WorldWideScience

Sample records for non-systemic fungal endophytes

  1. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  2. Fungal Endophytes: Beyond Herbivore Management

    Science.gov (United States)

    Bamisile, Bamisope S.; Dash, Chandra K.; Akutse, Komivi S.; Keppanan, Ravindran; Wang, Liande

    2018-01-01

    The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM) programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  3. Grass fungal endophytes and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  4. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  5. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  7. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates. © 2015 by The Mycological Society of America.

  8. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  9. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  10. Differential methods of localisation of fungal endophytes in the seagrasses

    Directory of Open Access Journals (Sweden)

    S. Raja

    2016-07-01

    Full Text Available Sections of three seagrass species (Halophila ovalis, Cymodocea serrulata and Halodule pinifolia were assessed for endophytes based on differential staining using light and fluorescence microscopy method. Acridine orange and aniline blue detected endophytic fungi in 20% and 10% of the segments, respectively, whereas lactophenol cotton blue was more sensitive to detect the fungal hyphae in 70% of the segments. Hyphae were the principal fungal structures generally observed under the cuticle, within the epidermal cells, mesophyll (Parenchyma cells and occasionally within the vascular tissue that varied in type, size and location within the leaf tissue. Present study also recorded the sporulation for the first time from the seagrass endophytes. Successfully amplified products of the ITS region of endophytic fungal DNA, directly from seagrass tissue and also from culture-dependent fungal DNA clearly depicted the presence of endophytic fungi in H. ovalis with two banding patterns (903 and 1381 bp confirming the presence of two dominant fungal genera. The fingerprinting of endophytic fungal community within the seagrass tissue was assessed using denaturing gradient gel electrophoresis (DGGE that derived with multiple bands that clarified the presence of more than one taxon within the seagrass tissue.

  11. Fungal endophytes - secret producers of bioactive plant metabolites.

    Science.gov (United States)

    Aly, A H; Debbab, A; Proksch, P

    2013-07-01

    The potential of endophytic fungi as promising sources of bioactive natural products continues to attract broad attention. Endophytic fungi are defined as fungi that live asymptomatically within the tissues of higher plants. This overview will highlight the uniqueness of endophytic fungi as alternative sources of pharmaceutically valuable compounds originally isolated from higher plants, e.g. paclitaxel, camptothecin and podophyllotoxin. In addition, it will shed light on the fungal biosynthesis of plant associated metabolites as well as new approaches developed to improve the production of commercially important plant derived compounds with the involvement of endophytic fungi.

  12. Fungal endophytes of South China blueberry (Vaccinium dunalianum var. urophyllum).

    Science.gov (United States)

    Li, Z-J; Shen, X-Y; Hou, C-L

    2016-12-01

    A total of 374 fungal endophyte strains were isolated from of Vaccinium dunalianum var. urophyllum (Ericaceae), a well-known cultivated blueberry in southern China. These fungal endophytes could be categorized into 25 morphotypes according to culture characteristics and molecular identification based on the internal transcribed spacer region. All of these isolates belonged to Ascomycota. Jaccard's (Jc) and Sorenson's similarity indices indicated that the species communities from the fruits and branches were closer to each other than to those from leaves. The leaves appeared to host the highest fungal biodiversity, and the fruits displayed the lowest diversity. This study is the first on endophytic fungi isolated from fruits, branches and leaves of blueberry plants. The results contribute to the body of knowledge on the biocontrol of pathogens associated with blueberry and develop the improvement of plant growth. By comparing with the different fungal communities, the leaves appeared to host the highest biodiversity. © 2016 The Society for Applied Microbiology.

  13. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  14. Solamargine production by a fungal endophyte of Solanum nigrum.

    Science.gov (United States)

    El-Hawary, S S; Mohammed, R; AbouZid, S F; Bakeer, W; Ebel, R; Sayed, A M; Rateb, M E

    2016-04-01

    The aim was to isolate, identify and characterize endophytes from Solanum nigrum L. as a new source of the cytotoxic steroidal alkaloid solamargine. Three endophytic fungi; SNFSt, SNFL and SNFF were isolated from S. nigrum and identified by molecular methods. Preliminary TLC screening showed a common metabolite between the plant and one of these fungi, SNFSt which was identified as Aspergillus flavus based on the phylogenetic analysis of its ITS sequence. Subsequent LC-HRESIMS analysis unambiguously established the identity of the compound based on its molecular formula and its characteristic MS(2) fragmentation pattern as solamargine. To ascertain its identity, fungal solamargine was isolated using preparative TLC and its structure was fully characterized using NMR spectroscopic techniques and high-resolution mass spectrometric analysis. Solamargine production could be followed and quantified for a total of 11 generations of this fungus with a titer of ~250-300 μg l(-1) . This study represents one of the first examples where host plant-derived compounds have been demonstrated to be steadily produced by an endophytic fungi in sizeable quantities. The production of solamargine (found in the host plant) by a cultivable fungal endophyte at a significant yield is a new observation. Further experiments such as media optimization, OSMAC (One Strain Many Compounds) or epigenetic modifiers could be applied to enhance the fungal solamargine production. The endophytic fungus SNFSt isolated from S. nigrum may be utilized for quantitative production of the potent cytotoxic metabolite solamargine. © 2016 The Society for Applied Microbiology.

  15. Behavior Performance of Diuraphis noxia (Homoptera: Aphididae) on Fungal Endophyte-Infected and Uninfected Perennial Ryegrass

    Science.gov (United States)

    S.L. Clement; D.G. Lester; A. Dan Wilson; K.S. Pike

    1992-01-01

    The behavior and performance of the Russian wheat aphid, Diuraphis noxia (Mordvilko), on fungal endophyte-infected and endophyte-free perennial ryegrass, Lolium perenne L., was investigated in the laboratory and field. Aphids did not select endophyte-free over endophyte-infected leaf sheaths and stem segments in petri dish preference tests....

  16. Diversity, Phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L.

    Science.gov (United States)

    Katoch, Meenu; Phull, Shipra; Vaid, Shagun; Singh, Shashank

    2017-03-07

    Present study focuses on diversity and distribution analysis of endophytic fungi associated with different tissues of the Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae). Anticancer and antimicrobial potential of isolated endophytes have also been investigated. A total of twenty eight fungal endophytes belonging to 11 different genera were isolated from this plant. All the endophytic fungi belonged to the Ascomycota phylum. The leaves were immensely rich in fungal species, while roots showed the highest tissue specific fungal dominance. Out of 28 fungal species, 72% endophytic extracts were found cytotoxic against one or more human cancer cell lines. The most prominent anticancer activity (IC 50 value endophytic community with anticancer and antimicrobial activities. The isolated endophyte MC-24 L (C. tenuissimum) has the potential to be a source of novel cytotoxic/antimicrobial compounds. This is the first report of diversity of fungal endophytes isolated from M. citriodora.

  17. Bioactive secondary metabolites with multiple activities from a fungal endophyte

    NARCIS (Netherlands)

    Bogner, C.W.; Kamdem, R.S.; Stichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A.

    2017-01-01

    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were

  18. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated and c...

  19. Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes

    Czech Academy of Sciences Publication Activity Database

    Weiss, M.; Sýkorová, Zuzana; Garnica, S.; Riess, K.; Martos, F.; Krause, C.; Oberwinkler, F.; Bauer, R.; Redecker, D.

    2011-01-01

    Roč. 6, č. 2 (2011), s. 1-7 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z60050516 Keywords : Sebacinales * endophytes * mycorrhiza Subject RIV: EF - Botanics Impact factor: 4.092, year: 2011

  20. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

    Science.gov (United States)

    Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

    2012-01-01

    In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens. PMID:23717111

  1. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Science.gov (United States)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  2. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae.

    Science.gov (United States)

    Ambrose, Karen V; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C

    2015-06-09

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte.

  3. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    Science.gov (United States)

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  4. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  5. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review.

    Science.gov (United States)

    Nisa, Humeera; Kamili, Azra N; Nawchoo, Irshad A; Shafi, Sana; Shameem, Nowsheen; Bandh, Suhaib A

    2015-05-01

    Endophytic fungi are those that live internally in apparently healthy and asymptomatic hosts. Endophytic fungi appear to be ubiquitous; indeed, no study has yet shown the existence of a plant species without endophytes. High species diversity is another characteristic of endophytic mycobiota which is depicted by the fact that it is quite common for endophyte surveys to find assemblages consisting of more than 30 fungal species per host plant species. Medicinal plants had been used to isolate and characterize directly the bioactive metabolites. However, the discovery of fungal endophytes inside these plants with capacity to produce the same compounds shifted the focus of new drug sources from plants to fungi. Bioactive natural products from endophytic fungi, isolated from different plant species, are attracting considerable attention from natural product chemists and biologists alike which is clearly depicted by the steady increase of publications devoted to this topic during the recent years. This review will highlight the chemical potential of endophytic fungi with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, it will cover newly discovered endophytic fungi and also new bioactive metabolites reported in recent years from fungal endophytes. It summarizes the up-to-date and comprehensive information on bioactive compounds from endophytic fungi by having done a thorough survey of literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genetic characterization of uncultured fungal endophytes from Bouteloua eriopoda and Atriplex canescens

    Science.gov (United States)

    Mary E. Lucero; Jerry R. Barrow; Ruth Sedillo; Pedro Osuna-Avila; Isaac Reyes-Vera

    2008-01-01

    Obligate fungal endophytes form cryptic communities in vascular plants that can defy detection and isolation by microscopic examination of reproductive structures. Molecular detection by PCR amplification of fungal DNA sequences alone is insufficient, since target endophyte sequences are unknown and difficult to distinguish from sequences already characterized as plant...

  7. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    OpenAIRE

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, huma...

  8. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

    OpenAIRE

    Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

    2012-01-01

    In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fung...

  9. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.

    OpenAIRE

    Hassan, Saad El-Din

    2017-01-01

    Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE) of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP) properties of these endophytes. Seven bacterial endophytes were isolated and identified as Bacillus cereus and Bacillu...

  10. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    Colletotrichum and Alternaria were most represented in non-performing plants. Among the Fusarium species identified, Fusarium moniliforme was the most common fungus isolated from the plants. Fusarium spp. and Penicillium sp. were significantly present in a higher number of performing plants than in non...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  11. Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa.

    Science.gov (United States)

    Shehata, H R; Lyons, E M; Jordan, K S; Raizada, M N

    2016-03-01

    The aim of this study was to determine if endophytes from wild and ancient Zea plants (corn family) have anti-fungal activities, specifically against the most important fungal pathogen (Sclerotinia homoeocarpa) of creeping bentgrass, a relative of Zea, used here as a model grass. A library of 190 bacterial endophytes from wild, ancient and modern Zea plants were tested for their ability to suppress S. homoeocarpa in vitro, followed by in planta testing of candidates using greenhouse trials. Three endophytes could suppress S. homoeocarpa, originating from wild maize and an ancient Mexican landrace, consistent with our hypothesis. 16S phylogenetic analysis and BOX-PCR DNA fingerprinting suggest that the anti-fungal endophytes are distinct strains of Burkholderia gladioli. One strain (3A12) was confirmed to colonize creeping bentgrass using green fluorescent protein (GFP) tagging. Evans blue vitality staining demonstrated that the bacterial endophytes exhibited fungicidal activities against the pathogen. The endophytes inhibited a wide spectrum of plant-associated fungi including diverse crop pathogens. The results support the hypothesis that wild and ancient Zea genotypes host bacterial endophytes that can control fungal pathogen(s). These results suggest that wild and ancient crops may be an unexplored reservoir of anti-fungal bacterial endophytes. © 2016 The Society for Applied Microbiology.

  12. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Science.gov (United States)

    Higginbotham, Sarah J; Arnold, A Elizabeth; Ibañez, Alicia; Spadafora, Carmenza; Coley, Phyllis D; Kursar, Thomas A

    2013-01-01

    Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns) collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG) against a human breast cancer cell line (MCF-7) and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  13. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  14. Short Communication: Antimycotic activity and phytochemical screening of fungal endophytes associated with Santalum album

    Directory of Open Access Journals (Sweden)

    ASHWANI TAPWAL

    2016-05-01

    Full Text Available Abstract. Tapwal A, Pradhan S, Chandra S, Rashmi. 2016. Antimycotic activity and phytochemical screening of fungal endophytes associated with Santalum album. Nusantara Bioscience 8: 14-17. The heartwood of Santalum album constitutes the central part of the tree is valued for its fragrance. The wood and oil are utilized in medicine. Sandalwood oil is extensively used in perfumery, cosmetics, aromatherapy and pharmaceutical industry. The endophytic microorganisms inhabiting the plant tissues are expected to mimic some of the metabolites of its host. This study was aimed to isolate and screen the fungal endophytes inhabiting the Santalum album for antimicrobial activity and for the presence of important phytochemicals. Five fungal endophytes isolated from different parts of S. album have exhibited antimicrobial potential against Fusarium oxysporum in the range of 5.0-40.4%. The isolated endophytic fungi also indicated the presence of alkaloids, phenolics and tannins, flavonoids, carbohydrates and glycosides, terpenoids, amino acids and proteins.

  15. Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species.

    OpenAIRE

    Tsai, H F; Liu, J S; Staben, C; Christensen, M J; Latch, G C; Siegel, M R; Schardl, C L

    1994-01-01

    The mutualistic associations of tall fescue (Festuca arundinacea) with seed-borne fungal symbionts (endophytes) are important for fitness of the grass host and its survival under biotic and abiotic stress. The tall fescue endophytes are asexual relatives of biological species (mating populations) of genus Epichloë (Clavicipitaceae), sexual fungi that cause grass choke disease. Isozyme studies have suggested considerable genetic diversity among endophytes of tall fescue. Phylogenetic relations...

  16. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential

    NARCIS (Netherlands)

    Bogner, C.W.; Kariuki, George M.; Elashry, A.; Sichtermann, Gisela; Buch, Ann-Katrin; Mishra, Bagdevi; Thines, M.; Grundler, F.M.W.; Schouten, A.

    2016-01-01

    The significance of fungal endophytes in African agriculture, particularly Kenya, has not been well investigated. Therefore, the objective of the present work was isolation, multi-gene phylogenetic characterization and biocontrol assessment of endophytic fungi harbored in tomato roots for nematode

  17. Fungal endophyte communities in the temperate fernPolystichum munitumshow early colonization and extensive temporal turnover.

    Science.gov (United States)

    Younginger, Brett S; Ballhorn, Daniel J

    2017-08-16

    Fungal endophytes have been shown to colonize all land plants, yet surprisingly little attention has been given to their community composition in ferns. We examined the diversity and temporal turnover of fungal endophytes in foliar tissue of the temperate western sword fern, Polystichum munitum , comparing taxa in newly emerged leaflets and in the same fronds after 1 mo of exposure in the field. Utilizing next-generation sequencing, we sampled pinnae from P. munitum in spring, 2-3 d after they emerged. We additionally sampled pinnae 30 d later from the same fern blades. From these samples, we sequenced fungal DNA to characterize the initial colonization and temporal turnover of endophytes in the host. We demonstrate that P. munitum is abundantly colonized by endophytes in newly emerged foliar tissue. However, 1 mo later, the community composition undergoes a marked shift: the overall richness of endophytes increases, but the evenness of the community wanes as a single taxon, Flagellospora fusarioides , comes to dominate. We conclude that P. munitum hosts a variety of fungal endophyte taxa, similarly to other land plants. However, the rapid shift of the endophyte community we report is an unprecedented observation. Therefore, we further conclude that repeated sampling should be the standard in endophyte studies, because single sampling events are not sufficient to capture the dynamic nature of these cryptic microfungi. © 2017 Botanical Society of America.

  18. Current perspectives on the volatile-producing fungal endophytes.

    Science.gov (United States)

    Zhi-Lin, Yuan; Yi-Cun, Chen; Bai-Ge, Xu; Chu-Long, Zhang

    2012-12-01

    Microbial-derived volatiles are ubiquitous in the environment and actively engaged in bio-communication with other organisms. Recently, some volatile-producing endophytes (VPEs), cryptic fungal symbionts persisting in healthy plant tissues, have attracted great attention due to their strong antibiotic activity or production of carbon chains that are identical to many of those found in petroleum, while other fragrant volatiles can be used in the flavoring industries. From an application-oriented and biotechnological point of view, these findings show significant promise for sustainable development of agriculture, forestry, and industry, especially in the control of fruit postharvest diseases, soil-borne pathogen management, and bio-fuel production. In comparison, the ecological importance of VPEs has only rarely been addressed and warrants further exploration. In this review, we summarize the current knowledge and future directions in this fascinating research field, and also highlight the constraints and progresses towards commercialization of VPEs products.

  19. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  20. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    Directory of Open Access Journals (Sweden)

    Serdar Dirihan

    Full Text Available Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42, and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28, whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56. Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation

  1. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    OpenAIRE

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphologi...

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  3. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination

    Science.gov (United States)

    Mello, Ivani Souza; Vendruscullo, Suzana Junges; da Silva, Gilvan Ferreira; da Cunha, Cátia Nunes; White, James Francis

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury. PMID:28742846

  4. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  5. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L. Millsp].

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Five fungal endophytes (K4, K5, K6, K9, K14 producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid were isolated from the roots of pigeon pea [Cajanus cajan (L. Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  6. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective.

    Science.gov (United States)

    Mousa, Walaa Kamel; Raizada, Manish N

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

  7. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?

    Science.gov (United States)

    Young, C A; Hume, D E; McCulley, R L

    2013-05-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloë/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate.

  8. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.

    Science.gov (United States)

    Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

    2014-05-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.

  9. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops.

    Science.gov (United States)

    Murphy, Brian R; Doohan, Fiona M; Hodkinson, Trevor R

    2018-02-11

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

  10. Anti-colon cancer activity of endophytic fungal strains from Terminalia chebula Rezt

    Directory of Open Access Journals (Sweden)

    Mohammad Shoeb

    2012-03-01

    Full Text Available Endophytic microorganisms are fungi or bacteria that live inside the healthy tissues of the host plants causing no apparent symptoms of diseases. Five endophytic fungal strains labeled as IR-1, IR-2, IR-4, IR-6 and IR-7 (identified as Penicillium thiomii were isolated from the medicinal plant of Terminalia chebula Retz by culture and sub-culture. The ethyl acetate extract of fungal strains, IR-4, IR-6 and IR-7 inhibited the growth of CaCo-2 colon cancer cell lines in MTT assay with IC50 values of 55, 44 and 67 µg/mL, respectively.

  11. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants.

    Science.gov (United States)

    Dembitsky, Valery M

    2014-10-15

    This article focuses on the occurrence and biological activities of cyclobutane-containing (CBC) alkaloids obtained from fungi, fungal endophytes, and plants. Naturally occurring CBC alkaloids are of particular interest because many of these compounds display important biological activities and possess antitumour, antibacterial, antimicrobial, antifungal, and immunosuppressive properties. Therefore, these compounds are of great interest in the fields of medicine, pharmacology, medicinal chemistry, and the pharmaceutical industry. Fermentation and production of CBC alkaloids by fungi and/or fungal endophytes is also discussed. This review presents the structures and describes the activities of 98 CBC alkaloids. Copyright © 2014. Published by Elsevier GmbH.

  12. Isolation of fungal endophytes from Garcinia mangostana and their ...

    African Journals Online (AJOL)

    The objective of this study is to screen the antibacterial activity of endophytic fungi isolated from surface sterilized leaves and small branches of Garcinia mangostana plant found in Indonesia. The crude extracts of ethyl acetate (EtOAc) of the 24 fermentation broths from 24 endophytic fungi were tested for their antibacterial ...

  13. Does fire maintain symbiotic, fungal endophyte infections in native grasses?

    Science.gov (United States)

    S. H. Faeth; S. M.  Haase; S. S. Sackett; T. J. Sullivan; R. H.  Remington; C. E.  Hamilton

    2002-01-01

    Systemic endophytic fungi in agronomic and turf grasses are well known for conferring increased resistance to herbivores and to abiotic stresses, such as drought, and increasing competitive abilities. Many native grasses also harbor high frequencies of the asexual and vertically-transmitted endophyte, Neotyphodium. In Festuca arizonica...

  14. Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem.

    Science.gov (United States)

    Gomes, Teresa; Pereira, José Alberto; Benhadi, Jacinto; Lino-Neto, Teresa; Baptista, Paula

    2018-03-02

    The diversity and factors influencing fungal assemblages in phyllosphere of Mediterranean tree species have been barely studied, especially when endophytic and epiphytic communities are simultaneously considered. In this work, the endophytic and epiphytic fungal communities from olive tree phyllosphere were studied. This tree species is natural from the Mediterranean region and adapted to grow under adverse climatic conditions. The main objectives were to determine whether there are differences between both fungal communities and to examine whether different abiotic (climate-related) and biotic (plant organs) factors play a pivotal role in structuring these communities. Both communities differed in size and composition, with epiphytic community being richer and more abundant, displaying also a dominance of melanized fungi. Season was the major driver of community composition, especially of epiphytes. Other drivers shaping epiphytes were wind speed and temperature, while plant organ, rainfall, and temperature were the major drivers for endophytic composition. In contrast, canopy orientation caused slight variations in community composition of fungi, but with distinct effects in spring and autumn seasons. In conclusion, epiphytic and endophytic communities are not driven by the same factors. Several sources of variation undergo complex interactions to form and maintain phyllosphere fungal community in Mediterranean climates. Climatic parameters have influence on these fungal communities, suggesting that they are likely to be affected by climate changes in a near future.

  15. Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation.

    Science.gov (United States)

    Khoyratty, Shahnoo; Dupont, Joëlle; Lacoste, Sandrine; Palama, Tony Lionel; Choi, Young Hae; Kim, Hye Kyong; Payet, Bertrand; Grisoni, Michel; Fouillaud, Mireille; Verpoorte, Robert; Kodja, Hippolyte

    2015-06-14

    The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Twenty three MOTUs were obtained, representing 6 fungal classes. Fungi from green pods were cultured on mature green pod based media for 30 days followed by (1)H NMR and HPLC-DAD analysis. All fungi from pods consumed metabolized vanilla flavor phenolics. Though Fusarium proliferatum was recovered more often (37.6% of the isolates), it is Pestalotiopsis microspora (3.0%) that increased the absolute amounts (quantified by (1)H NMR in μmol/g DW green pods) of vanillin (37.0 × 10(-3)), vanillyl alcohol (100.0 × 10(-3)), vanillic acid (9.2 × 10(-3)) and p-hydroxybenzoic acid (87.9 × 10(-3)) by significant amounts. All plants studied contained endophytic fungi and the isolation of the endophytes was conducted from plant organs at nine sites in Réunion Island including under shade house and undergrowth conditions. Endophytic variation occured between cultivation practices and the type of organ. Given the physical proximity of fungi inside pods, endophytic biotransformation may contribute to the complexity of vanilla flavors.

  16. Fungal endophytes of the obligate parasitic dwarf mistletoe Arceuthobium americanum (Santalaceae) act antagonistically in vitro against the native fungal pathogen Cladosporium (Davidiellaceae) of their host.

    Science.gov (United States)

    Martin, Lyssa L; Ross Friedman, Cynthia M; Phillips, Lori A

    2012-12-01

    Endophytic fungi likely occur in all plants, yet little is known about those of parasitic plants, despite their potential to influence parasite success. Arceuthobium americanum is a parasitic angiosperm that greatly compromises the North American timber industry. We hypothesized that (1) A. americanum hosts fungal endophytes, and (2) these endophytes help A. americanum resist infection by fungal pathogens. • Healthy A. americanum stem and fruit tissues were differentially stained for cellulose and chitin and visualized using fluorescence microscopy. Stem sections (sterilized vs. unsterilized) and seeds were incubated on agar plates to cultivate fungi, both to extract DNA for ITS rDNA sequencing and to observe interactions with native fungi from unsterilized specimens. • Aside from xylem vessel elements, fungal structures were observed in all tissues, including those of the embryo. The ITS sequences of fungi cultured from internal tissues closely matched those of the known endophytes Phoma, Sydowia, and Phacidiopycnis, while those of surface organisms closely matched Cladosporium spp. Cultured fungi from internal tissues (putative endophytes) inhibited the growth of the surface organisms without affecting the other endophytes. • Fungal communities are established in A. americanum stems as well as in fruits and seeds, suggesting vertical transmission. These internally derived fungi act antagonistically toward fungi with pathogenic tendencies. As such, native mistletoe endophytes might protect A. americanum against fungal pathogens in nature. In the future, manipulation of endophytes might be a component of mistletoe control programs.

  17. Fungal endophytes and their interactions with plants in phytoremediation: A review.

    Science.gov (United States)

    Deng, Zujun; Cao, Lixiang

    2017-02-01

    Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India.

    Science.gov (United States)

    Kaushik, Naveen Kumar; Murali, Thokur Sreepathy; Sahal, Dinkar; Suryanarayanan, T S

    2014-10-01

    Eighty four different fungal endophytes isolated from sea grasses (5), marine algae (36) and leaves or barks of forest trees (43) were grown in vitro and the secondary metabolites secreted by them were harvested by immobilizing them on XAD beads. These metabolites were eluted with methanol and screened using SYBR Green I assay for their antiplasmodial activity against blood stage Plasmodium falciparum in human red blood cell culture. Our results revealed that fungal endophytes belonging to diverse genera elaborate antiplasmodial metabolites. A Fusarium sp. (580, IC50: 1.94 μg ml(-1)) endophytic in a marine alga and a Nigrospora sp. (151, IC50: 2.88 μg ml(-1)) endophytic in a tree species were subjected to antiplasmodial activity-guided reversed phase high performance liquid chromatography separation. Purification led to potentiation as reflected in IC50 values of 0.12 μg ml(-1) and 0.15 μg ml(-1) for two of the fractions obtained from 580. Our study adds further credence to the notion that fungal endophytes are a potential storehouse for a variety of novel secondary metabolites vested with different bioactivities including some that can stall the growth of the malaria parasite.

  19. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris

    Science.gov (United States)

    Parsa, Soroush; García-Lemos, Adriana M.; Castillo, Katherine; Ortiz, Viviana; López-Lavalle, Luis Augusto Becerra; Braun, Jerome; Vega, Fernando E.

    2016-01-01

    We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7 % of the samples. Also common were Fusarium oxysporum, Xylaria sp., and Cladosporium cladosporioides, but found in only 13.4 %, 11.7 %, and 7.6 % of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings. PMID:27109374

  20. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris.

    Science.gov (United States)

    Parsa, Soroush; García-Lemos, Adriana M; Castillo, Katherine; Ortiz, Viviana; López-Lavalle, Luis Augusto Becerra; Braun, Jerome; Vega, Fernando E

    2016-05-01

    We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7 % of the samples. Also common were Fusarium oxysporum, Xylaria sp., and Cladosporium cladosporioides, but found in only 13.4 %, 11.7 %, and 7.6 % of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings. Published by Elsevier Ltd.

  1. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  2. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay.

    Science.gov (United States)

    You, Young-Hyun; Yoon, Hyeokjun; Kang, Sang-Mo; Shin, Jae-Ho; Choo, Yeon-Sik; Lee, In-Jung; Lee, Jin-Man; Kim, Jong-Guk

    2012-11-01

    Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

  3. Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael; Griffin, Amanda

    2017-07-01

    Plants are colonized by diverse assemblages of fungal endophytes that have potential as biocontrol agents for a variety of crops, including grapevine. Although the diversity of symbionts can be very high in wild plants, the fungal endophytes of wild Vitis plants have not yet been investigated. We surveyed the fungal endophytes of 6 wild populations of Vitis riparia, as well as a cold-tolerant, hybrid grapevine in 5 vineyards (1 certified organic), using 454 pyrosequencing. We detected between 43 and 235 operational taxonomic units per sample, with the highest richness and diversity in the wild, the lowest in conventional vineyards, and intermediate levels in the organic vineyard. Wild plants supported a range of taxa not seen in the conventional vineyards, and vineyards were dominated by relatively few taxa. We also isolated fungi from the wild plants and tested them for their ability to inhibit pathogens of grapevine. Several wild isolates (e.g., Ramularia spp.) were strongly inhibitory to grapevine pathogens. We show that wild Vitis supports a distinct and highly diverse community of fungal endophytes and may represent a rich repository of potential vineyard biocontrol agents.

  4. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs. Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  5. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    Science.gov (United States)

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.

  6. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  7. Endophytes in the plant Huperzia serrata: fungal diversity and discovery of a new pentapeptide.

    Science.gov (United States)

    Xiong, Zhi-Qiang; Yang, Ying-Ying; Liu, Qiao-Xia; Sun, Cui-Cui; Jin, Yu; Wang, Yong

    2015-04-01

    Endophytic fungi are an underexploited resource of natural products and have a capacity to produce diverse classes of plant-derived secondary metabolites. Here, we investigated the diversity of endophytic fungi from Huperzia serrata and the potential for discovering novel fungal natural products. One hundred and fifty-five endophytic fungi isolates obtained from H. serrata, belonging to four classes Dothideomycetes (47.3 %), Sordariomycetes (36.8 %), Eurotiomycetes (10.6 %) and an undefined class (5.3 %, Mucoraceae), were grouped into nine genera based on morphological and molecular identification. Colletotrichum, Cladosporium, Sordariomycetes and Guignardia were the dominant genera, whereas the remaining genera were infrequent groups. To our knowledge, the fungal genera Mucor and Neurospora were first reported in Huperzia plant. Among these endophytic fungi isolates, strain B14, belonging to Penicillium oxalicum, gave a gray precipitate with Dragendorff's reagent. A new pentapeptide was isolated from the culture of strain B14, and its chemical structure was elucidated on the basis of spectroscopic data from (1)H NMR, (13)C NMR and ESI-MS/MS. Taken together, H. serrata has a significant diversity of endophytic fungi that could be a rich resource for the discovery of new natural products.

  8. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris

    Science.gov (United States)

    The common bean is the most important food legume in the world. We examined the potential of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae applied as seed treatments for their endophytic establishment in the common bean. Endophytic colonization in sterile sand:peat average...

  9. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    Cereal crops are an essential source of nutrition worldwide. The incidence and severity of fungal diseases, in particular foliar diseases such as leaf spots, mildews and rusts, is a serious challenge to cereal production, and this problem is likely to escalate with the changing global climate......, and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...

  10. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.

    Directory of Open Access Journals (Sweden)

    Saad El-Din Hassan

    2017-11-01

    Full Text Available Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP properties of these endophytes. Seven bacterial endophytes were isolated and identified as Bacillus cereus and Bacillus subtilis, where five endophytic fungi were obtained and assigned to Penicillium chrysogenum and Penicillium crustosum. The isolated endophytes differentially produced indole acetic acid (IAA and ammonia, and in addition to their enzymatic and antimicrobial activities, they exhibited variable capacity for phosphate solubilization. In order to investigate the effect of endophytes on plant growth, four representative endophytes and their consortiums were selected concerning to their potential ability to promote plant growth. The results indicated that microbial endophytes isolated from medicinal plants possessing a vital role to improve plant growth and could be used as inoculants to establish a sustainable crop production system.

  11. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.

    Science.gov (United States)

    Hassan, Saad El-Din

    2017-11-01

    Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE) of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP) properties of these endophytes. Seven bacterial endophytes were isolated and identified as Bacillus cereus and Bacillus subtilis , where five endophytic fungi were obtained and assigned to Penicillium chrysogenum and Penicillium crustosum . The isolated endophytes differentially produced indole acetic acid (IAA) and ammonia, and in addition to their enzymatic and antimicrobial activities, they exhibited variable capacity for phosphate solubilization. In order to investigate the effect of endophytes on plant growth, four representative endophytes and their consortiums were selected concerning to their potential ability to promote plant growth. The results indicated that microbial endophytes isolated from medicinal plants possessing a vital role to improve plant growth and could be used as inoculants to establish a sustainable crop production system.

  12. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques.

    Science.gov (United States)

    de Souza Leite, Tiago; Cnossen-Fassoni, Andréia; Pereira, Olinto Liparini; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2013-02-01

    Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.

  13. Relationship between plant lipid bodies and fungal endophytes

    Science.gov (United States)

    Lipid bodies are universal components of plant cells and provide a mobilized carbon source for essential biological processes. Plant oils harvested for food and fuel often reside in these lipid bodies. Plants also host diverse populations of endophytic fungi, which easily escape microscopic detect...

  14. Inoculation, colonization and distribution of fungal endophytes in ...

    African Journals Online (AJOL)

    Mo

    All plants were kept in the humidity chamber for four weeks, after which they were transferred into polythene potting bags containing 3 kg of steam-sterilized soil in the screenhouse for 12 weeks. All plants were watered daily. Plant tissue colonization by the endophytes was assessed at 4, 8, 12 and 16 weeks after inoculation ...

  15. Fungal Endophytes: an Alternative Source for Production of Volatile Compounds from Agarwood Oil of Aquilaria subintegra.

    Science.gov (United States)

    Monggoot, Sakon; Popluechai, Siam; Gentekaki, Eleni; Pripdeevech, Patcharee

    2017-07-01

    Fungal endophytes are microorganisms that are well-known for producing a diverse array of secondary metabolites. Recent studies have uncovered the bioprospecting potential of several plant endophytic fungi. Here, we demonstrate the presence of highly bioactive fungal endophytic species in Aquilaria subintegra, a fragrant wood plant collected from Thailand. Thirty-three fungal endophytic strains were isolated and further identified to genus level based on morphological characteristics. These genera included Colletotrichum, Pestalotiopsis, Fusarium, Russula, Arthrinium, Diaporthe and Cladosporium. All strains were cultured on potato dextrose broth for 30 days prior to partitioning with ethyl acetate. The volatile compounds of all extracts were investigated by gas chromatography-mass spectrometry (GC-MS). Four strains-Arthrinium sp. MFLUCC16-0042, Colletotrichum sp. MFLUCC16-0047, Colletotrichum sp. MFLUCC16-0048 and Diaporthe sp. MFLUCC16-0051-produced a broad spectrum of volatile compounds, including β-agarofuran, α-agarofuran, δ-eudesmol, oxo-agarospirol, and β-dihydro agarofuran. These compounds are especially important, because they greatly resemble those originating from the host-produced agarwood oil. Our findings demonstrate the potential of endophytic fungi to produce bioactive compounds with applications in perfumery and cosmetic industries. Antioxidant activity of all extracts was also evaluated by using 2,2-diphenyl-2-picrylhydrazyl radical scavenging assays. The ethyl acetate extract of Diaporthe sp. MFLUCC16-0051 demonstrated superior antioxidant capacity, which was comparable to that of the gallic acid standard. Our results indicate that the MFLUCC16-0051 strain is a resource of natural antioxidant with potential medicinal applications.

  16. Secondary Metabolites from Fungal Endophytes of Echinacea purpurea Suppress Cytokine Secretion by Macrophage-Type Cells

    Science.gov (United States)

    Kaur, Amninder; Oberhofer, Martina; Juzumaite, Monika; Raja, Huzefa A.; Gulledge, Travis V.; Kao, Diana; Faeth, Stanley H.; Laster, Scott M.; Oberlies, Nicholas H.

    2017-01-01

    Botanical extracts of Echinacea purpurea have been widely used for the treatment of upper respiratory infections. We sought to chemically examine fungal endophytes inhabiting E. purpurea, and to identify compounds produced by these endophytes with in vitro cytokine-suppressive activity. Twelve isolates from surface sterilized seeds of E. purpurea were subjected to fractionation and major components were isolated. Sixteen secondary metabolites belonging to different structural classes were identified from these isolates based on NMR and mass spectrometry data. The compounds were tested for their influence on cytokine secretion by murine macrophage-type cells. Alternariol (1), O-prenylporriolide (4), porritoxin (10) β-zearalenol (13), and (S)-zearalenone (14) inhibited production of TNF-α from RAW 264.7 macrophages stimulated with LPS in the absence of any significant cytotoxicity. This is the first report of a cytokine-suppressive effect for 4. The results of this study are particularly interesting given that they show the presence of compounds with cytokine-suppressive activity in endophytes from a botanical used to treat inflammation. Future investigations into the role of fungal endophytes in the biological activity of E. purpurea dietary supplements may be warranted. PMID:28479944

  17. Wood decomposition and fungal community dynamics mediated by temperature and endophytes

    Science.gov (United States)

    Song, Z.; Schilling, J. S.

    2013-12-01

    Wood decomposition is primarily fulfilled by brown rot and white rot fungi in temperate and boreal forests. The competition balance between these fungi determines the patterns of wood decomposition and carbon cycle in forests. But this balance may shift in a warmer future, especially in high latitude forests. Additionally, endophytes may assert influence over the fungal competition through priority effect and interact with the effect of climate change. In this study, we use paper birch and two common fungi to answer two questions 1) How does increased temperature affect the competition between brown rot and white rot fungi? 2) How do endophytes interact with fungi from the soil and influence wood decomposition? A microcosm system was used to simulate competition between Piptoporus betulinus (brown rot fungi) and Fomes fomentarius (white rot fungi) on small birch stem on the effect of increased temperature and endophytes. Activity of P. betulinus was slower in higher temperature, but F. fomentarius was not affected. Character of residue showed that when both fungi were present, wood tend to have white rot in higher temperature. Presence of endophytes significantly reduced the decay rate when they were competing with external fungi, indicating that part of their energy was allocated to interspecies antagonism from metabolizing wood. In the absence of external fungus, endophytes alone caused significant amount of wood decay. Higher temperature also tends to shift the community of endophyte toward more white rot fungi. Our results highlighted the role of endophytes in wood decomposition. Major wood decomposers, not just plant pathogen, may remain dormant in live trees and regain their activity right after tree death. The endophytes could be an important part of assembly history in forming microbial community in dead wood and may have complex interactions with fungi and bacteria in soil. An increased temperature obviously favors white rot fungi, which is in accordance

  18. Stelliosphaerols A and B, Sesquiterpene-Polyol Conjugates from an Ecuadorian Fungal Endophyte.

    Science.gov (United States)

    Forcina, Giovanni C; Castro, Amaya; Bokesch, Heidi R; Spakowicz, Daniel J; Legaspi, Michelle E; Kucera, Kaury; Villota, Stephany; Narváez-Trujillo, Alexandra; McMahon, James B; Gustafson, Kirk R; Strobel, Scott A

    2015-12-24

    Endophytic fungi are plant tissue-associated fungi that represent a rich resource of unexplored biological and chemical diversity. As part of an ongoing effort to characterize Amazon rainforest-derived endophytes, numerous fungi were isolated and cultured from plants collected in the Yasuní National Park in Ecuador. Of these samples, phylogenetic and morphological data revealed a previously undescribed fungus in the order Pleosporales that was cultured from the tropical tree Duroia hirsuta. Extracts from this fungal isolate displayed activity against Staphylococcus aureus and were thus subjected to detailed chemical studies. Two compounds with modest antibacterial activity were isolated, and their structures were elucidated using a combination of NMR spectroscopic analysis, LC-MS studies, and chemical degradation. These efforts led to the identification of stelliosphaerols A (1) and B (2), new sesquiterpene-polyol conjugates that are responsible, at least in part, for the S. aureus inhibitory activity of the fungal extract.

  19. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused...... on establishing a balanced interaction between S. indica and tomato in vitro, as well as reliable detection methods that show fungal colonization of inoculated plant roots. The effect of root colonization by S. indica on host specialized metabolism is also determined, by comparing volatile terpene profiles of S......Endophytes comprise a polyphyletic and diverse group of microorganisms that colonize plant tissues and do not cause any immediate infection symptoms. Revealing the mechanisms of plant-endophyte mutualistic interactions has attracted considerable attention lately, mainly due to their multiple...

  20. Aploneura lentisci (Homoptera: Aphididae and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne

    Directory of Open Access Journals (Sweden)

    Alison Jean Popay

    2016-09-01

    Full Text Available Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2 year period between Pistacia and secondary hosts, principally species of Graminae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp. and tall fescue (Schedonorus phoenix where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were

  1. Fungal endophytes associated with three South American Myrtae (Myrtaceae) exhibit preferences in the colonization at leaf level.

    Science.gov (United States)

    Vaz, Aline B M; da Costa, Andre G F C; Raad, Lucélia V V; Góes-Neto, Aristóteles

    2014-03-01

    Fungal endophytes associated with Myrtaceae from Brazil and Argentina were isolated at three levels of nesting: leaf, individual host trees, and site collection. The alternating logistic regression (ALR) was used to model the data because it offers a computationally convenient method for fitting regression structures involving large clusters. The objectives of this study were to determine: (i) whether the colonization pattern is influenced by environmental variables, (ii) if there is some leaf part they prefer to colonize; (iii) if there is some fungal endophyte aggregation between hierarchical levels; (iv) what the distance effect is on the fungal association. The environmental variables were statistically significant only for Xylaria, i.e., when the elevation and water precipitation increase and the temperature decreases, the odds ratio of finding another fungal endophyte of that genus previously found increases. Sordariomycetes, Xylariales, and Xylaria exhibited leaf fragment preference to petiole and tip. Fungal endophytes showed association within leaf. The horizontal transmission mode and the dispersal limitation may explain this association at the leaf level. Moreover, our results suggest that when a fungal endophyte infects a leaf or host tree individual, the odds ratio of dispersal inside them is greater. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).

    Science.gov (United States)

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-10-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

    Science.gov (United States)

    Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith

    2018-01-01

    Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

  4. Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation?

    Directory of Open Access Journals (Sweden)

    Sarah L Hall

    Full Text Available Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue's ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E-, prescribed fire (1 burn vs. 2 burn vs. unburned control, and watering regime (dry vs. wet on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E->E+. The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here

  5. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in South Indian Aquatic and Wetland Macrophytes

    Directory of Open Access Journals (Sweden)

    Kumar Seerangan

    2014-01-01

    Full Text Available Investigations on the prevalence of arbuscular mycorrhizal (AM and dark septate endophyte (DSE fungal symbioses are limited for plants growing in tropical aquatic and wetland habitats compared to those growing on terrestrial moist or dry habitats. Therefore, we assessed the incidence of AM and DSE symbiosis in 8 hydrophytes and 50 wetland plants from four sites in south India. Of the 58 plant species examined, we found AM and DSE fungal symbiosis in 21 and five species, respectively. We reported for the first time AM and DSE fungal symbiosis in seven and five species, respectively. Intermediate-type AM morphology was common, and AM morphology is reported for the first time in 16 plant species. Both AM and DSE fungal colonization varied significantly across plant species and sites. Intact and identifiable AM fungal spores occurred in root zones of nine plant species, but AM fungal species richness was low. Though no clear relationship between AM and DSE fungal colonization was recognized, a significant negative correlation between AM colonization and spore numbers was established. Our study suggests that the occurrence of AM and DSE fungal symbiosis in plants growing in hydrophytic and wetland habitats is not as common as in terrestrial habitats.

  6. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China.

    Science.gov (United States)

    Jin, Hui; Yan, Zhiqiang; Liu, Quan; Yang, Xiaoyan; Chen, Jixiang; Qin, Bo

    2013-12-01

    This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.

  7. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  8. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species.

    Science.gov (United States)

    Oono, Ryoko; Lutzoni, François; Arnold, A Elizabeth; Kaye, Laurel; U'Ren, Jana M; May, Georgiana; Carbone, Ignazio

    2014-08-01

    Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales. © 2014 Botanical Society of America, Inc.

  9. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy

    Science.gov (United States)

    Redman, Regina S.; Henson, Joan M.; Rodriguez, Russell J.

    2005-01-01

    The fossil record indicates that fungal symbionts have been associated with plants since the Ordovician period (approximately 400 million years ago), when plants first became established on land (Pirozynski and Malloch, 1975; Redecker et al., 2000; Remy et al., 1994; Simon et al., 1993). Transitioning from aquatic to terrestrial habitats likely presented plants with new stresses, including periods of desiccation. Since symbiotic fungi are known to confer drought tolerance to plants (Bacon, 1993; Read and Camp, 1986), it has been suggested that fungal symbiosis was involved with or responsible for the establishment of land plants (Pirozynski and Malloch, 1975). Symbiosis was first defined by De Bary in 1879, and since that time, all plants in natural ecosystems have been found to be colonized with fungal and bacterial symbionts. It is clear that individual plants represent symbiotic communities with microorganisms associated in or on tissues below- and aboveground.There are two major classes of fungal symbionts associated with internal plant tissues: fungal endophytes that reside entirely within plants and may be associated with roots, stems leaves, or flowers; and mycorrhizal fungi that reside only in roots but extend out into the rhizosphere. In addition, fungal endophytes may be divided into two classes: (1) a relatively small number of fastidious species that are limited to a few monocot hosts (Clay and Schardl, 2002), and (2) a large number of tractable species with broad host ranges, including both monocots and eudicots (Stone et al., 2000). While significant resources and research have been invested in mycorrhizae and class 1 endophytes, comparatively little is known about class 2 endophytes, which may represent the largest group of fungal symbionts. This is partially because the symbiotic functionalities of class 2 endophytes have only recently been elucidated and shown to be responsible for the adaptation of some plants to high-stress environments (Redman

  10. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media.

    Science.gov (United States)

    Xiong, Zhi-Qiang; Yang, Ying-Ying; Zhao, Na; Wang, Yong

    2013-03-28

    Endophytic fungi represent underexplored resource of novel lead compounds and have a capacity to produce diverse class of plant secondary metabolites. Here we investigated endophytic fungi diversity and screening of paclitaxel-producing fungi from Taxus x media. Eighty-one endophytic fungi isolated from T. media were grouped into 8 genera based on the morphological and molecular identification. Guignardia and Colletotrichum were the dominant genera, whereas the remaining genera were infrequent groups. The genera Glomerella and Gibberella were first reported in Taxus. Three representative species of the distinct genera gave positive hits by molecular marker screening and were capable of producing taxol which were validated by HPLC-MS. Among these 3 taxol-producing fungi, the highest yield of taxol was 720 ng/l by Guignardia mangiferae HAA11 compared with those of Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides TA67 (120 ng/l). This is the first report of taxol producer from Guignardia. Moreover, the lower similarities of ts and bapt between microbial and plant origin suggested that fungal taxol biosynthetic cluster might be repeatedly invented during evolution, nor horizontal gene transfer from Taxus species. Taxol-producing endophytic fungi could be a fascinating reservoir to generate taxol-related drug lead and to elucidate the remained 5 unknown genes or the potential regulation mechanism in the taxol biosynthesis pathway.

  11. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter.

    Directory of Open Access Journals (Sweden)

    Zhilin Yuan

    Full Text Available The role of fungal endophytes (FEs as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3, laccase, and cellobiohydrolase (GH7 genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.

  12. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter.

    Science.gov (United States)

    Yuan, Zhilin; Chen, Lianqing

    2014-01-01

    The role of fungal endophytes (FEs) as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa) of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm) experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation) revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3), laccase, and cellobiohydrolase (GH7) genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.

  13. Fungal Endophyte Diversity and Bioactivity in the Indian Medicinal Plant Ocimum sanctum Linn.

    Directory of Open Access Journals (Sweden)

    Kanika Chowdhary

    Full Text Available Endophytic mycopopulation isolated from India's Queen of herbs Tulsi (Ocimum sanctum were explored and investigated for their diversity and antiphytopathogenic activity against widespread plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum. 90 fungal isolates, representing 17 genera were recovered from 313 disease-free and surface sterilised plant segments (leaf and stem tissues from three different geographic locations (Delhi, Hyderabad and Mukteshwar during distinct sampling times in consequent years 2010 and 2011 in India. Fungal endophytes were subjected to molecular identification based on rDNA ITS sequence analysis. Plant pathogens such as F. verticillioides, B. maydis, C. coarctatum, R. bataticola, Hypoxylon sp., Diaporthe phaseolorum, Alternaria tenuissima and A. alternata have occurred as endophyte only during second sampling (second sampling in 2011 in the present study. Bi-plot generated by principal component analysis suggested tissue specificity of certain fungal endophytes. Dendrogram revealed species abundance as a function of mean temperature of the location at the time of sampling. Shannon diversity in the first collection is highest in Hyderabad leaf tissues (H' = 1.907 whereas in second collection it was highest from leaf tissues of Delhi (H' = 1.846. Mukteshwar (altitude: 7500 feet reported least isolation rate in second collection. Nearly 23% of the total fungal isolates were considered as potent biocontrol agent. Hexane extract of M. phaseolina recovered from Hyderabad in first collection demonstrated highest activity against S. sclerotiorum with IC50 value of 0.38 mg/ml. Additionally, its components 2H-pyran-2-one, 5,6-dihydro-6-pentyl and palmitic acid, methyl ester as reported by GC-MS Chromatogram upon evaluation for their antiphytopathogenic activity exhibited IC50 value of 1.002 and 0.662 against respectively S. sclerotiorum indicating their significant role in

  14. Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador.

    Science.gov (United States)

    Thomas, Sarah E; Crozier, Jayne; Catherine Aime, M; Evans, Harry C; Holmes, Keith A

    2008-07-01

    Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Non-sporulating isolates were grouped into 46 different morphological species according to their colony morphology. Many of these morphospecies were assumed to be basidiomycetes and, therefore, were of particular interest. Basidiomycetous endophytes have received far less attention than ascomycetes and also have potential as biological control agents of the basidiomycetous pathogens of T. cacao: Moniliophthora roreri (frosty pod rot pathogen) and M. perniciosa (witches' broom disease). The morphospecies were further characterised by molecular analyses. Amplification of the nuLSU was undertaken for phylogenetic placement of these non-sporulating cultures and revealed a total of 31 different taxa of which 15 were basidiomycetes belonging to the class Agaricomycetes, and 16 ascomycetes primarily belonging to the Sordariomycetes.

  15. Forages and pastures symposium: managing the tall fescue-fungal endophyte symbiosis for optimum forage-animal production.

    Science.gov (United States)

    Aiken, G E; Strickland, J R

    2013-05-01

    Alkaloids produced by the fungal endophyte (Neotyphodium coenophialum) that infects tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] are a paradox to cattle production. Although certain alkaloids impart tall fescue with tolerances to environmental stresses, such as moisture, heat, and herbivory, ergot alkaloids produced by the endophyte can induce fescue toxicosis, a malady that adversely affects animal production and physiology. Hardiness and persistence of tall fescue under limited management can be attributed to the endophyte, but the trade-off is reduced cattle production from consumption of ergot alkaloids produced by the endophyte. Improved understanding and knowledge of this endophyte-grass complex has facilitated development of technologies and management systems that can either mitigate or completely alleviate fescue toxicosis. This review discusses the research results that have led to development of 5 management approaches to either reduce the severity of fescue toxicosis or alleviate it altogether. Three approaches manipulate the endophyte-tall fescue complex to reduce or alleviate ergot alkaloids: 1) use of heavy grazing intensities, 2) replacing the toxic endophyte with nonergot alkaloid-producing endophytes, and 3) chemical suppression of seed head emergence. The remaining 2 management options do not affect ergot alkaloid concentrations in fescue tissues but are used 1) to avoid grazing of tall fescue with increased ergot alkaloid concentrations in the late spring and summer by moving cattle to warm-season grass pasture and 2) to dilute dietary alkaloids by interseeding clovers or feeding supplements.

  16. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes.

    Science.gov (United States)

    González-Menéndez, Víctor; Pérez-Bonilla, Mercedes; Pérez-Victoria, Ignacio; Martín, Jesús; Muñoz, Francisca; Reyes, Fernando; Tormo, José R; Genilloud, Olga

    2016-02-18

    Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  17. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes

    Directory of Open Access Journals (Sweden)

    Víctor González-Menéndez

    2016-02-01

    Full Text Available Small molecule histone deacetylase (HDAC and DNA methyltransferase (DNMT inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  18. Fungal endophyte (Epichloë festucae alters the nutrient content of Festuca rubra regardless of water availability.

    Directory of Open Access Journals (Sweden)

    Beatriz R Vázquez-de-Aldana

    Full Text Available Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+ and non-infected (E- plants of two half-sib lines (PEN and RAB were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%, Zn (58% and N (19% than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

  19. Distance decay relationships in foliar fungal endophytes are driven by rare taxa.

    Science.gov (United States)

    Oono, Ryoko; Rasmussen, Anna; Lefèvre, Emilie

    2017-07-01

    Foliar fungal endophytes represent a diverse and species-rich plant microbiome. Their biogeography provides essential clues to their cryptic relationship with hosts and the environment in which they disperse. We present species composition, diversity, and dispersal patterns of endophytic fungi associated with needles of Pinus taeda trees across regional scales in the absence of strong environmental gradients as well as within individual trees. An empirical designation of rare and abundant taxa enlightens us on the structure of endophyte communities. We report multiple distance-decay patterns consistent with effects of dispersal limitation, largely driven by community changes in rare taxa, those taxonomic units that made up less than 0.31% of reads per sample on average. Distance-decay rates and community structure also depended on specific classes of fungi and were predominantly influenced by rare members of Dothideomycetes. Communities separated by urban areas also revealed stronger effects of distance on community similarity, confirming that host density and diversity plays an important role in symbiont biogeography, which may ultimately lead to a mosaic of functional diversity as well as rare species diversity across landscapes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Characterization and Photoprotector Activity of Endophytic Fungal Pigments from Coatal Plant Sarang Semut (Hydnophytum formicarum

    Directory of Open Access Journals (Sweden)

    Mada Triandala Sabero

    2016-04-01

    Full Text Available Isolate endophytic fungal RS3 from smooth ant plants (Hydnophytum formicarum produced black pigment. The aims of this research were to obtain the pigment, to characterize and to determine the photoprotector activity. This research was consisted into several steps, there were determined the best precipitating agent, characterization using instrument and solubility analysis, and analysis of Sun Protection Factor (SPF. Results showed the pigment was precipitated using acid solvent with pH ≤ 2,5. Functional groups of pigment pellet were hydroxy, aromatic ring, phenol and amine. According to characteristic, black pigment produced by fungal RS3 proposed as melanin. The photoprotector analysis showed SPF the value was 11.33.

  1. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    Endophytes are microbes capable of colonizing the inner part of different plant tissues without causing disease symptoms. In some cases, they have beneficial effects for the host plant. The role of endophytes in biological control of plant pathogens, in induction of plant abiotic stress tolerance...... and in enhancement of plant growth has strongly increased the focus on the isolation of novel endophytic species. In order to implement the use of specific endophytes in agriculture, it is important to understand the mechanisms involved in the plant-endophyte interactions. Phytohormones play a significant role...... in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato...

  2. Antiherbivore defense mutualism under elevated carbon dioxide level: A fungal endophyte and grass

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Winthrop Univ., Rock Hill, SC (United States); Lincoln, D.E. [Univ. of South Carolina, Columbia, SC (United States)

    1996-06-01

    Previous studies have shown that insects commonly consume more when fed leaf tissue grown under CO{sub 2} enrichment, but with few negative effects on growth. However, lepidoteran larvae fed tissue infected with Balansiae fungal endophytes (which product toxic alkaloids) typically eat less but also suffer negative effects on growth and survival. This study was carried out to understand how these 2 factors may interact to affect larval consumption and growth in fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Infected and uninfected ramets of a single genotype of tall fescue, Festuca arundinacea Schreb., were grown under CO{sub 2} concentrations, but was not influenced by infection. As expected, larvae had significantly reduced efficiency of conversion of ingested food. These 2 factors also interacted so that the lowest efficiency of conversion of ingested food was seen when both infection and an enriched atmospheric CO{sub 2} environment were present. As global atmospheric CO{sub 2} levels continue to increase, it appears that fungal endophytes will continue to be important in turfgrasses as protection against insect herbivores and may lead to increased fitness for infected plant genotypes. 47 refs., 4 figs., 1 tab.

  3. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes

    Science.gov (United States)

    Rodriguez, R.J.; Redman, R.S.

    1997-01-01

    This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.

  4. Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana).

    Science.gov (United States)

    Qadri, Masroor; Rajput, Roopali; Abdin, Malik Z; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2014-05-01

    In this study, we investigated the diversity of fungal endophytes associated with Pinus wallichiana from the Western Himalayas, with emphasis on comparison of endophytic communities harbored by the stem and needle tissues of the host and their antimicrobial potential. A total number of 130 isolates, comprising of 38 different genera, were recovered from 210 fragments of the plant. Among the isolated fungi, only a single isolate, Tritirachium oryzae, belonged to the Phylum Basidiomycota whereas the rest belonged to Ascomycota. Dothideomycetes was the dominant class with the highest isolation frequency of 49.2 %. The most frequent colonizers of the host were Alternaria spp., Pestalotiopsis spp., Preussia spp., and Sclerostagonospora spp. The diversity and species richness were higher in needle tissues than in the stems. Antimicrobial activities were displayed by extracts from a total number of 22 endophytes against one or more pathogens. Endophytes designated as P1N13 (Coniothyrium carteri), P2N8 (Thielavia subthermophila), P4S6b (Truncatella betulae), P7N10 (Cochliobolus australiensis), and P8S4 (Tritirachium oryzae) were highly active against Candida albicans. Broad spectrum antimicrobial activities were obtained with the extracts of P8-S4 (Tritirachium oryzae) and P5-N26 (Coniochaeta gigantospora) that were potentially active against the Gram-positive and Gram-negative bacteria as well as the fungal pathogen, Candida albicans. The most prominent antagonistic activity against fungal pathogens was shown by P8-S4 (Tritirachium oryzae), P5-N31a (Truncatella spadicea), and P5-N20 (Fusarium larvarum). Our findings indicate that Pinus wallichiana harbors a rich endophytic fungal community with potential antimicrobial activities. Further studies are needed to understand the ecology and evolutionary context of the associations between the Himalayan pine and its endophytes.

  5. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes.

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto; Sjamsuridzal, Wellyzar

    2015-06-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

  6. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto

    2015-01-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications. PMID:26190921

  7. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis.

    Science.gov (United States)

    Yuan, Zhi-Lin; Rao, Long-Bing; Chen, Yi-Cun; Zhang, Chu-Long; Wu, You-Gui

    2011-03-01

    The biodiversity-functional relationship in fungal ecology was recently developed and debated, but has rarely been addressed in endophytes. In this study, an integrative culture system was designed to capture a rich fungal consortium from the conifer Abies beshanzuensis. Results indicate an impressive diversity of fungal lineages (a total of 84 taxa classified in Dikarya) and a relatively high proportion of hitherto unknown species (27.4%). The laccase gene was used as a functional marker due to its involvement in lignocellulose degradation. Remarkable diversity of laccase genes was found across a wide range of taxa, with at least 35 and 19 distinct sequences in ascomycetes and basidiomycetes respectively, were revealed. Many groups displayed variable ability to decompose needles. Furthermore, many ascomycetes, including three volatile-producing Muscodor species (Xylariaceae), showed the ability to inhibit pathogens. Notably, most laccase-producing species showed little or no antibiosis and vice versa. Clavicipitalean and ustilaginomycetous fungi, specifically toxic to insects, were inferred from taxonomic information. Intra-specific physiological variation in Pezicula sporulosa, a second dominant species, was clearly high. We conclude that a suite of defensive characteristics in endophytes contributes to improving host fitness under various stresses and that a diversity of laccase genes confers an ecological advantage in competition for nutrients. Intra-specific diversity may be of great ecological significance for ecotypic adaptation. These findings suggest a fair degree of functional complementarity rather than redundancy among endemic symbionts of natural plant populations. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Impact of Domestication on the Endophytic Fungal Diversity Associated With Wild Zingiberaceae at Mount Halimun Salak National Park

    Directory of Open Access Journals (Sweden)

    Ivan Permana Putra

    2015-10-01

    Full Text Available Mount Halimun Salak National Park is one of the tropical forest remnants in Java island. The national park has been recognized with high diversity of wild Zingiberaceae. Of that Zingiberaceae, two species namely Alpinia malaccensis (AM and Horstendia conica (HC, were domesticated as garden plants in the surrounding area of the forest for medicinal use. The impact of domestication on the fungal endophytes associated with these two species of Zingiberaceae is reported here. Fungal endophyte diversity in the wild and domesticated AM and HC was analyzed based on the culturable fungi. Identification of species level used morphological and molecular approaches of ITS rDNA sequence. This study determined 19 species of fungal endophytes, namely Arthrinium malaysianum, Aspergillus flavipes, As. sydowii, Chaetomium globosum, Cladosporium oxysporum, Cladosporium sp., Colletotrichum boninense-complex, Co. cliviae-complex, Co. gloeosporioides-complex, Diaporthe sp., D. anacardii, D. gardenia, Exophiala sp., E. lecanii-corni, Guignardia mangiferae, Ochroconis gallopava, Penicillium citrinum, Pyricularia costina, and unsporulated Sydowiellaceae. Among them, A. malaysianum, C. globosum, Co. cliviae-complex, D. gardenia, and unsporulated Sydowiellaceae were only found in domesticated plants, while some others were absent. Colletotrichum boninense-complex was commonly found in both wild and domesticated plants. Domestication activity affected the diversity of endophytic fungi of AM and HC.

  9. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    Science.gov (United States)

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima.

    Science.gov (United States)

    Ismaiel, Ahmed A; Ahmed, Ashraf S; Hassan, Ismail A; El-Sayed, El-Sayed R; Karam El-Din, Al-Zahraa A

    2017-07-01

    Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L -1 , respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L -1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L -1 . Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL -1 . Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.

  11. Phylogenetic reconstruction of endophytic fungal isolates using internal transcribed spacer 2 (ITS2) region.

    Science.gov (United States)

    GokulRaj, Kathamuthu; Sundaresan, Natesan; Ganeshan, Enthai Jagan; Rajapriya, Pandi; Muthumary, Johnpaul; Sridhar, Jayavel; Pandi, Mohan

    2014-01-01

    Endophytic fungi are inhabitants of plants, living most part of their lifecycle asymptomatically which mainly confer protection and ecological advantages to the host plant. In this present study, 48 endophytic fungi were isolated from the leaves of three medicinal plants and characterized based on ITS2 sequence - secondary structure analysis. ITS2 secondary structures were elucidated with minimum free energy method (MFOLD version 3.1) and consensus structure of each genus was generated by 4SALE. ProfDistS was used to generate ITS2 sequence structure based phylogenetic tree respectively. Our elucidated isolates were belonging to Ascomycetes family, representing 5 orders and 6 genera. Colletotrichum/Glomerella spp., Diaporthae/Phomopsis spp., and Alternaria spp., were predominantly observed while Cochliobolus sp., Cladosporium sp., and Emericella sp., were represented by singletons. The constructed phylogenetic tree has well resolved monophyletic groups with >50% bootstrap value support. Secondary structures based fungal systematics improves not only the stability; it also increases the precision of phylogenetic inference. Above ITS2 based phylogenetic analysis was performed for our 48 isolates along with sequences of known ex-types taken from GenBank which confirms the efficiency of the proposed method. Further, we propose it as superlative marker for reconstructing phylogenetic relationships at different taxonomic levels due to their lesser length.

  12. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.C. (Univ. of Georgia, Athens (USA)); Evans, J.J.; Bacon, C.W. (Department of Agriculture, Athens, GA (USA))

    1990-03-01

    Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +} concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.

  13. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  14. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants.

    Science.gov (United States)

    Andargie, Mebeaselassie; Congyi, Zhu; Yun, Yun; Li, Jianxiong

    2017-06-01

    False smut disease of rice is posing an increasing concern for production, not only because of the hiking epidemic occurrence in rice production, but also because of the challenging specific pathogenesis of the disease. The aim of this work was to evaluate the potential of five fungal endophytes to reduce negative effects of rice false smut fungus (Ustilagonoidea virens) on rice plants, in both the laboratory and greenhouse. Though all the fungal isolates showed the ability to inhibit the growth of U. virens with varying degrees, isolate E337 showed significant antagonistic activity against the pathogenic fungi. The isolate E337 was identified as Antennariella placitae by molecular and morphological data analysis including 18S rDNA sequence analysis. This isolate showed a significant in vitro inhibition of mycelial growth of U. virens by dual culture method and it was subsequently tested for its in vivo biocontrol potential on false smut disease on rice plants. Greenhouse experiments confirmed that applications of conidia of A. placitae protected rice plants by improving rice yield and by decreasing the severity of false smut disease on susceptible rice plants. This is the first report where A. placitae has been identified as a biocontrol organism.

  15. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia.

    Science.gov (United States)

    Zubek, Szymon; Nobis, Marcin; Błaszkowski, Janusz; Mleczko, Piotr; Nowak, Arkadiusz

    2011-06-01

    The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed.

  16. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    Science.gov (United States)

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  17. Genes Required for the Anti-Fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC

    Directory of Open Access Journals (Sweden)

    Hanan R Shehata

    2016-10-01

    Full Text Available Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming towards its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defence for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.

  18. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species.

    Science.gov (United States)

    Bailey, B A; Bae, H; Strem, M D; Roberts, D P; Thomas, S E; Crozier, J; Samuels, G J; Choi, Ik-Young; Holmes, K A

    2006-11-01

    Endophytic isolates of Trichoderma species are being considered as biocontrol agents for diseases of Theobroma cacao (cacao). Gene expression was studied during the interaction between cacao seedlings and four endophytic Trichoderma isolates, T. ovalisporum-DIS 70a, T. hamatum-DIS 219b, T. harzianum-DIS 219f, and Trichoderma sp.-DIS 172ai. Isolates DIS 70a, DIS 219b, and DIS 219f were mycoparasitic on the pathogen Moniliophthora roreri, and DIS 172ai produced metabolites that inhibited growth of M. roreri in culture. ESTs (116) responsive to endophytic colonization of cacao were identified using differential display and their expression analyzed using macroarrays. Nineteen cacao ESTs and 17 Trichoderma ESTs were chosen for real-time quantitative PCR analysis. Seven cacao ESTs were induced during colonization by the Trichoderma isolates. These included putative genes for ornithine decarboxylase (P1), GST-like proteins (P4), zinc finger protein (P13), wound-induced protein (P26), EF-calcium-binding protein (P29), carbohydrate oxidase (P59), and an unknown protein (U4). Two plant ESTs, extensin-like protein (P12) and major intrinsic protein (P31), were repressed due to colonization. The plant gene expression profile was dependent on the Trichoderma isolate colonizing the cacao seedling. The fungal ESTs induced in colonized cacao seedlings also varied with the Trichoderma isolate used. The most highly induced fungal ESTs were putative glucosyl hydrolase family 2 (F3), glucosyl hydrolase family 7 (F7), serine protease (F11), and alcohol oxidase (F19). The pattern of altered gene expression suggests a complex system of genetic cross talk occurs between the cacao tree and Trichoderma isolates during the establishment of the endophytic association.

  19. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    Science.gov (United States)

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  20. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.|info:eu-repo/dai/nl/413319393

    2016-01-01

    Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water

  1. Anti-Insect Properties of Grass Fungal Endophytes for Plant Resistance to Insects

    Science.gov (United States)

    Many temperate grass species host Epichloë and Neotyphodium endophytic fungi that produce alkaloids with anti-mammalian and anti-insect properties. Ergot and lolitrem alkaloid production by endophyte-infected (E+) grasses can have deleterious effects on grazing livestock, whereas insecticidal alkal...

  2. Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors.

    Science.gov (United States)

    Katoch, M; Paul, A; Singh, G; Sridhar, S N C

    2017-08-03

    As per the recent statistical reports of World Health Organisation (WHO), 13% of total global population is obese. Orlistat remains to be the only drug approved for the long term treatment of obesity. Recent findings highlighted severe adverse effects of orlistat that included hepatotoxicity, gall stones, kidney stones and acute pancreatitis. Therefore, search for new drug is required. The investigations based on endophytic natural products would prove pivotal in the global fight against this health issue. Obesity is associated with lipid metabolism involving pancreatic lipase enzyme. The inhibition of pancreatic lipase is demonstrated by using the extracts of endophytes isolated from Viola odorata Linn. In addition, endophytes were identified using ITS based rDNA sequencing. Present study involves the isolation and identification of 27 endophytes from V. odorata. All the endophytes were evaluated for lipase inhibitory activities. The extracts of seven endophytes exhibited lipase inhibitory activity with IC 50  endophytic community with potent lipase inhibitory activity. VOLF4 is the potential endophyte. The extract of VOLF4 can be used to develop the potential drug to treat obesity.

  3. Detection and Quantification of the Entomopathogenic Fungal Endophyte Beauveria bassiana in Plants by Nested and Quantitative PCR.

    Science.gov (United States)

    Garrido-Jurado, Inmaculada; Landa, Blanca B; Quesada-Moraga, Enrique

    2016-01-01

    The described protocol allows detecting as low as 10 fg the entomopathogenic fungal endophyte Beauveria bassiana in host plants by using a two-step nested PCR with the ITS1F/ITS4 and BB.fw and BB.rv primer pairs. On the other hand, a qPCR protocol using BB.fw and BB.rv primers is also available allowing the quantification of up to 26 fg of B. bassiana DNA per 20 ng of leaf DNA.

  4. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense.

    Science.gov (United States)

    Aly, Amal H; Edrada-Ebel, RuAngelie; Indriani, Ine Dewi; Wray, Victor; Müller, Werner E G; Totzke, Frank; Zirrgiebel, Ute; Schächtele, Christoph; Kubbutat, Michael H G; Lin, W H; Proksch, Peter; Ebel, Rainer

    2008-06-01

    From the Egyptian medicinal plant Polygonum senegalense the fungal endophyte Alternaria sp. was isolated. Extracts of the fungus grown either in liquid culture or on solid rice media exhibited cytotoxic activity when tested in vitro against L5178Y cells. Chromatographic separation of the extracts yielded 15 natural products, out of which seven were new compounds, with both fungal extracts differing considerably with regard to their secondary metabolites. Compounds 1, 2, 3, 6, and 7 showed cytotoxic activity with EC 50 values ranging from 1.7 to 7.8 microg/mL. When analyzed in vitro for their inhibitory potential against 24 different protein kinases, compounds 1- 3, 5- 8, and 15 inhibited several of these enzymes (IC 50 values 0.22-9.8 microg/mL). Interestingly, compounds 1, 3, and 6 were also identified as constituents of an extract derived from healthy leaves of the host plant P. senegalense, thereby indicating that the production of natural products by the endophyte proceeds also under in situ conditions within the plant host.

  5. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses.

    Science.gov (United States)

    Krings, Michael; Taylor, Thomas N; Hass, Hagen; Kerp, Hans; Dotzler, Nora; Hermsen, Elizabeth J

    2007-01-01

    The Early Devonian Rhynie chert has been critical in documenting early land plant-fungal interactions. However, complex associations involving several fungi that enter into qualitatively different relationships with a single host plant and even interact with one another have not yet been detailed. Here, we studied petrographic thin sections of the Rhynie chert plant Nothia aphylla. Three fungal endophytes (co)occur in prostrate axes of this plant: narrow hyphae producing clusters of small spores; large spherical spores/zoosporangia; and wide aseptate hyphae that form intercellular vesicles in the cortex. Host responses on attack include bulging of infected rhizoids, formation of encasement layers around intracellular hyphae, and separation of infected from uninfected tissues by secondarily thickened cell walls. A complex simultaneous interaction of N. aphylla with three endophytic fungi was discovered. The host responses indicate that some of the mechanisms causing host responses in extant plants were in place 400 million yr ago. Anatomical and life history features of N. aphylla suggest that this plant may have been particularly susceptible to colonization by fungi.

  6. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease.

    Science.gov (United States)

    Hanada, Rogério Eiji; Pomella, Alan William V; Costa, Heron Salazar; Bezerra, José Luiz; Loguercio, Leandro L; Pereira, José O

    2010-01-01

    The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupuaçu) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide. The isolated endophytic fungi from 60 traditional, farmer-planted, healthy cacao and 10 cupuaçu plants were cultured in PDA under conditions inducing sporulation. Isolates were classified based upon the morphological characteristics of their cultures and reproductive structures. Spore suspensions from a total of 103 isolates that could be classified at least up to genus level were tested against P. palmivora in pods attached to cacao trees in the field. Results indicated that ∼70% of isolates showed biocontrol effects to a certain extent, suggesting that culturable endophytic fungal biodiversity in this system is of a mostly mutualistic type of interaction with the host. Eight isolates from genera Trichoderma (reference isolate), Pestalotiopsis, Curvularia, Tolypocladium and Fusarium showed the highest level of activity against the pathogen, and were further characterized. All demonstrated their endophytic nature by colonizing axenic cacao plantlets, and confirmed their biocontrol activity on attached pods trials by showing significant decrease in disease severity in relation to the positive control. None, however, showed detectable growth-promotion effects. Aspects related to endophytic biodiversity and host-pathogen-endophyte interactions in the environment of this study were discussed on the context of developing sustainable strategies

  7. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance.

    Science.gov (United States)

    Lacercat-Didier, Laurence; Berthelot, Charlotte; Foulon, Julie; Errard, Audrey; Martino, Elena; Chalot, Michel; Blaudez, Damien

    2016-10-01

    This study aimed to isolate, identify, and characterise metal-tolerant fungi colonising poplar roots at a metal-contaminated phytoremediation site. Poplar roots were colonised by arbuscular mycorrhizal, ectomycorrhizal, and endophytic fungi, and the species were determined by ITS molecular analyses. Eight different isolates were successfully isolated into pure culture. Three isolates belonging to the Helotiales (P02, P06) and the Serendipita vermifera species (P04) were highly tolerant to metals (Cd, Zn, Pb, and Cu) compared to the mycorrhizal Hebeloma isolates. The three isolates degraded complex carbohydrates, such as xylan and cellulose, indicating that they could partially degrade root cell walls and penetrate into cells. This hypothesis was confirmed by further in vitro re-synthesis experiments, which showed that the three isolates colonised root tissues of poplar plantlets whereas two of them formed microsclerotia-like structures. Taken together, these results suggest an endophytic lifestyle of these isolates. This is the first evidence of S. vermifera as a root endophyte of poplar. A new endophytic putative species belonging to the Helotiales and closely related to Leohumicola is also reported. Interestingly, and when compared to mock-inoculated plants, both P06 and P04 isolates increased the number of root tips of inoculated poplar plantlets in vitro. Moreover, the S. vermifera P04 isolate also increased the shoot biomass. The results are discussed in relation to the potential use of endophytic strains for tree-based phytoremediation of metal-contaminated sites.

  8. Identification of the fungal endophyte of Ammophila breviligulata (American beachgrass as Epichloë amarillans

    Directory of Open Access Journals (Sweden)

    Ian Drake

    2018-01-01

    Full Text Available The grass Ammophila breviligulata (American beachgrass is known to host an endophyte of the genus Epichloë. Based on morphological characteristics it was originally identified as Acremonium typhinum var. ammophilae and is currently designated as Epichloë typhina var. ammophilae. However, the Epichloë species has not previously been identified based on DNA sequence data. Based on phylogenetic placement of beta-tubulin and translation elongation factor 1-alpha DNA sequences the endophyte is identified as a member of E. amarillans rather than E. typhina.

  9. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Brosi, Glade [University of Kentucky; McCulley, Rebecca L [University of Kentucky; Bush, L P [University of Kentucky; Nelson, Jim A [University of Kentucky; Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2011-01-01

    Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

  10. Fungal Endophytes of Wild Barley and their Effects on Diuraphis noxia Population Development

    Science.gov (United States)

    S.L. Clement; A. Dan Wilson; D.G. Lester; C.M. Davitt

    1997-01-01

    Laboratory experiments were conducted to compare the expression of Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) resistance in four plant introduction (PI) lines of wild barley (Hordeum) infected with different species or strains of endophytic fungi (tribe Balansieae, family Clavicipitaceae, Neotyphodium gen. nov. [formerly...

  11. Production, characterization and application of inulinase from fungal endophyte CCMB 328

    Directory of Open Access Journals (Sweden)

    Diego S. Nascimento

    2012-06-01

    Full Text Available Inulinase (β-2,1-D- fructan fructanohydrolase, EC 3.2.1.7, targets the β-2,1 linkage of inulin, a polyfructan consisting of linear β-2,1 linked fructose, and hydrolyzes it into fructose. This use provides an alternative to produce fructose syrup through the hydrolysis of inulin. The objective of this work was to study the production, characterization and applications of inulinases from the fungal endophyte CCMB 328 isolated from the Brazilian semi-arid region. Response Surface Methodology (RSM was employed to evaluate the effect of variables (concentration of glucose and yeast extract, on secreted inulinase activities detected in the culture medium and also in the inulin hydrolysis. The results showed that the best conditions for inulinase production by CCMB 328 are 9.89 g / L for glucose and 1.09 g / L for yeast extract. The concentration of 0.20 mol/L of NaCl and KCl increased the activity of inulinase from CCMB 328 by approximately 63% and 37%, respectively. The results also showed that the inulinase has potential for inulin hydrolysis, whose conversion yields roughly 72.48 % for an initial concentration of inulin at 1% (w/v.A enzima inulinase (EC 3.2.1.7, β-D-frutano frutanohidrolase atua sobre as ligações β-2,1 da inulina, um polifrutano consistindo de frutose unida por ligações β-2,1. A hidrólise de inulina através do uso de inulinase é uma alternativa viável para a obtenção de xarope de frutose. O objetivo deste trabalho foi estudar a produção, caracterização e aplicação de inulinase obtidas a partir do fungo endofítico CCMB 328, isolado do semi-árido brasileiro. A metodologia de Superfície de Resposta (MSR foi empregado para avaliar os efeitos das variáveis (concentração de glicose e extrato de levedura na atividade da enzima inulinase produzida em meio de cultura líquido e também para avaliar a atividade da enzima na hidrólise de inulina. Os resultados mostraram que as melhores condições para a produ

  12. Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River floodplain, Brazil.

    Science.gov (United States)

    Almeida, T T; Orlandelli, R C; Azevedo, J L; Pamphile, J A

    2015-05-11

    Endophytic fungi live in the interior of healthy plants without causing them any damage. These fungi are of biotechnological interest; they may be used in the biological control of pests and plant diseases, and in the pharmaceutical industry. The aquatic macrophytes Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) belong to the Pontederiaceae family. The first is a fixed-floating species and the second is a free-floating species that is known for its phytoremediation potential. The fungal endophytes associated with the leaves of E. azurea and E. crassipes, native to the Upper Paraná River floodplain, Brazil, were isolated. The sequencing of the ITS1-5.8S-ITS2 region of ribosomal DNA was performed and the nucleotide sequences obtained were compared with those available in the GenBank database for the molecular identification of the isolates. The construction of phylogenetic trees was performed using the MEGA5 software. The results showed that high colonization frequencies were obtained from the 610 foliar fragments sampled from each plant: 87.86% for E. azurea and 88.85% for E. crassipes. At the genus level, it was possible to identify 19 fungal endophytes belonging to the genera Alternaria, Bipolaris, Cercospora, Diaporthe, Gibberella, Pestalotiopsis, Plectosphaerella, Phoma, and Saccharicola. Two other endophytes were identified at the species level (Microsphaeropsis arundinis). Genera Bipolaris, Cercospora, Microsphaeropsis, and Phoma were found as endophytes in the two macrophytes and the other genera were host-specific, being isolated from only one macrophyte, proving that there is a small difference in the endophytic diversity of the two Eichhornia species analyzed.

  13. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn.

    Science.gov (United States)

    Wani, Zahoor Ahmed; Mirza, Dania Nazir; Arora, Palak; Riyaz-Ul-Hassan, Syed

    2016-12-01

    A total of 294 fungal endophytes were isolated from the corms of Crocus sativus at two stages of crocus life cycle collected from 14 different saffron growing sites in Jammu and Kashmir (J & K) State, India. Molecular phylogeny assigned them into 36 distinct internal transcribed spacer (ITS) genotypes which spread over 19 genera. The diversity of endophytes was higher at the dormant than at the vegetative stage. The Saffron microbiome was dominated by Phialophora mustea and Cadophora malorum, both are dark septate endophytes (DSEs). Some endophytes were found to possess antimicrobial properties that could be helpful for the host in evading the pathogens. These endophytes generally produced significant quantities of indole acetic acid (IAA) as well. However, thirteen of the endophytic taxa were found to cause corm rot in the host with different levels of severity under in vitro as well as in vivo conditions. This is the first report of community structure and biological properties of fungal endophytes associated with C. sativus, which may eventually help us to develop agro-technologies, based on plant-endophyte interactions for sustainable cultivation of saffron. The endophytes preserved ex situ, in this study, may also yield bioactive natural products for pharmacological and industrial applications. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  15. Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors

    OpenAIRE

    Katoch, M.; Paul, A.; Singh, G.; Sridhar, S. N. C.

    2017-01-01

    Background As per the recent statistical reports of World Health Organisation (WHO), 13% of total global population is obese. Orlistat remains to be the only drug approved for the long term treatment of obesity. Recent findings highlighted severe adverse effects of orlistat that included hepatotoxicity, gall stones, kidney stones and acute pancreatitis. Therefore, search for new drug is required. The investigations based on endophytic natural products would prove pivotal in the global fight a...

  16. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    Science.gov (United States)

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the

  17. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa.

    Science.gov (United States)

    Soca-Chafre, Giovanny; Rivera-Orduña, Flor N; Hidalgo-Lara, M Eugenia; Hernandez-Rodriguez, Cesar; Marsch, Rodolfo; Flores-Cotera, Luis B

    2011-02-01

    We studied the endophytic mycoflora associated with Taxus globosa, the Mexican yew. The study localities; Las Avispas (LA), San Gaspar (SG), and La Mina (LM) were three segments of cloud forest within the range of Sierra Gorda Biosphere Reserve, México. Overall, 245 endophytes were isolated and 105 representative Ascomycota (morphotaxons) were chosen for phylogenetic and genotypic characterization. Maximum likelihood analyses of large subunit of ribosomal RNA (LSU) rDNA showed well-supported clades of Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, and Sordariomycetes. Analyses of ITS rDNA groups showed 57 genotypes (95% sequence similarity), in general consistent with the phylogenetically delimitated taxa based on LSU rDNA sequences. The endophyte diversity measured by Fisher's α, Shanonn, and Simpson indices was ca. three-fold and ca. two-fold greater in LM than in LA and SG respectively. A screening for paclitaxel using a competitive inhibition enzyme immunoassay showed 16 positive isolates producing between 65 and 250 ng l(-1). The isolates included Acremonium, Botryosphaeria, Fusarium, Gyromitra, Nigrospora, Penicillium, three novel Pleosporales, and Xylaria. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Olsrud, Maria; Michelsen, Anders

    2010-01-01

    the fungal composition in roots of co-existing ericaceous plants is scarce. In the present paper, the fungal community in roots of four ericaceous plant species, Empetrum hermaphroditum, Andromeda polifolia, Vaccinium uliginosum and Vaccinium vitis-idaea which often dominate subarctic heaths and mires...

  19. Impact of three different fungicides on fungal epi- and endophytic communities of common bean (Phaseolus vulgaris) and broad bean (Vicia faba).

    Science.gov (United States)

    Prior, René; Mittelbach, Moritz; Begerow, Dominik

    2017-06-03

    In this study, the impacts of three different fungicides to fungal phyllosphere communities on broad bean (Vicia faba, Fabaceae) and common bean (Phaseolus vulgaris, Fabaceae) were analyzed. The fungicides included copper, sulfur, and azoxystrobin. The plants were sowed, grown, and treated under conditions occurring in conventional and organic farming. A culture-based approach was used to identify changes in the phyllosphere fungal community after the treatment. Different effects on species richness and growth index of the epiphytic and endophytic communities for common bean and broad bean could be shown. Treatments with sulfur showed the weakest effect, followed by those based on copper and the systemic azoxystrobin, which showed the strongest effect especially on endophytic communities. The epiphytic fungal community took five weeks to recover after treatment with azoxystrobin. However, the effect of azoxystrobin on the endophytic community lasted more than five weeks. Finally, the data suggest that the surface structure of the host leaves have a huge impact on the mode of action that the fungicides exert.

  20. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Science.gov (United States)

    Yamaji, Keiko; Watanabe, Yumiko; Masuya, Hayato; Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  1. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  2. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  3. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review.

    Science.gov (United States)

    Deepika, V B; Murali, T S; Satyamoorthy, K

    2016-01-01

    Novel drugs with unique and targeted mode of action are very much need of the hour to treat and manage severe multidrug infections and other life-threatening complications. Though natural molecules have proved to be effective and environmentally safe, the relative paucity of discovery of new drugs has forced us to lean towards synthetic chemistry for developing novel drug molecules. Plants and microbes are the major resources that we rely upon in our pursuit towards discovery of novel compounds of pharmacological importance with less toxicity. Endophytes, an eclectic group of microbes having the potential to chemically bridge the gap between plants and microbes, have attracted the most attention due to their relatively high metabolic versatility. Since continuous large scale supply of major metabolites from microfungi and especially endophytes is severely impeded by the phenomenon of attenuation in axenic cultures, the major challenge is to understand the regulatory mechanisms in operation that drive the expression of metabolic gene clusters of pharmaceutical importance. This review is focused on the major regulatory elements that operate in filamentous fungi and various combinatorial multi-disciplinary approaches involving bioinformatics, molecular biology, and metabolomics that could aid in large scale synthesis of important lead molecules. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Isolation and Characterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2012-11-01

    Full Text Available The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres, and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL. According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC.

  5. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Tej Singh

    2017-06-01

    Full Text Available In this study, biological synthesis of silver nanoparticles (AgNPs from supernatant of endophytic fungus Alternaria sp. isolated from the healthy leaves of Raphanus sativus is studied. The synthesized AgNPs are characterized using UV-vis spectroscopy and Fourier transform-infrared spectroscopy (FTIR. The structural analysis is done by powder X-ray diffraction (XRD method. The stability of AgNPs is studied by dynamic light scattering (DLS method. The size and shape of AgNPs are observed by transmission electron microscopy (TEM and atomic force microscopy (AFM and found to be spherical with an average particles size of 4–30 nm. Further, these AgNPs have been found to be highly toxic against human pathogenic bacteria, suggesting the possibility of using AgNPs as efficient antibacterial agents.

  6. Safety of Malaysian marine endophytic fungal extract S2 from a brown seaweed Turbinaria conoides

    Directory of Open Access Journals (Sweden)

    Siti Alwani Ariffin

    2014-07-01

    Full Text Available Objective: To evaluate the in vivo acute toxicity and antioxidant activity of the marine endophytic fungus extract S2 isolated from Turbinaria conoides. Methods: Two doses (100 mg/kg and 400 mg/kg of the S2 extract were administered to rats orally for acute toxicity and antioxidant test. The body weight, relative weight of six organs, haematological, biochemical and antioxidant properties were investigated on Day 14. Results: A single oral dose treatment did not cause any mortality or observable adverse effects in rats. No significant variations in the body and organ weights between the control and the treated groups were observed. Heamatological analysis and clinical blood chemistry also did not reveal any toxic effects of the extract. The total white blood cell count and haemoglobin levels were increased. The levels of total serum cholesterol in males treated with 100 and 400 mg/kg were significantly (P<0.05 decreased (1.28 and 1.34 mmol/L respectively compared to control (1.55 mmol/L rats. Pathologically, neither gross abnormalities nor histopathological changes were observed. This study showed strong evidence of the non-toxic effects of S2 extract. Furthermore the extract exhibited significant (P<0.05 antioxidant activity through increased levels of superoxide dismutase and glutathione peroxidase enzymes in serum, liver and kidney. Conclusions: The research findings from the present study showed the potential of marine natural products particularly in Malaysia as a source of bioactive compounds. Marine endophytic fungi as a potential source of anticancer drugs with great potential as they are potent yet safe, thus deserving further extensive investigation.

  7. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa)

    Science.gov (United States)

    J. A. Hoff; Ned B. Klopfenstein; Geral I. McDonald; Jonalea R. Tonn; Mee-Sook Kim; Paul J. Zambino; Paul F. Hessburg; J. D. Rodgers; T. L. Peever; L. M. Carris

    2004-01-01

    The fungal community inhabiting large woody roots of healthy conifers has not been well documented. To provide more information about such communities, a survey was conducted using increment cores from the woody roots of symptomless Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) growing in dry forests...

  8. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

    Directory of Open Access Journals (Sweden)

    Angelyn Hilton

    2017-06-01

    Full Text Available Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

  9. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment.

    Science.gov (United States)

    Lugo, Mónica A; Reinhart, Kurt O; Menoyo, Eugenia; Crespo, Esteban M; Urcelay, Carlos

    2015-02-01

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here, the root endophytes were characterized of 42 plants from an arid region of Argentina. Colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs) was related to plant functional type (PFT), family, and phylogenetic relatedness. Overall, three main findings were observed. Firstly, only moderate levels of endophyte associations were found across all taxa (e.g., most Poaceae were not colonized by endophytes despite numerous accounts of colonization by AMF and DSEs). We determined 69% of plant taxa associated with some form of root endophyte but levels were lower than other regional studies. Secondly, comparisons by PFT and phylogeny were often qualitatively similar (e.g., succulents and Portulacineae consistently lacked AMF; variation occurred among terrestrial vs. epiphytic bromeliads) and often differed from comparisons based on plant family. Thirdly, comparisons by plant family often failed to account for important variation either within families (e.g., Bromeliaceae and Poaceae) or trait conservatism among related families (i.e., Rosidae consistently lacked DSEs and Portulacineae lacked AMF). This study indicates the value of comparing numerous taxa based on PFTs and phylogenetic similarity. Overall, the results suggest an uncertain benefit of endophytes in extremely arid environments where plant traits like succulence may obviate the need to establish associations.

  10. Quorum signaling mycotoxins: A new risk strategy for bacterial biocontrol of Fusarium verticillioides and other endophytic fungal species?

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. All bacteria communicate via cell-dependent signals, which...

  11. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani.

    Science.gov (United States)

    Vinayarani, G; Prakash, H S

    2018-03-14

    Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS-rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed > 70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  12. Patents on Endophytic Fungi.

    Science.gov (United States)

    Gokhale, M; Gupta, D; Gupta, U; Faraz, R; Sandhu, S S

    2017-01-01

    Endophytic fungi are taxonomically and ecologically heterogeneous group of organisms, mainly belonging to the Ascomycotina and Deuteromycotina. Endophytes usually produce the enzymes necessary for the colonization of plant tissues. Endophytes are able to utilize components of plant cells without disturbing host metabolism, which is confirmed by isozyme analysis and studies on substrate utilization. The patents related to enzymes and metabolites produced by endophytic fungi are associated with their ecological significance. Application of metabolites and growth promoting factors produced from endophytic fungi, in the pharmaceutical and agricultural industries, is now well established. The patents on secretion of extracellular enzymes in vitro by endophytic fungi needed for cell wall degradation, support the hypothesis that fungal endophytes represent a group of organisms specialized to live within plant tissue. This review presents the patents granted on different aspects of endophytic fungi for the last 11 years. This expresses the scenario and impact of these patents regarding significance in human society. In the last few years, research and inventions regarding the different aspects of endophytic fungi beneficial for host plant as well as for human beings have been carried out, which is supported by the increasing number of patents granted on endophytic fungi. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity.

    Directory of Open Access Journals (Sweden)

    Martin Kemler

    Full Text Available The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1 nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM. We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters. Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.

  14. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  15. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes.

    Science.gov (United States)

    Martinuz, Alfonso; Zewdu, Getaneh; Ludwig, Nicole; Grundler, Florian; Sikora, Richard A; Schouten, Alexander

    2015-04-01

    The research demonstrated that Arabidopsis can be used as a model system for studying plant-nematode-endophyte tripartite interactions; thus, opening new possibilities for further characterizing the molecular mechanisms behind these interactions. Arabidopsis has been established as an important model system for studying plant biology and plant-microbe interactions. We show that this plant can also be used for studying the tripartite interactions among plants, the root-knot nematode Meloidogyne incognita and a beneficial endophytic isolate of Fusarium oxysporum, strain Fo162. In various plant species, Fo162 can systemically reduce M. incognita infection development and fecundity. Here it is shown that Fo162 can also colonize A. thaliana roots without causing disease symptoms, thus behaving as a typical endophyte. As observed for other plants, this endophyte could not migrate from the roots into the shoots and leaves. Direct inoculation of the leaves also did not result in colonization of the plant. A significant increase in plant fresh weight, root length and average root diameter was observed, suggesting the promotion of plant growth by the endophyte. The inoculation of A. thaliana with F. oxysporum strain Fo162 also resulted in a significant reduction in the number of M. incognita juveniles infecting the roots and ultimately the number of galls produced. This was also observed in a split-root experiment, in which the endophyte and nematode were spatially separated. The usefulness of Arabidopsis opens new possibilities for further dissecting complex tripartite interactions at the molecular and biochemical level.

  16. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    Science.gov (United States)

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  17. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    Science.gov (United States)

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  18. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of Fertilizer, Fungal Endophytes and Plant Cultivar on Performance of Insect Herbivores and Their Natural Enemies

    Science.gov (United States)

    1. Endophytic fungi are associates of most species of plants and may modify insect community structures through the production of toxic alkaloids. Fertilization is known to increase food plant quality for herbivores, but it is also conceivable that additional nitrogen could increase the productio...

  20. Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis

    Science.gov (United States)

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; Kowalski, Kurt P.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusariumblights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonassp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production

  1. A community of unknown, endophytic fungi in western white pine

    OpenAIRE

    Ganley, Rebecca J.; Brunsfeld, Steven J.; Newcombe, George

    2004-01-01

    The endophytic fungi of woody plants may be diverse as often claimed, and likewise, they may be functionally novel as demonstrated in a few studies. However, the endophyte taxa that are most frequently reported tend to belong to fungal groups composed of morphologically similar endophytes and parasites. Thus, it is plausible that endophytes are known (i.e., described) parasites in a latent phase within the host. If this null hypothesis were true, endophytes would represent neither additional ...

  2. Diversity of Endophytic Fungi Isolated from Korean Ginseng Leaves

    OpenAIRE

    Eo, Ju-Kyeong; Choi, Min-Seok; Eom, Ahn-Heum

    2014-01-01

    We investigated the diversity of the foliar endophytes of Korean ginseng. Endophytic fungi were isolated from healthy leaves of mountain-cultivated ginseng (MCG) and field-cultivated ginseng (FCG) at 4 sites in Chungbuk Province. A total of 24 species of fungal endophytes were identified using molecular approaches. Additionally, the diversity of these endophytic fungi was compared between MCG and FCG. The major isolated endophytes were Edenia gomezpompae and Gibberella moniliformis in the MCG...

  3. Hidden fungi, emergent properties: endophytes and microbiomes.

    Science.gov (United States)

    Porras-Alfaro, Andrea; Bayman, Paul

    2011-01-01

    Endophytes are microorganisms that live within plant tissues without causing symptoms of disease. They are important components of plant microbiomes. Endophytes interact with, and overlap in function with, other core microbial groups that colonize plant tissues, e.g., mycorrhizal fungi, pathogens, epiphytes, and saprotrophs. Some fungal endophytes affect plant growth and plant responses to pathogens, herbivores, and environmental change; others produce useful or interesting secondary metabolites. Here, we focus on new techniques and approaches that can provide an integrative understanding of the role of fungal endophytes in the plant microbiome. Clavicipitaceous endophytes of grasses are not considered because they have unique properties distinct from other endophytes. Hidden from view and often overlooked, endophytes are emerging as their diversity, importance for plant growth and survival, and interactions with other organisms are revealed. Copyright © 2011 by Annual Reviews. All rights reserved.

  4. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin

    DEFF Research Database (Denmark)

    Jahn, Linda; Schafhauser, Thomas; Wibberg, Daniel

    2017-01-01

    Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fun...

  5. Montagnuphilones A-G, Azaphilones from Montagnulaceae sp. DM0194, a Fungal Endophyte of Submerged Roots of Persicaria amphibia.

    Science.gov (United States)

    Luo, Jian-Guang; Xu, Ya-Ming; Sandberg, Dustin C; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2017-01-27

    Seven azaphilones, montagnuphilones A-G (1-7), together with previously known azaphilones 8-11, were encountered in Montagnulaceae sp. DM0194, an endophytic fungus isolated from submerged roots of Persicaria amphibia. The structures of 1-7 were elucidated on the basis of their MS and NMR spectroscopic analysis. Compounds 1-8 were evaluated for their cytotoxicity and ability to inhibit nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 macrophage cells. Among these, none were found to be cytotoxic to RAW264.7 cells up to 100.0 μM, but 8, 5, and 2 showed NO inhibitory activity with IC 50 values of 9.2 ± 0.9, 25.5 ± 1.1, and 39.6 ± 1.8 μM, respectively.

  6. A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings.

    Science.gov (United States)

    Dastogeer, Khondoker M G; Li, Hua; Sivasithamparam, Krishnapillai; Jones, Michael G K; Wylie, Stephen J

    2017-12-01

    Some fungal endophytes confer novel phenotypes and enhance existing ones in plants, including tolerance to water deprivation stress. A range of fungal endophytes was isolated from wild Nicotiana plants growing in arid parts of northern Australia. These were screened for ability to enhance water deprivation stress tolerance by inoculating seedlings of the model plant N. benthamiana in two in vitro tests. Sixty-eight endophyte isolates were co-cultivated with N. benthamiana seedlings on either damp filter paper or on agar medium before being subjected to water deprivation. Seventeen isolates were selected for further testing under water deprivation conditions in a sand-based test in a glasshouse. Only two fungal isolates, Cladosporium cladosporioides (E-162) and an unknown fungus (E-284), significantly enhanced seedling tolerance to moisture deprivation consistently in both in vitro and sand-based tests. Although a strongly significant correlation was observed between any two screening methods, the result of filter paper test was more strongly reflected (r = 0.757, p < 0.001) in results of the glasshouse test, indicating its relative suitability over the agar-based test. In another experiment, the same 17 isolates carried forward to the sand-based test used in the glasshouse screening test were inoculated to N. benthamiana plants in pots in a nutrient-limiting environment to test their influence on growth promotion. Isolates related to C. cladosporioides, Fusarium equiseti, and Thozetella sp. promoted seedling growth by increasing shoot length and biomass. The fungal isolate E-162 (C. cladosporioides) significantly enhanced moisture deprivation tolerance as well as promoted seedling growth.

  7. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis.

    Science.gov (United States)

    Hirose, Dai; Matsuoka, Shunsuke; Osono, Takashi

    2013-01-01

    Fungal assemblages in live, newly shed and partly decomposed leaves of Camellia japonica were investigated with a clone library analysis to assess the fungal diversity and succession in a subtropical forest in southern Japan. Partly decomposed leaves were divided into bleached and adjacent nonbleached portions to estimate the fungi functionally associated with lignin decomposition in the bleached portions, with an emphasis on Coccomyces sinensis (Rhytismataceae, Ascomycota). From 144 cloned 28S ribosomal DNA (rDNA) sequences, 48 operational taxonomic units (OTUs) were defined based on a sequence similarity threshold of 98%. Forty-one (85%) of the 48 OTUs belonged to the Ascomycota and seven OTUs (15%) to the Basidiomycota. Twenty-six OTUs (54%) were detected only once (singletons). The number of OTUs and the diversity indices of the fungal assemblages in the different leaves were in this order: live leaves > newly shed leaves > bleached portions > nonbleached portions of partly decomposed leaves. The fungal assemblages were similar in newly shed leaves and the bleached portions of partly decomposed leaves. Ligninolytic fungi of the genera Coccomyces, Lophodermium and Xylaria were frequently detected in the bleached portions. OTU3, identified as Coccomyces sinensis, was detected in live and newly shed leaves and the bleached portions of partly decomposed leaves, suggesting that this fungus latently infects live leaves, persists after leaf fall and takes part in lignin decomposition.

  8. Antibacterial activity of endophytic fungi isolated from conifer needles

    African Journals Online (AJOL)

    Fungi, in particular endophytes are a promising source of new antimicrobial compounds. The aim of this study was to screen the extracts of conifer needle fungal endophytes for antimicrobial activity and taxonomically place fungi producing ones to determined active metabolites. Seventy three strains of endophytic fungi ...

  9. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae)

    Science.gov (United States)

    PAUL BAYMAN; LIGIA L. LEBRO; RAYMOND L. TREMBLAY; JEAN D. LODGE

    1997-01-01

    Little is known about non-mycorrhizal endophytic fungi in tropical orchids; still less is known about how endophytes vary within and between individual orchid plants. Fungal endophytes were isolated from roots and leaves of epiphytic and lithophytic orchids in the genus Lepanthes; seven species, from rainforests in Puerto Rico, were sampled. The endophytes observed...

  10. A endophytic fungus, Ramichloridium cerophilum , promotes growth ...

    African Journals Online (AJOL)

    A fungal endophyte, Ramichloridium cerophilum, was identified as a Class 2 endophytes species obtained from the leaf of common sowthistle (Sonchus oleraceus L). This fungus was found to grow endophylically in the roots of Chinese cabbage seedlings. Light microscopy of cross-sections of colonized Chinese cabbage ...

  11. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  12. Mycoleptodiscus terrestris: An Endophyte Turned Latent Pathogen of Eurasian Watermilfoil

    Science.gov (United States)

    2009-03-01

    Clavicipitaceous fungal endophytes of grasses: Coevolution and the change from parasitism to mutualism. In Co-evolution of fungi with plants and animals, ed...Recovery of endophytic fungi from Myriophyllum spicatum. APCRP Technical Notes Collection. ERDC TN-APCRP-BC-03. Vicksburg, MS: U.S. Army Engineer...ERDC/TN APCRP-BC-11 March 2009 1 Mycoleptodiscus terrestris: An Endophyte Turned Latent Pathogen of Eurasian Watermilfoil by Judy F

  13. Exploitation of endophytes for sustainable agricultural intensification.

    Science.gov (United States)

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  14. Screening of endophytic fungi that promote the growth of Euphorbia ...

    African Journals Online (AJOL)

    This study explored a strategy to use endophytic fungi for promoting the growth of the medicinal plant, Euphorbia pekinensis. The growth of E. pekinensis was examined in pot culture following inoculation of. E. pekinensis with endophytic fungal strains (Fusarium spp.) from E. pekinensis (E4 and E5) and those not from E.

  15. Comparative study of in vitro antioxidant activity of foliar endophytic ...

    African Journals Online (AJOL)

    Endophytic fungi that reside in plant tissues are a potential source of secondary metabolites with biological activities. In our study, we investigated the detection of the antioxidant activity of the crude fungal extract of the genera Cladosporium, Alternaria, Aspergillus and Penicillium: endophytic fungi isolated from the leaves of ...

  16. Further investigation of equine fescue oedema induced by Mediterranean tall fescue (Lolium arundinaceum) infected with selected fungal endophytes (Epichloë coenophiala).

    Science.gov (United States)

    Finch, S C; Munday, J S; Sutherland, B L; Vlaming, J B; Fletcher, L R

    2017-11-01

    AIMS To determine if equine fescue oedema (EFO) induced by grazing Mediterranean-type tall fescue (Lolium arundinaceum) infected with selected endophytes (Epichloë coenophiala) could be prevented by treatment with the corticosteroid, methylprednisolone, and anti-histamine, cetirizine, and to determine concentrations of lolines, specifically N-acetyl norloline (NANL), in grasses grazed by horses that did and did not develop EFO. METHODS Four horses were grazed on AR542-infected Mediterranean tall fescue pasture (from Day 0) for 7 days prior to being subjected to euthanasia. Two of these horses were treated with 250 mg methylprednisolone and 300 mg cetirizine hydrochloride every 12 hours orally from Days 0-7. Two more horses grazed meadow fescue (Festuca pratensis) infected with the naturally-occurring, common endophyte (Epichloë uncinata) for 21 days before euthanasia. All horses were observed closely for signs of EFO, and blood samples were taken daily for measurement of concentrations of total protein (TP) in serum. Following euthanasia post-mortem examinations were conducted on all horses. Pasture samples of meadow fescue and Mediterranean tall fescue from the current study, and endophyte-infected Mediterranean tall fescue from a previous study that were associated with EFO, were analysed for concentrations of lolines using gas chromatography. RESULTS By Day 7, the treated and untreated horses grazing AR542-infected Mediterranean tall fescue all developed signs of EFO, and concentrations of TP in serum of all horses were Mediterranean tall fescue. In the sample of meadow fescue, concentrations of total lolines and N-acetyl norloline (NANL) were 2,402 and 543 mg/kg, respectively. In the three samples of Mediterranean tall fescue associated with EFO, concentrations of total lolines were 308, 629 and 679 mg/kg, and concentrations of NANL were 308, 614 and 305 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE In horses grazing Mediterranean tall fescue infected

  17. Alfalfa endophytes as novel sources of antimicrobial compounds that inhibit the growth of human and plant pathogens

    Science.gov (United States)

    Fungal endophytes may contribute to plant health and disease protection, yet little is known about their various roles in alfalfa. Also, endophytes from several plant species produce novel antimicrobial compounds that may be useful clinically. We isolated endophytic fungi from over 50 samples from s...

  18. Resistance of Endophyte-Infected Plants of Tall Fescue and Perennial Ryegrass to the Russian Wheat Aphid (Homoptera: Aphididae)

    Science.gov (United States)

    S.L. Clement; K.S. Pike; W.J. Kaiser; A. Dan Wilson

    1991-01-01

    Fewer aphids of the Russian wheat aphid, (Mordvilko), were found on tall fescue and perennial ryegrass plants harboring systemic fungal endophytes than on endophyte-free plants in laboratory tests. These results indicate that enhanced resistance in some perennial grasses to D. noxia is associated with the presence of endophytic fungi.

  19. Plants and endophytes: equal partners in secondary metabolite production?

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2015-07-01

    Well known plant production systems should be re-evaluated due to findings that the interesting metabolite might actually be produced by microbes intimately associated with the plant, so-called endophytes. Endophytes can be bacteria or fungi and they are characterized usually by the feature that they do not cause any harm to the host. Indeed, in some cases, such as mycorrhizal fungi or other growth promoting endophytes, they can be beneficial for the plant. Here some examples are reviewed where the host plant and/or endophyte metabolism can be induced by the other partner. Also, partial or complete biosynthesis pathways for plant secondary metabolites can be attributed to such endophytes. In other cases the host plant is able to metabolize substances from fungal origin. The question of the natural role of such metabolic changes for the endophyte will be briefly touched. Finally, the consequences for the use of plant cultures for secondary metabolite production is discussed.

  20. Isolation of pyrrolocins A-C: cis- and trans-decalin tetramic acid antibiotics from an endophytic fungal-derived pathway.

    Science.gov (United States)

    Jadulco, Raquel C; Koch, Michael; Kakule, Thomas B; Schmidt, Eric W; Orendt, Anita; He, Haiyin; Janso, Jeffrey E; Carter, Guy T; Larson, Erica C; Pond, Christopher; Matainaho, Teatulohi K; Barrows, Louis R

    2014-11-26

    Three new decalin-type tetramic acid analogues, pyrrolocins A (1), B (2), and C (3), were defined as products of a metabolic pathway from a fern endophyte, NRRL 50135, from Papua New Guinea. NRRL 50135 initially produced 1 but ceased its production before chemical or biological evaluation could be completed. Upon transfer of the biosynthetic pathway to a model host, 1-3 were produced. All three compounds are structurally related to equisetin-type compounds, with 1 and 3 having a trans-decalin ring system, while 2 has a cis-fused decalin. All were active against Mycobacterium tuberculosis, with the trans-decalin analogues 1 and 3 exhibiting lower MICs than the cis-decalin analogue 2. Here we report the isolation, structure elucidation, and antimycobacterial activities of 1-3 from the recombinant expression as well as the isolation of 1 from the wild-type fungus NRRL 50135.

  1. Molecular phylogeny, diversity and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American plant Echinacea purpurea (Asteraceae)

    Science.gov (United States)

    The endophytic fungal community associated with the wild ethnomedicinal North American plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 ...

  2. Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local variety of south sulawesi, Indonesia

    OpenAIRE

    Amin, Nur

    2013-01-01

    Endophytes are microorganisms that live within plant tissues without causing symptoms of disease. The objective of this investigation was to isolation and identification of fungal endophytes from roots of maize plant var. Pulut (a local variety of south Sulawesi). Sixty three isolates of fungal endophytes were isolated from the root of maize var. Pulut. The isolates belonged to six genera, namely :Trichoderma sp., Fusarium sp., Acremonium sp., Aspergillus sp., Penicillium sp., and Botryodiplo...

  3. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  4. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens.

    Science.gov (United States)

    Yao, Yu Qun; Lan, Fang; Qiao, Yun Ming; Wei, Ji Guang; Huang, Rong Shao; Li, Liang Bo

    2017-06-01

    This work, for the first time, investigated the diversity of endophytic fungi harbored in the xylem and phloem of the root of Sophora tonkinensis Gapnep from three geographic localities with emphasis on the influence of the tissue type and geographic locality on endophytic fungal communities and their potential as biocontrol agents against phytopathogens of Panax notoginseng. A total of 655 fungal strains representing 47 taxa were isolated. Forty-two taxa (89.4%) were identified but not five taxa (10.6%) according to morphology and molecular phylogenetics. Out of identifiable taxa, the majority of endophyte taxa were Ascomycota (76.6%), followed by Basidiomycota (8.5%) and Zygomycota (4.3%). The alpha-diversity indices indicated that the species diversity of endophytic fungal community harbored in the root of S. tonkinensis was very high. The colonization and species diversity of endophytic fungal communities were significantly influenced by the geographic locality but not tissue type. The geographic locality and tissue type had great effects on the species composition of endophytic fungal communities. Forty-seven respective strains were challenged by three fungal phytopathogens of P. notoginseng and six strains exhibited significant inhibitory activity. It was noteworthy that endophytic Rhexocercosporidium sp. and F. solani strongly inhibited pathogenic F. solani and other fungal phytopathogens of P. notoginseng. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. The community of needle endophytes reflects the current physiological state of Norway spruce.

    Science.gov (United States)

    Rajala, Tiina; Velmala, Sannakajsa M; Vesala, Risto; Smolander, Aino; Pennanen, Taina

    2014-03-01

    This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    Science.gov (United States)

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties.

  7. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants ( Chenopodium quinoa ) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium , Phoma and Fusarium , which are common endophytes reported in plant roots. This study shows that roots of C . quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  9. Endophytic fungi in Scots pine needles: Spatial variation and consequences of simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Helander, M.L.; Neuvonen, S. (Turku Univ., Turku (F)); Sieber, T.N.; Petrini, O. (Swiss Federal Inst. of Technology, Zurich (Switzerland))

    1994-01-01

    Within- and among-tree variation in assemblages of endophytic fungi in Scots pine (Pinus sylvestris) needles were studied in a subarctic area where background pollution values are low; the effects of tree density and prolonged simulated acid rain on the occurrence of endophytic fungi were investigated. The needle endophyte most frequently isolated was Cenangium ferruginosum, accounting for 64% of all fungal individuals, followed by Cyclaneusma minus (12% of all individuals). Old needles were colonized more frequently by endophytes than young ones. In young needles the colonization by endophytes increased during the summer, whereas in old ones no seasonal variation was detected. Endophyte colonization was positively correlated with stand density and was reduced on pines treated with spring water acidified with either sulphuric acid alone or in combination with nitric acid. In contrast, nitric acid alone did not affect endophyte colonization. 37 refs., 2 figs., 5 tabs.

  10. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica.

    Science.gov (United States)

    Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Li, Hai-Long; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

    2013-04-01

    Endophytic fungi associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica, that is, the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata, were studied by culture-dependent method. A total of 128 endophytic fungi were isolated from 1329 tissue segments of 14 samples. The colonization rate of endophytic fungi in three bryophytes species were 12.3%, 12.1%, and 8.7%, respectively. These isolates were identified to 21 taxa, with 15 Ascomycota, 5 Basidiomycota, and 1 unidentified fungus, based on morphological characteristics and sequence analyses of ITS region and D1/D2 domain. The dominant fungal endophyte was Hyaloscyphaceae sp. in B. hatcheri, Rhizoscyphus sp. in C. aciphyllum, and one unidentified fungus in S. uncinata; and their relative frequencies were 33.3%, 32.1%, and 80.0%, respectively. Furthermore, different Shannon-Weiner diversity indices (0.91-1.99) for endophytic fungi and low endophytic fungal composition similarities (0.19-0.40) were found in three bryophyte species. Growth temperature tests indicated that 21 taxa belong to psychrophiles (9), psychrotrophs (11), and mesophile (1). The results herein demonstrate that the Antarctic bryophytes are an interesting source of fungal endophytes and the endophytic fungal composition is different among the bryophyte species, and suggest that these fungal endophytes are adapted to cold stress in Antarctica. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Phosphate Solubilizing and Antifungal Activity of Root Endophyte Isolated from Shorea leprosula Miq. and Shoreal selanica (DC Blume

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2015-12-01

    Full Text Available Fungal endophytes are fungi that lives within plant tissues without causing apparent disease. It is also suggested that these fungi have ability to enhance plant growth and plant resistancy against pest and disease. This research is a preliminary study about root fungal endophytes in dipterocarp since there are lack research concerning about this study focus. We examined root fungal endophyte isolated from seedling of Shorea leprosula and Shorea selanica taken from Dramaga Experimental Forest, Bogor. Furthermore, we also tried to find out the fungal potential ability to solubilize phosphate and suppres fungal pathogen by in vitro assay. Surface sterilization method was used to isolated fungal endophytes from root tissues. Trichoderma spirale, Velsalceae sp., Melanconiela ellisii, Chaetosphaeria callimorpha, and Trichoderma asperellum were isolated during this study. These fungi appear to have specific association between fungal species and host plant, but no evidence of fungal order-level specificiation in S. leprosula and S. selanica. In vitro test also suggested that root fungal endophyte Trichoderma spirale and Melanconiella elisii have potential ability to solubilize inorganic phosphate. In addition, this result also present that root fungal endophyte T. spirale and T. asperellum have the potential to inhibit pathogen fungi Fusarium sp.

  12. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell ...

    African Journals Online (AJOL)

    Taxol is an important anticancer drug used widely in the clinical field. Some endophytic fungi were isolated from selected medicinal plants and screened for the production of taxol. The effect of cytotoxicity of fungal taxol isolated from fungal endophytes was investigated by apoptosis method. The presence of taxol in the ...

  13. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  14. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    Science.gov (United States)

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi.

  15. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  16. Classical Methods and Modern Analysis for Studying Fungal Diversity

    Science.gov (United States)

    J. P. Schmit; D. J. Lodge

    2005-01-01

    In this chapter, we examine the use of classical methods to study fungal diversity. Classical methods rely on the direct observation of fungi, rather than sampling fungal DNA. We summarize a wide variety of classical methods, including direct sampling of fungal fruiting bodies, incubation of substrata in moist chambers, culturing of endophytes, and particle plating. We...

  17. Alkaloids May Not be Responsible for Endophyte Associated Reductions in Tall Fescue Decomposition Rates

    Science.gov (United States)

    1. Fungal endophyte - grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. Within the tall fescue (Schedonorus arundinaceus) - funga...

  18. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  19. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States

    Science.gov (United States)

    The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A total of 108 endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the gen...

  20. Endophytic fungi in elms

    OpenAIRE

    Blumenstein, Kathrin

    2015-01-01

    Integrated pest management calls for new biocontrol solutions in management of forest diseases. Endophytic fungi that are commonly found in tree tissue may have potential in biocontrol. However, the links between endophyte status and disease tolerance are still unclear, and we know little about the mechanisms by which the endophytes can influence tree pathogens. The first goal of the thesis was to compare the endophyte status in elm (Ulmus spp.) trees with low vs. high susceptibility t...

  1. Endophyte communities vary in the needles of Norway spruce clones.

    Science.gov (United States)

    Rajala, Tiina; Velmala, Sannakajsa M; Tuomivirta, Tero; Haapanen, Matti; Müller, Michael; Pennanen, Taina

    2013-03-01

    Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33% of samples. The most frequently observed fungus (66%) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill.

    Directory of Open Access Journals (Sweden)

    Demetra Kandalepas

    Full Text Available Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.

  3. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  4. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam.

    Science.gov (United States)

    Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing

    2011-04-01

    Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.

  5. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin: using recombinant endophytic fungi to control aphids.

    Science.gov (United States)

    Qi, G; Lan, N; Ma, X; Yu, Z; Zhao, X

    2011-05-01

    Sap-sucking insect pests have become the major threats to many crops in recent years; however, only a few biopesticides have been developed for controlling those pests. Here, we developed a novel pest management strategy, which uses endophytes to express anti-pest plant lectins. The fungal endophyte of Chaetomium globosum YY-11 with anti-fungal activities was isolated from rape seedlings. Pinellia ternata agglutinin (pta) gene was cloned into YY-11 mediated by Agrobacterium tumefaciens. The positive transformants, as selected by antibiotic resistance, were evaluated using PCR and Western blot assay. We found that the recombinant endophytes colonized most of the crops, and the resistance of rape inoculated with recombinant endophytic fungi significantly inhibited the growth and reproduction of Myzus persicae. Our results showed that the recombinant endophytes expressing Pinellia ernata agglutinin (PTA) may endow hosts with resistance against sap-sucking pests. This research may have important implications for using endophytes to deliver insecticidal plant lectin proteins to control sap-sucking pests for crop protection. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Endophytes – characteristics and possibilities of application in forest management

    Directory of Open Access Journals (Sweden)

    Hilszczańska Dorota

    2016-09-01

    Full Text Available Endophytes are organisms that live within the plant tissue without usually causing any symptoms. In plants of natural ecosystems, endophytic fungi are in fact ubiquitous. This review summarizes research carried out on their biology emphasizing their functionality in terms of the host range, the colonization extent, the way of transmission between hosts and their influence on host fitness. The main focus will be on two classes of fungal endophytes, class 2 and 4 (Dark Septate Fungi, due to their potential for practical application in forestry. Raising awareness of the potential of endophytes to enhance the host’s resistance to pathogens, insects and anthropogenic disturbances is a key factor in developing applications for forest management.

  7. Antimicrobial drimane sesquiterpenes and their effect on endophyte communities in the medical tree Warburgia ugandensis

    Directory of Open Access Journals (Sweden)

    Sigrid eDrage

    2014-02-01

    Full Text Available Metabolite profiles (GC–MS, drimane sesquiterpenes, sugars and sugar alcohols, were compared with bacterial and fungal endophyte communities (T-RFLP, DNA clones, qPCR in leaves and roots of the pepper bark tree, Warburgia ugandensis (Canellaceae. Ten individuals each were assessed from two locations east and west of the Great Rift Valley, Kenya, Africa, which differed in humidity and vegetation, closed forest versus open savannah. Despite organ- and partially site-specific variation of drimane sesquiterpenes, no clear effects on bacterial and fungal endophyte communities could be detected. The former were dominated by gram-negative Gammaproteobacteria, Pseudomonadaceae and Enterobacteriaceae, as well as gram-positive Firmicutes; the fungal endophyte communities were more diverse but no specific groups dominated. Despite initial expectations, the endophyte community of the pepper bark tree did not differ from other trees that much.

  8. Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species

    Science.gov (United States)

    Geisen, Stefan; Kostenko, Olga; Cnossen, Mark C.; ten Hooven, Freddy C.; Vreš, Branko; van der Putten, Wim H.

    2017-01-01

    Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic microbes. We collected seeds and soil of the range-expanding Centaurea stoebe and the congeneric Centaurea jacea from three populations growing in Slovenia (native range of both Centaurea species) and the Netherlands (expanded range of C. stoebe, native range of C. jacea). We isolated and identified endophytic fungi directly from seeds, as well as from roots of the plants grown in Slovenian, Dutch or sterilized soil to compare fungal endophyte composition. Furthermore, we investigated whether C. stoebe hosts a reduced community composition of endophytes in the expanded range due to release from plant-species specific fungi while endophyte communities in C. jacea in both ranges are similar. We cultivated 46 unique and phylogenetically diverse endophytes. A majority of the seed endophytes resembled potential pathogens, while most root endophytes were not likely to be pathogenic. Only one endophyte was found in both roots and seeds, but was isolated from different plant species. Unexpectedly, seed endophyte diversity of southern C. stoebe populations was lower than of populations from the north, while the seed endophyte community composition of northern C. stoebe populations was significantly different southern C. stoebe as well as northern and southern C. jacea populations. Root endophyte diversity was considerably lower in C. stoebe than in C. jacea independent of plant and soil origin, but this difference disappeared when plants were grown in sterile soils. We conclude that the community composition of fungal endophytes not only differs between related plant species but also between populations of plants that expand their range compared to their native habitat. Our

  9. Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species

    Directory of Open Access Journals (Sweden)

    Stefan Geisen

    2017-08-01

    Full Text Available Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic microbes. We collected seeds and soil of the range-expanding Centaurea stoebe and the congeneric Centaurea jacea from three populations growing in Slovenia (native range of both Centaurea species and the Netherlands (expanded range of C. stoebe, native range of C. jacea. We isolated and identified endophytic fungi directly from seeds, as well as from roots of the plants grown in Slovenian, Dutch or sterilized soil to compare fungal endophyte composition. Furthermore, we investigated whether C. stoebe hosts a reduced community composition of endophytes in the expanded range due to release from plant-species specific fungi while endophyte communities in C. jacea in both ranges are similar. We cultivated 46 unique and phylogenetically diverse endophytes. A majority of the seed endophytes resembled potential pathogens, while most root endophytes were not likely to be pathogenic. Only one endophyte was found in both roots and seeds, but was isolated from different plant species. Unexpectedly, seed endophyte diversity of southern C. stoebe populations was lower than of populations from the north, while the seed endophyte community composition of northern C. stoebe populations was significantly different southern C. stoebe as well as northern and southern C. jacea populations. Root endophyte diversity was considerably lower in C. stoebe than in C. jacea independent of plant and soil origin, but this difference disappeared when plants were grown in sterile soils. We conclude that the community composition of fungal endophytes not only differs between related plant species but also between populations of plants that expand their range compared to their native

  10. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  11. Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte.

    Science.gov (United States)

    Panaccione, D G; Johnson, R D; Wang, J; Young, C A; Damrongkool, P; Scott, B; Schardl, C L

    2001-10-23

    The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133-141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass-endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock.

  12. Cytosporones O, P and Q from an endophytic Cytospora sp

    DEFF Research Database (Denmark)

    Abreu, L.M.; Phipps, Richard Kerry; Pfenning, L.H.

    2010-01-01

    Cytosporones O, P and Q, together with the known compounds cytosporones B, C, D, E and dothiorelones A, 13, C. and H were isolated from the ascomycete fungus Cytospora sp. during a chemotaxonomic study Of fungal endophytes belonging to the related genera Cytospora and Phomopsis from Brazil...

  13. Identification of a taxol-producing endophytic fungus EFY-36

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Morphological and molecular methods were used to identify the statues of an isolate, EFY-36, a taxol- ... of the spores. The analysis of endophytic fungus. 18S ribosome RNA sequence used PCR cloning technology. DNA was extracted by the CTAB method. ... of the fungal mycelium (magnification: 400 ×).

  14. Dark septate endophytic pleosporalean genera from semiarid areas

    NARCIS (Netherlands)

    Knapp, D.G.; Kovács, G.M.; Zajta, E.; Groenwald, J.Z.; Crous, P.W.

    2015-01-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages

  15. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  16. Community of endophytic fungi from the medicinal and edible plant ...

    African Journals Online (AJOL)

    antimicrobial activity, and may represent a potential source of antibiotics for agriculture and/or pharmaceutical applications. Keywords: ... agriculture, pharmaceutical and the food industry. [3,4]. During the past two decades, many new ..... of co-evolution, fungal endophytes form a symbiotic relationship with their host plants.

  17. An efficient transformation system of taxol-producing endophytic ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... driven by a fungal promoter (trpC) was used to transform EFY-21 and 50% PEG with 20 mM Ca2+ was found to be suitable for ... Key words: Endophytic fungus, taxol, PEG-mediated transformation, protoplast, regeneration, Ozonium sp. ..... entomopathogenic fungus, Metarhizium flavoviride strain CG423 to.

  18. Antifungal Activity and Molecular Identification of Endophytic Fungi ...

    African Journals Online (AJOL)

    Academic Journals

    2012-09-18

    Sep 18, 2012 ... 2Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University,. Songkhla, Thailand. ..... Diaporthe sp AB. Fungal endophyte FJ. Diaporthe actinidiae FN. Phomopsis asparagi AB. Phomopsis sp GQ. Leucostoma cinctum EF. Valsa ambiens EF. Nectriopsis ...

  19. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  20. New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov.

    NARCIS (Netherlands)

    Bezerra, Jadson D.P.; Sandoval-Denis, Marcelo; Paiva, Laura M.; Silva, Gladstone A.; Groenewald, Johannes Z.; Souza-Motta, Cristina M.; Crous, Pedro W.

    2017-01-01

    Brazil harbours a unique ecosystem, the Caatinga, which belongs to the tropical dry forest biome. This region has an important diversity of organisms, and recently several new fungal species have been described from different hosts and substrates within it. During a survey of fungal endophyte

  1. Characterization and antitumor activity of camptothecin from endophytic fungusFusarium solaniisolated fromCamptotheca acuminate.

    Science.gov (United States)

    Ran, Xueqin; Zhang, Gen; Li, Sheng; Wang, Jiafu

    2017-06-01

    Camptothecin (CPT) is a potent drug against cancers, originally from plants. The endophytic fungi could produce the secondary metabolite same as the host and is used as medicine. The aim of this paper was to investigate an endophytic fungal CPT with anti-neoplastic activity. Endophytic fungi were isolated from Camptotheca acuminata in China. CPT from strain S-019 was characterized by TLC, HPLC and EI-MS analysis. Anti-tumor activity of fungal CPT was detected by MTT and fluorescent dye methods using Vero and PC-3 cells. A total of 94 endophytic fungi strains were isolated from tissues of C. acuminata and 16 fungi strains displayed cytotoxic activity on Vero or PC3 cells. Of which, the fungal strain S-019, classified as Fusarium solani , displayed impressive cytotoxic activity on cancer cells and was found to produce CPT by analysis of TLC, HPLC and EI-MS methods. Bioassay studies confirmed that the fungi CPT had potent cytotoxicity on Vero cells and induced apoptosis of Vero cells. The endophytic fungi from camptotheca trees are a reliable source for natural anticancer compounds. The endophytic fungi could produce CPT same as plant. The fungal CPT exhibited effective activity at inhibiting cell growth and inducing apoptosis on Vero cells.

  2. Terpenoids from Endophytic Fungi

    Directory of Open Access Journals (Sweden)

    Jucimar Jorgeane de Souza

    2011-12-01

    Full Text Available This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.

  3. Distribution of the Endophytic Fungi in Apple Leaves

    Directory of Open Access Journals (Sweden)

    Aminudin Afandhi

    2018-02-01

    Full Text Available Endophytic fungi have roles to protect the plant from herbivorous insects and diseases, and to support the absorption process of nutrients needed by plants for photosynthesis. Related to the important role of endophytic fungi, research was aimed to identify fungal endophytes associated with young, mature and old leaves on apple and to evaluate the effect of leaf ages on the abundance and diversity of endophytic fungi. The research was conducted in Biological Control Laboratory, Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya from May to September 2016. Apple leaves sampling was done diagonally, and taken from nine apple trees. Based on macroscopic and microscopic characteristics, 38 isolates were identified. In the old apple leaves, it obtained 17 isolates that consisted of 5 genera, mature leaves obtained 14 isolates consisted of 6 genera, and young leaves 7 isolates obtained consists of 2 genera. The mature leaves have highest abundance and diversity of endophytic fungi compared to young and old leaves. Endophytic fungi apple leaf dominated by Aspergillus. Mature and young leaves were different from old one based on Bray-Curtis similarity.

  4. Characterization of an endophytic bacterial community associated with Eucalyptus spp.

    Science.gov (United States)

    Procópio, R E L; Araújo, W L; Maccheroni, W; Azevedo, J L

    2009-11-24

    Endophytic bacteria were isolated from stems of Eucalyptus spp (Eucalyptus citriodora, E. grandis, E. urophylla, E. camaldulensis, E. torelliana, E. pellita, and a hybrid of E. grandis and E. urophylla) cultivated at two sites; they were characterized by RAPD and amplified rDNA restriction analysis (ARDRA). Endophytic bacteria were more frequently isolated from E. grandis and E. pellita. The 76 isolates were identified by 16S rDNA sequencing as Erwinia/Pantoea (45%), Agrobacterium sp (21%), Curtobacterium sp (9%), Brevibacillus sp (8%), Pseudomonas sp (8%), Acinetobacter sp (4%), Burkholderia cepacia (2.6%), and Lactococcus lactis (2.6%). Genetic characterization of these endophytic bacteria isolates showed at least eight ARDRA haplotypes. The genetic diversity of 32 Erwinia/Pantoea and 16 Agrobacterium sp isolates was assessed with the RAPD technique. There was a high level of genetic polymorphism among all the isolates and there was positive correlation between the clusters and the geographic origin of the strains. These endophytic bacteria were further analyzed for in vitro interaction with endophytic fungi from Eucalyptus spp. We found that metabolites secreted by Erwinia/Pantoea and B. cepacia isolates had an inhibitory growth effect on some endophytic fungi, suggesting that these metabolites play a role in bacterial-fungal interactions inside the host plant. Apparently, these bacteria could have an important role in plant development; in the future they may be useful for biological control of diseases and plant growth promotion, as well as for the production of new metabolites and enzymes.

  5. Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li.

    Science.gov (United States)

    Liu, Y-H; Hu, X-P; Li, W; Cao, X-Y; Yang, H-R; Lin, S-T; Xu, C-B; Liu, S-X; Li, C-F

    2016-05-13

    Endophytes from Cephalotaxus hainanensis Li, an important source of anti-leukemia drugs, have not been widely explored. In this study, 265 endophytic fungal isolates from C. hainanensis Li were screened for antimicrobial activities against tilapia, banana, rice, and rape and for antitumor activities against human leukemia cell lines (K562, NB4, and HL-60). Diversity was also analyzed. The results showed that 17.7% of the endophytic fungi had antimicrobial activities against at least three different test microbes, and activity against Fusarium oxysporum RKY102 was the highest at 15.8%. Cytotoxicity against at least one tumor cell line tested was observed in 18.5% of the endophytic fungi; with the highest value of 10.6% against K562. The endophytic fungal strains also showed relatively high activities against K562, NB4, and HL-60 while relatively fewer strains were cytotoxic against the human hepatic Hep-G2 and colon LoVo cancer cell lines. Thirty endophytic fungal strains showed both high antimicrobial and antitumor activities. Moreover, the analyses of the diversity of the 30 highly active strains showed they belonged to 20 species from 14 genera, and this is the first report of endophytic fungi Albonectria rigidiuscula, Colletotrichum magnisporum, and Nemania diffusa being isolated from Cephalotaxus plants. These findings suggest that natural antibacterial products for humans and tilapia; antifungal compounds for rice, rape, and banana; and antitumor compounds for leukemia therapy could be isolated from fungal strains derived from C. hainanensis Li.

  6. Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus.

    Science.gov (United States)

    Martín-Sampedro, Raquel; Fillat, Úrsula; Ibarra, David; Eugenio, María E

    2015-11-01

    New endophytic fungi are assessed for the first time as pretreatment to enhance saccharification of Eucalyptus globulus wood. The fungi are all laccase-producing ascomycetes and were isolated from eucalyptus trees in Spain. After five endophytes had been assayed alone or in combination with white-rot fungus Trametes sp. I-62, three were pre-selected. To improve sugar production, an autohydrolysis pretreatment was performed before or after fungal treatment. Pretreatment increased sugar production 2.7 times compared to non-pretreated wood. When fungal and autohydrolysis pretreatments were combined, a synergistic increase in saccharification was observed in all cases. Endophytic fungi Ulocladium sp. and Hormonema sp. produced greater enhancements in saccharification than Trametes sp. I-62 (increase in sugar yields of 8.5, 8.0 and 6.0 times, respectively), demonstrating the high potential of these new endophytic fungi for saccharification enhancement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    Science.gov (United States)

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation.

  8. Evaluation of antimicrobial activities of extracts of endophytic fungi from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2012-06-01

    Full Text Available The endophytic extracts of 11 fungi associated with asympomatic Artemisia annua Linn., were evaluated for antimicrobial activity against three human pathogenic microbes, Escherichia coli, Staphylococcus aureus and Trichophyton rubrum, and two plant pathogens, Rhizoctonia cerealis and Magnaporthe grisea. The results showed that these endophytic extracts had different inhibitory effects on microbial pathogens at 100 mg/mL. Among these fungal endophytes, three strains Aspergillus spp. SPS-02, SPS-04 and SPS-01 respectively showed the strongest antimicrobial activities against E. coli, S. aureu, T. rubrum. An endophytic Mucor sp. SPS-11 had the most pronounced effect on R. cerealis. Two strains Aspergillus sp. SPS-02 and Cephalosporium sp. SPS-08 exhibited the strongest antimicrobial activities against M. grisea. These anti-pathogenic endophytes could be applied as new sources of antibiotics in agriculture and pharmaceutical industry.

  9. Production of Gentisyl Alcohol from Phoma herbarum Endophytic in Curcuma longa L. and Its Antagonistic Activity Towards Leaf Spot Pathogen Colletotrichum gloeosporioides.

    Science.gov (United States)

    Gupta, Suruchi; Kaul, Sanjana; Singh, Baljinder; Vishwakarma, Ram A; Dhar, Manoj K

    2016-11-01

    Endophytes from medicinal plants represent a potential source of bioactive compounds. During the present investigation, fungal endophytes were isolated from turmeric (Curcuma longa), an important medicinal plant. A total of 207 endophytic fungal isolates were obtained from the rhizome of C. longa L. They were grouped into seven genera based on morphological and molecular data. The fungal endophytes of C. longa were evaluated for antifungal activity against Colletotrichum gloeosporioides, the causal organism of leaf spot of turmeric. The disease is a major cause for economic loss in turmeric cultivation. Endophytic Phoma herbarum showed significant activity against C. gloeosporioides and was therefore selected for further studies. A compound gentisyl alcohol was isolated from P. herbarum which showed effective antagonism against C. gloeosporioides. The organism could therefore be used as a biocontrol agent against C. gloeosporioides.

  10. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  11. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina

    OpenAIRE

    Russo, María L.; Pelizza, Sebastián A.; Cabello, Marta Noemí; Stenglein, Sebastián A.; Vianna, María F.; Scorsetti, Ana C.

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires an...

  12. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei.

    Science.gov (United States)

    Zaiyou, Jian; Li, Meng; Xiqiao, Hu

    2017-07-01

    Paclitaxel is a medicinal ingredient with high anticancer activity and widely used in hospitals and clinics. In this study, we isolate endophytic fungi efficiently producing paclitaxel from yew for the purpose of paclitaxel manufacture.The bark of Taxus wallichiana var. mairei was surface sterilized and then inoculated in potato dextrose agar culture medium to isolate endophytic fungi. The paclitaxel in the fungal culture was extracted with mixture of chloroform and the same amount of methanol. The content of paclitaxel in the extract was determined and identified with LC-MS. The endophytic fungus efficiently producing paclitaxel was species identified with ITS rDNA and 26S D1/D2 rDNA sequencing.There were 528 endophytic fungal strains were isolated from the bark of T wallichiana var. mairei in total. There was only a strain efficiently producing paclitaxel in these endophytic fungi. The unique strain was identified as Phoma medicaginis. The paclitaxel contents in whole potato dextrose broth (PDB) culture, spent culture medium from this strain and that in dry mycelium is 1.215 mg/L, 0.936 mg/L, and 20 mg/kg, respectively.An endophytic fungus efficiently producing paclitaxel was isolated from T wallichiana var. mairei. This isolated endophytic fungus can be used as a producing strain for paclitaxel manufacture.

  13. Colonización radical por endófitos fúngicos en Trithrinax campestris (Arecaceae de ecosistemas semiáridos del centro de Argentina Root colonization by fungal endophytes in Trithrinax campestris (Arecaceae from semiarid ecosystems from Central Argentine

    Directory of Open Access Journals (Sweden)

    Mónica A Lugo

    2011-12-01

    Full Text Available En ecosistemas áridos y semiáridos las raíces de las plantas suelen formar simbiosis con hongos, los que les proporcionan nutrientes y agua. Poco se conoce sobre los hongos asociados a palmeras nativas y cómo éstos podrían estar relacionados entre ellos. Se describe y cuantifica la colonización radical de los simbiontes de Trithrinax campestris en poblaciones leve y fuertemente afectadas por el fuego. T. campestris fue colonizada por hongos micorrícico-arbusculares (HMA y endófitos septados oscuros (ESO. La colonización por HMA fue del tipo intermedio entre los tipos Arum y Paris. La colonización por HMA y ESO y la producción de pelos radicales, presentó diferencias entre las poblaciones estudiadas. Los resultados sugieren que en T. campestris la relación entre hongos simbiontes/producción de pelos radicales podrían estar relacionada con su alta tolerancia al fuego y la aridez.In arid and semiarid ecosystems, roots frequently form symbiosis with fungi that provides access to nutrients and water. Knowledge regarding the study of fungal symbionts colonizing native palms roots is still scarce. We described, quantified and compared fungal colonization in roots of Trithrinax campestris from two environmental situations: population with weak-burning-signs and population with strong-burning-signs. T. campestris was colonized by arbuscular-mycorrhizal-fungi (AMF and dark-septate-endophytes (DSE. AMF colonization was an intermediate type between Arum and Paris. The AMF and DSE colonization and root hair production differed between populations. Our results suggest that in T. campestris the relation between fungal-symbionts and root-hair-production might be related to tolerance to burning and aridity.

  14. Endophytic fungi associated with Ziziphus species from mountainous area of Oman and new records

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI

    2013-04-01

    Full Text Available El-Nagerabi SAF, Elshafie AE, AlKhanjari SS. 2013. Endophytic fungi associated with Ziziphus species from mountainous area of Oman and new records. Biodiversitas 14: 10-16. Ziziphus species of the family Rhamnaceae grow extensively in arid and semi-arid regions. It is possible that the endophytic fungi associated with this plant might enhance the host resistance to the environmental impacts. The endophytic fungal population inhabiting the healthy leaves of Z. spina-christi and Z. hajanensis plants were determined from April 2008 to October 2011. The endophytic fungal communities varied between the two species, and 45 fungal species, 18 sterile mycelia and 12 yeasts were isolated from Z. spina-christi, whereas 35 fungi, 11 sterile mycelia and 5 yeasts were recovered from Z. hajanensis indicating tissue and species-specificity and without any seasonal variation among the endophytes. These endophytes are new to Ziziphus plants and 45 species are new to the mycoflora of Oman, whereas 27 species are new to Arabian Peninsula. The genus Alternaria was the most prevalent (19-81% followed by Aspergillus (19-78%, Rhizopus stolonifer (78%, Mycelia sterilia (69%, yeasts (47%, Cladosporium (11-56%, Drechslera (14-53%, Curvularia (8-50%, Fusarium (6-33%, Ulocladium (41-31%, Penicillium (3-22%, Alysidium resine (11%, Trichocladium (6-11%, Anguillospora longissima, Bactrodesmium rahmii, Catenularia (8%, Helminthosporium sorghi (7%, Dendryphiella infuscans (6%, Hansfordia biophila (3-6%, Arthrinium, Dissophora, and Phoma sorghina (3%. The recovery of many fungal isolates, morphologically various sterile mycelia and yeasts suggests the high biodiversity of the endophytes invading these plants with strong evidence for future isolation of numerous fungal species through adopting more advanced molecular and DNA identification methods.

  15. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    Science.gov (United States)

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  16. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Conn, V M; Walker, A R; Franco, C M M

    2008-02-01

    Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent.

  17. Fungal Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Fungal Keratitis Sections What is Fungal Keratitis? Fungal Keratitis Causes ... Keratitis Symptoms Fungal Keratitis Treatment What is Fungal Keratitis? Leer en Español: ¿Qué Es la Queratitis Fúngica? ...

  18. Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants.

    Science.gov (United States)

    Soliman, Sameh S M; Raizada, Manish N

    2013-01-01

    Within a plant, there can exist an ecosystem of pathogens and endophytes, the latter described as bacterial and fungal inhabitants that thrive without causing disease to the host. Interactions between microbial inhabitants represent a novel area of study for natural products research. Here we analyzed the interactions between the fungal endophytes of Taxus (yew) trees. Fungal endophytes of Taxus have been proposed to produce the terpenoid secondary metabolite, Taxol, an anti-cancer drug. It is widely reported that plant extracts stimulate endophytic fungal Taxol production, but the underlying mechanism is not understood. Here, Taxus bark extracts stimulated fungal Taxol production 30-fold compared to a 10-fold induction with wood extracts. However, candidate plant-derived defense compounds (i.e., salicylic acid, benzoic acid) were found to act only as modest elicitors of fungal Taxol production from the endophytic fungus Paraconiothyrium SSM001, consistent with previous studies. We hypothesized the Taxus plant extracts may contain elicitors derived from other microbes inhabiting these tissues. We investigated the effects of co-culturing SSM001 with other fungi observed to inhabit Taxus bark, but not wood. Surprisingly, co-culture of SSM001 with a bark fungus (Alternaria) caused a ∼threefold increase in Taxol production. When SSM001 was pyramided with both the Alternaria endophyte along with another fungus (Phomopsis) observed to inhabit Taxus, there was an ∼eightfold increase in fungal Taxol production from SSM001. These results suggest that resident fungi within a host plant interact with one another to stimulate Taxol biosynthesis, either directly or through their metabolites. More generally, our results suggest that endophyte secondary metabolism should be studied in the context of its native ecosystem.

  19. Endophytic fungus-vascular plant-insect interactions.

    Science.gov (United States)

    Raman, A; Wheatley, W; Popay, A

    2012-06-01

    Insect association with fungi has a long history. Theories dealing with the evolution of insect herbivory indicate that insects used microbes including fungi as their principal food materials before flowering plants evolved. Subtlety and the level of intricacy in the interactions between insects and fungi indicate symbiosis as the predominant ecological pattern. The nature of the symbiotic interaction that occurs between two organisms (the insect and the fungus), may be either mutualistic or parasitic, or between these two extremes. However, the triangular relationship involving three organisms, viz., an insect, a fungus, and a vascular plant is a relationship that is more complicated than what can be described as either mutualism or parasitism, and may represent facets of both. Recent research has revealed such a complex relationship in the vertically transmitted type-I endophytes living within agriculturally important grasses and the pestiferous insects that attack them. The intricacy of the association depends on the endophytic fungus-grass association and the insect present. Secondary compounds produced in the endophytic fungus-grass association can provide grasses with resistance to herbivores resulting in mutualistic relationship between the fungus and the plant that has negative consequences for herbivorous insects. The horizontally transmitted nongrass type-II endophytes are far less well studied and as such their ecological roles are not fully understood. This forum article explores the intricacy of dependence in such complex triangular relationships drawing from well-established examples from the fungi that live as endophytes in vascular plants and how they impact on the biology and evolution of free-living as well as concealed (e.g., gall-inducing, gall-inhabiting) insects. Recent developments with the inoculation of strains of type-I fungal endophytes into grasses and their commercialization are discussed, along with the possible roles the endophytic

  20. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  1. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae

    Directory of Open Access Journals (Sweden)

    Liang Hanqiao

    2012-11-01

    Full Text Available Abstract Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC and fermentation broth (FB were tested for antimicrobial activity using peptide deformylase (PDF inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC and 33.33% of the fermentation broths (FB displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  2. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?

    Science.gov (United States)

    Arnold, A Elizabeth; Miadlikowska, Jolanta; Higgins, K Lindsay; Sarvate, Snehal D; Gugger, Paul; Way, Amanda; Hofstetter, Valérie; Kauff, Frank; Lutzoni, François

    2009-06-01

    Fungi associated with photosynthetic organisms are major determinants of terrestrial biomass, nutrient cycling, and ecosystem productivity from the poles to the equator. Whereas most fungi are known because of their fruit bodies (e.g., saprotrophs), symptoms (e.g., pathogens), or emergent properties as symbionts (e.g., lichens), the majority of fungal diversity is thought to occur among species that rarely manifest their presence with visual cues on their substrate (e.g., the apparently hyperdiverse fungal endophytes associated with foliage of plants). Fungal endophytes are ubiquitous among all lineages of land plants and live within overtly healthy tissues without causing disease, but the evolutionary origins of these highly diverse symbionts have not been explored. Here, we show that a key to understanding both the evolution of endophytism and the diversification of the most species-rich phylum of Fungi (Ascomycota) lies in endophyte-like fungi that can be isolated from the interior of apparently healthy lichens. These "endolichenic" fungi are distinct from lichen mycobionts or any other previously recognized fungal associates of lichens, represent the same major lineages of Ascomycota as do endophytes, largely parallel the high diversity of endophytes from the arctic to the tropics, and preferentially associate with green algal photobionts in lichen thalli. Using phylogenetic analyses that incorporate these newly recovered fungi and ancestral state reconstructions that take into account phylogenetic uncertainty, we show that endolichenism is an incubator for the evolution of endophytism. In turn, endophytism is evolutionarily transient, with endophytic lineages frequently transitioning to and from pathogenicity. Although symbiotrophic lineages frequently give rise to free-living saprotrophs, reversions to symbiosis are rare. Together, these results provide the basis for estimating trophic transition networks in the Ascomycota and provide a first set of

  3. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    OpenAIRE

    Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J.

    2013-01-01

    We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fr...

  4. A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016.

    Science.gov (United States)

    Xie, Xiao-Song; Fang, Xiao-Wei; Huang, Rong; Zhang, Shou-Peng; Wei, Hong-Xia; Wu, Shao-Hua

    2016-08-01

    A new unsymmetrical dimeric anthraquinone, 3-demethyl-3-(2-hydroxypropyl)-skyrin (1) was isolated from the solid-state fermentation extract of an endophytic fungal strain Talaromyces sp. YE 3016, together with five known compounds, skyrin (2), oxyskyrin (3), emodin (4), 1,3,6-trihydroxy-8-methyl-anthraquinone (5) and ergosterol (6). The structure of the new compound was elucidated on the basis of spectroscopic analysis. Compounds 1-3 exhibited moderate cytotoxic activities against MCF-7 cell line.

  5. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    Science.gov (United States)

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01).

  6. [Diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen].

    Science.gov (United States)

    Sun, Li; Zhu, Jun; Li, Xiaojin; Shi, Shubing; Guo, Shunxing

    2014-08-04

    We studied the diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen. Endophytic fungi from different years (1-2 years, 3-4 years and > 5 years) and different parts (root, stemand leaf) of Ferula sinkiangensis K. M. Shen were isolated by tissue expand method. Strains were classified by morphology and similarity of internal transcribed spacer (ITS) sequence by Clustal X method. Composition, diversity and preference of endophytic fungal community were analyzed by the isolation rate (IR), isolation frequency (IF), Shannon-Wiener biodiversity index (H'), Margalef Richness index (R). In total 140 endophytic fungi were isolated from F. sinkiangensis K. M. Shen and classified into 18 genera. Among the 140 isolates, Aureobasidium (25.7%), Alternaria (16.4%) and Phyllosticta (15.7%) were the dominant genera. The isolation results show that there were some notable differences between distribution and composition of the endophytic fungi isolated from different years and different parts of Ferula sinkiangensis K. M. Shen. Meanwhile, a certain degree of years and tissue preference were also obvious. The results obtained in this study will be helpful to exploit the endophytic fungal resources of Ferula sinkiangensis K. M. Shen, which can also provide a new way for the realization of the artificial breeding of Ferula sinkiangensis K. M. Shen.

  7. Antiproliferative, antifungal, and antibacterial activities of endophytic alternaria species from cupressaceae.

    Science.gov (United States)

    Soltani, Jalal; Hosseyni Moghaddam, Mahdieh S

    2014-09-01

    Recent research has shown the bioprospecting of endophytic fungi from Cupressaceae. Here, we further uncover that the healthy cypress plants such as Cupressus arizonica, Cupressus sempervirens var. cereiformis, and Thuja orientalis host highly bioactive endophytic Alternaria fungal species. Indeed, endophytic Alternaria alternata, Alternaria pellucida, and Alternaria tangelonis were recovered from healthy Cupressaceous trees. Biodiversity and bioactivity of recovered endophytic Alternaria species were a matter of biogeography and host identity. We further extracted such Alternaria's metabolites and highlighted their significant antiproliferative, growth inhibitory, and antibacterial activities against the model target fungus Pyricularia oryzae and the model pathogenic bacteria Bacillus sp., Erwinia amylovora, and Pseudomonas syringae. In vitro assays also indicated that endophytic Alternaria species significantly inhibited the growth of cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi, and Spencermartinsia viticola. In conclusion, since the recovered Alternaria species were originally reported as pathogenic and allergenic fungi, our findings suggest a possible ecological niche for them inside the foliar tissues of Cupressaceous trees. Moreover, in this study, the significant bioactivities of endophytic Alternaria species in association with Cupressaceae plant family are reported.

  8. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata.

    Science.gov (United States)

    Wang, Ya; Zeng, Qing Gui; Zhang, Zhi Bin; Yan, Ri Ming; Wang, Ling Yun; Zhu, Du

    2011-09-01

    Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 μg/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs.

  9. Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp.).

    Science.gov (United States)

    Martín, Juan A; Witzell, Johanna; Blumenstein, Kathrin; Rozpedowska, Elzbieta; Helander, Marjo; Sieber, Thomas N; Gil, Luis

    2013-01-01

    Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

  10. Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.)

    Science.gov (United States)

    Martín, Juan A.; Witzell, Johanna; Blumenstein, Kathrin; Rozpedowska, Elzbieta; Helander, Marjo; Sieber, Thomas N.; Gil, Luis

    2013-01-01

    Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide. PMID:23468900

  11. Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp..

    Directory of Open Access Journals (Sweden)

    Juan A Martín

    Full Text Available Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp. trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

  12. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes.

    Science.gov (United States)

    Hardoim, Pablo R; van Overbeek, Leonard S; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-09-01

    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Isolation, identification and bioactivity of endophytic fungi from medicinal plant Malus sieboldii.

    Science.gov (United States)

    Cai, Guanghua; Wang, Xiaoling

    2012-03-01

    To isolate and identify endophytic fungi from Malus sieboldii, and detect cytotoxicity, protease inhibition and antifungal activities of their crude extracts. The fungi were identified with the aid of morphology or Internal Transcribed Spacer (ITS) rDNA molecular methods. Fungal activities were tested by cylinder-plate, MTT and BRpNA methods, respectively. A total of 217 endophytic fungi were isolated from M. sieboldii. Of the 22 taxa obtained, non-sporulating, Alternaria, Colletotrichum, Aspergillu, Fusarlum, Gliocladium and Cunninghamella were dominant communities. The result of the bioactivity test showed that 30 endophytic fungi displayed inhibition against at least one pathogenic fungus, and 3 and 4 showed cytotoxicity and protease inhibition, respectively. M. sieboldii should be a potential source of bioactive endophytic fungi.

  14. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    Science.gov (United States)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  15. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia.

    Science.gov (United States)

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture.

  16. Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris.

    Science.gov (United States)

    Mahapatra, S; Banerjee, D

    2010-09-01

    Endophytic fungi of three tissues (petiole, bark and leaf) of Alstonia scholaris were assessed. A total number of 1,152 endophytic fungi were isolated from 1,002 different plant segments of seven different localities of Paschim Medinipur, West Bengal, India. The isolated fungi belong to nineteen genera, including four unidentified fungi and yeast. Colletotrichum sp. (20.39%) and Sordaria sp. (29.68%) were most commonly isolated from this plant. Hyalopus sp., Fusarium sp. and Curvularia sp. were also isolated. The colonization frequency of endophytic fungi is much higher in leaves (44.66%) in comparison to petioles (32.16%) and barks (23.17%). The study provided evidence for tissue specificity of endophytic fungi. The endophytic fungal species diversity was higher in plant segments collected from Gopegarh and Khoirullahchak, while diversity was the lowest in Rice mill area. Screenings of antimicrobial activity of these isolated endophytic fungi were done. Eight endophytic fungi showed antimicrobial activity. Among them Curvularia sp., Aspergillus sp. and one unidentified fungus showed maximum activity against test pathogens.

  17. Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?

    Directory of Open Access Journals (Sweden)

    Andrew J. Flewelling

    2013-12-01

    Full Text Available As the need for new and more effective antibiotics increases, untapped sources of biodiversity are being explored in an effort to provide lead structures for drug discovery. Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products, although data to support this is limited. To assess the antibiotic potential of temperate macroalgal endophytes we isolated endophytic fungi from algae collected in the Bay of Fundy, Canada and screened fungal extracts for the presence of antimicrobial compounds. A total of 79 endophytes were isolated from 7 species of red, 4 species of brown, and 3 species of green algae. Twenty of the endophytes were identified to the genus or species level, with the remaining isolates designated codes according to their morphology. Bioactivity screening assays performed on extracts of the fermentation broths and mycelia of the isolates revealed that 43 endophytes exhibited antibacterial activity, with 32 displaying antifungal activity. Endophytic fungi from Bay of Fundy macroalgae therefore represent a significant source of antibiotic natural products and warrant further detailed investigation.

  18. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    Science.gov (United States)

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  19. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2015-06-01

    Full Text Available Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  20. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci

    Science.gov (United States)

    Muvea, Alexander M.; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K.

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci. PMID:25254657

  1. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci.

    Science.gov (United States)

    Muvea, Alexander M; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.

  2. Molecular identification of endophytic fungi isolated from needle leaves of conifers in bohyeon mountain, Korea.

    Science.gov (United States)

    Yoo, Jae-Joon; Eom, Ahn-Heum

    2012-12-01

    Fungal endophytes are microfungi that live in plants without causing apparent symptoms of infection. This study was conducted to identify endophytic fungi isolated from leaves of coniferous trees in Bohyeon Mountain of Korea. We collected leaves of two species of coniferous trees, Pinus densiflora and Pinus koraiensis, from 11 sites in the study area. A total 58 isolates were obtained and identified using molecular and morphological characteristics. Four species of endophytic fungi were isolated from P. densiflora: Lophodermium conigenum, Leotiomycetes sp., Septoria pini-thunbergii, and Polyporales sp., while two fungal species were isolated from P. koraiensis: Eurotiomycetes sp. and Rhytismataceae sp. The most frequently isolated species were L. conigenum and S. pini-thunbergii.

  3. Preliminary study of endophytic fungi in timothy (Phleum pratense in Estonia

    Directory of Open Access Journals (Sweden)

    Triin Varvas

    2013-12-01

    Full Text Available Timothy (Phleum pratense L. is an important agricultural grass in Europe and North America, but there is little research into the occurrence and abundance of fungal endophyte species associated with this grass. The aim of this study was to identify fungal endophytes living within P. pratense and to determine if additional moisture applied during the growing season increases the diversity of endophytic fungi. We studied 58 isolates obtained from surface-sterilised blades of 60 P. pratense plants collected from Rõka Free Air Humidity Manipulation experimental plots (FAHM, Estonia. Morphological and molecular methods were used for isolate identification. As a result, 45 strains from 10 different taxa were identified, all belonging to Ascomycota. Five species were found to be new to P. pratense.

  4. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile

    Directory of Open Access Journals (Sweden)

    M. González-Teuber

    2017-03-01

    Full Text Available Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants (Chenopodium quinoa growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs. Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium, Phoma and Fusarium, which are common endophytes reported in plant roots. This study shows that roots of C. quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  5. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis.

    Science.gov (United States)

    Zhou, Sheng-Liang; Yan, Shu-Zhen; Liu, Qi-Sha; Chen, Shuang-Lin

    2015-01-01

    Foliar fungal endophytes are an important plant-associated fungal group. However, little is known about these fungi in hemi-parasitic plants, a unique plant group which derive nutrients from living plants of its hosts by haustoria while are photosynthetic to some degree. In this paper, the endophytic fungi in the leaves of a species of hemi-parasitic plant, Macrosolen cochinchinensis, were studied by both culture-dependent and culture-independent methods. By culture-dependent method, a total of 511 isolates were recovered from 452 of 600 leaf fragments (colonization rate = 75.3 %) and were identified to be 51 taxa. Valsa sp. was the most abundant (relative abundance = 38.4 %), followed by Cladosporium sp. 1 (13.5 %), Ulocladium sp. (4.3 %), Phomopsis sp. 2 (3.7 %), Hendersonia sp. (3.5 %), and Diaporthe sp. 4 (3.5 %). The Shannon index (H') of the isolated endophytic fungi was 2.628, indicating a moderate diversity. By culture-independent method, Aspergillus spp., Cladosporium sp., Mycosphaerella sp., Acremonium strictum, and Tremella sp. were detected. To our knowledge, the Tremella species have never been detected as endophytes so far. In addition, a cloned sequence was not similar with any current sequence in the Genbank, which may represent a novel species. Altogether, this study documented endophytic fungal assemble in the leaves of M. cochinchinensis which was worthy of our attention, and may expand our knowledge about endophytic fungi within the photosynthetic tissues of plants.

  6. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

    Science.gov (United States)

    Yasmin J. Cardoza; Kier D. Klepzig; Kenneth F. Raffa

    2006-01-01

    1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and ...

  7. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  8. Evaluating a novel endophytic grass for suppressing invertebrates that contribute to bird strike risk at airports

    Science.gov (United States)

    BACKGROUND: Tall fescue containing a selected strain of the fungal endophyte Epichlöe coenophiala purported to express high levels of bioactive alkaloids (Avanex®) was recently commercialized for reducing airport bird strike hazard. We compared bioactivity of Avanex and KY 31, a ubiquitous cultivar...

  9. Antifungal and antiproliferative activities of endophytic fungi isolated from the leaves of Markhamia tomentosa.

    Science.gov (United States)

    Ibrahim, Mutiat; Kaushik, Nutan; Sowemimo, Abimbola; Chhipa, Hemraj; Koekemoer, Trevor; van de Venter, Maryna; Odukoya, Olukemi A

    2017-12-01

    Plants harbor endophytes with potential bioactivity. Markhamia tomentosa (Benth) K. Schum ex. Engl. (Bignoniaceae) is reported to possess antioxidant, anti-inflammatory and anticancer activities. The antifungal and antiproliferative properties of endophytic fungi extracts and fractions from M. tomentosa were evaluated. Endophytic fungi were isolated from the leaves of M. tomentosa and identified by ITS-rDNA sequence analysis. The antagonistic effect of the fungal strains was investigated against pathogenic fungi viz, Fusarium oxysporum, Sclerotinia sclerotiorium, Rhizoctonia solani, and Botrytis cinerea using the dual culture assay for 5-7 days. Antiproliferative effect of the fungal extracts and fractions (3.91-250 μg/mL) on HeLa cancer cell line was tested and IC 50 was calculated. Poisoning food assay and antifeedant activity against the pathogenic fungi and Spodoptera litura larvae, for 7 days and 2 h, respectively, was also tested at concentrations of 250, 500 and 1000 μg/mL. Fungal endophytes Trichoderma longibrachiatum and Syncephalastrum racemosum were isolated from the leaves of M. tomentosa. Isolated endophytic fungal strains and solvent extracts showed MIC value of 1000 μg/mL against tested pathogenic fungi in the dual culture and poisoning food assays. Methanol fraction of S. racemosum isolate showed the most effective antiproliferative activity with IC 50 of 43.56 μg/mL. Minimal feeding deterrent activity against S. litura larvae was also observed. These findings showed that the leaves of Markhamia tomentosa harbor strains of endophytic fungi with promising health benefits, and suggest their antifungal and antiproliferative effects against pathogenic fungi and HeLa cancer cell line.

  10. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    Science.gov (United States)

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  11. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    Science.gov (United States)

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  12. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    Directory of Open Access Journals (Sweden)

    Aurora Saucedo-García

    Full Text Available Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some

  13. Persistence of endophytic fungi in cultivars ofLolium perennegrown from seeds stored for 22 years.

    Science.gov (United States)

    Cheplick, Gregory P

    2017-04-01

    Genetic resources for forage crops often consist of seeds of specific species and cultivars in cold storage for future use in breeding and selection programs. Temperate grasses such as Lolium perenne , used worldwide for forage and turf, produce seeds commonly infected by hyphae of an endophytic fungus ( Epichloë festucae var. lolii ). This research determined whether endophytes could persist and infect seedlings of L. perenne emerging from seeds stored for over two decades. Endophyte-infected seeds (>90% infected) of four cultivars were obtained in 1994 and stored dry in plastic bags at 4°C. Seed germination was tested after 12 yr (for two cultivars) and after 18 and 22 yr (for all cultivars). Seedling leaf sheaths were excised, stained, and examined at 400× for endophytic hyphae to quantify infection frequency (% plants infected) and intensity (mean number of endophytic hyphae per field of view). Seed germination after 22 yr depended on cultivar, ranging from 53 to 78%. Between 58 and 73% of plants grown from seeds stored for 22 yr still contained viable endophytic hyphae. Infection intensity remained at original levels for 18 yr in one cultivar; however, in all cultivars, infection intensity declined significantly between 18 and 22 yr. Persistence of the grass seed-endophyte symbiosis for over 20 yr surpasses all prior records of endophyte longevity within stored seeds. Storage of germplasm of cool-season grass cultivars that contain potentially beneficial fungal endophytes should be possible for several decades under dry, cold conditions. © 2017 Botanical Society of America.

  14. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  15. Antimicrobial activity of endophytic fungi from olive tree leaves.

    Science.gov (United States)

    Malhadas, Cynthia; Malheiro, Ricardo; Pereira, José Alberto; de Pinho, Paula Guedes; Baptista, Paula

    2017-03-01

    In this study, the antimicrobial potential of three fungal endophytes from leaves of Olea europaea L. was evaluated and the host plant extract effect in the antimicrobial activity was examined. The volatile compounds produced by endophytes were identified by GC/MS and further correlated with the antimicrobial activity. In potato dextrose agar, both Penicillium commune and Penicillium canescens were the most effective inhibiting Gram-positive and -negative bacteria (up to 2.7-fold compared to 30 µg/mL chloramphenicol), whereas Alternaria alternata was most effective inhibiting yeasts (up to 8.0-fold compared to 25 μg/mL fluconazole). The presence of aqueous leaf extract in culture medium showed to induce or repress the antimicrobial activity, depending on the endophytic species. In the next step, various organic extracts from both A. alternata mycelium and cultured broth were prepared; being ethyl acetate extracts displayed the widest spectrum of anti-microorganisms at a minimum inhibitory concentration ≤0.095 mg/mL. The volatile composition of the fungi that displayed the highest (A. alternata) and the lowest (P. canescens) antimicrobial activity against yeasts revealed the presence of six volatiles, being the most abundant components (3-methyl-1-butanol and phenylethyl alcohol) ascribed with antimicrobial potentialities. Overall the results highlighted for the first time the antimicrobial potential of endophytic fungi from O. europaea and the possibility to be exploited for their antimicrobial agents.

  16. Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains.

    Science.gov (United States)

    Yadav, Manila; Yadav, Amita; Kumar, Sandeep; Yadav, Jaya Parkash

    2016-03-18

    Present study focuses on diversity and distribution analysis of endophytic fungi associated with different tissues of Eugenia jambolana. The influence of season and geographical location on diversity and distribution of endophytic fungi has been analyzed. Antibacterial activity of isolated fungal species has also been investigated against MDR bacterial strains. A total of 1896 endophytic fungal isolates were obtained from healthy, surface sterilized tissues of leaf, stem and petiole tissues during summer, monsoon and winter season. Out of 24 fungal species isolated, 20 species belong to class Ascomycetes, 2 to Basidiomycetes and 2 to Zygomycetes. Maximum species diversity was in rainy season whereas colonization frequency was in winter. All the diversity indices showed maximum species diversity at site 5 (Yamunanager), rainy among the seasons and leaf among the tissues studied. Aspergillus genus was most frequently isolated. Aspergillus niger and Alternaria alternata were most dominant species. Three way ANOVA results showed that effect of season was highly significant on species diversity in relation to sites and tissues. 60% endophytic fungal extracts showed significant antibacterial activity against one or more than one MDR bacterial strain. Different fungal species were recovered from different sites but the inter-site comparisons were not significant according to Jaccard similarity coefficient. Diversity of such fungal endophytes indicates that Eugenia jambolana plant acts as an ecosystem facilitating survival of many microbes with impressive antibacterial potential.

  17. Characterization of community structure of culturable endophytic fungi in sweet cherry composite trees and their growth-retarding effect against pathogens.

    Science.gov (United States)

    Haddadderafshi, Neda; Pósa, Tímea Borbála; Péter, Gábor; Gáspár, László; Ladányi, Márta; Hrotkó, Károly; Lukács, Noémi; Halász, Krisztián

    2016-09-01

    Endophytic fungi have the potential to protect their host plants in stress situations. Characterizing the ecology and complex interaction between these endophytes and their host plants is therefore of great practical importance, particularly in horticultural plants. Among horticultural plants, fruit trees form a special category because of their longevity and because they are composites of rootstock and scion, which often belong to different plant species. Here we present the first characterization of culturable endophytic fungal community of sweet cherry. Samples from the Hungarian cultivar 'Petrus' grafted on 11 different rootstocks were collected in autumn and in spring in a bearing orchard and the dependence of colonization rate and endophyte diversity on rootstock, organ and season was analysed. On the basis of their ITS sequences 26 fungal operational taxonomic units were identified at least down to the genus level. The dominant genus, comprising more than 50% of all isolates, was Alternaria, followed by different Fusarium and Epicoccum species. We observed some organ-specificity amongst endophytes, and organs showed more sizeable differences in colonization rates and endophyte diversity than rootstocks. Most dynamic endophyte populations, strongly influenced by environmental conditions and crop management, were observed in leaves. The potential of selected endophytes to confer protection against Monilinia laxa was also analysed and 7 isolates were found to inhibit the growth of this pathogen in vitro.

  18. Diversity of the endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from the endangered Brazilian rupestrian grasslands

    Science.gov (United States)

    The diversity of cultivable endophytic fungal community associated with the rare, ancient and narrowly endemic Neotropical plant Vellozia gigantea present in the Brazilian Rupestrian Grasslands was assessed. Two hundred and eighty-five fungal isolates obtained were identified into 27 genera and 87 t...

  19. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China.

    Science.gov (United States)

    Wang, Ya; Lai, Zheng; Li, Xi-Xi; Yan, Ri-Ming; Zhang, Zhi-Bin; Yang, Hui-Lin; Zhu, Du

    2016-02-01

    Huperzia serrata has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its endophytic fungi. To test this hypothesis, in the present study, we provided a first insights into evaluating the species composition and acetylcholinesterase (AChE) inhibitory activity of the culturable endophytic fungi of H. serrata from the regional at Jinggang Mountain in southeastern China. A total number of 885 fungal isolates distributed across 44 genera and 118 putative species were obtained from 1422 fragments of fine H. serrata roots, stems and leaves base on ITS-rDNA sequences BLAST analysis. The endophytic fungi were phylogenetically diverse and species-rich, with high rate of colonization and isolation. The assemble of endophytic fungi consisted mainly of Ascomycota (97.15%), followed by Basidiomycota (1.92%) and unknown fungal species (0.90%). Colletotrichum (64.29%), Phyllosticta (3.39%), Hypoxylon (2.81%), Xylaria (2.25%) and Nigrospora (2.04%) were the most abundant genera, whereas the remaining genera were infrequent groups. Although, roots yielded low abundance strains, the diverse and species-rich were both higher than that of stems and leaves. In addition, out of the 247 endophytic fungi strains determinated, 221 fungal extracts showed AChE inhibition activities in vitro. Among them, 22 endophytic fungi strains achieved high inhibitory activity (≥50%) on AChE which belongs to 13 genera and five incertae sedis strains. Four endophytic fungi designated as JS4 (Colletotrichum spp.), FL14 (Ascomycota spp.), FL9 (Sarcosomataceae spp.) and FL7 (Dothideomycetes spp.) were displayed highly active (≥80%) against AChE, which the inhibition effects were even more intense than the positive control. Our findings highlight that H. serrata grown in Jinggang Mountain harbors a rich and fascinating endophytic fungus community with potential AChE inhibitory activity, which could further broaden the natural

  20. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  1. Phenotype Microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes

    Directory of Open Access Journals (Sweden)

    Kathrin eBlumenstein

    2015-09-01

    Full Text Available There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype Microarray (PM techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.

  2. Swainsonine-containing plants and their relationship to endophytic fungi.

    Science.gov (United States)

    Cook, Daniel; Gardner, Dale R; Pfister, James A

    2014-07-30

    Swainsonine, an indolizidine alkaloid with significant physiological activity, is an α-mannosidase and mannosidase II inhibitor that alters glycoprotein processing and causes lysosomal storage disease. Swainsonine is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. Consumption of these plants by grazing animals leads to a chronic wasting disease characterized by weight loss, depression, altered behavior, decreased libido, infertility, and death. This review focuses on the three plant families and the associated taxa that contain swainsonine; the fungi that produce swainsonine, specifically the fungal endophytes associated with swainsonine-containing taxa; studies investigating the plant, endophyte, and swainsonine relationship; the influence of environmental factors on swainsonine concentrations in planta; and areas of future research.

  3. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Science.gov (United States)

    Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J.

    2013-01-01

    We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile. PMID:24351903

  4. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  5. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    Science.gov (United States)

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys. © 2015 by The Mycological Society of America.

  7. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  8. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    Directory of Open Access Journals (Sweden)

    Philippe Guerre

    2015-03-01

    Full Text Available The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity.

  9. Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species.

    Science.gov (United States)

    Alberto, R N; Costa, A T; Polonio, J C; Santos, M S; Rhoden, S A; Azevedo, J L; Pamphile, J A

    2016-11-03

    Plants of medicinal and economic importance have been studied to investigate the presence of enzyme-producing endophytic fungi. The characterization of isolates with distinct enzyme production potential may identify suitable alternatives for specialized industry. At Universidade Estadual de Maringá Laboratory of Microbial Biotechnology, approximately 500 isolates of endophytic fungi have been studied over the last decade from various host plants, including medicinally and economically important species, such as Luehea divaricata (Martius et Zuccarini), Trichilia elegans A. Juss, Sapindus saponaria L., Piper hispidum Swartz, and Saccharum spp. However, only a fraction of these endophytes have been identified and evaluated for their biotechnological application, having been initially grouped by morphological characteristics, with at least one representative of each morphogroup tested. In the current study, several fungal strains from four plants (L. divaricata, T. elegans, S. saponaria, and Saccharum spp) were identified by ribosomal DNA typing and evaluated semi-quantitatively for their enzymatic properties, including amylase, cellulase, pectinase, and protease activity. Phylogenetic analysis revealed the presence of four genera of endophytic fungi (Diaporthe, Saccharicola, Bipolaris, and Phoma) in the plants examined. According to enzymatic tests, 62% of the isolates exhibited amylase, approximately 93% cellulase, 50% pectinase, and 64% protease activity. Our results verified that the composition and abundance of endophytic fungi differed between the plants tested, and that these endophytes are a potential enzyme production resource of commercial and biotechnological value.

  10. Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era.

    Science.gov (United States)

    Sarasan, Manomi; Puthumana, Jayesh; Job, Neema; Han, Jeonghoon; Lee, Jae-Seong; Philip, Rosamma

    2017-06-28

    Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

  11. Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests.

    Science.gov (United States)

    Knapp, Dániel G; Kovács, Gábor M

    2016-12-01

    Although dark septate endophytes (DSE) represent a worldwide dispersed form group of root-colonizing endophytic fungi, our knowledge on their role in ecosystem functioning is far limited. In this study, we aimed to test if functional diversity exists among DSE fungi representing different lineages of root endophytic fungal community of semiarid sandy grasslands. To address this question and to gain general information on function of DSE fungi, we adopted api-ZYM and BioLog FF assays to study those non-sporulating filamentous fungi and characterized the metabolic activity of 15 different DSE species. Although there were striking differences among the species, all of the substrates tested were utilized by the DSE fungi. When endophytes characteristic to grasses and non-grass host plants were separately considered, we found that the whole substrate repertoire was used by both groups. This might illustrate the complementary functional diversity of the communities root endophytic plant-associated fungi. The broad spectra of substrates utilized by these root endophytes illustrate the functional importance of their diversity, which can play role not only in nutrient mobilization and uptake of plants from with nutrient poor soils, but also in general plant performance and ecosystem functioning. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Glucanase and Chitinase from Some Isolates of Endophytic Fungus Trichoderma spp.

    Science.gov (United States)

    Prasetyawan, Sasangka; Sulistyowati, Lilik; Aulanni'am

    2018-01-01

    Endophytic fungi are those fungi that are able to grow in plant tissue without causing symptoms of disease. It is thought that these fungi may confer on the host plants degree of resistance to parasitic invasion. Endophytic fungi have been isolated from stem tissue and these fungi are known to be antagonistic to pathogenic fungi. These endophytes produce chitinase and β-1,3-glucanase enzymes. Based on the fact that chitin and β-1,3-glucan are the main skeletal polysaccharides of the cell walls of fungal patogen. The aim of this research is to do potential test on some of isolates of Trichoderma’s endophytic (L-1, L-2, Is-1, Is-2 and Is-7) in the chitinase and β-1,3-glucanase activity in effort to determine endophytic which be chossen to be gene resource for the next research. The gene will be transformed to citrus plant japanese citroen in effort to make citrus plant transgenic resistance to phytopatogenic invasion. The result of this research is endofit namely L-1 is the most potential endophytic fungi with chitinase activities is 4,8 10-2 Unit and glucanase 24,2. 1012 Unit. The addition of chitin and cell wall of phytophtora causes chitinase activity significantly increase, and also addition of laminarin and cell wall of phytophtora makes glucanase activity increase.

  13. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    Science.gov (United States)

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  14. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost

    DEFF Research Database (Denmark)

    Bellemain, Eva; Davey, Marie L.; Kauserud, Håvard

    2013-01-01

    and endophytes) typical of graminoid- and forb-rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous...... knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community....

  15. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides.

    Directory of Open Access Journals (Sweden)

    Tara A Gianoulis

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.

  16. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  17. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste.

    Science.gov (United States)

    Wężowicz, Katarzyna; Rozpądek, Piotr; Turnau, Katarzyna

    2017-07-01

    The impact of fungal endophytes and the modulating role of arbuscular mycorrhizal fungi (AMF) on the vitality of Verbascum lychnitis, grown in the laboratory in a substratum from a post-mining waste dump was investigated. We report that inoculation with a single endophyte negatively affected the survival rate and biomass production of most of the plant-endophyte consortia examined. The introduction of arbuscular mycorrhiza fungi into this setup (dual inoculation) had a beneficial effect on both biomass yield and survivability. V. lychnitis co-inoculated with AMF and Cochliobolus sativus, Diaporthe sp., and Phoma exigua var. exigua yielded the highest biomass, exceeding the growth rate of both non-inoculated and AMF plants. AMF significantly improved the photosynthesis rates of the plant-endophyte consortia, which were negatively affected by inoculation with single endophytes. The abundance of PsbC, a photosystem II core protein previously shown to be upregulated in plants colonized by Epichloe typhina, exhibited a significant increase when the negative effect of the fungal endophyte was attenuated by AMF.

  18. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    Science.gov (United States)

    Ratnaweera, Pamoda B; de Silva, E Dilip; Williams, David E; Andersen, Raymond J

    2015-07-10

    Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC's for equisetin were 8 μg mL(-1) against Bacillus subtilis, 16 μg mL(-1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). O. dillenii, harbors several endophytic fungi capable of producing

  19. Influence of host tree species on isolation and communities of mycorrhizal and endophytic fungi from roots of a tropical epiphytic orchid, Dendrobium sinense (Orchidaceae).

    Science.gov (United States)

    Wang, Xiaoming; Li, Yijia; Song, Xiqiang; Meng, Qianwan; Zhu, Jie; Zhao, Ying; Yu, Wengang

    2017-10-01

    Most studies on the host preference of orchids have focused on the association between orchids and host characteristics, but little is known about the differences of mycorrhizal and endophytic fungal communities in epiphytic orchids growing on different host tree species. We selected Dendrobium sinense, a tropical epiphytic orchid, to determine if fungal endophytes from the roots of D. sinense were preferentially correlated with host tree species. Fifty-six fungal operational taxonomic units (OTUs) from 36 host trees were identified. The results indicated that the species richness and diversity of mycorrhizal and endophytic fungal communities isolated from D. sinense roots were strongly influenced by host tree species. Both species richness and diversity indices showed that D. sinense roots on Syzygium buxifolium harbored the most diverse and abundant endophytic fungi. Species of Tulasnellaceae were dominant on S. buxifolium and Rhododendron moulmainense but infrequent on Cyclobalanopsis disciformis and Podocarpus neriifolius. Our results provide evidence for distinct mycorrhizal and endophytic fungal communities on different host tree species. Further research focusing on fungi-orchid-host preference could be conducted to increase our understanding for the in situ conservation of epiphytic orchids.

  20. Screening of Endophytic Fungi from Chlorophyta and Phaeophyta for Antibacterial Activity

    Science.gov (United States)

    Rahaweman, A. C.; Pamungkas, J.; Madduppa, H.; Thoms, C.; Tarman, K.

    2016-01-01

    Chlorophyta and Phaeophyta macroalgae are important sources of secondary metabolites with pharmaceutically relevant antibacterial, antifungal and antiviral bioactivities. Oftentimes, these algae-derived compounds are, in fact, produced by endophytic fungi living inside the macroalgal tissue. Numerous studies have shown that endophytic fungi can produce a broad range of active metabolites such as terpenes, alkaloids, and quinones. The aim of the present study was to screen fungal strains isolated from a variety of Caulerpa spp., Halimeda spp., and Sargassum spp. for antibacterial activity against Staphylococcus aureus and Escherichia coli. Thirteen morphologically different isolates were tested. Two of them showed pronounced activity against S. aureus in agar diffusion assays.

  1. Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots

    DEFF Research Database (Denmark)

    Louarn, Sébastien Jean Yves; Nawrocki, Arkadiusz; Thorup-Kristensen, Kristian

    2013-01-01

    and Phoma which are known to occur as root endophytes or as root-associated fungi. As for the proteomics data, no consistent statistically significant differences in micromycota were observed between the two cropping systems. We conclude that cropping system did not have an influence on the postharvest...... quality. The changes observed were similar in the two cropping systems. Using both biological isolation and a fungal PCR targeting the ITS region, we identified several endophytic species belonging to the Ascomycota. The most frequently encountered taxa were Tetracladium, Leptodontidium, Nectriaceae...

  2. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines

    DEFF Research Database (Denmark)

    Polizzotto, Rachele; Andersen, Birgitte; Martini, Marta

    2012-01-01

    A polyphasic approach was set up and applied to characterize 20 fungal endophytes belonging to the genus Alternaria, recovered from grapevine in different Italian regions.Morphological, microscopical, molecular and chemical investigations were performed and the obtained results were combined...... subjected to cluster analysis. The metabolites extracted from the 20 Alternaria endophytes were analyzed by a HPLC and the resulting metabolite profiles were subjected to multivariate statistic analyses. In comparison with reference 'small-spored' Alternaria species, the 20 strains were segregated into two...

  3. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth.

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    Full Text Available BACKGROUND: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. METHODOLOGY/PRINCIPAL FINDINGS: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this

  4. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte.

    Science.gov (United States)

    Bills, Gerald F; González-Menéndez, Victor; Martín, Jesús; Platas, Gonzalo; Fournier, Jacques; Peršoh, Derek; Stadler, Marc

    2012-01-01

    Nodulisporic acids (NAs) are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a fungal organism, whether from environmental sequences, vegetative mycelia or field

  5. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales, a pantropical insecticide-producing endophyte.

    Directory of Open Access Journals (Sweden)

    Gerald F Bills

    Full Text Available BACKGROUND: Nodulisporic acids (NAs are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. METHODS AND RESULTS: Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. CONCLUSIONS AND SIGNIFICANCE: Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a

  6. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro.

    Science.gov (United States)

    Li, Zhi-Fang; Wang, Ling-Fei; Feng, Zi-Li; Zhao, Li-Hong; Shi, Yong-Qiang; Zhu, He-Qin

    2014-09-01

    Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. However, no significant difference in the abundance of isolated endophytes was found among resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and susceptible ones had similar endophytic fungal population compositions. In three Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem tissue endophytic communities (0.702) was comparatively more uniform than the other two tissues. Eighty endophytic fungi selected from 27 genera were evaluated for their inhibition activity against highly virulent Verticillium dahliae isolate Vd080 in vitro. Thirty-nine isolates exhibited fungistasis against the pathogen at varying degrees. Seven species, having high growth inhibition rates (≥75%), exhibited strong antifungal activity against V. dahliae. The antifungal activity of both volatile and nonvolatile metabolites was also investigated. The nonvolatile substances produced by CEF-818 (Penicillium simplicissimum), CEF-325 (Fusarium solani), CEF-714 (Leptosphaeria sp.), and CEF-642 (Talaromyces flavus) completely inhibited V. dahliae growth. These findings deepen our understanding of cotton-endophyte interactions and provide a platform for screening G. hirsutum endophytes with biocontrol potential.

  7. Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order - Phaeomoniellales.

    Science.gov (United States)

    Chen, Ko-Hsuan; Miadlikowska, Jolanta; Molnár, Katalin; Arnold, A Elizabeth; U'Ren, Jana M; Gaya, Ester; Gueidan, Cécile; Lutzoni, François

    2015-04-01

    Symbiotic fungi living in plants as endophytes, and in lichens as endolichenic fungi, cause no apparent symptoms to their hosts. They are ubiquitous, ecologically important, hyperdiverse, and represent a rich source of secondary compounds for new pharmaceutical and biocontrol products. Due in part to the lack of visible reproductive structures and other distinctive phenotypic traits for many species, the diversity and phylogenetic affiliations of these cryptic fungi are often poorly known. The goal of this study was to determine the phylogenetic placement of representative endophytes within the Eurotiomycetes (Pezizomycotina, Ascomycota), one of the most diverse and evolutionarily dynamic fungal classes, and to use that information to infer processes of macroevolution in trophic modes. Sequences of a single locus marker spanning the nuclear ribosomal internal transcribed spacer region (nrITS) and 600 base pairs at the 5' end of the nuclear ribosomal large subunit (nrLSU) were obtained from previous studies of >6000 endophytic and endolichenic fungi from diverse biogeographic locations and hosts. We conducted phylum-wide phylogenetic searches using this marker to determine which fungal strains belonged to Eurotiomycetes and the results were used as the basis for a class-wide, seven-locus phylogenetic study focusing on endophytic and endolichenic Eurotiomycetes. Our cumulative supermatrix-based analyses revealed that representative endophytes within Eurotiomycetes are distributed in three main clades: Eurotiales, Chaetothyriales and Phaeomoniellales ord. nov., a clade that had not yet been described formally. This new order, described herein, is sister to the clade including Verrucariales and Chaetothyriales. It appears to consist mainly of endophytes and plant pathogens. Morphological characters of endophytic Phaeomoniellales resemble those of the pathogenic genus Phaeomoniella. This study highlights the capacity of endophytic and endolichenic fungi to expand our

  8. Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, guarea guidonia (meliaceae)

    International Nuclear Information System (INIS)

    Gamboa Gaitan, Miguel A; Wen, Shiyun; Fetcher, Ned; Bayman, Paul

    2005-01-01

    Endophytes are microorganisms that live within healthy plant tissues, and include fungi and bacteria. They can be mutualists, comensals or even latent pathogens. Presence of these endosymbionts may affect host physiology, for example by consuming products of photosynthesis (endophytes are heterotrophs) or producing toxic metabolites. In this work two fungicides were used to eliminate fungal endophytes from seedlings of guarea guidonia. light saturated photosynthesis (Amax) was measured in endophytefree plants and compared with control plants. Each fungicide killed different fungal endosymbionts. phomopsis was more susceptible to benomyl while colletotrichum was more susceptible to propiconazole. Although suggestive, values of Amax were not significantly different for each treatment compared with control plants. No prediction can be made at this point about the final outcome of a given plantendophytic fungi interaction

  9. LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum.

    Science.gov (United States)

    Chithra, S; Jasim, B; Anisha, C; Mathew, Jyothis; Radhakrishnan, E K

    2014-05-01

    Piper nigrum is very remarkable for its medicinal properties due to the presence of metabolites like piperine. Emerging understanding on the biosynthetic potential of endophytic fungi suggests the possibility to have piperine producing fungi in P. nigrum. In the current study, endophytic fungi isolated from P. nigrum were screened for the presence of piperine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This resulted in the identification of a Mycosphaerella sp. with the ability to produce piperine extracellularly. The biosynthesis of piperine (C17H19NO3) by the endophytic fungal isolate was confirmed by the presence of m/z 286.1 (M + H(+)) in the LC-MS/MS analysis using positive mode ionization. This was further supported by the presence of specific fragment ions with masses 135, 143, 171 and 201 formed due to the fragmentation of piperine present in the fungal extract.

  10. Fungal Diseases

    Science.gov (United States)

    ... to other illnesses such as the flu or tuberculosis. Some fungal diseases like fungal meningitis and bloodstream ... prevención Fuentes Diagnóstico y pruebas Tratamiento Profesionales de la salud Estadísticas Blastomycosis Definition Symptoms Risk & Prevention Sources ...

  11. Fungal Infections

    Science.gov (United States)

    ... Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Fungal Infections KidsHealth / For Kids / Fungal Infections What's in this ...

  12. Darkness: A Crucial Factor in Fungal Taxol Production

    Directory of Open Access Journals (Sweden)

    Sameh S. M. Soliman

    2018-03-01

    Full Text Available Fungal Taxol acquired lots of attention in the last few decades mainly because of the hope that fungi could be manipulated more easily than yew trees to scale up the production level of this valuable anticancer drug. Several researchers have studied diverse factors to enhance fungal Taxol production. However, up to date fungal Taxol production has never been enhanced to the commercial level. We have hypothesized that optimization of fungal Taxol production may require clear understanding of the fungal habitat in its original host plant. One major feature shared by all fungal endophytes is that they are located in the internal plant tissues where darkness is prominent; hence here the effect of light on fungal Taxol production was tested. Incubation of Taxol-producing endophytic SSM001 fungus in light prior to inoculation in Taxol production culture media showed dramatic loss of Taxol accumulation, significant reduction in Taxol-containing resin bodies and reduction in the expression of genes known to be involved in Taxol biosynthesis. The loss of Taxol production was accompanied by production of dark green pigments. Pigmentation is a fungal protection mechanism which is photoreceptor mediated and induced by light. Opsin, a known photoreceptor involved in light perception and pigment production, was identified in SSM001 by genome sequencing. SSM001 opsin gene expression was induced by white light. The results from this study indicated that the endophytic fungus SSM001 required the dark habitat of its host plant for Taxol production and hence this biosynthetic pathway shows a negative response to light.

  13. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning

    Directory of Open Access Journals (Sweden)

    Raquel Martín-Sampedro

    2017-01-01

    Full Text Available Olive tree pruning, as one of the most abundant lignocellulosic residues in Mediterranean countries, has been evaluated as a source of sugars for fuel and chemicals production. A mild acid pretreatment has been combined with a fungal pretreatment using either two endophytes (Ulocladium sp. and Hormonema sp. or a saprophyte (Trametes sp. I-62. The use of endophytes is based on the important role that some of them play during the initial stages of wood decomposition. Without acid treatment, fungal pretreatment with Ulocladium sp. provided a nonsignificant enhancement of 4.6% in glucose digestibility, compared to control. When a mild acid hydrolysis was carried out after fungal pretreatments, significant increases in glucose digestibility from 4.9% to 12.0% (compared to control without fungi were observed for all fungal pretreatments, with maximum values yielded by Hormonema sp. However, despite the observed digestibility boost, the total sugar yields (taking into account solid yield were not significantly increased by the pretreatments. Nevertheless, based on these preliminary improvements in digestibility, this work proves the potential of endophytic fungi to boost the production of sugar from olive tree pruning, which would add an extra value to the bioeconomy of olive crops.

  14. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.

    Science.gov (United States)

    Vieira, Mariana L A; Johann, Susana; Hughes, Frederic M; Rosa, Carlos A; Rosa, Luiz H

    2014-12-01

    The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher α-biodiversity were also those that contributed more to the regional (γ) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities.

  15. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro microplants

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Vitorino

    2013-01-01

    Full Text Available Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro microplants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in microplants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were overexpressed only when the microplant was treated with endophytic fungi.

  16. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  17. Existence of entomopathogen fungi, Beauveria bassiana as an endophyte in cacao seedlings

    Directory of Open Access Journals (Sweden)

    Endang Sulistyowati

    2015-12-01

    Full Text Available Beauveria bassiana is one of the entomopathogen fungi which is known as biological control agent of cocoa pod borer and cocoa mirids (Helopeltis spp.. Because of its effectiveness in the fields is still not consistent, so we conduct a research with the objective to know the possibility of Beauveria bassiana to be established as a endophyte. Various fungal entomopathogens have already been reported as endophytes and the various methods used to inoculate the plants with B. bassiana were partially effective. The research has been conducted in laboratory of Plant Protection, Indonesian Coffee and Cocoa Research Institute by inoculating of cocoa seeds and cocoa nursery with B. bassiana suspension.  The trial was arranged  by randomized complete block design with a factorial arrangement. The factor were spore concentration of B. bassiana (0; 2; and 4 g/ 10 l and cocoa varieties (family of ICS 60, TSH858, and hybrid. The trial were use  four replications. The results showed that the fungal entomopathogen B. bassiana was established as an endophyte in cocoa seedling, both from cocoa seeds and nursery application. Percentage of existence of B. bassiana colonies as endophytes one month after seeds application were ICS 60 amounted to 93.3 % both on concentration treatments, while the families of TSH 858 by 80 % and 86.67 % respectively in 2 g and 4 g per 10 l of B. bassiana spores concentration treament.. The lowest percentage was in hybrids, which amounted to 66.67% and 50%. B. bassiana colonies was exixtence as an endophyte in culture from root, stem and leaves of cocoa seedling up to 5 months post inoculation. While the application on nursery by soil drenshing, leaf spraying, and stem injection , it was known that B. bassiana colonies were found in the tissues of leaves, stems, and roots until two months after application. Colonies of B. bassiana as endophytes still exsist until six weeks after nursery was planted in the field. 

  18. Endophytic fungi harbored inPanax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease.

    Science.gov (United States)

    Zheng, You-Kun; Miao, Cui-Ping; Chen, Hua-Hong; Huang, Fang-Fang; Xia, Yu-Mei; Chen, You-Wei; Zhao, Li-Xing

    2017-07-01

    Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng . A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng . A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng , and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax , Fusarium oxysporum , Fusarium solani , Phoma herbarum , and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

  19. Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alvarez, P.; Martin-Garcia, J.; Rodriguez-Ceinos, S.; Diez, J. J.

    2012-07-01

    The replacement of native forest with plantations of other species may have important impacts on ecosystems. Some of these impacts have been widely studied, but very little is known about the effects on fungal communities and specifically endo phytic fungi. In this study, endophyte assemblages in pine plantations (Pinus sylvestris, P. nigra and P. pinaster) and native oak forests (Quercus pyrenaica) in the north of the province of Palencia (Spain) were analyzed. For this purpose, samples of needles/leaves and twigs were collected from three trees in each of three plots sampled per host species. The samples were later processed in the laboratory to identify all of the endo phytic species present. In addition, an exhaustive survey was carried out of the twelve sites to collect data on the environmental, crown condition, dendrometric and soil variables that may affect the distribution of the fungi. The endophyte assemblages isolated from P. sylvestris and P. nigra were closely related to each other, but were different from those isolated from P. pinaster. The endophytes isolated from Q. pyrenaica were less closely related to those from the other hosts, and therefore preservation of oak stands is important to prevent the loss of fungal diversity. Finally, the distribution of the endophyte communities was related to some of the environmental variables considered. (Author) 42 refs.

  20. Endophytic Fungi in a Hordeum Germplasm Collection

    Science.gov (United States)

    A. Dan Wilson; S.L. Clement; W.J. Kaiser

    1991-01-01

    The incidence of clavicipitaceous anamorphic endophytes in a Hordeum spp. germplasm collection is reported. The potential application of endophytes as biocontrol agents against pests of cereal crops is recognized. Suggestions are proposed to modify existing germplasm maintenance procedures to ensure that both seed viability and endophyte viability...

  1. Potential of Mangrove-Associated Endophytic Fungi for Production of Carbohydrolases with High Saccharification Efficiency.

    Science.gov (United States)

    Maroldi, M M C; Vasconcellos, V M; Lacava, P T; Farinas, C S

    2018-03-01

    The endophytic fungi represent a potential source of microorganisms for enzyme production. However, there have been only few studies exploiting their potential for the production of enzymes of industrial interest, such as the (hemi)cellulolytic enzymatic cocktail required in the hydrolysis of lignocellulosic biomass. Here, a collection of endophytic fungi isolated from mangrove tropical forests was evaluated for the production of carbohydrolases and performance on the hydrolysis of cellulose. For that, 41 endophytic strains were initially screened using a plate assay containing crystalline cellulose as the sole carbon source and the selected strains were cultivated under solid-state fermentation for endoglucanase, β-glucosidase, and xylanase enzyme quantification. The hydrolysis of a cellulosic material with the enzymes from endophytic strains of the Aspergillus genus resulted in glucose and conversion values more than twofold higher than the reference strains (Aspergillus niger F12 and Trichoderma reesei Rut-C30). Particularly, the enzymes from strains A. niger 56 (3) and A. awamori 82 (4) showed a distinguished saccharification performance, reaching cellulose conversion values of about 35% after 24 h. Linking hydrolysis performance to the screening steps played an important role towards finding potential fungal strains for producing enzymatic cocktails with high saccharification efficiency. These results indicate the potential of mangrove-associated endophytic fungi for production of carbohydrolases with efficient performance in the hydrolysis of biomass, thus contributing to the implementation of future biorefineries.

  2. Anticestodal Activity of Endophytic Pestalotiopsis sp. on Protoscoleces of Hydatid Cyst Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Vijay C. Verma

    2013-01-01

    Full Text Available Surgery is still the main treatment in hydatidosis caused by Echinococcus, which is a global health problem in human and animals. So, there is need for some natural protoscolicidal agents for instillation to prevent their reoccurrence at therapeutic doses. In this present investigation, anticestodal activity of one of the endophytic fungi Pestalotiopsis sp. from Neem plant was observed on protoscoleces of hydatid cysts of Echinococcus granulosus. Viability of protoscoleces was confirmed by 0.1% aqueous eosin red stain method, where mortality was observed at different concentrations with respect to time. An average anticestodal activity was observed with different endophytic fungal strains, that is, Nigrospora (479 ± 2.9, Colletotrichum (469 ± 25.8, Fusarium (355 ± 14.5, and Chaetomium (332 ± 28.3 showing 64 to 70% protoscolicidal activity, except Pestalotiopsis sp. (581 ± 15.0, which showed promising scolicidal activity up to 97% mortality just within 30 min of incubation. These species showed significant reduction in viability of protoscoleces. This is the first report on the scolicidal activity of endophytic Pestalotiopsis sp. We conclude that ultrastructural changes in protoscoleces were due to endophytic extract suggesting that there may be some bioactive compounds that have selective action on the tegument layer of protoscoleces. As compared with that of standard drug used, endophytic species of Neem plant shows significant anticestodal activity.

  3. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    Science.gov (United States)

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. © 2014 Wiley Periodicals, Inc.

  4. Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco

    Directory of Open Access Journals (Sweden)

    Ebel R.

    2009-01-01

    Full Text Available This study reports the chemical investigation and cytotoxic activity of the secondary metabolites produced by the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. This plant was collected from the Beni-Mellal Mountain in Morocco and belongs to the Lamiaceae family and is named in Morocco “Salmia”. The endophytic fungus Chaetomium sp. was isolated from the tissues of the stem of this plant. The fungal strain was identified by PCR. The crude organic extract of the fungal strain was proven to be active when tested for cytotoxicity against L5178Y mouse lymphoma cells. Chemical investigation of the secondary metabolites showed that cochliodinol is the main component beside isocochliodinol. The structures of the isolated compounds were determined on the basis of NMR analysis (1H, 13C, COSY and HMBC as well as by mass spectrometry using ESI (Electron Spray Ionisation as source.

  5. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana.

    Science.gov (United States)

    Artanti, N; Tachibana, S; Kardono, L B S; Sukiman, H

    2011-11-15

    Endophytic microbes are considered as an important source of natural products. They show antibiotic, anticancer, antioxidative and antidiabetic activities. Therefore, there are many reports on the isolation and bioactivity screening of endophytic fungi from various plants including Taxus species. Taxus sumatrana (Miq.) de Laub is found in Indonesia. The objective of this study is to conduct an in vitro screening of 14 endophytic fungi isolated from Taxus sumatrana having antioxidative and alpha-glucosidase inhibitor activities. Each endophytic fungus was cultured for 7 days and the fungal mycelium and medium were extracted with methanol and ethyl acetate, respectively, to produce each extract. The antioxidative activity of each extract was tested by DPPH free radical scavenging activity and beta-carotene bleaching assays, whereas antidiabetic activity was tested based on alpha-glucosidase inhibitor activity. The screening results showed that fungal mycelia of TSC 13 had the best alpha-glucosidase inhibitor activity and TSC 24 had the best antioxidative activity. Isolation of bioactive compounds from TSC 13 and TSC 24 is being conducted. This is the first report that endophytic fungi isolated from T. sumatrana exhibited anti alpha-glucosidase inhibitory and anti oxidative activities.

  6. Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes

    Science.gov (United States)

    Blumenstein, Kathrin; Macaya-Sanz, David; Martín, Juan A.; Albrectsen, Benedicte R.; Witzell, Johanna

    2015-01-01

    There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS) with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype MicroArray (PM) techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees. PMID:26441951

  7. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plants age. We speculated that the concentrations of those components in the rhizomes are mediated by fungal endophytes. To test this hypothesis, we took both culture-dependent and -independent (metagenomics approaches to analyze the communities of endophytic fungi that inhabit those rhizomes in plants of different age classes (four, six, and eight years old. In all, 147 isolates representing 18 fungal taxa were obtained from 270 segments (90 per age class. Based on morphological and genetic characteristics, Fusarium oxysporum (46.55% frequency of occurrence was the predominant endophyte, followed by Leptodontidium sp. (8.66% and Trichoderma viride (6.81%. Colonization of endophytic fungi was maximized in the eight-year-old rhizomes (33.33% when compared with four-year-old (21.21% and six-year-old (15.15% rhizomes. Certain fungal species were present only at particular ages. For example, Alternaria sp., Cylindrocarpon sp., Chaetomium sp., Paraphaeosphaeria sporulosa, Pyrenochaeta sp., Penicillium swiecickii, T. viride, and Truncatella angustata were found only in the oldest plants. Analysis of (metagenomics community DNA extracted from different-aged samples revealed that, at the class level, the majority of fungi had the highest sequence similarity to members of Sordariomycetes, followed by Eurotiomycetes and Saccharomycetes. These results were mostly in accord with those we obtained using culture methods. Fungal diversity and richness also changed over time. Our investigation is the first to show that the diversity of fungi in rhizomes of P. polyphylla var. yunnanensis is altered as plants age, and our findings provide a foundation for future examinations of useful compounds.

  9. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09

    OpenAIRE

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-01-01

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B.?velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and vo...

  10. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09.

    Science.gov (United States)

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-09-29

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B. velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and volatile organic compound synthesis were identified in the genome. Copyright © 2016 Cai et al.

  11. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    Directory of Open Access Journals (Sweden)

    Yan-Hua Zhu

    2009-04-01

    Full Text Available In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  12. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-01-01

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata. PMID:19597575

  13. Diversity and antimicrobial activity of endophytic fungi isolated from Cephalotaxus hainanensis Li, a well-known medicinal plant in China.

    Science.gov (United States)

    Yang, H R; Hu, X P; Jiang, C J; Qi, J; Wu, Y C; Li, W; Zeng, Y J; Li, C F; Liu, S X

    2015-11-01

    About 1051 endophytic fungi were isolated from leaves, branches, barks and stems of Cephalotaxus hainanensis Li from four sites in Hainan, China. The fungi were identified as 21 genera by morphology and ITS sequences. One dominant species was Phomopsis quercella in Hainan Tropical Botanical Garden and Bawangling Nature Reserve, with relative frequency of 42·06 and 34·88% respectively. Another dominant species was Colletotrichum boninense in Wuzhishan and Jianfengling Nature Reserves, with relative frequency of 36·84 and 46·97% respectively. Among the selected 21 endophytic fungi, 17 strains (80·95%) had activity against at least one pathogenic bacteria, and 14 strains (66·67%) exhibited activity against at least one fungal pathogens. Neonectria macroconidialis showed strong inhibition against Staphylococcus aureus (inhibition zone being 20 mm), Bacillus subtilis (14 mm) and Streptococcus agalactiae (28 mm). Xylaria sp. showed strong inhibition against Escherichia coli (20 mm), Rhizoctonia solani (20 mm) and Sclerotinia sclerotiorum (17 mm). Verticillium bulbillosum showed great activity against Strep. agalactiae (32 mm) and Fusarium oxysporum (22 mm). These endophytic fungi showed potentials in medicine development. Endophytic fungi from medicinal plants are an important source of novel and viable drugs. Cephalotaxus hainanensis Li is well known for leukaemia treatment and its endophytic fungi were isolated to investigate the diversity and antimicrobial activity. It was found that Ce. hainanensis Li had rich endophytic fungi, and some fungi showed strong antimicrobial activity against certain pathogens. These fungi can be used in medicine development. © 2015 The Society for Applied Microbiology.

  14. Biodiversity, Antimicrobial Potential, and Phylogenetic Placement of an Endophytic Fusarium oxysporum NFX 06 Isolated from Nothapodytes foetida

    Directory of Open Access Journals (Sweden)

    Sogra Fathima Musavi

    2013-01-01

    Full Text Available Biodiversity of endophytic fungi associated with the medicinal plant Nothapodytes foetida of Agumbe forest was determined and evaluated for its microbial activity. A total of 170 endophytic isolates were obtained from leaf, stem, seed, and fruit tissues of Nothapodytes foetida. The dominant endophytic fungi belong to genera Fusarium, Penicillium, Aspergillus, and Colletotrichum. Maximum endophytic isolates were obtained from leaves segments followed by fruit, stem, and seed tissues. Hyphomycetes were the dominant group found with 75.29% over other fungal groups. Shannon-Weiner and Simpson indexes showed rich diversity of endophytic fungi suggesting even and uniform occurrence of various species. 88.57%, 74.28%, 62.85%, and 65.71% of isolates have shown activity against Staphylococcus aureus (ATCC 25923, Pseudomonas aeruginosa (ATCC 27853, Escherichia coli (ATCC 25922, and Candida albicans (ATCC 69548, respectively. One of the isolate NFX 06 isolated from leaf has showed considerable antimicrobial activity against all the test pathogens. It was identified as Fusarium oxysporum by ITS sequence analysis; the nucleotide sequence was submitted in the GenBank with an accession number KC914432. Phylogenetic relationship confirmed that the strain F. oxysporum NFX 06 has evolved from an endophytic ancestor.

  15. Endophytic fungi colonize agricultural and non-agricultural plants in Bedugul, bali and their antifungal activity against Rhizoctonia solani Kuhn

    Directory of Open Access Journals (Sweden)

    Suciatmih Suciatmih

    2016-09-01

    Full Text Available Isolation of endophytic fungi was done to find alternative microorganisms as antifungal agent against Rhizoctonia solani Kuhn, a soil borne pathogen on many agricultural plants. The research objectives were 1 to isolate and identify endophytic fungi colonize agricultural and non-agricultural plants growing in Bedugul, Bali; and 2 to detect for their antifungal activity against R. solani under in-vitro conditions. The results indicated that 114 isolates of endophytic fungi were isolated from flowers, fruits, leaves, petioles, and stems of agricultural and non-agricultural plants. Ten isolates (8.8 % were identified to species, 91 isolates (79.8 % to genus, and 13 isolates (11,4 % did not have spores that could not be identified morphological characters and classified as unidentified isolates. Endophytic fungi isolated including in group of Aspergillus, Bipolaris, Cladosporium, Colletotrichum, Corynesporopsis, Curvularia, Diplodia, Fusarium, Guignardia, Nigrospora, Pestalotiopsis, Phomopsis and Xylaria. Of the 114 fungal isolates tested, only 13 isolates (11.4 % inhibited the growth of R. solani from 10.3 % to 62.2 % with a percent inhibition. The highest growth inhibition of R. solani was shown by Aspergillus niger isolated from Solanum licopersicum L. var cerasiforme (62.2 %. It could be concluded that the agricultural and non-agricultural plants growing in Bedugul, Bali were colonized by endophytic fungi. Aspergillus niger will be further examined on a field scale. Key words: antifungal; endophytic fungi; Rhizoctonia solani

  16. Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    HENY HERNAWATI

    2011-10-01

    Full Text Available Hernawati H, Wiyono S, Santoso S (2011 Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae. Biodiversitas 12: 187-191. The objectives of the research were to study the diversity of leaf endophytic fungi of chili, and investigate its potency in protecting host plants against Aphis gossypii Glov. Endophytic fungi were isolated from chili leaves with two categories: aphid infested plants and aphid-free plants, collected from farmer’s field in Bogor, West Java. Abundance of each fungal species from leave samples was determined by calculating frequency of isolation. The isolated fungi were tested on population growth of A. gossypii. The fungal isolates showed suppressing effect in population growth test, was further tested on biology attributes i.e. life cycle, fecundity and body length. Five species of leaf endophytic fungi of chili were found i.e. Aspergillus flavus, Nigrospora sp., Coniothyrium sp., and SH1 (sterile hypha 1, SH2 (sterile hypha 2. Eventhough the number of endophytic fungi species in aphid-free and aphid-infested plant was same, the abundance of each species was different. Nigrospora sp., sterile hyphae 1 and sterile hyphae 2 was more abundant in aphid-free plants, but there was no difference in dominance of Aspergillus flavus and Coniothyrium sp. Nigrospora sp., SH1 and SH2 treatment reduced significantly fecundity of A. gossypii. Only SH2 treatment significantly prolonged life cycle and suppress body length, therefore the fungus had the strongest suppressing effect on population growth among fungi tested. The abundance and dominance of endophytic fungal species has relation with the infestation of A. gossypii in the field.

  17. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. [Research advances in endophytic fungi of mangrove].

    Science.gov (United States)

    Liu, Ai-Rong; Wu, Xiao-Peng; Xu, Tong

    2007-04-01

    Mangrove, a kind of special host plants, is a resource of abundant endophytic fungi. More than 200 species of endophytic fungi are isolated and identified from mangrove, being the second largest community of marine fungi. The reported endophytic fungi of mangrove are mainly Alternaria, Aspergillus, Cladosporium, Colletotrichum, Fusarium, Paecilomyces, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta and Trichoderma. Most endophytic fungi have wide range of hosts, and a few only have single host. However, the composition and dominant species on each mangrove plant are different. The colonization of endophytic fungi always varies with different parts (leaves, twigs, stems) and age of host plants and with seasons. The endophytic fungi of mangrove can produce many kinds of metabolites with great potential for anti-microbial and anti-tumor medicinal use. In this paper, the research advances in biodiversity of endophytic fungi in mangrove, their distribution, biological and ecological function, and secondary metabolites were reviewed.

  19. Fungal keratitis

    Directory of Open Access Journals (Sweden)

    Sonal S Tuli

    2011-02-01

    Full Text Available Sonal S TuliUniversity of Florida, Gainesville, FL, USA  Clinical question: What is the most appropriate management of fungal keratitis?Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea.Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.Keywords: fungal keratitis, keratomycosis, antifungal medications, debridement

  20. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.

    Science.gov (United States)

    Rosa, Luiz H; Tabanca, Nurhayat; Techen, Natascha; Pan, Zhiqiang; Wedge, David E; Moraes, Rita M

    2012-10-01

    The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.

  1. The influence of genetics, defensive chemistry and the fungal microbiome on disease outcome in whitebark pine trees.

    Science.gov (United States)

    Bullington, Lorinda S; Lekberg, Ylva; Sniezko, Richard; Larkin, Beau

    2018-02-01

    The invasive fungal pathogen Cronartium ribicola infects and kills whitebark pine (Pinus albicaulis) throughout western North America. Whitebark pine has been proposed for listing under the Endangered Species Act in the USA, and the loss of this species is predicted to have severe impacts on ecosystem composition and function in high-elevation forests. Numerous fungal endophytes live inside whitebark pine tissues and may influence the severity of C. ribicola infection, either directly by inhibition of pathogen growth or indirectly by the induction of chemical defensive pathways in the tree. Terpenes, a form of chemical defence in pine trees, can also influence disease. In this study, we characterized fungal endophyte communities in whitebark pine seedlings before and after experimental inoculation with C. ribicola, monitored disease progression and compared fungal community composition in susceptible vs. resistant seedlings in a common garden. We analysed the terpene composition of these same seedlings. Seed family identity or maternal genetics influenced both terpenes and endophyte communities. Terpene and endophyte composition correlated with disease severity, and terpene concentrations differed in resistant vs. susceptible seedlings. These results suggest that the resistance to C. ribicola observed in natural whitebark pine populations is caused by the combined effects of genetics, endophytes and terpenes within needle tissue, in which initial interactions between microbes and hosts take place. Tree genotype, terpene and microbiome combinations associated with healthy trees could help to predict or reduce disease severity and improve outcomes of future tree breeding programmes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  2. Impact of Bacterial-Fungal Interactions on the Colonization of the Endosphere

    NARCIS (Netherlands)

    Overbeek, van L.S.; Saikkonen, Kari

    2016-01-01

    Research on different endophyte taxa and the related scientific disciplines have largely developed separately, and comprehensive community-level studies on bacterial and fungal interactions and their importance are lacking. Here, we discuss the transmission modes of bacteria and fungi and the

  3. Long‑term ungulate exclusion reduces fungal symbiont prevalence in native grasslands

    Science.gov (United States)

    Jennifer A. Rudgers; Rebecca A. Fletcher; Eric Olivas; Carolyn A. Young; Nikki D. Charlton; Dean E. Pearson; John L. Maron

    2016-01-01

    When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can...

  4. Antioxidants in mangrove plants and endophytic fungal associations

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.; Rajasabapathy, R.; Meena, R.M.

    stresses. Materials and methods Chemicals Sodium bicarbonate, Folins–Ciocalteu reagent, Gallic acid, Sodium nitrite (NaNO 2 ), Aluminium chloride (AlCl 3 ), Sodium hydroxide (NaOH), Quercetin, 1, Ethanol, xylenol orange, Butylated Hydroxy Anisole... extract following Ravindran and Naveenan (2011). Gallic acid was used as the phenolic standard. One-thousand microliters of sample and 2 ml of sodium bicarbonate were incubated at room temperature for 2 min followed by addition of 100 μl of Folin...

  5. Melanised endophytic fungi may increase stores of organic carbon in soil

    Science.gov (United States)

    McGee, Peter; Mukasa Mugerwa, Tendo

    2013-04-01

    The processes underlying the carbon cycle in soil, especially sequestration of organic carbon (OC), are poorly understood. Hydrolysis and oxidation reduce organic matter. Hydrolysis degrades linear organic molecules in aerobic and anaerobic conditions, though it is slower in anaerobic conditions. Aromatic compounds are only degraded by oxidation. Oxygen is by far the most common electron acceptor in soil. Anaerobic conditions preclude oxidation in soil and will result in the preservation of aromatic compounds so long as the conditions remain anaerobic. We experimentally tested this model using melanised endophytic fungi. Melanin is a polyaromatic compound that can be readily visualised, though is difficult to quantify. An endophytic association provides the fungus with an ongoing source of energy. Fungal hyphae elongate considerable distances in soil where they may colonise aggregates, the core of which may be anaerobic. The hypothesis we tested is that melanised endophytic fungi increase OC in soil. Seedlings of subterranean clover inoculated with single isolates were grown in split pots where the impact of the fungus could be quantified in the hyphal chamber, separated from the roots by a steel mesh. We found that melanised endophytic fungi significantly increased OC and aromatic carbon in a well-aggregated carbon-rich soil. OC increased by up to 17% within 14 weeks. Twenty out of 24 isolates statistically significantly increased and none decreased OC. Increases differed between fungal isolates. Increases in the hyphal chamber were independent of any change in OC associated with the roots of the host plant. The storage of OC in field soils is being explored. Inoculation of plant roots with melanised endophytic fungi offers one means whereby OC may be increased in field soils.

  6. [Separation and identification of endophytic fungi from desert plant Cynanchum komarovii].

    Science.gov (United States)

    Duan, Hai-Jing; Han, Ting; Wu, Xiu-Li; Li, Na; Chen, Jing; Qin, Lu-Ping

    2013-02-01

    The research aimed to investigate the entophytic fungal community of Cynanchum Komarrovii, including the biodiversity in different organs and the correlations with ecological environment. Endophytic fungi with patent bioactivity were also rapidly screened. PDA medium was used to isolate and purify the endophytic fungi from C. komarovii living in Shaanxi and Ningxia district, respectively. The strains were identified based on the morphological characteristics of the fungi and similarity of 5.8S gene and internal transcribed spacer (ITS) sequence. Pyriculaia oryzae model was applied to preliminarily screen the active fungi. Ninety-four strains of endophytic fungi were isolated and identified to 9 species, 13 genera, 9 families and 6 orders, among them, 47 strains were from the plants living in Ningxia. And then, 5 of them were isolated from roots, 14 from branches, and 28 from leaves. They were identified belonging to 8 species, 9 genera, 5 families and 4 orders. Additionally, 47 strains were from the plants living in Shaanxi. 16 were isolated from the roots, 18 from branches, 13 from leaves. They were identified belonging to 5 species, 8 genera, 6 families and 4 orders. By preliminary screening, 18 strains of endophytes completely inhibited the germination of conidium, which showed a potential bioactivity for these fungi. Both N4 and S17 strains had stronger growth inhibition effect. Endophytic fungi from desert plant C. komarovii have the feature of diversity. Different geographical environment and type of organizations lead to the significant difference on the quantity and the species composition. Most of fungi in Ningxia C. komarovii distribute in leaves. However, most of those in Shaanxi C. komarovii distribute in stems and leaves. It also indicated that endophytes from C. komarovii had a strong antifungal activity.

  7. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    Directory of Open Access Journals (Sweden)

    Carolina Santiago

    2012-01-01

    Full Text Available An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL. 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.

  8. The novel lipopeptide Poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization

    NARCIS (Netherlands)

    Zachow, Christin; Jahanshah, Ghazaleh; de Bruijn, Irene; Song, Chunxu; Ianni, Federica; Pataj, Zoltán; Gerhardt, Heike; Pianet, Isabelle; Lämmerhofer, Michael; Berg, Gabriele; Gross, Harald; Raaijmakers, Jos M.

    2015-01-01

    Endophytic Pseudomonas poae strain RE*1-1-14 was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen Rhizoctonia solani both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14 random

  9. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization

    NARCIS (Netherlands)

    Zachow, C.; Jahanshah, G.; Bruijn, de I.; Song, C.; Ianni, F.; Pataj, Z.; Gerhardt, H.; Pianet, I.; Lämmerhofer, M.; Berg, G.; Gross, H.; Raaijmakers, J.M.

    2015-01-01

    Endophytic Pseudomonas poae strain RE*1-1-14 was originally isolated from internal root tissue of sugar beet plants and shown to suppress growth of the fungal pathogen Rhizoctonia solani both in vitro and in the field. To identify genes involved in its biocontrol activity, RE*1-1-14 random

  10. [Population distribution and antimicrobial activities of endophytes in Toddalia asiatica].

    Science.gov (United States)

    Yang, Benshou; Yang, Benshou; Miao, Cuiping; Zhang, Jianhua; Jiang, Guoyin; Yang, De; Yu, Hong

    2014-03-04

    To study the population composition and antimicrobial activities of endophytes in medicinal plant Toddalia asiatica. Endophytes were isolated from T. asiatica by using an exterior sterilization method, in combination with adding antimicrobial agents. Endophytes were classified and identified by morphological and molecular characters. Antimicrobial activities of endophytes were measured by using paper disc diffusion method. Three strains of endophytic bacteria, one strain of endophytic actinomyces and 82 strains of endophytic fungi were isolated from T. asiatica. Fusarium, Pestalotiopsis, and Aspergillus were the dominant populations in T. asiatica. Antimicrobial activities of these endophytes were measured against 30 pathogenic microbes, and 18 strains possess substantial inhibitory activities, of which 16 strains were endophytic fungi belonging to 11 genera. Endophytic strains with antimicrobial activities were obtained to explore the application of endophytic resources from T. asiatica.

  11. Fungal diagnostics.

    Science.gov (United States)

    Kozel, Thomas R; Wickes, Brian

    2014-04-01

    Early diagnosis of fungal infection is critical to effective treatment. There are many impediments to diagnosis such as a diminishing number of clinical mycologists, cost, time to result, and requirements for sensitivity and specificity. In addition, fungal diagnostics must meet the contrasting needs presented by the increasing diversity of fungi found in association with the use of immunosuppressive agents in countries with high levels of medical care and the need for diagnostics in resource-limited countries where large numbers of opportunistic infections occur in patients with AIDS. Traditional approaches to diagnosis include direct microscopic examination of clinical samples, histopathology, culture, and serology. Emerging technologies include molecular diagnostics and antigen detection in clinical samples. Innovative new technologies that use molecular and immunoassay platforms have the potential to meet the needs of both resource-rich and resource-limited clinical environments.

  12. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    Science.gov (United States)

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  14. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  15. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  16. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    Science.gov (United States)

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  17. Diversity and Taxonomy of Endophytic Xylariaceous Fungi from Medicinal Plants of Dendrobium (Orchidaceae)

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery. PMID:23472167

  18. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential

    Directory of Open Access Journals (Sweden)

    Jadson D.P. Bezerra

    2015-03-01

    Full Text Available Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds, comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%, Aspergillus ochraceus (7.37%, Gibberella fujikuroi (10.53%, Myrothecium verrucaria (10.53% and Trichoderma piluliferum(7.37%. Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus, Gibberella baccata, Penicillium commune, and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes. Thirteen species showed proteolytic activity, particularly Phoma putaminum. Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri. All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum. It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  19. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae.

    Directory of Open Access Journals (Sweden)

    Juan Chen

    Full Text Available Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS, large subunit of ribosomal DNA (LSU, and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs. The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  20. Endophytic fungi from medicinal plant Bauhinia forficata : Diversity and biotechnological potential

    Science.gov (United States)

    Bezerra, Jadson D.P.; Nascimento, Carlos C.F.; Barbosa, Renan do N.; da Silva, Dianny C.V.; Svedese, Virgínia M.; Silva-Nogueira, Eliane B.; Gomes, Bruno S.; Paiva, Laura M.; Souza-Motta, Cristina M.

    2015-01-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential. PMID:26221088

  1. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    ELFITA

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  2. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants

    Directory of Open Access Journals (Sweden)

    Chirlei Glienke-Blanco

    2002-01-01

    Full Text Available During some phases of of their life-cycle endophytic fungi colonize plants asymptomatically being found most frequently inside the aerial part of plant tissues. After surface disinfection of apparently healthy leaves from three varieties of mandarin orange and one tangor, and after incubation on appropriate culture medium, 407 fungal isolates were obtained, giving a total infection frequency of 81%. No fungal growth was observed from disinfected seeds, indicating that fungi are probably not transmitted via seeds. Of the fungal isolates, 27% belonged to the genus Guignardia, with 12 isolates being identified as Guignardia citricarpa Kiely, which is described as a citrus pathogen. The isolates were variable in respect to the presence of sexual structures and growth rates. Most of the isolates produces mature asci, supporting the hypothesis that they are nonpathogenic endophytes, which recently were identified as G. mangiferae. High intraspecific genetic variability (an average similarity coefficient of 0.6 was detected using random amplified polymorphic DNA (RAPD markers generated by seven different primers. The highest similarity coefficient (0.9 was between isolates P15 and M86 and the smallest (0.22 between isolates P15 and C145. These results did not allow us to establish an association between genetic similarity of the fungal isolates and the citrus varieties from which they were obtained.

  3. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery.

    Science.gov (United States)

    Maciá-Vicente, Jose G; Shi, Yan-Ni; Cheikh-Ali, Zakaria; Grün, Peter; Glynou, Kyriaki; Kia, Sevda Haghi; Piepenbring, Meike; Bode, Helge B

    2018-03-01

    Fungi are prolific producers of natural products routinely screened for biotechnological applications, and those living endophytically within plants attract particular attention because of their purported chemical diversity. However, the harnessing of their biosynthetic potential is hampered by a large and often cryptic phylogenetic and ecological diversity, coupled with a lack of large-scale natural products' dereplication studies. To guide efforts to discover new chemistries among root-endophytic fungi, we analyzed the natural products produced by 822 strains using an untargeted UPLC-ESI-MS/MS-based approach and linked the patterns of chemical features to fungal lineages. We detected 17 809 compounds of which 7951 were classified in 1992 molecular families, whereas the remaining were considered unique chemistries. Our approach allowed to annotate 1191 compounds with different degrees of accuracy, many of which had known fungal origins. Approximately 61% of the compounds were specific of a fungal order, and differences were observed across lineages in the diversity and characteristics of their chemistries. Chemical profiles also showed variable chemosystematic values across lineages, ranging from relative homogeneity to high heterogeneity among related fungi. Our results provide an extensive resource to dereplicate fungal natural products and may assist future discovery programs by providing a guide for the selection of target fungi. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom.

    Directory of Open Access Journals (Sweden)

    Peter R Atsatt

    Full Text Available Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline "what, where, when and how", opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that

  5. Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: implications for biotic selection of microbial communities

    Directory of Open Access Journals (Sweden)

    Megan Arlene Rúa

    2016-03-01

    Full Text Available Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata, and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest

  6. Novel Symbiotic Protoplasts Formed by Endophytic Fungi Explain Their Hidden Existence, Lifestyle Switching, and Diversity within the Plant Kingdom

    Science.gov (United States)

    Atsatt, Peter R.; Whiteside, Matthew D.

    2014-01-01

    Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline “what, where, when and how”, opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust

  7. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom.

    Science.gov (United States)

    Atsatt, Peter R; Whiteside, Matthew D

    2014-01-01

    Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline "what, where, when and how", opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust

  8. Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes.

    Science.gov (United States)

    Andrade-Linares, Diana Rocio; Grosch, Rita; Franken, Philipp; Rexer, Karl-Heinz; Kost, Gerhard; Restrepo, Silvia; de Garcia, Maria Caridad Cepero; Maximova, Eugenia

    2011-01-01

    Tomato (Solanum lycopersicum L.) roots from four different crop sites in Colombia were surface sterilized and 51 fungal isolates were obtained and conserved for further analysis. Based on microscopical observations and growth characteristics, 20 fungal isolates corresponded to genus Fusarium, six presented asexual conidia different from Fusarium, eight were sterile mycelia, seven of which had dark septate hyphae and 17 did not continue to grow on plates after being recovered from conservation. Growth on different media, detailed morphological characterization and ITS region sequencing of the six sporulating and eight sterile isolates revealed that they belonged to different orders of Ascomycota and that the sterile dark septate endophytes did not correspond to the well known Phialocephala group. Interactions of nine isolates with tomato plantlets were assessed in vitro. No effect on shoot development was revealed, but three isolates caused brown spots in roots. Colonization patterns as analyzed by confocal microscopy differed among the isolates and ranged from epidermal to cortical penetration. Altogether 11 new isolates from root endophytic fungi were obtained, seven of which showed features of dark septate endophytes. Four known morphotypes were represented by five isolates, while six isolates belonged to five morphotypes of putative new unknown species.

  9. Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves.

    Science.gov (United States)

    Rakotoniriana, E F; Munaut, F; Decock, C; Randriamampionona, D; Andriambololoniaina, M; Rakotomalala, T; Rakotonirina, E J; Rabemanantsoa, C; Cheuk, K; Ratsimamanga, S U; Mahillon, J; El-Jaziri, M; Quetin-Leclercq, J; Corbisier, A M

    2008-01-01

    Fungal endophytes were isolated from leaves of Centella asiatica (Apiaceae) collected at Mangoro (middle eastern region of Madagascar, 200 km from Antananarivo). Forty- five different taxa were recovered. The overall foliar colonization rate was 78%. The most common endophytes were the non-sporulating species 1 (isolation frequency IF 19.2%) followed by Colletotrichum sp.1 (IF 13.2%), Guignardia sp. (IF 8.5%), Glomerella sp. (IF 7.7%), an unidentified ascomycete (IF 7.2%), the non-sporulating species 2 (IF 3.7%) and Phialophora sp. (IF 3.5%). Using sequences of the ribosomal DNA internal transcribed spacer (ITS) regions, major endophytes (IF > 7%) were identified as xylariaceous taxa or as Colletotrichum higginsianum, Guignardia mangiferae and Glomerella cingulata. Results from in vitro fungal disk experiments showed a strong inhibitory activity of the xylariaceous non-sporulating species 1 against G. mangiferae and C. higginsianum and of C. higginsianum against G. mangiferae. This can be explained by antagonism between dominant taxa.

  10. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    Directory of Open Access Journals (Sweden)

    Alberto J. Martín-Rodríguez

    2014-11-01

    Full Text Available In our search for quorum-sensing (QS disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes, saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS region sequences (ITS1, 5.8S and ITS2 between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06, Fusarium (LAEE13, Epicoccum (LAEE14, and Khuskia (LAEE21. Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.

  11. Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes.

    Science.gov (United States)

    Martín-Rodríguez, Alberto J; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Angel; Martín, Víctor S; Norte, Manuel; Fernández, José J

    2014-11-19

    In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL-1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.

  12. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  13. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth.

    Science.gov (United States)

    Leite, Hianna Almeida Câmara; Silva, Anderson Barbosa; Gomes, Fábio Pinto; Gramacho, Karina Peres; Faria, José Cláudio; de Souza, Jorge Teodoro; Loguercio, Leandro Lopes

    2013-03-01

    Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings

  14. Endophytic Phomopsis sp. colonization in Oryza sativa was found to result in plant growth promotion and piperine production.

    Science.gov (United States)

    S, Chithra; B, Jasim; Mathew, Jyothis; Radhakrishnan, E K

    2017-08-01

    Endophytic fungi have been reported to have the acquired ability to synthesize host plant specific medicinal natural products. Many fungi with such properties have been characterized and optimized for the conditions which favor maximal production of desired products. However, the inherent plant colonization property of promising endophytic fungi is least studied. Exploiting the transgenome functioning of these fungi have immense applications to add beneficial features to nonhost plants. In the present study, the endophytic fungus Phomopsis sp. isolated from Piper nigrum was confirmed for piperine production by HPLC and LCMS/MS. Further, the fungal isolate was studied for its colonization ability in Oryza sativa. Interestingly, the fungi treated plants were found to have significant plant growth enhancement when compared to the control. Further screening of extract from treated plants by HPLC and LCMS/MS resulted in the confirmation of presence of piperine. The observed result is extremely significant as it opens up novel applications of endophytic fungal colonization in taxonomically diverse plants. © 2017 Scandinavian Plant Physiology Society.

  15. Effect of simulated acid rain on the mutualism between tall fescue (Festuca arundinacea) and an endophytic fungus (Acremonium coenophialum)

    Energy Technology Data Exchange (ETDEWEB)

    Cheplick, G.P. (Univ. of Wisconsin, Whitewater (United States))

    1993-03-01

    Biotic interactions between plants and microorganisms have the potential to be affected by acidic precipitation. I examined the effect of simulated sulfuric acid rain on the mutualism between a perennial forage grass (Festuca arundinacea) and a fungal endophyte (Acremonium coenophialum). Acid water was supplied as mists sprayed onto leaf surfaces or as water added to the soil for two groups in a greenhouse: one group had high levels of endophyte infection, while the other was predominantly noninfected. Control plants received distilled water (pH 6), while others received sulfuric acid water at pH 4.5 or pH 3. Plants were harvested after 4, 6, 8, and 23 wk. Leaf endophyte infection intensity as measured by hyphal counts was not affected by acid water treatment. Root mass and root: shoot ratios generally decreased with increasing acidity of both foliar sprays and soil water, but shoot mass was mostly not affected. There was a significant pH x infection interaction for plants exposed to acidic foliar sprays for 4 wk; root and shoot mass decreased with acidity, but only for infected plants. It was found that acid rain may be deleterious to tall fescue growth at specific stages of development, but biomass production in response to acid rain is not likely to be influenced by fungal endophytes within mature plants. 55 refs., 2 figs., 3 tabs.

  16. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba.

    Science.gov (United States)

    Macías-Rubalcava, Martha L; Hernández-Bautista, Blanca E; Oropeza, Fabiola; Duarte, Georgina; González, María C; Glenn, Anthony E; Hanlin, Richard T; Anaya, Ana Luisa

    2010-10-01

    Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms.

  17. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.)

    Science.gov (United States)

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests. PMID:24031320

  18. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra.

    Science.gov (United States)

    Shah, A; Rather, M A; Hassan, Q P; Aga, M A; Mushtaq, S; Shah, A M; Hussain, A; Baba, S A; Ahmad, Z

    2017-05-01

    Glycyrrhiza glabra is a high-value medicinal plant thriving in biodiversity rich Kashmir Himalaya. The present study was designed to explore the fungal endophytes from G. glabra as a source of bioactive molecules. The extracts prepared from the isolated endophytes were evaluated for anti-microbial activities using broth micro-dilution assay. The endophytic strain coded as A2 exhibiting promising anti-bacterial as well as anti-tuberculosis activity was identified as Fusarium solani by ITS-5.8S ribosomal gene sequencing technique. This strain was subjected to large-scale fermentation followed by isolation of its bioactive compounds using column chromatography. From the results of spectral data analysis and comparison with literature, the molecules were identified as 3,6,9-trihydroxy-7-methoxy-4,4-dimethyl-3,4-dihydro-1H-benzo[g]isochromene-5,10-dione (1), fusarubin (2), 3-O-methylfusarubin (3) and javanicin (4). Compound 1 is reported for the first time from this strain. All the four compounds inhibited the growth of various tested bacterial strains with MIC values in the range of anti-microbial drug discovery programme. Due to the chemoprofile variation of same endophyte with respect to source plant and ecoregions, further studies are required to explore endophytes of medicinal plants of all unusual biodiversity rich ecoregions for important and or novel bioactive molecules. © 2017 The Society for Applied Microbiology.

  19. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.).

    Science.gov (United States)

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.

  20. Phenylisotertronic acids from the TCM endophytic fungus Phyllosticta sp.

    Science.gov (United States)

    Yang, Heng-Gang; Li, Jiao-Jiao; Chen, Shao-Meng; Mou, Lang-Ming; Zou, Jian; Wang, Chuan-Xi; Chen, Guo-Dong; Qin, Sheng-Ying; Yao, Xin-Sheng; Gao, Hao

    2018-01-01

    Four new phenylisotertronic acids (1a/1b, 2a, and 3a) were isolated from a TCM endophytic fungal strain Phyllosticta sp. J13-2-12Y obtained from the leaves of Acorus tatarinowii, along with two known ones (2b and 3b). Compounds 1-3 all existed as mixtures of enantiomers, and their corresponding optically pure enantiomers were successfully isolated by chiral HPLC. The structures of isolated compounds were determined by comprehensive spectroscopic analyses and X-ray diffraction. Their absolute configurations were determined by ECD experiments and quantum chemical calculations. In addition, the antimicrobial activities and the cytotoxicities of these three pairs of optically pure enantiomers (1a/1b, 2a/2b, and 3a/3b) had been evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  2. Isolation and characterization of beneficial indigenous endophytic ...

    African Journals Online (AJOL)

    Plant-associated bacteria that live inside plant tissues without causing any damage to plants are defined as endophytic bacteria. The present study was carried out to analyze the phenotypic and genotypic diversity of endophytic bacteria associated with Amaranthus hybridus, Solanum lycopersicum and Cucurbita maxima.

  3. The isolation and characterization of endophytic microorganisms ...

    African Journals Online (AJOL)

    Fungi were identified by distinguishing between reproductive structures using a microculture technique. While observing diaphanized root fragments, we found arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi in the fine and coarse roots of H. marrubioides. The endophytic CR was more ...

  4. Bacterial Endophyte Colonization and Distribution within Plants

    Directory of Open Access Journals (Sweden)

    Shyam L. Kandel

    2017-11-01

    Full Text Available The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

  5. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Kumar, Anil; Reddy, M. Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  6. Differences in the fly-load of Haematobia irritans (Diptera: Muscidae) on cattle is modified by endophyte infection of pastures

    OpenAIRE

    Parra,Leonardo; Rojas,Claudio; Catrileo,Adrian; Galdames,Rafael; Mutis,Ana; Birkett,Michael A; Quiroz,Andrés

    2013-01-01

    Background: The horn fly, Haematobia irritans, is an obligate bloodsucking ectoparasite of pastured cattle and is a major pest of livestock production in North and South America and Europe. In this study, we investigated the potential to use cattle pastures, infected with non-toxic, "friendly" fungal-endophyte-infected (E+) tall fescue, Festuca arundinacea Schreb., as a strategy for reducing horn fly loads in cattle, and to evaluate the possible bioinsecticide effect on horn fly larvae. Resul...

  7. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    OpenAIRE

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. v...

  8. Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea.

    Science.gov (United States)

    Kim, Tae-Ui; Cho, Sung-Heun; Han, Ji-Hye; Shin, Young Min; Lee, Hyang Burm; Kim, Seung Bum

    2012-02-01

    Endophytic actinobacterial diversity in the native herbaceous plant species of Korea was analyzed using a culture-based approach. Sixty one actinobacterial strains were isolated, and assigned to 15 genera based on 16S rRNA gene analysis. The members of the genus Streptomyces comprised 45.9% of the total isolates, followed by Micromonospora (18.8%), Rhodococcus (6.6%), Microbispora (4.9%), and Micrococcus (4.9%). Other minor constituents included members of Microbacterium, Streptacidiphilus, Arthrobacter, Dietzia, Kitasatospora, Herbiconiux, Mycobacterium, Nocardia, Rathayibacter, and Tsukamurella. Among the isolates, 65.6% exhibited at least one hydrolytic enzyme activity out of four, and 45.9% exhibited antagonistic activity against at least one fungal pathogen out of five, thus demonstrating that endophytic actinobacteria can be an important source of bioactive compounds. Notably, most strains of Streptomyces proved active for both enzymatic and antagonistic activities.

  9. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  10. Phylogenetic Diversity and Antifungal Activity of Endophytic Fungi Associated with Tephrosia purpurea

    Science.gov (United States)

    Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang

    2015-01-01

    Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds. PMID:26839503

  11. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community

    DEFF Research Database (Denmark)

    Wakelin, S.; Harrison, Scott James; Mander, C.

    2015-01-01

    of these interactions on rhizosphere microbiology are not well characterised. This is important, because there may be opportunities or risks associated with selective disruption of the rhizosphere microbiota. We explored the interaction of two commercially used endophyte fungi, E. festucae var. lolii strains AR1 and AR......37, within a genetically uniform breeding line of perennial ryegrass (Lolium perenne cv. Samson 11104) on the rhizosphere metabolome and the composition of the fungal, bacterial, and Pseudomonas communities. There were strong differences in the rhizosphere metabolomes between infested and non......-infested ryegrass strains (P=0.06). These were attributed to shifts in various n-alkane hydrocarbon compounds. The endophyte-associated alteration in rhizosphere metabolome was linked to changes in the total bacterial (Pcommunities. Furthermore, there was varying levels...

  12. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw. Roscoe

    Directory of Open Access Journals (Sweden)

    V. H. Sunitha.

    2012-09-01

    Full Text Available Amylases are among the most important enzymes used in modern biotechnology particularly in the process involving starch hydrolysis. Fungal amylase has large applications in food and pharmaceutical industries. Considering these facts, endophytic fungi isolated from the plant Alpinia calcarata (Haw. Roscoe were screened for amylolytic activity on glucose yeast extract peptone agar (GYP medium. Among thirty isolates of endophytic fungi, isolate number seven identified as Cylindrocephalum sp. (Ac-7 showed highest amylolytic activity and was taken for further study. Influence of various physical and chemical factors such as pH, temperature, carbon and nitrogen sources on amylase production in liquid media were studied. The maximal amylase production was found to be at 30ºC and at pH 7.0 of the growth medium. Among the various carbon and nitrogen sources tested, maltose at 1.5% and Sodium nitrate at 0.3% respectively gave optimum amylase production.

  13. Genetic structure of natural populations of the grass endophyte Epichloë festucae in semiarid grasslands.

    Science.gov (United States)

    Arroyo García, R; Martínez Zapater, J M; García Criado, B; Zabalgogeazcoa, I

    2002-03-01

    Plants of red fescue (Festuca rubra), a commercially important turf grass, are infected by the fungal endophyte Epichloë festucae in semiarid natural grasslands, known as dehesas, in western Spain. We used amplified fragment length polymorphism (AFLP) markers to analyse the genetic polymorphism existing in two natural populations of Epichloë festucae. Linkage disequilibrium and the presence of clonal lineages indicated that nonrecombinant asexual reproduction predominates in both populations. However, most genetic variation detected was found to occur within populations, with only a moderate amount of genetic differentiation between populations (F(ST): 0.197). Overall, the study suggests that dehesa grasslands are useful reservoirs of Epichloë festucae endophytes, and provides information on population structure which is relevant to design sampling strategies.

  14. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor.

    Science.gov (United States)

    Vasanthakumari, M M; Jadhav, S S; Sachin, Naik; Vinod, G; Shweta, Singh; Manjunatha, B L; Kumara, P Mohana; Ravikanth, G; Nataraja, Karaba N; Uma Shaanker, R

    2015-10-01

    Fungal endophytes inhabit living tissues of plants without any apparent symptoms and in many cases are known to produce secondary metabolites similar to those produced by their respective host plants. However on sub-culture, the endophytic fungi gradually attenuate their ability to produce the metabolites. Attenuation has been a major constraint in realizing the potential of endophytic fungi as an alternative source of plant secondary metabolites. In this study, we report attempts to restore camptothecine (CPT) production in attenuated endophytic fungi isolated from CPT producing plants, Nothapodytes nimmoniana and Miquelia dentata when they are passed through their host plant or plants that produce CPT and when treated with a DNA methyl transferase inhibitor. Attenuated endophytic fungi that traversed through their host tissue or plants capable of synthesizing CPT, produced significantly higher CPT compared to the attenuated fungi. Attenuated fungus cultured in the presence of 5-azacytidine, a DNA methyltransferase inhibitor, had an enhanced CPT content compared to untreated attenuated fungus. These results indicate that the attenuation of CPT production in endophytic fungi could in principle be reversed by eliciting some signals from plant tissue, most likely that which prevents the methylation or silencing of the genes responsible for CPT biosynthesis.

  16. Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches.

    Science.gov (United States)

    Ben Chobba, Ines; Elleuch, Amine; Ayadi, Imen; Khannous, Lamia; Namsi, Ahmed; Cerqueira, Frederique; Drira, Noureddine; Gharsallah, Néji; Vallaeys, Tatiana

    2013-12-01

    Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar (PDA) medium and identified by a sequence match search wherein their 18S-28S internal transcribed spacer (ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism (RFLP) analysis of the ITS from 200 fungal clones (leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella (Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria (members of the Nectriaceae family), the leaves were essentially colonized by Alternaria (members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors' knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees (P. dactylifera).

  17. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae.

    Science.gov (United States)

    Na, Ren; Jiajia, Liu; Dongliang, Yang; Yingzi, Peng; Juan, Hong; Xiong, Liu; Nana, Zhao; Jing, Zhou; Yitian, Luo

    2016-11-01

    Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers.

    Science.gov (United States)

    Müller, M M; Valjakka, R; Suokko, A; Hantula, J

    2001-07-01

    The diversity of endophytic fungi within single symptomless Norway spruce needles is described and their possible role as pioneer decomposers after needle detachment is investigated. The majority (90%) of all 182 isolates from green intact needles were identified as Lophodermium piceae. Up to 34 isolates were obtained from single needles. Generally, all isolates within single needles had distinct randomly amplified microsatellite (RAMS) patterns. Single trees may thus contain a higher number of L. piceae individuals than the number of their needles. To investigate the ability of needle endophytes to act as pioneer decomposers, surface-sterilized needles were incubated on sterile sand inoculated with autoclaved or live spruce forest humus layer. The dry weight loss of 13-17% found in needles after a 20-week incubation did not significantly differ between the sterilized and live treatments. Hence, fungi surviving the surface sterilization of needles can act as pioneer decomposers. A considerable portion of the needles remained green during the incubation. Brown and black needles, in which the weight loss had presumably taken place, were invaded throughout by single haplotypes different from L. piceae. Instead, Tiarasporella parca, a less common needle endophyte, occurred among these invaders of brown needles. Needle endophytes of Norway spruce seem thus to have different abilities to decompose host tissues after needle cast. L. piceae is obviously not an important pioneer decomposer of Norway spruce needles. The diversity of fungal individuals drops sharply when needles start to decompose. Thus, in single needles the decomposing mycota is considerably less diverse than the endophytic mycota.

  19. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    Science.gov (United States)

    Mascarello, Maurizio

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi. PMID:26641657

  20. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Directory of Open Access Journals (Sweden)

    Francesco Dovana

    Full Text Available Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E and roots (root-E of Mentha aquatica L. (water mint were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L. Heynh., 14 and 21 days after inoculation (DAI. Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW and dry weight (DW was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  1. Endophytic fungi associated with Sudanese medicinal plants show cytotoxic and antibiotic potential.

    Science.gov (United States)

    Khiralla, Afra; Mohamed, Ietidal E; Tzanova, Tzvetomira; Schohn, Hervé; Slezack-Deschaumes, Sophie; Hehn, Alain; André, Philippe; Carre, Gaëlle; Spina, Rosella; Lobstein, Annelise; Yagi, Sakina; Laurain-Mattar, Dominique

    2016-06-01

    In this study, we isolated 15 endophytic fungi from five Sudanese medicinal plants. Each fungal endophytic strain was identified by sequencing of internal transcribed spacer (ITS) regions of rDNA. Ethyl acetate extracts were prepared from each endophyte cultivated in vitro and tested for their respective antibacterial activities and antiproliferative activities against human cancer cells. Antibacterial screening was carried out against two bacterial strains: Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, by the broth dilution method. Cell viability was evaluated by the MTT procedure after exposure of MCF7 breast cancer cells and HT29 or HCT116 human colon adenocarcinoma cells to each endophytic extract. Of interest, Byssochlamys spectabilis isolated from Euphorbia prostata showed cytotoxicity (IC50 = 1.51 ± 0.2 μg mL(-1)) against MCF7 cells, but had a low effect against HT29 or HCT116 cells (IC50 > 20 μg mL(-1)). Cladosporium cladosporioides 2, isolated from Vernonia amygdalina leaves, showed antiproliferative activities against MCF7 cells (IC50 = 10.5 ± 1.5 μg mL(-1)) only. On the other hand, B. spectabilis and Alternaria sp. extract had antibacterial activities against the S. aureus strain. The findings of this work revealed that endophytic fungi associated with medicinal plants from Sudan could be considered as an attractive source of new therapeutic compounds. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  3. Molecular Phylogeny, Diversity, and Bioprospecting of Endophytic Fungi Associated with wild Ethnomedicinal North American Plant Echinacea purpurea (Asteraceae).

    Science.gov (United States)

    Carvalho, Camila R; Wedge, David E; Cantrell, Charles L; Silva-Hughes, Alice F; Pan, Zhiqiang; Moraes, Rita M; Madoxx, Victor L; Rosa, Luiz H

    2016-07-01

    The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography-flame-ionization detection (GC-FID) analysis. The compounds (-)-5-methylmellein and (-)-(3R)-8-hydroxy-6-methoxy-3,5-dimethyl-3,4-dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (-)-5-Methylmellein showed weak activity against Phomopsis obscurans, P. viticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (-)-(3R)-8-Hydroxy-6-methoxy-3,5-dimethyl-3,4-dihydroisocoumarin appeared slightly more active in the microtiter environment than 5-methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment. © 2016 Wiley-VHCA AG, Zürich.

  4. Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents.

    Science.gov (United States)

    Fatima, Nighat; Kondratyuk, Tamara P; Park, Eun-Jung; Marler, Laura E; Jadoon, Muniba; Qazi, Muneer Ahmed; Mehboob Mirza, Hira; Khan, Ibrar; Atiq, Naima; Chang, Leng Chee; Ahmed, Safia; Pezzuto, John M

    2016-11-01

    Endophytic fungi, being a prolific source of bioactive secondary metabolites, are of great interest for natural product discovery. Isolation and partial characterization of endophytic fungi inhabiting the leaves and woody parts of Taxus fuana Nan Li & R.R. Mill. (Taxaceae) and evaluation of biological activity. Endophytic fungal isolates were identified by molecular analysis of internal transcribed spacer (ITS) regions of 18S rDNA. Extracts of the endophytic fungi cultured on potato dextrose agar and modified medium were evaluated using cancer chemoprevention bioassays [inhibition of TNF-α-induced NFκB, aromatase and inducible nitric oxide synthase (iNOS); induction of quinone reductase 1 (QR1)] and growth inhibition with MCF-7 cells. Nine of 15 fungal isolates were identified as belonging to Epicoccum, Mucor, Penicillium, Chaetomium, Paraconiothriym, Plectania or Trichoderma. Five of the 15 extracts inhibited NFκB activity (IC 50 values ranging between 0.18 and 17 μg/mL) and five inhibited iNOS (IC 50 values ranging between 0.32 and 12.9 μg/mL). In the aromatase assay, only two isolates mediated inhibition (IC 50 values 12.2 and 10.5 μg/mL). With QR1 induction, three extracts exhibited significant activity (concentrations to double activity values ranging between 0.20 and 5.5 μg/mL), and five extracts inhibited the growth of MCF-7 cells (IC 50 values ranging from 0.56 to 17.5 μg/mL). Six active cultures were derived from woody parts of the plant material. The endophytic fungi studied are capable of producing pharmacologically active natural compounds. In particular, isolates derived from the wood of Taxus fuana should be prioritized for the isolation and characterization of bioactive constituents.

  5. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  6. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Science.gov (United States)

    Shen, Xiao-Ye; Cheng, Yan-Lin; Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  7. More than 400 million years of evolution and some plants still can't make it on their own: Plant stress tolerance via fungal symbiosis

    Science.gov (United States)

    Rodriguez, R.; Redman, R.

    2008-01-01

    All plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi. Collectively, these fungi express different symbiotic lifestyles ranging from parasitism to mutualism. Analysis of Colletotrichum species indicates that individual isolates can express either parasitic or mutualistic lifestyles depending on the host genotype colonized. The endophyte colonization pattern and lifestyle expression indicate that plants can be discerned as either disease, non-disease, or non-hosts. Fitness benefits conferred by fungi expressing mutualistic lifestyles include biotic and abiotic stress tolerance, growth enhancement, and increased reproductive success. Analysis of plant-endophyte associations in high stress habitats revealed that at least some fungal endophytes confer habitat-specific stress tolerance to host plants. Without the habitat-adapted fungal endophytes, the plants are unable to survive in their native habitats. Moreover, the endophytes have a broad host range encompassing both monocots and eudicots, and confer habitat-specific stress tolerance to both plant groups. ?? The Author [2008]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  8. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamamoto

    Full Text Available Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005 turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high

  9. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus-fungus interactions in plant root systems.

  10. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    Science.gov (United States)

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  11. Ambient pH-regulated enzime secretion in endophytic and pathogenic isolates of the fungal genus Colletotrichum Secreção de enzimas mediada pelo pH do ambiente em isolados patogênicos e endofíticos do fungo Colletotrichum

    Directory of Open Access Journals (Sweden)

    Walter Maccheroni Jr.

    2004-06-01

    Full Text Available In fungi a genetic system ensures that enzymes are secreted mainly at ambient pH values corresponding to their optima of activity. Although a great deal of information has been obtained concerning this environmental response, there is a lack of studies involving phytopathogenic, endophytic and entomopathogenic fungi as well as different aspects of fungus-host interactions. This study compares in a plate-clearing assays, the effect of ambient pH in the secretion of amylase, cellulase, lipase, pectinase and protease by endophytic, phytopathogenic, and entomopathogenic isolates belonging to several species of Colletotrichum. All enzymes were secreted in a pH-dependent manner by all isolates. Endophytes and pathogens showed distinct patterns of protease secretion, with optima at alkaline and acid growth conditions, respectively. In liquid medium, a Pi-repressible acid phosphatase of an endophytic isolate responded to ambient pH, having a 14-fold increase in secreted specific activity at acid pH, as compared to alkaline pH. Furthermore, part of a Colletotrichum pacC homologue gene, coding for a transcriptional factor responsible for pH-regulated gene expression, was cloned. Ambient pH seems to be a general factor controlling enzyme secretion in fungus-host interactions through a conserved genetic circuit.Em fungos, um sistema de regulação gênica garante que enzimas sejam secretadas predominantemente em valores de pH do ambiente próximos aos pH ótimos de atividade correspondentes. Embora muita informação tenha sido acumulada sobre essa resposta adaptativa, não existem estudos envolvendo fungos fitopatogênicos, endofíticos e entomopatogênicos, bem como sobre outros aspectos relacionados às interações fungo-hospedeiro. No presente trabalho foi comparado, em meio sólido, o efeito do pH do ambiente na secreção das enzimas amilase, celulase, lipase, pectinase e protease por isolados endofíticos, fitopatogênico e entomopatog

  12. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Quach, Ngoc-Tung; Phi, Quyet-Tien; Fontana, Angélique; Sarter, Samira

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Tsukamurella, Arthrobacter, Brachybacterium, Nocardia, Rhodococcus, Kocuria, Nocardioides, and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC50-values ranging between 3 and 33 μg·mL−1. Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria. PMID:28484706

  14. Origin, divergence, and phylogeny of asexual Epichloe endophyte in Elymus species from western China.

    Directory of Open Access Journals (Sweden)

    Hui Song

    Full Text Available Asexual Epichloë species are likely derived directly from sexual Epichloë species that then lost their capacity for sexual reproduction or lost sexual reproduction because of interspecific hybridization between distinct lineages of sexual Epichloë and/or asexual Epichloë species. In this study we isolated asexual Epichloë endophytes from Elymus species in western China and sequenced intron-rich regions in the genes encoding β-tubulin (tubB and translation elongation factor 1-α (tefA. Our results showed that there are no gene copies of tubB and tefA in any of the isolates. Phylogenetic analysis showed that sequences in this study formed a single clade with asexual Epichloë bromicola from Hordeum brevisubulatum, which implies asexual Epichloë endophytes that are symbionts in a western Chinese Elymus species likely share a common ancestor with asexual E. bromicola from European H. brevisubulatum. In addition, our results revealed that asexual E. bromicola isolates that are symbionts in a western Chinese Elymus species and sexual Epichloë species that are symbionts in a North American Elymus species have a different origin. Further analysis found that Epichloë species likely originated in Eurasia. In addition, the results support the hypothesis that migratory birds or humans might have aided the dispersal of these fungal endophytes to other continents.

  15. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity.

    Directory of Open Access Journals (Sweden)

    Susheel Kumar

    Full Text Available Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas.

  16. Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity.

    Science.gov (United States)

    Dos Banhos, Elissandro Fonseca; de Souza, Antonia Queiroz Lima; de Andrade, Juliano Camurça; de Souza, Afonso Duarte Leão; Koolen, Hector Henrique Ferreira; Albuquerque, Patrícia Melchionna

    2014-01-01

    Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL(-1) against S. aureus and a minimum fungicidal concentration of 100 μg.mL(-1) against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.

  17. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity.

    Science.gov (United States)

    Kumar, Susheel; Kaushik, Nutan

    2013-01-01

    Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas.

  18. Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia.

    Science.gov (United States)

    Huang, Qian; An, Hongmei; Song, Hongchuan; Mao, Hongqiang; Shen, Weiyun; Dong, Jinyan

    2015-01-01

    This study investigated the diversity and host component-transforming activity of endophytic fungi in medicinal plant Kadsura angustifolia. A total of 426 isolates obtained were grouped into 42 taxa belonging to Fungi Imperfecti (65.96%), Ascomycota (27.00%), Zygomycota (1.64%), Basidiomycota (0.47%) and Mycelia Sterilia (4.93%). The abundance, richness, and species composition of endophytic assemblages were significantly dependent on the tissue and the sampling site. Many phytopathogenic species associated with healthy K. angustifolia were found prevalent. Among them, Verticillium dahliae was dominant with 16.43% abundance. From 134 morphospecies selected, 39 showed remarkable biocatalytic activity and were further identified as species belonging to the genera Colletotrichum, Eupenicillium, Fusarium, Hypoxylon, Penicillium, Phomopsis, Trametes, Trichoderma, Umbelopsis, Verticillium and Xylaria on the basis of the sequence analysis of the internal transcribed spacer (ITS1-5.8S-ITS2). The results obtained in this work show that K. angustifolia is an interesting reservoir of pathogenic fungal species, and could be a community model for further ecological and evolutionary studies. Additionally, the converting potency screening of some endophytic fungi from this specific medicinal plant may provide an interesting niche on the search for novel biocatalysts. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Antimicrobial Activity of Cultivable Endophytic Fungi Associated with Hancornia Speciosa Gomes Bark

    Science.gov (United States)

    Chagas, Mardonny Bruno de Oliveira; Prazeres dos Santos, Irailton; Nascimento da Silva, Luis Claudio; Correia, Maria Tereza dos Santos; Magali de Araújo, Janete; Cavalcanti, Marilene da Silva; Lima, Vera Lucia de Menezes

    2017-01-01

    Introduction: In this study, we evaluated the antimicrobial potential of cultivable endophytic fungi associated with Hancornia speciosa Gomes stem bark. Methods and Materials: Plant samples were collected in rainy (July 2010) and dry (January 2011) seasons. In total, 116 endophytic fungi strains were isolated from 90 fragments (64.4% frequency of colonization). Higher fungi frequency was observed in the rainy season (84.4%). The strains were grouped into 14 species; the most frequent were Phoma cava (13.8%), Colletotrichum gloeosporioides (12.1%), and Lasiodiplodia theobromae (11.2%). Fungal diversity was similar in both the seasons. Among the 116 strains, 39 (33.6%) showed antimicrobial activity in preliminary screening. The ten most active isolates were subjected to semi-solid fermentation using rice or corn as substrates. Methanolic extracts were obtained from each fermentation medium and the minimum inhibitory (MIC) and minimum microbicide concentrations (MMC) were determined. Results: The best antimicrobial results (MIC fungi strains grown in rice medium: Aspergillus niger FHS061 against Proteus mirabilis (MIC = 19 µg/mL) and Staphylococcus aureus (MIC = 39 µg/mL). These strains also showed good results when cultivated in corn medium against P. mirabilis (MIC = 78 µg/mL). Conclusion: Thus, the stem bark of H. speciosa harbors diverse endophytic fungi with antimicrobial potential. PMID:29151994

  20. Origin, divergence, and phylogeny of asexual Epichloë endophyte in Elymus species from western China.

    Science.gov (United States)

    Song, Hui; Nan, Zhibiao

    2015-01-01

    Asexual Epichloë species are likely derived directly from sexual Epichloë species that then lost their capacity for sexual reproduction or lost sexual reproduction because of interspecific hybridization between distinct lineages of sexual Epichloë and/or asexual Epichloë species. In this study we isolated asexual Epichloë endophytes from Elymus species in western China and sequenced intron-rich regions in the genes encoding β-tubulin (tubB) and translation elongation factor 1-α (tefA). Our results showed that there are no gene copies of tubB and tefA in any of the isolates. Phylogenetic analysis showed that sequences in this study formed a single clade with asexual Epichloë bromicola from Hordeum brevisubulatum, which implies asexual Epichloë endophytes that are symbionts in a western Chinese Elymus species likely share a common ancestor with asexual E. bromicola from European H. brevisubulatum. In addition, our results revealed that asexual E. bromicola isolates that are symbionts in a western Chinese Elymus species and sexual Epichloë species that are symbionts in a North American Elymus species have a different origin. Further analysis found that Epichloë species likely originated in Eurasia. In addition, the results support the hypothesis that migratory birds or humans might have aided the dispersal of these fungal endophytes to other continents.

  1. Use of the Endophytic Fungus Daldinia cf. concentrica and Its Volatiles as Bio-Control Agents.

    Directory of Open Access Journals (Sweden)

    Orna Liarzi

    Full Text Available Endophytic fungi are organisms that spend most of their life cycle within plant tissues without causing any visible damage to the host plant. Many endophytes were found to secrete specialized metabolites and/or emit volatile organic compounds (VOCs, which may be biologically active and assist fungal survival inside the plant as well as benefit their hosts. We report on the isolation and characterization of a VOCs-emitting endophytic fungus, isolated from an olive tree (Olea europaea L. growing in Israel; the isolate was identified as Daldinia cf. concentrica. We found that the emitted VOCs were active against various fungi from diverse phyla. Results from postharvest experiments demonstrated that D. cf. concentrica prevented development of molds on organic dried fruits, and eliminated Aspergillus niger infection in peanuts. Gas chromatography-mass spectrometry analysis of the volatiles led to identification of 27 VOCs. On the basis of these VOCs we prepared two mixtures that displayed a broad spectrum of antifungal activity. In postharvest experiments these mixtures prevented development of molds on wheat grains, and fully eliminated A. niger infection in peanuts. In light of these findings, we suggest use of D. cf. concentrica and/or its volatiles as an alternative approach to controlling phytopathogenic fungi in the food industry and in agriculture.

  2. Bioprospecting endophytic diazotrophicLysinibacillus sphaericusas biocontrol agents of rice sheath blight disease.

    Science.gov (United States)

    Shabanamol, S; Sreekumar, J; Jisha, M S

    2017-10-01

    The present study tried to explore the possible in vitro biocontrol mechanisms of Lysinibacillus sphaericus , a diazotrophic endophyte from rice against the rice sheath blight pathogen Rhizoctonia solani. The in vivo biocontrol potential of the isolate and the induction of systemic resistance under greenhouse conditions have also been experimented employing different treatments with positive control carbendazim, the chemical fungicide. The endophytic isolate showed 100% growth inhibition of the fungal pathogen via volatile organic compound production and was positive for the production of siderophores, biosurfactants, HCN, and ammonia. Under greenhouse conditions, foliar and soil application of L. sphaericus significantly decreased the percentage of disease incidence. All bacterized treatments are superior to chemical fungicide treatment. Application of L. sphaericus in single and combination treatments induces systemic resistance as evident from the significant accumulation of defense enzymes such as peroxides, polyphenol oxides and phenylalanine ammonia in addition to the increase of phenolic compounds. The results biologically prospect endophytic diazotroph L. sphaericus as a potent plant growth promoter with excellent biocontrol efficiency.

  3. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  4. Endophytic Actinobacteria Associated withDracaena cochinchinensisLour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  5. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities

    Directory of Open Access Journals (Sweden)

    Nimaichand Salam

    2017-01-01

    Full Text Available Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon’s blood. Excessive utilization of the plant for extraction of dragon’s blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Brevibacterium, Microbacterium, Tsukamurella, Arthrobacter, Brachybacterium, Nocardia, Rhodococcus, Kocuria, Nocardioides, and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC50-values ranging between 3 and 33 μg·mL−1. Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS- I, PKS-II, and nonribosomal peptide synthetase (NRPS among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  6. Qualitative and quantitative analysis of endophyte alkaloids in perennial ryegrass using near-infrared spectroscopy.

    Science.gov (United States)

    Soto-Barajas, Milton C; Zabalgogeazcoa, Iñigo; González-Martin, Inmaculada; Vázquez-de-Aldana, Beatriz R

    2017-11-01

    Near-infrared reflectance spectroscopy (NIRS) has been widely used in forage quality control because it is faster, cleaner and less expensive than conventional chemical procedures. In Lolium perenne (perennial ryegrass), one of the most important forage grasses, the infection by asymptomatic Epichloë fungal endophytes alters the plant nutritional quality due to the production of alkaloids. In this research, we developed a rapid method based on NIRS to detect and quantify endophyte alkaloids (peramine, lolitrem B and ergovaline) using a heterogeneous set of L. perenne plants obtained from wild grasslands and cultivars. NIR spectra from dried grass samples were recorded and classified according to the absence or presence of alkaloids, based on reference methods. The best discriminant equations for detection of alkaloids classified correctly 94.4%, 87.5% and 92.9% of plants containing peramine, lolitrem B and ergovaline, respectively. The quantitative NIR equations obtained by modified partial least squares (MPLS) algorithm had coefficients of correlation of 0.93, 0.41, and 0.76 for peramine, lolitrem B and ergovaline respectively. NIRS is a suitable tool for qualitative analysis of endophyte alkaloids in grasses and for the accurate quantification of peramine and ergovaline. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media.

    Science.gov (United States)

    Bier, Mário Cesar Jucoski; Medeiros, Adriane Bianchi Pedroni; Soccol, Carlos Ricardo

    2017-02-01

    Aroma and fragrances have high commercial value for use in food, cosmetics and perfumes. The biotransformation of terpenes by microorganisms represents an attractive alternative method for production of flavourings. Endophytic fungi offer a great potential for the production of several groups of compounds; however, few studies have evaluated the biotransformation of limonene. Following preliminary studies on the biotransformation of limonene, submerged fermentation was carried out using an endophytic fungus isolated from Pinus taeda and identified as Phomopsis sp. The presence of several biotransformation products was detected and identified by mass spectrometry (GC-MS). The studied strain showed a divergent metabolic behaviour, as compounds of interest such as α-terpineol, carvone, and limoneno-1,2-diol were produced under different conditions. In addition to the minor metabolites terpinen-4-ol, menthol and carveol, this strain also produced major metabolites, including 0.536 g L -1 carvone and 2.08 g L -1 limonene-1,2-diol in synthetic medium and 2.10 g L -1 limonene-1,2-diol in a natural orange extract medium with single fed-batch, while the cyclic fed-batch resulted in concentrations less than 1 g L -1 . Therefore, our study produced a wide variety of limonene derivatives at a high concentration using a natural medium and a newly isolated endophytic fungal strain. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius.

    Science.gov (United States)

    Tonial, Fabiana; Maia, Beatriz H L N S; Gomes-Figueiredo, Josiane A; Sobottka, Andrea M; Bertol, Charise D; Nepel, Angelita; Savi, Daiani C; Vicente, Vânia A; Gomes, Renata R; Glienke, Chirlei

    2016-02-01

    In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

  9. Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: Distribution and bioactivity

    Science.gov (United States)

    dos Banhos, Elissandro Fonseca; de Souza, Antonia Queiroz Lima; de Andrade, Juliano Camurça; de Souza, Afonso Duarte Leão; Koolen, Hector Henrique Ferreira; Albuquerque, Patrícia Melchionna

    2014-01-01

    Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL−1 against S. aureus and a minimum fungicidal concentration of 100 μg.mL−1 against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics. PMID:24948926

  10. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  11. The role of endophyte in determining swainsonine concentrations

    Science.gov (United States)

    Locoweeds contain the toxic indolizidine alkaloid swainsonine, which is produced by the endophytic fungi Undifilum species. Previously we reported that swainsonine concentrations differ between populations of Oxytropis sericea. We hypothesized that the genotype of the plant, endophyte, or an inter...

  12. (MDR) Bacterial Activity of Endophytic Fungi Isolated from the

    African Journals Online (AJOL)

    MDR) bacterial potential of culturable endophytes from A. corniculatum in Beibu Gulf, China. Methods: The plant parts were collected from healthy-looking A. corniculatum. The endophytes were isolated and identified by colonial morphology and ...

  13. Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes.

    Science.gov (United States)

    Gazis, R; Miadlikowska, J; Lutzoni, F; Arnold, A E; Chaverri, P

    2012-10-01

    Through a culture-based survey of living sapwood and leaves of rubber trees (Hevea spp.) in remote forests of Peru, we discovered a new major lineage of Ascomycota, equivalent to a class rank. Multilocus phylogenetic analyses reveal that this new lineage originated during the radiation of the 'Leotiomyceta', which resulted not only in the evolution of the Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, and Sordariomycetes, but also of the majority of hyperdiverse foliar endophytes. Because its origin is nested within this major burst of fungal diversification, we could not recover strong support for its phylogenetic relationship within the 'Leotiomyceta'. Congruent with their long phylogenetic history and distinctive preference for growing in sapwood, this new lineage displays unique morphological, physiological, and ecological traits relative to known endophytes and currently described members of the 'Leotiomyceta'. In marked contrast to many foliar endophytes, the strains we isolated fail to degrade cellulose and lignin in vitro. Discovery of the new class, herein named Xylonomycetes and originally mis-identified by ITSrDNA sequencing alone, highlights the importance of inventorying tropical endophytes from unexplored regions, using multilocus data sets to infer the phylogenetic placement of unknown strains, and the need to sample diverse plant tissues using traditional methods to enhance efforts to discover the evolutionary, taxonomic, and functional diversity of symbiotrophic fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Novel Microbial Sources of Tropane Alkaloids: First Report of Production by Endophytic Fungi Isolated from Datura metel L.

    Science.gov (United States)

    Naik, Tanushree; Vanitha, Shanadrahalli Chandrashekaraiah; Rajvanshi, Pradumn Kumar; Chandrika, Manjegowda; Kamalraj, Subban; Jayabaskaran, Chelliah

    2018-02-01

    Eighteen endophytic fungi were isolated from various tissues of Datura metel and genes encoding for putrescine N-methyltransferase (PMT), tropinone reductase 1 (TR1) and hyoscyamine 6β-hydroxylase (H6H) were used as molecular markers for PCR-based screening approach for tropane alkaloids (TAs) producing endophytic fungi. These fungi were identified taxonomically by sequence analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) and also based on morphological characteristics of the fungal spore as Colletotrichum boninense, Phomopsis sp., Fusarium solani, Colletotrichum incarnatum, Colletotrichum siamense and Colletotrichum gloeosporioides. The production of TAs hyoscyamine and scopolamine by the fungi has been ascertained using chromatography and spectroscopy methods by comparison with the standards. Among the fungi, the highest yields of hyoscyamine (3.9 mg/L) and scopolamine (4.1 mg/L) were found in C. incarnatum culture. This is the first report of endophytic fungi possess the PMT, TR1 and H6H genes and produces TAs. These endophytic fungi have significant potential to be applied in fermentation technology to meet the demands for TAs economically.

  15. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes.

    Science.gov (United States)

    Nurunnabi, Tauhidur Rahman; Nahar, Lutfun; Al-Majmaie, Shaymaa; Rahman, S M Mahbubur; Sohrab, Md Hossain; Billah, Md Morsaline; Ismail, Fyaz M D; Rahman, M Mukhlesur; Sharples, George P; Sarker, Satyajit D

    2018-02-01

    Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a unique habitat, muddy saline water, anaerobic soil, brackish tidal activities, and high microbial competition. Endophytic fungal association protects this plant from adverse environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not been extensively studied phytochemically, and there is hardly any report on investigation on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities were evaluated against two Gram-positive and two Gram-negative bacteria and the fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test bacterial strains, except that the ethyl acetate extract was inactive against Escherichia coli. The structures of the purified compounds, oxysporone and xylitol, were elucidated by spectroscopic means. The anti-MRSA potential of the isolated compounds were determined against various MRSA strains, that is, ATCC 25923, SA-1199B, RN4220, XU212, EMRSA-15, and EMRSA-16, with minimum inhibitory concentration values ranging from 32 to 128 μg/ml. This paper, for the first time, reports on the anti-MRSA property of oxysporone and xylitol, isolation of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from ...

  17. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient.

    Science.gov (United States)

    Huusko, K; Ruotsalainen, A L; Markkola, A M

    2017-02-01

    Soil fungal community and dominant mycorrhizal types are known to shift along with plant community changes during primary succession. However, it is not well understood how and why root fungal symbionts and colonization types vary within the plant host when the host species is able to thrive both at young and at old successional stages with different light and nutrient resource availability. We asked (i) how root fungal colonization of Deschampsia flexuosa (Poaceae) by arbuscular mycorrhizal (AM) fungi and dark septate endophytes (DSE) changes along a postglacial primary successional land uplift gradient. As neighboring vegetation may play a role in root fungal colonization, we also asked (ii) whether removal of the dominant neighbor, Empetrum nigrum ssp. hermaphroditum (Ericaceae), affects root fungal colonization of Deschampsia. We also studied whether (iii) foliar carbon (C) and nitrogen (N) concentration of Deschampsia is related to successional changes along a land uplift gradient. AM colonization decreased (-50 %), DSE colonization increased (+200 %), and foliar C declined in Deschampsia along with increasing successional age, whereas foliar N was not affected. Empetrum removal did not affect AM colonization but increased DSE sclerotial colonization especially at older successional stages. The observed decrease in foliar C coincides with an increase in canopy closure along with increasing successional age. We suggest that the shift from an AM-dominated to a DSE-dominated root fungal community in Deschampsia along a land uplift successional gradient may be related to different nutritional benefits gained through these root fungal groups.

  18. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Science.gov (United States)

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  19. Hidden host plant associations of soilborne fungal pathogens: an ecological perspective.

    Science.gov (United States)

    Malcolm, Glenna M; Kuldau, Gretchen A; Gugino, Beth K; Jiménez-Gasco, María Del Mar

    2013-06-01

    Much of the current knowledge on population biology and ecology of soilborne fungal pathogens has been derived from research based on populations recovered from plants displaying disease symptoms or soil associated with symptomatic plants. Many soilborne fungal pathogens are known to cause disease on a large number of crop plants, including a variety of important agronomical, horticultural, ornamental, and forest plants species. For instance, the fungus Verticillium dahliae causes disease on >400 host plants. From a phytopathological perspective, plants on which disease symptoms have not been yet observed are considered to be nonhosts for V. dahliae. This term may be misleading because it does not provide information regarding the nature of the plant-fungus association; that is, a nonhost plant may harbor the fungus as an endophyte. Yet, there are numerous instances in the literature where V. dahliae has been isolated from asymptomatic plants; thus, these plants should be considered hosts. In this article, we synthesize scattered research that indicates that V. dahliae, aside from being a successful and significant vascular plant pathogen, may have a cryptic biology on numerous asymptomatic plants as an endophyte. Thus, we suggest here that these endophytic associations among V. dahliae and asymptomatic plants are not unusual relationships in nature. We propose to embrace the broader ecology of many fungi by differentiating between "symptomatic hosts" as those plants in which the infection and colonization by a fungus results in disease, and "asymptomatic hosts" as those plants that harbor the fungus endophytically and are different than true nonhosts that should be used for plant species that do not interact with the given fungus. In fact, if we broaden our definition of "host plant" to include asymptomatic plants that harbor the fungus as an endophyte, it is likely that the host ranges for some soilborne fungal pathogens are much larger than previously envisioned

  20. Diversity of endophytic fungi in the roots of mangrove species on the west coast of India.

    Science.gov (United States)

    Ananda, K; Sridhar, K R

    2002-10-01

    Because mangrove plant species are a valuable source of useful metabolites, their endophytes have gained more importance. Randomly sampled surface-sterilized whole root segments of four mangrove plant species, Acanthus ilicifolius, Avicennia officinalis, Rhizophora mucronata, and Sonneratia caseolaris from the mangroves of Udyavara (Karnataka) on the west coast of India, were characterized for fungal communities by direct plating, damp chamber, and bubbling chamber incubation methods. The richness of endophytic fungal species from whole root segments after direct plating and damp chamber incubation was greatest for R. mucronata than for other plants (18 vs. 8-13). Incubation of whole root segments in bubbling chambers yielded conidia of two freshwater hyphomycetes: Mycocentrospora acerina (in Avicennia officinalis) and Triscelophorus acuminatus (in R. mucronata and in S. caseolaris). Surface-sterilized whole root and root bark segments of R. mucronata sampled from the mid-tide level on direct plating yielded more fungi than that of the root segments sampled from low-tide and high-tide levels. The greatest number of isolates, species richness, and diversity of fungi were shown by the whole root segments of R. mucronata from the mid-tide level. Rarefaction indices also revealed the highest expected number of species out of 150 random isolations from the mid-tide level samples of whole root and root bark segments of R. mucronata. The present study showed that fungi in mangrove roots are composed of a consortium of soil, marine, and freshwater fungi.

  1. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    Science.gov (United States)

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Holocene occurrence of Lophodermium piceae, a black spruce needle endophyte and possible paleoindicator of boreal forest health

    Science.gov (United States)

    Jasinski, J. P. Paul; Payette, Serge

    2007-01-01

    Holocene occurrences of conifer needle endophytes have not previously been reported. We report the fossil remains of Lophodermium piceae (Fckl.) Hoehn., a fungal endophyte of black spruce ( Picea mariana (Mill.) B.S.P.) needles, in macrofossils dating back to 8000 cal yr BP. Spruce budworm head capsules and L. piceae remains were found preceding charcoal layers delineating the transformation of four spruce-moss forest sites to spruce-lichen woodland. As L. piceae is found solely on senescent needles, its increased presence during these transformation periods likely indicates that the forests were in decline due to the spruce budworm ( Choristoneura fumiferana (Clem.)) when they burned. Future paleoecological studies incorporating needle fungi observations could be used to investigate the historical occurrence of tree disease and the role of fungi in forest health and decline.

  3. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium. Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae, will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula, suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph.

  4. Insect Pathogenic Fungi as Endophytes.

    Science.gov (United States)

    Moonjely, S; Barelli, L; Bidochka, M J

    2016-01-01

    In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    Science.gov (United States)

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  6. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil

    Directory of Open Access Journals (Sweden)

    Mariana C Ferreira

    Full Text Available BACKGROUND Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae is threatened by extinction and is a promising target to recover endophytic fungi. OBJECTIVE The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. METHODS The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. FINDINGS Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. MAIN CONCLUSION Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the

  7. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    Science.gov (United States)

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  8. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    Science.gov (United States)

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  9. Plant and root endophyte assembly history: interactive effects on native and exotic plants.

    Science.gov (United States)

    Sikes, Benjamin A; Hawkes, Christine V; Fukami, Tadashi

    2016-02-01

    Differences in the arrival timing of plants and soil biota may result in different plant communities through priority effects, potentially affecting the success of native vs. exotic plants, but experimental evidence is largely lacking. We conducted a greenhouse experiment to investigate whether the assembly history of plants and fungal root endophytes could interact to influence plant emergence and biomass. We introduced a grass species and eight fungal species from one of three land-use types (undisturbed, disturbed, or pasture sites in a Florida scrubland) in factorial combinations. We then introduced all plants and fungi from the other land-use types 2 weeks later. Plant emergence was monitored for 6 months, and final plant biomass and fungal species composition assessed. The emergence and growth of the exotic Melinis repens and the native Schizacharyium niveum were affected negatively when introduced early with their "home" fungi, but early introduction of a different plant species or fungi from a different site type eliminated these negative effects, providing evidence for interactive priority effects. Interactive effects of plant and fungal arrival history may be an overlooked determinant of plant community structure and may provide an effective management tool to inhibit biological invasion and aid ecosystem restoration.

  10. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  11. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus.

    Science.gov (United States)

    Mitchell, Angela M; Strobel, Gary A; Moore, Emily; Robison, Richard; Sears, Joe

    2010-01-01

    Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.

  12. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  13. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  14. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  15. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  16. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.

    Science.gov (United States)

    García-Guzmán, Graciela; Heil, Martin

    2014-03-01

    Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils.

    Science.gov (United States)

    Shi, Yanan; Xie, Huarong; Cao, Lixiang; Zhang, Renduo; Xu, Zaichao; Wang, Zhuoya; Deng, Zujun

    2017-01-01

    Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.

  18. Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches*

    Science.gov (United States)

    Ben Chobba, Ines; Elleuch, Amine; Ayadi, Imen; Khannous, Lamia; Namsi, Ahmed; Cerqueira, Frederique; Drira, Noureddine; Gharsallah, Néji; Vallaeys, Tatiana

    2013-01-01

    Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar (PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer (ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism (RFLP) analysis of the ITS from 200 fungal clones (leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella (Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria (members of the Nectriaceae family), the leaves were essentially colonized by Alternaria (members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors’ knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees (P. dactylifera). PMID:24302709

  19. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States.

    Science.gov (United States)

    Silva-Hughes, Alice F; Wedge, David E; Cantrell, Charles L; Carvalho, Camila R; Pan, Zhiqiang; Moraes, Rita M; Madoxx, Victor L; Rosa, Luiz H

    2015-06-01

    The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A hundred-eight endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the genera Alternaria, Aureobasidium, Biscogniauxia, Cladosporium, Cryptococcus, Curvularia, Diaporthe, Epicoccum, Paraconiothyrium, Pestalotiopsis and Phoma. The most frequent species associated with O. humifusa were Alternaria sp. 3, Aureobasidium pullulans and Diaporthe sp. The fungal community of O. humifusa had a high richness and diversity; additionally, the species richness obtained indicates that the sample effort was enough to recover the diversity pattern obtained. Six extracts of endophytes showed antifungal properties and (1)H NMR analyses of the extracts of Alternaria sp. 5 Ohu 8B2, Alternaria sp. 3 Ohu 30A, Cladosporium funiculosum Ohu 17C1 and Paraconiothyrium sp. Ohu 17A indicated the presence of functional groups associated with unsaturated fatty-acid olefinic protons and fatty acid methylene and methyl protons. GC-FID analysis of these extracts confirmed the presence of a mixture of different fatty acids. The (1)H NMR analyses of Biscogniauxia mediterranea Ohu 19B extracts showed the presence of aromatic compounds. From the extract of B. mediterranea we isolated the compound 5-methylmellein that displayed moderate antifungal activity against the phytopathogenic fungi Phomopsis obscurans. Our results suggest that native medicinal cacti of the United States can live symbiotically with rich and diverse endophytic communities and may be a source of bioactive molecules, including those able to inhibit or control plant disease pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  1. Clavicipitaceous anamorphic endophytes in Hordeum germplasm

    Science.gov (United States)

    A. Dan Wilson

    2007-01-01

    The incidence of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, in eighteen Hordeum species from the U.S. National Plant Germplasm System was examined using light and Scanning Electron Microscopy (SEM). Seventeen plant inventory accessions...

  2. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. ... Solms and Cyperus ligularis L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones ...

  3. Isolation, quantity distribution and characterization of endophytic ...

    African Journals Online (AJOL)

    The present investigation was undertaken in order to document the spectrum of endophytes colonizing healthy leaves of sugar beet cultivars in Xinjiang Province (China) and to determine the degree of colonization at three growth stages. From the 360 sugar beet leaf and root segments incubated, 221 bacterial isolates, ...

  4. Phyllosticta capitalensis, a widespread endophyte of plants

    NARCIS (Netherlands)

    Wikee, S.; Lombard, L.; Crous, P.W.; Nakashima, C.; Motohashi, K.; Chukeatirote, E.; Alias, S.A.; McKenzie, E.H.C.; Hyde, K.D.

    2013-01-01

    Phyllosticta capitalensis is an endophyte and weak plant pathogen with a worldwide distribution presently known from 70 plant families. This study isolated P. capitalensis from different host plants in northern Thailand, and determined their different life modes. Thirty strains of P. capitalensis

  5. Botrallin from the endophytic fungus Hyalodendriella sp ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Bioassay-guided fractionation of the crude methanol extract of the mycelia from the endophytic fungus. Hyalodendriella sp. Ponipodef12, associated with the hybrid 'Neva' of Populus deltoides Marsh × P. nigra L., led to the isolation of one compound coded as P12-1 which was identified as botrallin (1,7-.

  6. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    João Marcelo Lima

    Endophytic and epiphytic fungi isolated from Eichhornia crassipes (Mart.) Solms and Cyperus ligularis. L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones were identified by means of the rDNA region sequencing.

  7. Diverse ecological roles within fungal communities in decomposing logs of Picea abies.

    Science.gov (United States)

    Ottosson, Elisabet; Kubartová, Ariana; Edman, Mattias; Jönsson, Mari; Lindhe, Anders; Stenlid, Jan; Dahlberg, Anders

    2015-03-01

    Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  9. Poplar and its bacterial endophytes: coexistence and harmony

    Energy Technology Data Exchange (ETDEWEB)

    van der Lelie, D.; Taghavi, S.; Monchy, S.; Schwender, J.; Miller, L.; Ferrieri, R.; Rogers, A.; Zhu, W.; Weyens, N.; Vangronsveld, J.; Newman, L.

    2009-09-01

    Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an improved understanding of the interaction between poplar and its endophytic bacteria has the potential to provide major breakthroughs that will improve the productivity of poplar. Endophytic bacteria can improve plant growth and development in a direct or indirect way. Direct plant growth promoting mechanisms may involve nitrogen fixation, production of plant growth regulators such as auxins, cytokinins and gibberellins, and suppression of stress ethylene synthesis by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Endophytic bacteria can indirectly benefit the plant by preventing the growth or activity of plant pathogens through competition for space and nutrients, antibiosis, production of hydrolytic enzymes, inhibition of pathogen-produced enzymes or toxins, and through systemic induction of plant defense mechanisms. Examples of applications for custom endophyte-host partnerships include improved productivity and establishment of poplar trees on marginal soils and the phytoremediation of contaminated soils and groundwater. A systems biology approach to understand the synergistic interactions between poplar and its beneficial endophytic bacteria represents an important field of research, which is facilitated by the recent sequencing of the genomes of poplar and several of its endophytic bacteria.

  10. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  11. Identifikasi Cendawan Endofit Menggunakan Teknik Polymerase Chain Reaction (Detection of Endophytic Fungi Using Polymerase Chain Reaction Technique

    Directory of Open Access Journals (Sweden)

    Tuti Susanti Legiastuti

    2013-04-01

    Full Text Available Yellow leaf curl disease, caused by a member of Begomovirus (Geminiviridae, is one of important diseases of chilli pepper in Indonesia. Exploration of endophytic fungi was initiated in order to find biological control agents for an alternative control strategies of this disease. Isolates of endophytic fungi were collected from chilli pepper growing area in Sleman, Yogyakarta and further identification using molecular technique involving polymerase chain reaction (PCR and DNA sequencing was performed. DNA fragments of ±500 bp were successfully amplified from 10 fungal isolates by PCR using primer pair ITS1/ITS4, but only 8 DNA sequences was obtained for further genetic analysis. Based on BLASTN analysis the endophytic fungi were identified as having the highest similarity with Pleosporaceae sp. (98% for H1 isolate, Cercospora nicotianae (100% for H5 isolate, ercospora piaropi (98% for H11 isolate, Guignardia mangiferae (99% for H16 isolate, Geomyces pannorum 95% for H17 isolate, Diaporthe phaseoloru (99% for H18 isolate, Dothideomycete sp. (100% for K3 isolate, and Alternaria longissima (99% for K10 isolate. Key words: Begomovirus, chillipepper, DNA sequencing, polymerase chain reaction

  12. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties.

    Science.gov (United States)

    Zhao, LongFei; Xu, YaJun; Lai, XinHe

    2017-10-13

    A total of 276 endophytic bacteria were isolated from the root nodules of soybean (Glycine max L.) grown in 14 sites in Henan Province, China. The inhibitory activity of these bacteria against pathogenic fungus Phytophthora sojae 01 was screened in vitro. Six strains with more than 63% inhibitory activities were further characterized through optical epifluorescence microscopic observation, sequencing, and phylogenetic analysis of 16S rRNA gene, potential plant growth-promoting properties analysis, and plant inoculation assay. On the basis of the phylogeny of 16S rRNA genes, the six endophytic antagonists were identified as belonging to five genera: Enterobacter, Acinetobacter, Pseudomonas, Ochrobactrum, and Bacillus. The strain Acinetobacter calcoaceticus DD161 had the strongest inhibitory activity (71.14%) against the P. sojae 01, which caused morphological abnormal changes of fungal mycelia; such changes include fracture, lysis, formation of a protoplast ball at the end of hyphae, and split ends. Except for Ochrobactrum haematophilum DD234, other antagonistic strains showed the capacity to produce siderophore, indole acetic acid, and nitrogen fixation activity. Regression analysis suggested a significant positive correlation between siderophore production and inhibition ratio against P. sojae 01. This study demonstrated that nodule endophytic bacteria are important resources for searching for inhibitors specific to the fungi and for promoting effects for soybean seedlings. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz H. Rosa

    2010-06-01

    Full Text Available One hundred and twenty-one isolates of endophytic fungi were recovered from leaves of the bioactive Brazilian plant species Ageratum myriadenia, Palicourea tetraphylla, Piptadenia adiantoides, and Trixis vauthieri. All fungal isolates were cultivated in liquid media and crude extracts were obtained with ethyl acetate. The crude extracts were tested in bioassay panels using Leishmania amazonensis, Trypanosoma cruzi, the enzyme trypanothione reductase (TryR from Trypanosoma cruzi, and three human cancer cell lines. Thirty-three extracts (27.2% exhibited at least one biological activity. Seventeen extracts (14% were cytotoxic against one or more human cancer cell line with the IC50 values ranged of >0.2 to 25 µg/mL. Twenty-four extracts (19.8% inhibited the activity of TryR, and three showed ability to inhibit the growth of T. cruzi above 60% and their IC50 values ranged among 1 to 10 µg/mL. Eleven extracts (9% were able to inhibit the growth of L. amazonensis and showed with IC50 values ranged among 4.6 to 24.4 µg/mL. The endophytic fungi were identified as belonging to the genera Alternaria, Arthrinium, Cochliobolus, Colletotrichum, Penicillium, Fusarium, and Gibberella. An interesting result was obtained for the bioactive isolates UFMGCB 508, 537, 899 and 903, which were related to fungi associated with medicinal plants native to Asia, Australia, Africa, and Polynesia. These results indicate that bioactive plants living in Brazilian ecosystems are a potential host of endophytic fungi able to produce bioactive prototype molecules for drug development against neglected tropical diseases.

  14. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  15. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii.

    Directory of Open Access Journals (Sweden)

    Mary E Lucero

    2011-03-01

    Full Text Available Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities.

  16. Fungal DNA barcoding.

    Science.gov (United States)

    Xu, Jianping

    2016-11-01

    Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.

  17. The endophytic fungi of Salvia miltiorrhiza Bge.f. alba are a potential source of natural antioxidants.

    Science.gov (United States)

    Li, Yan-Ling; Xin, Xiao-Ming; Chang, Zheng-Yao; Shi, Ren-Jiu; Miao, Zeng-Min; Ding, Jing; Hao, Gang-Ping

    2015-12-01

    Salvia miltiorrhiza Bge. f. alba is a traditional Chinese herbal drug with special pharmacological effect on thromboangiitis obliterans. However, the nature source of S.miltiorrhiza Bge.f.alba is now in short supply because of the over-collection of the wild plant. To better utilize this resource, the diversity and antioxidant activity of endophytic fungi isolated from S. miltiorrhiza Bge. f. alba were investigated. A total of 14 endophytic fungi were isolated from different parts of S. miltiorrhiza Bge.f.alba. Based on morphological and molecular identification, the endophytic fungi isolated were classified into four genera (Alternaria sp., Fusarium sp., Schizophyllum sp. and Trametes sp.). These