, cletodim + fenoxaprop-p-ethyl, ethoxysulfuron, fomesafen, fluazifop-p-butyl, flumioxazin, halosulfuron, imazamox, imazapic, lactofen, nicosulfuron, oxadiazon, quinclorac, and setoxydim. Visual evaluations of phytotoxicity on crambe plants were realized after applications, the seedlings were counted and the height and plant dry matter were determined in the end of the evaluation period. In conditions where the studies were conducted, we can conclude that only the trifluralin application in PRE and the application of clefoxidim+fenoxaprop-p-ethyl, fluazifop-p-butyl, quinclorac, setoxydim and clefoxydim in POST showed selectivity and potential use for FMS Brilhante crambe cultivar.

  10. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Establishing a system with Drosophila melanogaster (Diptera: Drosophilidae) to assess the non-target effects of gut-active insecticidal compounds.

    Science.gov (United States)

    Haller, Simone; Meissle, Michael; Romeis, Jörg

    2016-12-01

    Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.

  12. Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae

    Directory of Open Access Journals (Sweden)

    Saurabh Sarkar

    2018-04-01

    Full Text Available Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized with available data. Methods: Different concentrations of flubendiamide (TATA TAKUMI®, Rallis, India were introduced to larvae, pupae, and adult flies. A wide range of comparatively higher concentrations was selected for acute LC50 than chronic LC50 due to their exposure duration. Furthermore, relatively lower concentrations were introduced to larvae for assessment of emergence. Results: At chronic exposure, the effect-concentration relationship exhibited a linear response when adult emergence was considered in Drosophila melanogaster. When acute LC50 of flubendiamide in 3rd instar larvae was compared with the chronic LC50 then it was seen to be approximately 21 fold higher whereas chronic LC50 for adult flies was nearly 19 times less than the adult acute LC50. Similarly, adult emergence was seen to lower by 91.95% at 1500 µg/mL concentration. The chronic LC50 of the flubendiamide in Drosophila was approximately 170303 times more than the reported No Observed Effect Concentration (NOEC. Conclusion: Hence, the chemical, flubendiamide can induce its effects at very low concentration, far below the lethal ones. Thus, the study is of relevance for the non-target insects as well as the insect dependent organisms.

  13. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis.

    Science.gov (United States)

    Müller, Alexander; Schulz, Wolfgang; Ruck, Wolfgang K L; Weber, Walter H

    2011-11-01

    Non-target screening via high performance liquid chromatography-mass spectrometry (HPLC-MS) has gained increasingly in importance for monitoring organic trace substances in water resources targeted for the production of drinking water. In this article a new approach for evaluating the data from non-target HPLC-MS screening in water is introduced and its advantages are demonstrated using the supply of drinking water as an example. The crucial difference between this and other approaches is the comparison of samples based on compounds (features) determined by their full scan data. In so doing, we take advantage of the temporal, spatial, or process-based relationships among the samples by applying the set operators, UNION, INTERSECT, and COMPLEMENT to the features of each sample. This approach regards all compounds, detectable by the used analytical method. That is the fundamental meaning of non-target screening, which includes all analytical information from the applied technique for further data evaluation. In the given example, in just one step, all detected features (1729) of a landfill leachate sample could be examined for their relevant influences on water purification respectively drinking water. This study shows that 1721 out of 1729 features were not relevant for the water purification. Only eight features could be determined in the untreated water and three of them were found in the final drinking water after ozonation. In so doing, it was possible to identify 1-adamantylamine as contamination of the landfill in the drinking water at a concentration in the range of 20 ng L(-1). To support the identification of relevant compounds and their transformation products, the DAIOS database (Database-Assisted Identification of Organic Substances) was used. This database concept includes some functions such as product ion search to increase the efficiency of the database query after the screening. To identify related transformation products the database function

  15. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  16. The impact of a conditional cash transfer program on the utilization of non-targeted services: Evidence from Afghanistan.

    Science.gov (United States)

    Witvorapong, Nopphol; Foshanji, Abo Ismael

    2016-03-01

    While existing research suggests that health-related conditional cash transfer (CCT) programs have positive impacts on the utilization of CCT-targeted health services, little is known as to whether they also influence the utilization of non-targeted health services-defined as general health services for which program participants are not financially motivated. Based on a sample of 6649 households in a CCT program that took place in May 2009-June 2011 in Afghanistan, we evaluate the impact of the receipt of CCTs on the utilization of non-targeted health services both by women, who were direct beneficiaries of the program, and by members of their households. We estimate the outcomes of interest through four probit models, accounting for potential endogeneity of the CCT receipt and dealing with lack of credible exclusion restrictions in different ways. In comparison with the control group, the receipt of CCTs is found to be associated with an increase in the probability of utilizing non-targeted services among household members across regression models. The results are mixed, with regard to the utilization by women, suggesting that there exist non-economic barriers to health care, unique to women, that are not captured by the data. The results confirm the importance of accounting for direct as well as indirect effects in policy evaluation and suggest that future studies investigate more deeply the role of community health workers in removing non-economic barriers for Afghan women and the possibility of introducing an incentive structure to motivate them to contribute more actively to population health in Afghanistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    Science.gov (United States)

    Fischhoff, Ilya R; Keesing, Felicia; Ostfeld, Richard S

    2017-01-01

    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  18. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae (strain F52 does not reduce non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Ilya R Fischhoff

    Full Text Available Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control. Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray, habitat (lawn vs. forest, and treatment (Met52 vs. control, versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  19. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Directory of Open Access Journals (Sweden)

    Ismael Sánchez-Ramos

    2017-07-01

    Full Text Available Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey (Hemiptera: Tingidae, an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  20. Non-targeted Colonization by the Endomycorrhizal Fungus, Serendipita vermifera, in Three Weeds Typically Co-occurring with Switchgrass

    Directory of Open Access Journals (Sweden)

    Prasun Ray

    2018-01-01

    Full Text Available Serendipita vermifera (=Sebacina vermifera; isolate MAFF305830 is a mycorrhizal fungus originally isolated from the roots of an Australian orchid that we have previously shown to be beneficial in enhancing biomass yield and drought tolerance in switchgrass, an important bioenergy crop for cellulosic ethanol production in the United States. However, almost nothing is known about how this root-associated fungus proliferates and grows through the soil matrix. Such information is critical to evaluate the possibility of non-target effects, such as unintended spread to weedy plants growing near a colonized switchgrass plant in a field environment. A microcosm experiment was conducted to study movement of vegetative mycelia of S. vermifera between intentionally inoculated switchgrass (Panicum virgatum L. and nearby weeds. We constructed size-exclusion microcosms to test three different common weeds, large crabgrass (Digitaria sanguinalis L., Texas panicum (Panicum texanum L., and Broadleaf signalgrass (Brachiaria platyphylla L., all species that typically co-occur in Southern Oklahoma and potentially compete with switchgrass. We report that such colonization of non-target plants by S. vermifera can indeed occur, seemingly via co-mingled root systems. As a consequence of colonization, significant enhancement of growth was noted in signalgrass, while a mild increase (albeit not significant was evident in crabgrass. Migration of the fungus seems unlikely in root-free bulk soil, as we failed to see transmission when the roots were kept separate. This research is the first documentation of non-targeted colonization of this unique root symbiotic fungus and highlights the need for such assessments prior to deployment of biological organisms in the field.

  1. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The non-target bi-ovarian branches occlusion in fibroids embolization on resumption of menses and ovarian function

    International Nuclear Information System (INIS)

    Guo Wenbo; Yang Jianyong; Chen Wei; Zhuang Wenquan; Yao Shuzhong

    2005-01-01

    Objective: To evaluate the effect of the non-target bi-ovarian branches occlusion in fibroids embolization on resumption of menses and ovarian function. Methods: The patients with the non-target bi-ovarian branches occlusion in uterine fibroids embolization (UFE) were classified into two groups, one for lipiodol deposited in bi-ovarian areas (Group A) , another for non lipiodol deposited in ovarian areas or in single ovarian area (Group B of non lipiodol deposited in bi-ovarian areas). The statistical difference between the data of group A and group B were assessed with Fisher test. All UFE were performed with the mixture of lipiodol and pingyangmycin. The serum level of Follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) were measured before UFE and 6 months after UFE. The statistical difference between the data of before and after UFE was assessed with t test. Results: Fifteen patients [age ranged 26-46 years, average (39.00 ± 5.62) years] had been followed up for an average (30.5±6.4) months (range 16-47 months). In 12 of 15, regular menses resumed after an average of (3.0 ±0.3) weeks (range 2-6 weeks). In 3 of 15 (20%), regular menses did not resume. The sexual hormone findings of menopause were found in three cases with amenorrhea after UFE. Amenorrhea was found in three cases with lipiodol deposited in bi-ovarian areas (Group A). Non-amenorrhea was found in the group of non-lipiodol deposited in bi-ovarian areas (Group B). There were significant statistical difference between Group A and Group B (P=0.002 19). Non amenorrhea was found in the patients aged over 45 years old. Three patients were found amenorrhea in the patients aged younger than 45 years old. There were no significant statistical difference between the serum level of FSH, LH and E2 before and 6 months after UFE (P>0.05). Conclusion: The incidence of amenorrhea is very high in the patients with lipiodol deposited in bi-ovarian areas when the bi-ovarian branches of

  3. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non-target arthropods

    DEFF Research Database (Denmark)

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues); Topping, Christopher John

    2015-01-01

    scheme is reviewed, taking into consideration recent workshops and progress in science. Proposals are made for specific protection goals which aim to protect important ecosystem services such as food web support, pest control and biodiversity. In order to address recovery and source–sink population...... dynamics, conducting a landscape-level risk assessment is suggested. A new risk assessment scheme is suggested which integrates modelling approaches. The main exposure routes for non-target arthropods are identified and proposals are made on how to integrate them in the risk assessment. The appropriateness...

  4. Spread and control of blackgrass (Alopecurus myosuroides according to an increasing occurrence of resistance - Evaluation of field trials in the federal states Brandenburg, Hessen, Saxony, Saxony-Anhalt and Thuringia in the years 2000 - 2014

    Directory of Open Access Journals (Sweden)

    Meinlschmidt, Ewa

    2016-02-01

    Full Text Available An increasing occurrence of blackgrass (Alopecurus myosuroides with high densities has been reported for Brandenburg, Hessen, Saxony-Anhalt, Saxony and Thuringia. In recent years, an increasing resistance to blackgrass especially to ALS inhibitors and partially to ACCase inhibitors has been reported for some eastern federal states and Hessen, too. It was determined to what extent dicotyledonous weeds are associated with blackgrass. The efficacy of different herbicide applications was tested in field trials between 2000 and 2014. A total of 191 trials have been included in the analysis of blackgrass. Using the HRAC-classification of herbicides tested, combinations of herbicides were used which might contribute to solve problems specifically linked to the detected resistance situation of the site. The study aimed to identify the right timing of the herbicide applications as well as applications as single or serial treatments and the use of herbicide at reduced doses according to the intensity of blackgrass. In autumn, single applications of soil active herbicides were not effective enough, especially at a high density of more than 500 heads of blackgrass per m2. The mixtures of soil active herbicides with leave active herbicides applied in autumn achieved very good control. The herbicide sequences were more effective than single applications. In order to counteract further spread of herbicide resistance, the right choice of the mode of action and highly efficacious herbicide treatments are the methods of choice, of course in addition to nonchemical controlling measures such as delayed autumn drilling, ploughing and crop rotation.

  5. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  6. Análise de crescimento de biótipos de leiteira (Euphorbia heterophylla resistentes e suscetível aos herbicidas inibidores da ALS Growth analysis of resistant and susceptible wild poinsettia (Euphorbia heterophylla biotypes to ALS-inhibiting herbicides

    Directory of Open Access Journals (Sweden)

    R.A. Vidal

    2000-01-01

    Full Text Available Foram conduzidos dois experimentos em condições de casa de vegetação, com o objetivo de analisar comparativamente o crescimento de três biótipos de leiteira (Euphorbia heterophylla - EPHHL resistentes (R (Passo Fundo, Não-Me-Toque e Rio Pardo e um suscetível (S (Porto Alegre aos herbicidas inibidores da ALS, por meio do cálculo da taxa de crescimento relativo (TCR e dos índices que a compõem. Utilizou-se o delineamento experimental completamente casualizado, com três repetições e tratamentos organizados em fatorial 2 x 4 x 4, em que o fator A correspondeu às duas estações de crescimento (outono e primavera, o fator B aos quatro biótipos de EPHHL e o fator C às quatro épocas de determinação dos índices de crescimento das plantas de leiteira - no primeiro experimento, aos 15, 25, 35 e 45, e, no segundo, aos 23, 33, 43 e 53 dias após a emergência (DAE. No experimento realizado no outono não houve interação entre época de avaliação e biótipo nem efeito simples de biótipo. No experimento realizado na primavera, a razão de peso foliar (RPF do biótipo de Não-Me-Toque foi superior em média à dos demais biótipos; a razão de área foliar (RAF foi superior no biótipo de Não-Me-Toque aos 23 e 53 DAE; e não houve diferenças da TAL e TCR entre os biótipos. Esses resultados sugerem produtividade semelhante entre os biótipos R e S e, portanto, sua equivalência competitiva.Two trials were carried out under greenhouse conditions to compare the development of three ALS inhibitor herbicides resistant (R wild poinsettia (Euphorbia heterophylla biotypes (Passo Fundo, Não-Me-Toque and Rio Pardo - RS - Brazil and one susceptible (S (Porto Alegre - RS - Brazil using relative growth rate (RGR and related indices. The experiment was arranged as a completely randomized design, with three replications, in a 2 x 4 x 4 factorial, where factor A was two growth seasons (fall and spring; factor B, four biotypes of wild poinsettia

  7. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  8. Assessing patient characteristics and radiation-induced non-targeted effects in vivo for high dose-rate (HDR) brachytherapy.

    Science.gov (United States)

    Pinho, Christine; Timotin, Emilia; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Farrell, Thomas J; Seymour, Colin; Mothersill, Carmel

    2015-01-01

    To test whether blood, urine, and tissue based colony-forming assays are a useful clinical detection tool for assessing fractionated treatment responses and non-targeted radiation effects in bystander cells. To assess patients' responses to radiation treatments, blood serum, urine, and an esophagus explant-based in vivo colony-forming assay were used from oesophageal carcinoma patients. These patients underwent three fractions of high dose rate (HDR) intraluminal brachytherapy (ILBT). Human keratinocyte reporters exposed to blood sera taken after the third fraction of brachytherapy had a significant increase in cloning efficiency compared to baseline samples (p fractions for the blood sera data only. Patient characteristics such as gender had no statistically significant effect (p > 0.05). Large variability was observed among the patients' tissue samples, these colony-forming assays showed no significant changes throughout fractionated brachytherapy (p > 0.05). Large inter-patient variability was found in the urine and tissue based assays, so these techniques were discontinued. However, the simple blood-based assay had much less variability. This technique may have future applications as a biological dosimeter to predict treatment outcome and assess non-targeted radiation effects.

  9. Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability.

    Science.gov (United States)

    De Schrijver, Adinda; Devos, Yann; De Clercq, Patrick; Gathmann, Achim; Romeis, Jörg

    2016-08-01

    The potential risks that genetically modified plants may pose to non-target organisms and the ecosystem services they contribute to are assessed as part of pre-market risk assessments. This paper reviews the early tier studies testing the hypothesis whether exposure to plant-produced Cry34/35Ab1 proteins as a result of cultivation of maize 59122 is harmful to valued non-target organisms, in particular Arthropoda and Annelida. The available studies were assessed for their scientific quality by considering a set of criteria determining their relevance and reliability. As a case-study, this exercise revealed that when not all quality criteria are met, weighing the robustness of the study and its relevance for risk assessment is not obvious. Applying a worst-case expected environmental concentration of bioactive toxins equivalent to that present in the transgenic crop, confirming exposure of the test species to the test substance, and the use of a negative control were identified as minimum criteria to be met to guarantee sufficiently reliable data. This exercise stresses the importance of conducting studies meeting certain quality standards as this minimises the probability of erroneous or inconclusive results and increases confidence in the results and adds certainty to the conclusions drawn.

  10. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    OpenAIRE

    Adam D. Wilkinson; Catherine J. Collier; Florita Flores; Andrew P. Negri

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ...

  11. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    Directory of Open Access Journals (Sweden)

    Franck Emmanuel Dayan

    2015-04-01

    Full Text Available Sarmentine, 1-(1-pyrrolidinyl-(2E,4E-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid. However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 µM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 µM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 µM. Therefore, the herbicidal activity of sarmentine appears to

  12. Effect of Mycorrhizal Fungi and Trifluralin Herbicide on Emergence, Growth and Root Colonization of Clover (Trifolium repens L.

    Directory of Open Access Journals (Sweden)

    Hassan Shahgholi

    2016-09-01

    Full Text Available Introduction: Herbicides, despite of their control of weeds, have the potential to affect sensitive crops in rotation and also beneficial non-targeted soil microbes including vesicular arbuscular mycorrhiza (VAM fungi (6. AM fungi can increase the growth of crops through increasing uptake of phosphorus and insoluble micronutrients, and indirectly by improving soil quality parameters (30. However, several authors have reported different effects of herbicides on VAM symbiosis, which ranges from no adverse effects to slightly or highly toxic effects (6. Pesticides have also been reported to stimulate colonization of plant roots by AM fungi (27. Therefore, the objective of this study was to investigate the interaction effects of mycorrhizal fungi and Trifluralin herbicide on the growth and root colonization of clover. Materials and Methods: A factorial experiment was arranged in randomized complete block design with three replicates at the College of Agricultural, University of Shahrood during 2012. Treatments were included three levels of mycorrhiza inoculation, M1: non mycorrhiza (control, M2: Glommus mosseae and M3: Glommus intraradices and herbicide treatments were included four levels of Trifluralin(T1: 0, T2: 1000, T3: 1500 and T4: 2000 ml ha-1. In mycorrhizal treatments, 20 g inoculums were thoroughly mixed with soil. Seeds of clover (Trifolium repens L. were sown in the pots maintained near the field in order to provide normal environmental conditions. Seedlings were thinned to two plants per pot at three leaf stages. At the time of harvesting, the emergence and growth characteristics of clover and root colonization was also registered. Statistical analyses of data were performed with statistical software MSTATC. Significant differences between means refer to the probability level of 0.05 calculated by LSD test. Results and Discussion: The results showed that emergence, uniformity (EU values decreased and time to 10% (D10 and 90% (D90 of

  13. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.

    Science.gov (United States)

    Kittle, Ronald P; McDermid, Karla J; Muehlstein, Lisa; Balazs, George H

    2018-02-01

    In Hawaii, glyphosate-based herbicides frequently sprayed near shorelines may be affecting non-target marine species. Glyphosate inhibits aromatic amino acid biosynthesis (shikimate pathway), and is toxic to beneficial gut bacteria in cattle and chickens. Effects of glyphosate on gut bacteria in marine herbivorous turtles were assessed in vitro. When cultures of mixed bacterial communities from gastrointestinal tracts of freshly euthanized green turtles (Chelonia mydas), were exposed for 24h to six glyphosate concentrations (plus deionized water control), bacterial density was significantly lower at glyphosate concentrations≥2.2×10 -4 gL -1 (absorbance measured at 600nm wavelength). Using a modified Kirby-Bauer disk diffusion assay, the growth of four bacterial isolates (Pantoea, Proteus, Shigella, and Staphylococcus) was significantly inhibited by glyphosate concentrations≥1.76×10 -3 gL -1 . Reduced growth or lower survival of gut bacteria in green turtles exposed to glyphosate could have adverse effects on turtle digestion and overall health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 20180318 - Structure identification by Mass Spectrometry Non-Targeted Analysis using the US EPA’s CompTox Chemistry Dashboard (ACS Spring)

    Science.gov (United States)

    Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...

  15. Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops I. Effect at Coriander (Coriandrum Sativum L.)

    OpenAIRE

    G. Delchev

    2016-01-01

    Abstract. . The research was conducted during 2013 – 2015 on pellic vertisol soil type. Under investigation was Bulgarian coriander cultivar Lozen 1 (Coriandrum sativum L.). The purpose of the investigation was to establish the selectivity and stability of some herbicides, herbicide combinations and herbicide tank mixtures on the coriander. Factor A included the years of investigation. Factor B included no treated check, 6 soil-applied herbicides – Tendar EC, Silba SC, Sharpen 33 EC,...

  16. Efficacy and economics of different herbicides in aerobic rice system

    African Journals Online (AJOL)

    Jane

    2011-08-03

    Aug 3, 2011 ... options for effective and economic weed control in rice under aerobic system ... constraint to aerobic rice production and therefore, ... Herbicide has become an attractive alternative to manual ... MATERIALS AND METHODS.

  17. Herbicides effect on the nitrogen fertilizer assimilation by sensitive plants

    International Nuclear Information System (INIS)

    Ladonin, V.F.; Samojlov, L.N.

    1976-01-01

    It has been established in studying the effect of herbicides on pea plants that the penetration of the preparations into the tissues of leaves and stems results in a slight increase of the rate of formation of dry substance in the leaves of the treated plants within 24 hours after treatment as compared with control, whereas in the last period of the analysis the herbicides strongly inhibit the formation of dry substance in leaves. The applied herbicide doses have resulted in drastic changes of the distribution of the plant-assimilated nitrogen between the protein and non-protein fractions in the leaves and stems of pea. When affected by the studied herbicides, the fertilizer nitrogen supply to the pea plants changes and the rate of the fertilizer nitrogen assimilation by the plants varies noticeably. The regularities of the fertilizer nitrogen inclusion in the protein and non-protein nitrogen compounds of the above-ground pea organs have been studied

  18. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  19. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    Full Text Available Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize, confers resistance to corn rootworms (Diabrotica spp. and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G and two non-Bt reference hybrids (KIPOUS and PR38N86. Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05. Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017 and non-Bt (DK315 untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  20. Effect of the entomopathogenic fungus Lecanicillium muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism.

    Science.gov (United States)

    Donka, András; Sermann, Helga; Büttner, Carmen

    2008-01-01

    In biological control, different benefit organisms have to combine for an effective management. If entomopathogenic fungi will be integrated, than it has to be considered also the effect on non-target organisms Like beneficial arthropods. Because of the high importance of predatory mite Phytoseiulus persimilis in biological control it was to determine side effects of Leconicillium muscarium on this species. In two standardised biotests in petri dish and on plants (P. vulgaris) individuals were dipped in suspension or set down on leafs after spraying with L. muscarium at different spore density. Results indicate pathogenicity for the predatory mite in principle. But the dimension of infection risk decrease, all the more conditions approach to practical sequence. Under practical conditions on plants and in practical relevant concentration of 10(6) and 10(7) sp./ml no risk is to expect on the plant.

  1. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition

    DEFF Research Database (Denmark)

    Mollerup, Christian Brinch; Dalsgaard, Petur Weihe; Mardal, Marie

    2017-01-01

    of peaks to inspect by three orders of magnitude, down to four peaks per DUID sample. The screening allowed for tentative identification of metabolites and drugs not included in the initial screening, and three drugs and thirteen metabolites were tentatively identified in the authentic DUID samples......High-resolution mass spectrometry (HRMS) is widely used for the drug screening of biological samples in clinical and forensic laboratories. With the continuous addition of new psychoactive substances (NPS), keeping such methods updated is challenging. HRMS allows for combined targeted and non......-targeted screening; first, peaks are identified by software algorithms, and identifications are based on reference standard data. Remaining unknown peaks are attempted identified with in silico and literature data. However, several thousand peaks remain where most are unidentifiable or uninteresting in drug...

  2. Effect of an insecticide on growth and metabolism of some non-target soil micro-organisms

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Nilakantan, Gita

    1975-01-01

    Aldicarb, a systemic insecticide, enhanced the growth of Rhizobium japonicum in vitro at 1 ppm concentration but inhibited it at 5 ppm level. The cell yields of Azotobacter chroococcum and Pseudomonas solanacearum were reduced by both the concentrations of the chemical. 1 and 5 ppm levels of the insecticide the incorporation of 14 C-glucose by R. japonicum, but it was stimulated in the case of R. chroococcum. In the case of P. solanacearum, however, 1 ppm level of the insecticide enhanced the incorporation of the label. Uptake of 32 P-di-potassium hydrogen phosphate by the cells was also significantly reduced indicating that the metabolic activities of these non-target soil micro-organisms are altered by the insecticide treatment. (author)

  3. Changes in bacterial community after application of three different herbicides.

    Science.gov (United States)

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Selectivity of herbicides in Camelina (Camelina sativa (L. Crtz.

    Directory of Open Access Journals (Sweden)

    Scheliga, Maria

    2016-02-01

    Full Text Available Camelina (Camelina sativa (L. Crtz. is a cruciferous plant. As an oilseed crop camelina is mainly grown for oil production. After the 1960s, however, the cultivation has become less important. Only in recent years, interest in this culture was awakened in the search for new sources of omega 3 fatty acids, natural antioxidants and a potential crop for the production of biofuels. The use of camelina oil for different purposes within the framework of the material use of renewable raw materials is of particular interest due to the high levels of linoleic and linolenic acid. For the establishment of camelina as a crop in agricultural crop rotation systems weed control should not be disregarded despite the rather good competitive ability against weeds. Based on greenhouse experiments a field trial in 2015 with different herbicide strategies was carried out. Besides Butisan Top (metazachlor + quinmerac, Devrinol FL (napropamide and Stomp Aqua (pendimethalin and also Betasana SC (phenmedipham has been tested in various amounts and combinations. Using assessments to weed density and herbicide tolerance different herbicide strategies were compared with each other. Though, it is difficult to find a compromise between satisfactory herbicidal effect and a slight injury to the crop plant. The herbicide selection, the application rate and the combination of different herbicides have an effect on the crop. To confirm the data obtained further tests are necessary.

  5. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  6. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  7. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments

    Science.gov (United States)

    Lumaret, Jean-Pierre; Errouissi, Faiek; Floate, Kevin; Römbke, Jörg; Wardhaugh, Keith

    2012-01-01

    The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin

  8. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    Science.gov (United States)

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  10. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

    Science.gov (United States)

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2016-10-26

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.

  11. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  12. Aquatic Plant Control Research Program: Aquatic Plant Identification and Herbicide Use Guide. Volume 2. Aquatic Plants and Susceptibility to Herbicides

    Science.gov (United States)

    1988-11-01

    Chronic >0.5 Daphnia Repeat exposure Chronic >0.2 reproduction 0 NOTE; Fluridone was not found to cause genetic mutations or cancer in tested lab...persists. REGISTERED HERBICIDES 95 REGISTERED HERBICIDES GLYPHOSATE A. Chemical Name and Formulation: Chemical name: N-(phosphonomethyl)glycine Formulation...RODEO (53.5% ai, isopropylamine salt of glyphosate , liquid) B. Mode of Action: Not definite. However, investigators have postulated that

  13. Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils

    DEFF Research Database (Denmark)

    Griffiths, Bryan; Caul, Sandra; Thompson, J.

    2008-01-01

    using a tiered approach at laboratory, glasshouse and field scales. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse and field conditions. The maize cultivars T25 (GM HT glufosinate-ammonium tolerant....... The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition...

  14. Use of resistant ACCase mutants to screen for novel inhibitors against resistant and susceptible forms of ACCase from grass weeds.

    Science.gov (United States)

    Shukla, Amit; Nycholat, Corwin; Subramanian, Mani V; Anderson, Richard J; Devine, Malcolm D

    2004-08-11

    The aryloxyphenoxypropionic acid (AOPP) and cyclohexanedione (CHD) herbicides inhibit the first committed enzyme in fatty acid biosynthesis, acetyl CoA carboxylase (ACCase). The frequent use of AOPP and CHD herbicides has resulted in the development of resistance to these herbicides in many grass weed species. New herbicides that inhibit both the susceptible and resistant forms of ACCase in grass weeds would have obvious commercial appeal. In the present study, an attempt was made to identify molecules that target both the herbicide-sensitive and -resistant forms of ACCase. Seven experimental compounds, either CHD-like or AOPP-CHD hybrids, were synthesized and assayed against previously characterized susceptible and resistant forms of ACCase. All seven compounds inhibited ACCase from sensitive biotypes of Setaria viridis and Eleusine indica (I50 values from 6.4 to >100 microM) but were not particularly potent compared to some commercialized herbicides (I50 values of 0.08-5.6 microM). In almost all cases, the I50 values for each compound assayed against the resistant ACCases were higher than those against the corresponding sensitive ACCase, indicating reduced binding to the resistant ACCases. One compound, a CHD analogue, was almost equally effective against the resistant and susceptible ACCases, although it was not a very potent ACCase inhibitor per se (I50 of 51 and 76 microM against susceptible ACCase from S. viridis and E. indica, respectively). The AOPP-CHD hybrid molecules also inhibited some of the resistant ACCases, with I50 values ranging from 6.4 to 50 microM. These compounds may be good leads for developing ACCase inhibitors that target a wider range of ACCase isoforms, including those found in AOPP- and CHD-resistant weed biotypes.

  15. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    Science.gov (United States)

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

    Directory of Open Access Journals (Sweden)

    Renata Bujak

    2016-07-01

    Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings

  17. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  18. Enhanced 2,4-D Metabolism in Two Resistant Papaver rhoeas Populations from Spain

    Directory of Open Access Journals (Sweden)

    Joel Torra

    2017-09-01

    Full Text Available Corn poppy (Papaver rhoeas, the most problematic broadleaf weed in winter cereals in Southern Europe, has developed resistance to the widely-used herbicide, 2,4-D. The first reported resistance mechanism in this species to 2,4-D was reduced translocation from treated leaves to the rest of the plant. However, the presence of other non-target site resistance (NTSR mechanisms has not been investigated up to date. Therefore, the main objective of this research was to reveal if enhanced 2,4-D metabolism is also present in two Spanish resistant (R populations to synthetic auxins. With this aim, HPLC experiments at two 2,4-D rates (600 and 2,400 g ai ha−1 were conducted to identify and quantify the metabolites produced and evaluate possible differences in 2,4-D degradation between resistant (R and susceptible (S plants. Secondarily, to determine the role of cytochrome P450 in the resistance response, dose-response experiments were performed using malathion as its inhibitor. Three populations were used: S, only 2,4-D R (R-703 and multiple R to 2,4-D and ALS inhibitors (R-213. HPLC studies indicated the presence of two hydroxy metabolites in these R populations in shoots and roots, which were not detected in S plants, at both rates. Therefore, enhanced metabolism becomes a new NTSR mechanism in these two P. rhoeas populations from Spain. Results from the dose-response experiments also showed that pre-treatment of R plants with the cytochrome P450 (P450 inhibitor malathion reversed the phenotype to 2,4-D from resistant to susceptible in both R populations. Therefore, it could be hypothesized that a malathion inhibited P450 is responsible of the formation of the hydroxy metabolites detected in the metabolism studies. This and previous research indicate that two resistant mechanisms to 2,4-D could be present in populations R-703 and R-213: reduced translocation and enhanced metabolism. Future experiments are required to confirm these hypotheses

  19. Effects of the herbicide imazapyr on juvenile Oregon spotted frogs

    Science.gov (United States)

    Yahnke, Amy E.; Grue, Christian E.; Hayes, Marc P.; Troiano, Alexandra T.

    2013-01-01

    Conflict between native amphibians and aquatic weed management in the Pacific Northwest is rarely recognized because most native stillwater-breeding amphibian species move upland during summer, when herbicide application to control weeds in aquatic habitats typically occurs. However, aquatic weed management may pose a risk for aquatic species present in wetlands through the summer, such as the Oregon spotted frog (OSF, Rana pretiosa), a state endangered species in Washington. Acute toxicity of herbicides used to control aquatic weeds tends to be low, but the direct effects of herbicide tank mixes on OSFs have remained unexamined. We exposed juvenile OSFs to tank mixes of the herbicide imazapyr, a surfactant, and a marker dye in a 96-h static-renewal test. The tank mix was chosen because of its low toxicity to fish and its effectiveness in aquatic weed control. Concentrations were those associated with low-volume (3.5 L/ha) and high-volume (7.0 L/ha) applications of imazapyr and a clean-water control. Following exposure, frogs were reared for two months in clean water to identify potential latent effects on growth. Endpoints evaluated included feeding behavior, growth, and body and liver condition indices. We recorded no mortalities and found no significant differences for any end point between the herbicide-exposed and clean-water control frogs. The results suggest that imazapyr use in wetland restoration poses a low risk of direct toxic effects on juvenile OSFs.

  20. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  1. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  2. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    Science.gov (United States)

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  3. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator

    Directory of Open Access Journals (Sweden)

    Cesar Rodriguez-Saona

    2016-04-01

    Full Text Available Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae, and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae. The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  4. Differentiating signals to make biological sense - A guide through databases for MS-based non-targeted metabolomics.

    Science.gov (United States)

    Gil de la Fuente, Alberto; Grace Armitage, Emily; Otero, Abraham; Barbas, Coral; Godzien, Joanna

    2017-09-01

    Metabolite identification is one of the most challenging steps in metabolomics studies and reflects one of the greatest bottlenecks in the entire workflow. The success of this step determines the success of the entire research, therefore the quality at which annotations are given requires special attention. A variety of tools and resources are available to aid metabolite identification or annotation, offering different and often complementary functionalities. In preparation for this article, almost 50 databases were reviewed, from which 17 were selected for discussion, chosen for their online ESI-MS functionality. The general characteristics and functions of each database is discussed in turn, considering the advantages and limitations of each along with recommendations for optimal use of each tool, as derived from experiences encountered at the Centre for Metabolomics and Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering their utility in non-targeted metabolomics, including aspects such as identifier assignment, structural assignment and interpretation of results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator.

    Science.gov (United States)

    Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera

    2016-04-15

    Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  6. The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska, E-mail: contardo@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Pflugmacher, Stephan, E-mail: pflugmacher@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Nuetzmann, Gunnar, E-mail: nuetzmann@igb-berlin.d [Dpt. Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Kloas, Werner, E-mail: werner.kloas@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Wiegand, Claudia, E-mail: wiegand@biology.sdu.d [University of Southern Denmark Institute of Biology, Campusvej 55, 5230 Odense M (Denmark)

    2010-06-15

    Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 mug L{sup -1}) of the beta-blocker metoprolol in a flow-through system for seven days. The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations. - Evidence for significant physiological changes in an aquatic mollusc due to exposure to a pharmaceutically active compound detected by real-time PCR.

  7. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Esposito, G.; Antonelli, F.; Belli, M.; Campa, A.; Simone, G.; Sorrentino, E.; Tabocchini, M.A.

    2008-01-01

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts [it

  8. The effects of organochlorine pesticides on some non-target organisms in maize and cowpea agro-ecosystems in Ghana

    International Nuclear Information System (INIS)

    Montford, K.G.

    1997-01-01

    In order to study the effects of organochlorine pesticides on non-target organisms under tropical conditions, a three-year study was conducted in Ghana applying lindane at 1 kg AI. ha -1 and endosulfan at 0.75 kg AI. ha -1 to maize and cowpeas respectively. The endosulfan treatment was preceded by two consecutive treatments with cypermethrin at 50 g AI ha -1 . Lindane significantly reduced the numbers of ants, spiders and springtails trapped though the numbers of ants and spiders generally recovered within the cropping period. Lindane significantly increased the numbers of leafhoppers caught from maize plots probably due to the elimination of a natural enemy. Ant, spider and springtail numbers were also significantly reduced by the endosulfan treatment in cowpea plots 5. Lindane did not significantly increase maize yields in two of the three years. Endosulfan contributed to significant yield increases and reduced seed damage in cowpeas. Neither lindane nor endosulfan seemed to have any significant adverse effects on the activities of soil microfauna and microflora based on the rates of decomposition of leaf discs buried in the experimental plots. (author). 12 refs, 10 figs, 9 tabs

  9. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    Science.gov (United States)

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  10. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    International Nuclear Information System (INIS)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J.; Romeo, P.H.

    2009-01-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  11. Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies.

    Science.gov (United States)

    Arpaia, Salvatore; Birch, A Nicholas E; Kiss, Jozsef; van Loon, Joop J A; Messéan, Antoine; Nuti, Marco; Perry, Joe N; Sweet, Jeremy B; Tebbe, Christoph C

    2017-04-01

    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. First record of target-site-resistance of poverty brome (Bromus sterilis to ACCase inhibitors

    Directory of Open Access Journals (Sweden)

    Dicke, Dominik

    2014-02-01

    Full Text Available In 2011 reduced efficacy of grass weed herbicides to poverty brome (Bromus sterilis was observed in oilseed rape on a site in East Hessen. The field was cultivated by using the ploughless tillage system more than 25 years. The site showed high densities of poverty brome (>1000 plants/m² prior to herbicide treatment. Poverty brome seeds were collected in 2012 in the hessian oilseed rape field and from a site in East Westphalia, where poverty brome appeared at low densities (10 plants/m² and was not suspected to resistance. The seeds were sown in to pots and plants cultivated. The plants were treated with two application rates (normal dose, double dose with herbicides of different HRAC-classes. The time of treatment was adjusted to the best expectable treatment/efficiency conditions of the individual herbicides (see chapter 3. Clear differences in efficacy that were caused by herbicide, the origins of poverty brome and the dosages were recorded via visual rating eight weeks after spraying. The herbicides Agil and Focus Ultra were able to control about 90% of the poverty brome plants of the East Westphalia site origin. However, only 20-30% of the Hessian plants could be knocked out by the same herbicides. The ACCase-gene of single powerty brome leaf samples from the hessian site was analyzed after resistance assessment. A molecular genetic analysis on 7 variable positions identified target site resistance: Isoleucine (Ile was replaced by asparagine (Asn at position 2041.

  13. Is it time to reassess current safety standards for glyphosate-based herbicides?

    Science.gov (United States)

    Vandenberg, Laura N; Blumberg, Bruce; Antoniou, Michael N; Benbrook, Charles M; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vom Saal, Frederick S; Welshons, Wade V; Myers, John Peterson

    2017-06-01

    Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    Science.gov (United States)

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  15. Effects of interactions between Collembola and soil microbial community on the degradation of glyphosate-based herbicide

    Science.gov (United States)

    Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.

    2017-12-01

    Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.

  16. Ecotoxicological assessment of the herbicide Winner Top and its active substances-are the other formulants truly inert?

    Science.gov (United States)

    Queirós, Libânia; Vidal, Tânia; Nogueira, António J A; Gonçalves, Fernando J M; Pereira, Joana Luísa

    2018-05-03

    Formulants used in Plant Protection Products (PPPs) to promote their efficiency are normally undisclosed in the PPP documentation, unless they bear a human health or environmental hazardous potential per se. PPP regulation also demands the assessment of putative interactions among formulants within each product recipe and consequent effects, but these results are often unavailable. Such a case is that of the herbicide Winner Top (Selectis®, Portugal), which we selected as a model commercial formulation in the present study specifically aiming at (i) characterising its aquatic toxicity towards sensitive eco-receptors (Raphidocelis subcapitata, Chlorella vulgaris, Lemna minor and Lemna gibba), as well as that of its active substances (a.s.) nicosulfuron and terbuthylazine; (ii) comparing the ecotoxicity among the commercial formulation, the corresponding mixture of its a.s. and this a.s.'s mixture increasingly enriched with the formulants. Single chemical testing revealed that terbuthylazine was the strongest microalgae growth inhibitor and nicosulfuron was the strongest macrophyte growth inhibitor. On the other hand, the commercial formulation was consistently less toxic than the corresponding mixture of the a.s., suggesting that Winner Top formulants (72.9% of the commercial formulation) interact with the a.s., promoting less than additive effects in the selected non-target species. Importantly, this environmentally protective effect of the formulation can be apparent. Because macrophytes share most physiological features with the weeds targeted by the studied herbicide, it is likely that increased application doses are required to reach desired efficacy levels with the consequent detrimental increase of PPP residues load in edge-of-field freshwater ecosystems.

  17. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  18. Intraregional and inter-regional variability of herbicide sensitivity in common arable weed populations

    DEFF Research Database (Denmark)

    de Mol, Friederike; Gerowitt, Bärbel; Kaczmarek, Sylwia

    2015-01-01

    The question on intraregional versus inter-regional variability in herbicide sensitivity for weed populations is of major importance, both in extrapolation of model parameters and in herbicide zonal approval procedures. We hypothesised that inter-regional variability in herbicide sensitivity for ...

  19. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    Science.gov (United States)

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  20. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    Science.gov (United States)

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  1. The role of herbicides for enhancing productivity and conserving land for biodiversity in North America

    Science.gov (United States)

    Robert G. Wagner; Michael Newton; Elizabeth C. Cole; James H. Miller; Barry D. Shiver

    2004-01-01

    Herbicide technology has evolved with forest management in North America over the past 60 years and has become an integral part of modern forestry practice. Forest managers have prescribed herbicides to increase reforestation success and long-term timber yields. Wildlife managers and others interested in conserving biodi- versity, however, have often viewed herbicide...

  2. Using a Hydrological Model to Determine Environmentally Safer Windows for Herbicide Application

    Science.gov (United States)

    J.L. Michael; M.C. Smith; W.G. Knisel; D.G. Neary; W.P. Fowler; D.J. Turton

    1996-01-01

    A modification of the GLEAMS model was used to determine application windows which would optimise efficacy and environmental safety for herbicide application to a forest site. Herbicide/soil partition coefficients were determined using soil samples collected from the study site for two herbicides (imazapyr, Koc=46, triclopyr ester, K

  3. Effect of herbicides on photosynthetic electron transport and on the growth of the alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    W. Hendrich

    2015-01-01

    Full Text Available The inhibitory effect of herbicides on the Hill reaction (with 2,6-dichloro-phenol-indophenol as acceptor and their influence on development of the alga Scenedesmus quadricauda was studied. The following herbicides were tested: 2,4-D, Gramoxone, Afalon, Kresamone, CIPC and Simazine. The results are discussed in terms of the mechanism of action of the investigated herbicides.

  4. 75 FR 17857 - Removal of Obsolete References to Herbicides Containing Dioxin

    Science.gov (United States)

    2010-04-08

    ... Herbicides Containing Dioxin AGENCY: Department of Veterans Affairs. ACTION: Final rule. SUMMARY: The... health effects of exposure to herbicides containing dioxin and radiation to remove the obsolete references to herbicides containing dioxin. This final rule reflects changes made by the Agent Orange Act of...

  5. Decision Support System for Optimized Herbicide Dose in Spring Barley

    DEFF Research Database (Denmark)

    Sønderskov, Mette; Kudsk, Per; Mathiassen, Solvejg K

    2014-01-01

    Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO...... as the Treatment Frequency Index (TFI)) compared to a high level of required weed control. The observations indicated that the current level of weed control required is robust for a range of weed scenarios. Weed plant numbers 3 wk after spraying indicated that the growth of the weed species were inhibited...

  6. Response of soil microbiota to selected herbicide treatments.

    Science.gov (United States)

    Roslycky, E B

    1977-04-01

    Recommended concentrations of paraquat alone and its combination with each of linuron, diuron, atrazine, simazine, and simazine plus diuron exerted little effect on total populations of bacteria, actinomycetes, and fungi in Fox sandy loam under laboratory and simulated field conditions in 66 and 77 days, respectively. Respiration of the total microbiota in soil suspension was afeected by the combinations as well as individual herbicides in various concentrations. Yet, the inhibition of the O2 uptake by any of these herbicides, including some extreme concentrations, was not permanent, indicating adaptation, or suppression of specific organisms. Only linuron in concentrations up to 20 microng/ml stimulated respiration of the soil.

  7. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  8. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α.

    Directory of Open Access Journals (Sweden)

    Luiz R Olchanheski

    Full Text Available The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate, and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.

  9. A statistical simulation model for field testing of non-target organisms in environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore

    2014-04-01

    Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.

  10. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go?

    Science.gov (United States)

    Mothersill, Carmel; Rusin, Andrej; Seymour, Colin

    2017-11-01

    The field of low dose radiobiology has advanced considerably in the last 30 years from small indications in the 1980's that all was not simple, to a paradigm shift which occurred during the 1990's, which severely dented the dose-driven models and DNA centric theories which had dominated until then. However while the science has evolved, the application of that science in environmental health protection has not. A reason for this appears to be the uncertainties regarding the shape of the low dose response curve, which lead regulators to adopt a precautionary approach to radiation protection. Radiation protection models assume a linear relationship between dose (i.e. energy deposition) and effect (in this case probability of an adverse DNA interaction leading to a mutation). This model does not consider non-targeted effects (NTE) such as bystander effects or delayed effects, which occur in progeny cells or offspring not directly receiving energy deposition from the dose. There is huge controversy concerning the role of NTE with some saying they reflect "biology" and that repair and homeostatic mechanisms sort out the apparent damage while others consider them to be a class of damage which increases the size of the target. One thing which has recently become apparent is that NTE may be very critical for modelling long-term effects at the level of the population rather than the individual. The issue is that NTE resulting from an acute high dose such as occurred after the A-bomb or Chernobyl occur in parallel with chronic effects induced by the continuing residual effects due to radiation dose decay. This means that if ambient radiation doses are measured for example 25 years after the Chernobyl accident, they only represent a portion of the dose effect because the contribution of NTE is not included. Copyright © 2017. Published by Elsevier Inc.

  11. Assessing non-target effects and host feeding of the exotic parasitoid Apanteles taragamae, a potential biological control agent of the cowpea pod borer Maruca vitrata

    NARCIS (Netherlands)

    Dannon, A.E.; Tamo, M.; Huis, van A.; Dicke, M.

    2012-01-01

    Apanteles taragamae Viereck is a larval parasitoid introduced in Benin for classical biological control of the cowpea pod borer Maruca vitrata Fabricius. In the laboratory, we evaluated the effects of A. taragamae on non-target herbivore species, and on another parasitoid of M. vitrata, i.e. the

  12. The effect of antibiotics and diet on enterolactone concentration and metabolome studied by targeted and non-targeted LC-MS metabolomics

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; Hedemann, Mette Skou

    2017-01-01

    with lower levels of ENL. Here, we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and non-targeted LC-MS. Treatment...

  13. An open workflow to generate “MS Ready” structures and improve non-targeted mass spectrometry (ACS Fall 1 of 3)

    Science.gov (United States)

    High-throughput non-targeted analyses (NTA) rely on chemical reference databases for tentative identification of observed chemical features. Many of these databases and online resources incorporate chemical structure data not in a form that is readily observed by mass spectromet...

  14. Meta-Analysis of PECS with Individuals with ASD: Investigation of Targeted versus Non-Targeted Outcomes, Participant Characteristics, and Implementation Phase

    Science.gov (United States)

    Ganz, Jennifer B.; Davis, John L.; Lund, Emily M.; Goodwyn, Fara D.; Simpson, Richard L.

    2012-01-01

    The Picture Exchange Communication System (PECS) is a widely used picture/icon aided augmentative communication system designed for learners with autism and other developmental disorders. This meta-analysis analyzes the extant empirical literature for PECS relative to targeted (functional communication) and non-targeted concomitant outcomes…

  15. Glyphosate resistance: state of knowledge

    Science.gov (United States)

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  16. Herbicide-induced changes in 14CO2 uptake of leaves of some crop and weed species

    International Nuclear Information System (INIS)

    Santakumari, M.; Rama Das, V.S.

    1980-01-01

    The effect of diuron or atrazine on the rate of photosynthetic 14 CO 2 uptake of two each crop (Pisum Sativum and Pennisetum typhoides) and weed species (Amaranthus viridis and Cyperus rotundus) was studied. The results indicated a marked inhibition of 14 CO 2 fixation of leaves within two hours after diuron or atrazine treatment. However the resistant plants were able to exhibit a recovery of the net photosynthetic rate subsequently while the susceptible plants failed to recover. The results suggested that even with fully open stomata and available NADPH, the normal CO 2 fixation was not restored by herbicide treated leaves. (author)

  17. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening.

    Science.gov (United States)

    Low, F L; Shaw, I C; Gerrard, J A

    2005-01-01

    To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.

  18. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    Science.gov (United States)

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  19. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark

    International Nuclear Information System (INIS)

    Stark, John D.; Chen Xuedong; Johnson, Catherine S.

    2012-01-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24–36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. - Highlights: ► We evaluated the effects of three herbicides on the butterfly, Behr's metalmark. ► These herbicides are used to control invasive weeds in butterfly habitat. ► The herbicides reduced adult butterfly emergence. - Herbicides are used to remove invasive weeds from butterfly habitat. Certain herbicides may be having a negative effect on butterflies.

  20. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. How to test herbicides at forest tree nurseries.

    Science.gov (United States)

    Roger E. Sandquist; Peyton W. Owston; Stephen E. McDonald

    1981-01-01

    Procedures developed in a cooperative westwide study of weed control in forest tree nurseries are described in a form modified for use by nursery managers. The proven, properly designed test and evaluation methods can be used to generate data needed for evaluation and registration of herbicides.

  2. Treating downy brome with herbicide and seeding with native shrubs

    Science.gov (United States)

    Suzanne Owen; Carolyn Sieg

    2011-01-01

    Downy brome or cheatgrass (Bromus tectorum L.) is one of the most invasive and widespread exotic plants in North America. Downy brome can reduce soil nutrient availability, alter native plant community composition, and increase fire frequencies. The effectiveness of Plateau® imazapic herbicide in reducing downy brome cover has been variable, and there is uncertainty...

  3. Selective isolation and screening of fungi with herbicidal potential ...

    African Journals Online (AJOL)

    The respective fungal isolates were cultivated in modified Fries media under standard condition. The mycelia and the filtrate were extracted with ethyl acetate and the concentrated extract was evaluated for the herbicidal activity adopting leaf necrosis assay. Among the different isolates, extract prepared from A. alternata and ...

  4. Biological Efficacy of Herbicides for Weed Control in Noncropped Areas

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2009-01-01

    Full Text Available An increasing problem facing agricultural producers is the invasion of weeds, perennial in particular, so that implementation of industrial technologies is impossible without their highly efficient and rational control. For the purpose of studying efficient herbicides for weed control in noncropped areas (stubbles, a biological study of five total systemic herbicides was conducted in areas under natural weed infestation and pressure from othersurrounding weeds at the Institute of Forage Crops in Pleven in 2005-2007. The trials were carried out in field conditions using the block method with plot size of 20 m². Treatment was conducted at the predominant stage of budding of perennial dicotyledonous weeds and earing of monocotyledonous weeds. Herbicidal efficacy was recorded on the EWRS 9-score scale (0-100% killed weeds = score 9-1. It was found that treatment of noncropped areas (stubbles with the total systemic herbicides Touchdown System 4 (360 g/l glyphosate; Cosmic (360 g/l glyphosate; Roundup Plus (441 g/l glyphosate potassium salt; Leon 36 SL (360 g/l glyphosate and Glyphos Super 45 SL (450 g/l glyphosate was highly efficient, so that it was a successful element of a strategy for controlling weeds of different biological groups, and was especially effective against perennial weeds.

  5. Synthesis of a tritiated herbicide with high activity: methyl thifensulfuron

    International Nuclear Information System (INIS)

    Bastide, J.; Ortega, F.

    1993-01-01

    In order to study the binding on acetolactate synthase, a tritiated herbicide sulfonylurea (thifensulfuron methyl) of high specific activity was synthesized. By use of C 3 H 3 I for esterification of an acid group, a rapid incorporation of tritium into this compound may be achieved. (Author)

  6. Efficacy of selected herbicide formulations on sugarcane field weeds ...

    African Journals Online (AJOL)

    In continuation for the search of appropriate weed control strategy for sugarcane field weeds at the Unilorin Sugar Research Institute (USRI), Ilorin located at 8o 030' N; 4o 32' E , Nigeria. Field trials were laid out in a randomized complete block design during 2012 and 2013 growing seasons to evaluate four herbicide ...

  7. Effect of atrazine (Herbicide) on blood parameters of common carp ...

    African Journals Online (AJOL)

    EJIRO

    could be used as an important tool for the assessment of pathological conditions of fish. ... agricultural or industrial areas have high probability of ... The use of herbicides to control aquatic weeds has ... Five hundred fish were stocked in a large cement tank (4 m × 6 m × 3 m) ..... Ecological risk assessment of atrazine in North.

  8. Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides

    NARCIS (Netherlands)

    Brock, T.C.M.; Lahr, J.; Brink, van den P.J.

    2000-01-01

    A literature review of freshwater model ecosystem studies with herbicides was performed to assess the NOEC[sub]ecosystem for individual compounds, to compare these threshold levels with water quality standards, and to evaluate the ecological consequences of exceeding these standards. Studies were

  9. Herbicide Trials on European Larch in Northern Wisconsin

    Science.gov (United States)

    Daniel A. Netzer

    1984-01-01

    Herbicides of 17 different rates and formulations were oversprayed on newly planted 1-0 European larch seedlings in teh spring of 1983 at the recommended rates. Simazine, bifenox, oxyfluorfen, promamide, and oryzalin provided adequate weed control with no damage to the l