WorldWideScience

Sample records for non-sulfate-reducing soil bacterium

  1. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 4. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium and a Chinese Herb Steal the Show. Pundi N Rangarajan. General Article Volume 21 Issue 4 April 2016 pp 315-326 ...

  2. Volatiles produced by the mycophagous soil bacterium Collimonas

    NARCIS (Netherlands)

    Garbeva, P.; Hordijk, C.; Gerards, S.; Boer, de W.

    2014-01-01

    It is increasingly recognized that volatile organic compounds play an import role during interactions between soil microorganisms. Here, we examined the possible involvement of volatiles in the interaction of Collimonas bacteria with soil fungi. The genus Collimonas is known for its ability to grow

  3. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.

    Science.gov (United States)

    Alexandre, Gladys

    2017-11-09

    Bacteria of the genus Azospirillum comprise 15 species to date, with A. brasilense the best studied species in the genus. Azospirillum are soil bacteria able to promote the growth of plants from 113 species spanning 35 botanical families. These non-pathogenic and beneficial bacteria are ubiquitous in soils and inhabit the roots of diverse plants. These bacteria are microaerophilic, able to fix nitrogen under free-living conditions, motile, and able to navigate in gradients of various chemicals, including oxygen. These physiological traits are used to isolate these soil bacteria from soil and plant root samples, providing isolates that can be used for studying microbial physiology and plant growth promotion. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    Science.gov (United States)

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  5. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    Energy Technology Data Exchange (ETDEWEB)

    Calder, Alyssa J. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Dimkpa, Christian O. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Department of Biology, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Johnson, William [Geology and Geophysics, University of Utah, Salt Lake City, UT 84112 (United States); Anderson, Anne J., E-mail: anne.anderson@usu.edu [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2012-07-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca{sup 2+} from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: Black-Right-Pointing-Pointer Silver nanoparticles

  6. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    International Nuclear Information System (INIS)

    Calder, Alyssa J.; Dimkpa, Christian O.; McLean, Joan E.; Britt, David W.; Johnson, William; Anderson, Anne J.

    2012-01-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca 2+ from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: ► Silver nanoparticles (Ag NPs) are widely used for

  7. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  8. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  9. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  12. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  13. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  14. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine.

    Directory of Open Access Journals (Sweden)

    Vera P Silva

    Full Text Available In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.

  15. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine

    Science.gov (United States)

    Silva, Vera P.; Moreira-Santos, Matilde; Mateus, Carla; Teixeira, Tânia; Ribeiro, Rui; Viegas, Cristina A.

    2015-01-01

    In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed. PMID:26662024

  16. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    Science.gov (United States)

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  17. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202

    International Nuclear Information System (INIS)

    Kuwahara, Chikako; Fukumoto, Atsushi; Nishina, Masami; Sugiyama, Hideo; Anzai, Yojiro; Kato, Fumio

    2011-01-01

    A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs + was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs + was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs + was taken up into the mycelia competitively with K + , because K + uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs + in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133 Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs + trapped by intercellular materials such as polyphosphate and Cs + present in a cytoplasmic pool. - Research highlights: → Cs was taken up into the cells of Streptomyces sp. K202 via 2 steps. → The existence states of Cs accumulated in strain K202 were at least 2 types. → The localized Cs in the cells would be trapped by granules such as polyphosphate. → The localized Cs in the cells might involve in Cs detoxification of strain K202.

  18. Does S-metolachlor affect the performance of Pseudomonas sp. strain ADP as bioaugmentation bacterium for atrazine-contaminated soils?

    Directory of Open Access Journals (Sweden)

    Cristina A Viegas

    Full Text Available Atrazine (ATZ and S-metolachlor (S-MET are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g(-1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD, the presence of pure S-MET significantly affected neither bacteria survival (~10(7 initial viable cells g(-1 of soil nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50 × RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days and extensively (>96% removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil.

  19. Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Zhou, Xing-Kui; Guo, Jian-Wei; Xiao, Min; Wang, Hong-Fei; Wang, Yun; Bobodzhanova, Khursheda; Li, Wen-Jun

    2018-02-01

    A Gram-stain-positive, alkaliphilic bacterium, designated EGI 80668 T , was isolated from a Tamarix cone soil in Xinjiang, north-west China. Cells were facultatively anaerobic, terminal endospore-forming and motile by means of peritrichous flagella. Colonies were yellowish and the cells showed oxidase-negative and catalase-positive reactions. Strain EGI 80668 T grew at pH 8.0-10.0 and with 0-10 % (w/v) NaCl (optimally at pH 9.0 and with 1-2 % NaCl) on marine agar 2216. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The cellular polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 38.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80668 T was affiliated to the genus Bacillus. The highest 16S rRNA gene sequence similarity between strain EGI 80668 T and a member of the genus Bacillus was 96.83 % with Bacillus cellulosilyticus JCM 9156 T . A polyphasic taxonomic study based on morphological, physiological, biochemical and phylogenetic data indicated that strain EGI 80668 T represents a novel species of the genus Bacillus, for which the name Bacillus tamaricis sp. nov. (type strain EGI 80668 T =KCTC 33703 T =CGMCC 1.15917 T ) is proposed.

  20. Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil.

    Science.gov (United States)

    Li, Qin-Fen; Sun, Li-Na; Kwon, Soon-Wo; Chen, Qing; He, Jian; Li, Shun-Peng; Zhang, Jun

    2014-06-01

    A Gram-reaction-negative, aerobic, motile, rod-shaped, arsenite [As(III)]-resistant bacterium, designated strain YW8(T), was isolated from agricultural soil. 16S rRNA gene sequence analysis showed over 97% sequence similarity to strains of the environmental species Xenophilus azovorans, Xenophilus aerolatus, Simplicispira metamorpha, Variovorax soli, and Xylophilus ampelinus. However, the phylogenetic tree indicated that strain YW8(T) formed a separate clade from Xenophilus azovorans. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain YW8(T) and its closest phylogenetic neighbours were below 24.2-35.5%, which clearly separated the strain from these closely related species. The major cellular fatty acids of strain YW8(T) were C(16 : 0), C(17 : 0) cyclo, C(18 : 1)ω7c, and summed feature 3(C(16 : 1)ω6c and/or C(16 : 1)ω7c). The genomic DNA G+C content was 69.3 mol%, and the major respiratory quinone was ubiquinone-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, an unknown polar lipid and phosphatidylserine. The major polyamines were 2-hydroxyputrescine and putrescine. On the basis of morphological, physiological and biochemical characteristics, phylogenetic position, DNA-DNA hybridization and chemotaxonomic data, strain YW8(T) is considered to represent a novel species of the genus Xenophilus, for which the name Xenophilus arseniciresistens sp. nov. is proposed; the type strain is YW8(T) ( = CCTCC AB2012103(T) = KACC 16853(T)). © 2014 IUMS.

  1. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    Science.gov (United States)

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  2. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil.

    Science.gov (United States)

    Rezgui, Raja; Ben Ali Gam, Zouhaier; Ben Hamed, Said; Fardeau, Marie-Laure; Cayol, Jean-Luc; Maaroufi, Abderrazak; Labat, Marc

    2011-01-01

    A novel strictly anaerobic, moderately halophilic and mesophilic bacterium, designated strain SOL3f37(T), was isolated from a hydrocarbon-polluted soil surrounding a deep petroleum environment located in south Tunisia. Cells of strain SOL3f37(T) stained Gram-positive and were motile, straight and spore-forming. Strain SOL3f37(T) had a typical Gram-positive-type cell-wall structure, unlike the thick, multilayered cell wall of its closest relative Clostridiisalibacter paucivorans. The major fatty acids were iso-C(15 : 0) (41 %), iso-C(14 : 0) 3-OH and/or iso-C(15 : 0) dimethyl acetal (21.6 %), iso-C(13 : 0) (4.4 %), anteiso-C(15 : 0) (3.9 %) and iso-C(15 : 1) (2.8 %). Strain SOL3f37(T) grew between 20 and 48 °C (optimum 40 °C) and at pH 6.2-8.1 (optimum pH 6.9). Strain SOL3f37(T) required at least 0.5 NaCl l(-1) and grew in the presence of NaCl concentrations up to 150 g l(-1) (optimum 40 g l(-1)). Yeast extract (2 g l(-1)) was required for degradation of pyruvate, fumarate, fructose, glucose and mannitol. Also, strain SOL3f37(T) grew heterotrophically on yeast extract, peptone and bio-Trypticase, but was unable to grow on Casamino acids. Sulfate, thiosulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 30.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SOL3f37(T) was a member of the family Clostridiaceae in the order Clostridiales; strain SOL3f37(T) was related to members of various genera of the family Clostridiaceae. It exhibited highest 16S rRNA gene sequence similarity (93.4 %) with Clostridiisalibacter paucivorans 37HS60(T), 91.8 % with Thermohalobacter berrensis CTT3(T) and 91.7 % with Caloranaerobacter azorensis MV1087(T). On the basis of genotypic, phenotypic and phylogenetic data, it is suggested that strain SOL3f37(T) represents a novel species in a new genus. The name Sporosalibacterium faouarense gen. nov., sp. nov. is

  3. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye.

    Science.gov (United States)

    Khan, Sana; Malik, Abdul

    2018-02-01

    Water pollution caused by the discharge of hazardous textile effluents is a serious environmental problem worldwide. In order to assess the pollution level of the textile effluents, various physico-chemical parameters were analyzed in the textile wastewater and agricultural soil irrigated with the wastewater (contaminated soil) using atomic absorption spectrophotometer and gas chromatography-mass spectrometry (GC-MS) analysis that demonstrated the presence of several toxic heavy metals (Ni, Cu, Cr, Pb, Cd, and Zn) and a large number of organic compounds. Further, in order to get a comprehensive idea about the toxicity exerted by the textile effluent, mung bean seed germination test was performed that indicated the reduction in percent seed germination and radicle-plumule growth. The culturable microbial populations were also enumerated and found to be significantly lower in the wastewater and contaminated soil than the ground water irrigated soil, thus indicating the biotic homogenization of indigenous microflora. Therefore, the study was aimed to develop a cost effective and ecofriendly method of textile waste treatment using native soil bacterium, identified as Arthrobacter soli BS5 by 16S rDNA sequencing that showed remarkable ability to degrade a textile dye reactive black 5 with maximum degradation of 98% at 37 °C and pH in the range of 5-9 after 120 h of incubation.

  4. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Calder, Alyssa; Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Anderson, Anne J. [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2011-07-15

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: > Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). > Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. > The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. > Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. > The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  5. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    International Nuclear Information System (INIS)

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  6. Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714.

    Science.gov (United States)

    Kuo, V; Shoemaker, W R; Muscarella, M E; Lennon, J T

    2017-08-10

    We present here a draft genome assembly of Micrococcus sp. KBS0714, which was isolated from agricultural soil. The genome provides insight into the strategies that Micrococcus spp. use to contend with environmental stressors such as desiccation and starvation in environmental and host-associated ecosystems. Copyright © 2017 Kuo et al.

  7. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    Science.gov (United States)

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-05

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.

  8. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    Science.gov (United States)

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  9. Cloning, expression and biochemical characterization of a β-carbonic anhydrase from the soil bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Supuran, Claudiu T; Çanakçı, Sabriye; Osman Beldüz, Ali

    2016-12-01

    A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co(2+) affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20 °C and pH of 8.3: kcat of 4.8 × 10(5) s(-1) and kcat/Km of 5.6 × 10(7) M(-1) × s(-1). This activity was potently inhibited by acetazolamide which showed a KI of 78.9 nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.

  10. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    Science.gov (United States)

    Garbeva, Paolina; Tyc, Olaf; Remus-Emsermann, Mitja N P; van der Wal, Annemieke; Vos, Michiel; Silby, Mark; de Boer, Wietse

    2011-01-01

    Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  11. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    Directory of Open Access Journals (Sweden)

    Paolina Garbeva

    Full Text Available BACKGROUND: Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. METHODOLOGY AND PRINCIPAL FINDINGS: We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. SIGNIFICANCE: Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  12. Microbacterium horti sp. nov., a bacterium isolated from Cucurbita maxima cultivating soil.

    Science.gov (United States)

    Akter, Shahina; Park, Jae Hee; Yin, Chang Shik

    2016-04-01

    A novel bacterial strain THG-SL1(T) was isolated from a soil sample of Cucurbita maxima garden and was characterized by using a polyphasic approach. Cells were Gram-reaction-positive, non-motile and rod-shaped. The strain was aerobic, catalase positive and weakly positive for oxidase. Phylogenetic analysis based on 16S rRNA gene sequence analysis but it shared highest similarity with Microbacterium ginsengisoli KCTC 19189(T) (96.6 %), indicating that strain THG-SL1(T) belongs to the genus Microbacterium. The DNA G + C content of the isolate was 68.9 mol %. The major fatty acids were anteiso-C15: 0 (39.7 %), anteiso-C17: 0 (24.4 %) and iso-C16: 0 (18.5 %). The major polar lipids of strain THG-SL1(T) were phosphatidylglycerol (PG) and an unidentified glycolipid (GL). The predominant respiratory isoprenoid quinones were menaquinone-11 and menaquinone-12. The diamino acid in the cell-wall peptidoglycan was ornithine. Based on the results of polyphasic characterization, strain THG-SL1(T) represented a novel species within the genus Microbacterium, for which the name Microbacterium horti sp. nov. is proposed. The type strain is THG-SL1(T) (=KACC 18286(T)=CCTCC AB 2015117(T)).

  13. Ferrovibrio soli sp. nov., a novel cellulolytic bacterium isolated from stream bank soil.

    Science.gov (United States)

    Dahal, Ram Hari; Kim, Jaisoo

    2018-01-01

    Two isolates of bacterial strains A15 T and A17 were isolated from stream bank soil in Kyonggi University. Cells were aerobic, Gram-stain-negative, oxidase- and catalase-positive, motile, non-spore-forming, rod-shaped, opaque, and cream coloured. Both strains hydrolysed CM-cellulose. Strains were able to grow at 20-42 °C, pH 5.5-10.0 and at 1.5 % NaCl concentration (w/v). Indole test was positive. Analyses of phylogenetic trees based on its 16S rRNA gene sequences indicated that strain A15 T formed a lineage within the family Rhodospirillaceae of the phylum Proteobacteria which was distinct from Ferrovibrio denitrificans S3 T (98.4 % sequence similarity) and Ferrovibrio xuzhouensis LM-6 T (97.4 %). The sole detected respiratory quinone was Q-10. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. The major cellular fatty acids were C19 : 0 cycloω8c, C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C18 : 0cyclo and C12 : 0. The DNA G+C contents of strains A15 T and A17 were 63.4 and 62.9 mol%, respectively. DNA-DNA relatedness between strain A15 T and other two members of the genus Ferrovibrioranged from 25 to 37 %. The polyphasic characterization revealed strains A15 T and A17 represent a novel species in the genus Ferrovibrio, for which the name Ferrovibriosoli sp. nov. is proposed. The type strain is A15 T (=KEMB 9005-522 T =KACC 19102 T =NBRC 112682 T ).

  14. Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander

    2017-06-01

    A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).

  15. Ornithinibacillus salinisoli sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    Science.gov (United States)

    Gan, Longzhan; Zhang, Heming; Long, Xiufeng; Tian, Jiewei; Wang, Zhikuan; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-03-01

    A taxonomic study was performed on strain LCB256 T , which was isolated from a saline-alkali soil sample taken from northwestern China. Cells of strain LCB256 T were Gram-stain-positive, aerobic, rod-shaped and grew at 3-17 % (w/v) NaCl (optimum 10-15 %), 10-52 °C (optimum 25-30 °C) and pH 7.0-9.0 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LCB256 T was most closely related to the two genera of Ornithinibacillus and Oceanobacillus, showing highest sequence similarity to Oceanobacillus limi KCTC 13823 T (97.8 %) and Ornithinibacillus bavariensis WSBC 24001 T (97.2 %). The peptidoglycan amino acid type was found to be A4β and the major respiratory quinone was determined to be MK-7. The polar lipid profile of strain LCB256 T contained diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and two unidentified aminolipids. The dominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The G+C content of genomic DNA was 39.3 mol%. DNA-DNA relatedness values between strain LCB256 T and Ornithinibacillus halophilus KCTC 13822 T and Oceanobacillus limi KCTC 13823 T were 46.2 and 34.8 %, respectively. Based on this polyphasic taxonomic study, a novel species of the genus Ornithinibacillus, Ornithinibacillussalinisoli sp. nov. is proposed. The type strain is LCB256 T (=CGMCC 1.15809 T =KCTC 33862 T ).

  16. Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    Science.gov (United States)

    Gan, Longzhan; Zhang, Heming; Tian, Jiewei; Li, Xiaoguang; Long, Xiufeng; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-02-01

    A novel aerobic, Gram-stain-positive, motile, moderately halophilic and coccoid bacterial strain, designated LCB217 T , was isolated from a saline-alkali soil in north-western China and identified using a polyphasic taxonomic approach. Growth occurred with 3-15 % (w/v) NaCl (optimum 3-5 %), at 10-45 °C (optimum 30 °C) and at pH 7.0-9.0 (optimum pH 9.0). Strain LCB217 T contained MK-7 and MK-8 as the predominant menaquinones and anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 as the major fatty acids. The polar lipids from strain LCB217 T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid, one unidentified aminophospholipid and one unidentified lipid. The peptidoglycan type was A4α (l-Lys-d-Glu). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain LCB217 T belonged to the genus Planococcus and was closely related to the type strains Planococcus plakortidis AS/ASP6 (II) T (98.2 % similarity), Planococcus maitriensis S1 T (97.7 %) and Planococcus salinarum ISL-16 T (97.2 %). The G+C content of the genomic DNA was 49.4 mol%. DNA-DNA relatedness values between strain LCB217 T andPlanococcusplakortidis AS/ASP6 (II) T , Planococcusmaitriensis S1 T andPlanococcussalinarum ISL-16 T were 29.5, 38.1 and 39.5 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data, strain LCB217 T represents a novel species of the genus Planococcus, for which the name Planococcus salinus sp. nov. is proposed. The type strain is LCB217 T (=CGMCC 1.15685 T =KCTC 33861 T ).

  17. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization

    Science.gov (United States)

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon; Wu, Weihua; Wemmer, Sarah; Wrobel, Steven A.; Tang, Yinjie J.; Singh, Seema

    2016-01-01

    Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used 13C-fingerprinting, 13C metabolic flux analysis (13C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) 13C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH. PMID:27634497

  18. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  19. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  20. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  1. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1

    NARCIS (Netherlands)

    Garbeva, P.V.; Tyc, O.; Remus-Emsermann, M.N.P.; Van der Wal, A.; Vos, M.; Silby, M.W.; De Boer, W.

    2011-01-01

    Background: Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the

  2. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  3. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    Science.gov (United States)

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Taxonomic characterisation of Proteus terrae sp. nov., a N2O-producing, nitrate-ammonifying soil bacterium.

    Science.gov (United States)

    Behrendt, Undine; Augustin, Jürgen; Spröer, Cathrin; Gelbrecht, Jörg; Schumann, Peter; Ulrich, Andreas

    2015-12-01

    In the context of studying the influence of N-fertilization on N2 and N2O flux rates in relation to the soil bacterial community composition in fen peat grassland, a group of bacterial strains was isolated that performed dissimilatory nitrate reduction to ammonium and concomitantly produced N2O. The amount of nitrous oxide produced was influenced by the C/N ratio of the medium. The potential to generate nitrous oxide was increased by higher availability of nitrate-N. Phylogenetic analysis based on the 16S rRNA and the rpoB gene sequences demonstrated that the investigated isolates belong to the genus Proteus, showing high similarity with the respective type strains of Proteus vulgaris and Proteus penneri. DNA-DNA hybridization studies revealed differences at the species level. These differences were substantiated by MALDI-TOF MS analysis and several distinct physiological characteristics. On the basis of these results, it was concluded that the soil isolates represent a novel species for which the name Proteus terrae sp. nov. (type strain N5/687(T) =DSM 29910(T) =LMG 28659(T)) is proposed.

  5. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov.

    Science.gov (United States)

    Ishii, Satoshi; Ashida, Naoaki; Ohno, Hiroki; Segawa, Takahiro; Yabe, Shuhei; Otsuka, Shigeto; Yokota, Akira; Senoo, Keishi

    2017-06-01

    Thirty-nine denitrifying bacterial strains closely related to one another, represented by strains TSA40T and TSA66T, were isolated from rice paddy soils. Strains TSA40T and TSA66T were Gram-stain-negative, slightly curved rod-shaped, and motile by means of polar flagella. They were able to reduce nitrate, nitrite and nitrous oxide, but unable to fix atmospheric N2. While strain TSA66T was able to grow autotrophically by H2-dependent denitrification, strain TSA40T could not. Phylogenetic analysis suggested that they belong to the family Oxalobacteraceae, the order Burkholderiales in the class Betaproteobacteria. Major components in the fatty acids (C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and summed feature 3) and quinone (Q-8) also supported the affiliation of strains TSA40T and TSA66T to the family Oxalobacteraceae. Based on 16S rRNA gene sequence comparisons, strains TSA40T and TSA66T showed the greatest degree of similarity to Herbaspirillum massiliense JC206T, Noviherbaspirillum malthae CC-AFH3T, Noviherbaspirillum humi U15T, Herbaspirillum seropedicae Z67T and Paucimonas lemoignei LMG 2207T, and lower similarities to the members of other genera. Average nucleotide identity values between the genomes of strain TSA40T, TSA66T and H. massiliense JC206T were 75-77 %, which was lower than the threshold value for species discrimination (95-96 %). Based on the 16S rRNA gene sequence analysis in combination with physiological, chemotaxonomic and genomic properties, strains TSA40T (=JCM 17722T=ATCC TSD-69T) and TSA66T (=JCM 17723T=DSM 25787T) are the type strains of two novel species within the genus Noviherbaspirillum, for which the names Noviherbaspirillum denitrificans sp. nov. and Noviherbaspirillum autotrophicum sp. nov. are proposed, respectively. We also propose the reclassification of Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov.

  6. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  7. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    Science.gov (United States)

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  8. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  9. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.

    Science.gov (United States)

    Suleimanova, Aliya D; Beinhauer, Astrid; Valeeva, Liia R; Chastukhina, Inna B; Balaban, Nelly P; Shakirov, Eugene V; Greiner, Ralf; Sharipova, Margarita R

    2015-10-01

    Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Development of an engineered soil bacterium enabling to convert both insoluble inorganic and organic phosphate into plant available phosphate and its use as a biofertilizer.

    Science.gov (United States)

    Liu, Lili; Du, Wenya; Luo, Wenyu; Su, Yi; Hui, Jiejie; Ma, Shengwu

    2015-05-01

    Phosphorus (P) is one of the most important nutrient elements for plant growth and metabolism. We previously isolated a P-solubilizing bacterium 9320-SD with the ability to utilize inorganic P and convert it into plant-available P. The present study aims to enhance the P-solubilizing capacity of 9320-SD, as our long-term goal is to develop a more effective P-solubilizing bacterial strain for use as a biofertilizer. In this end, we introduced a bacterial phytase encoding gene into 9320-SD. One randomly selected transformant, SDLiuTP02, was examined for recombinant protein expression and phytase activity, and assessed for its ability to promote plant growth. Our results indicate that SDLiuTP02 is capable of expressing high levels of phytase activity. Importantly, corn seedlings treated with the SDLiuTP02 cell culture exhibited increased rates of photosynthesis, transpiration, and stomatal conductance as well as increased growth rate under laboratory conditions and increased growth rate in pot assays compared to seedlings treated with cell cultures of the parental strain 9320-SD. Field experiments further indicated that application of SDLiuTP02 promoted a greater growth rate in young cucumber plant and a higher foliar chlorophyll level in chop suey greens when compared to 9320-SD treated controls. These results indicate that SDLiuTP02 has the potential to be a more effective P biofertilizer to increase agricultural productivity.

  11. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co2+, Cu2+ and Zn2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  12. Draft Genome Sequence of Bacillus thuringiensis Strain BrMgv02-JM63, a Chitinolytic Bacterium Isolated from Oil-Contaminated Mangrove Soil in Brazil.

    Science.gov (United States)

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-30

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

  13. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    DEFF Research Database (Denmark)

    Zheng, Shixue; Su, Jing; Wang, Liang

    2014-01-01

    impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions: C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions...

  14. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  15. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation

    International Nuclear Information System (INIS)

    Gupta, Indarchand R.; Anderson, Anne J.; Rai, Mahendra

    2015-01-01

    Highlights: • This study incorporates the mycosynthesis of AgNPs and their characterisation by various methods. • A first attempt demonstrating the toxicity assessment of AgNPs on beneficial soil microbe. • Use of biosensor in Pseudomonas putida KT2440, gave accurate antimicrobial results. - Abstract: Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV–vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 – a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity

  16. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Indarchand R. [Nanobiotechnology Laboratory, Department of Biotechnology, S.G.B. Amravati University, Amravati 444602, Maharashtra (India); Department of Biotechnology, Institute of Science, Nipat Niranjan Nagar, Caves Road, Aurangabad 431004, Maharashtra (India); Anderson, Anne J. [Department of Biology, Utah State University, Logan, Utah 84321 (United States); Rai, Mahendra, E-mail: mahendrarai@sgbau.ac.in [Nanobiotechnology Laboratory, Department of Biotechnology, S.G.B. Amravati University, Amravati 444602, Maharashtra (India); Laboratório de Química Biológica, Instituto de Química, UNICAMP, Cidade Universitária “Zefferino Vaz” Barão Geraldo, CEP 13083-970, Caixa Postal 6150, Campinas, SP (Brazil)

    2015-04-09

    Highlights: • This study incorporates the mycosynthesis of AgNPs and their characterisation by various methods. • A first attempt demonstrating the toxicity assessment of AgNPs on beneficial soil microbe. • Use of biosensor in Pseudomonas putida KT2440, gave accurate antimicrobial results. - Abstract: Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV–vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 – a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity.

  17. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21T)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Juan [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chertkov, Olga [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Fiebig, Anne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedo- nobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum Chloroflexi . Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassi- fied lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum Chloroflexi . The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.

  18. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21).

    Science.gov (United States)

    Chang, Yun-Juan; Land, Miriam; Hauser, Loren; Chertkov, Olga; Del Rio, Tijana Glavina; Nolan, Matt; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Mavromatis, Konstantinos; Liolios, Konstantinos; Brettin, Thomas; Fiebig, Anne; Rohde, Manfred; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2011-10-15

    Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum 'Chloroflexi'. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum 'Chloroflexi'. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  20. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  1. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  3. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  4. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  5. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    Science.gov (United States)

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  6. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  7. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  9. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  10. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  12. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  13. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  14. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    Abdullaeva, R.A.

    2006-01-01

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  15. Engineering a wild fast-growing Mycoplasma bacterium to generate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... The CCPP bacterium causes sick animals to experience severe symptoms ... because antibiotic treatment does not eliminate the responsible bacterium. ... To develop a fast growing CCPP vaccine for cheaper production and ...

  16. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  17. Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis

    Digital Repository Service at National Institute of Oceanography (India)

    SatheeshBabu, S.; Mohandass, C.; VijayRaj, A.S.; Rajasabapathy, R.; Dhale, M.A.

    stream_size 41279 stream_content_type text/plain stream_name Water_Air_Soil_Pollut_224_1500a.pdf.txt stream_source_info Water_Air_Soil_Pollut_224_1500a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8...     1    Author version: Water Air Soil Pollut., vol.224(4); 2013; 1500 Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis S. Satheesh Babu, C.Mohandass*, A.S.Vijay Raj, R...

  18. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  19. Agrobacterium tumefaciens is a diazotrophic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Kanvinde, L.; Sastry, G.R.K. (Univ. of Leeds (England))

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  20. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  1. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    Directory of Open Access Journals (Sweden)

    Mirjam Kaestli

    2015-03-01

    Full Text Available Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  2. Effect of Azospirillum brasilense inoculation on urease activity in soil and gamma-sterilized soil

    International Nuclear Information System (INIS)

    Perotti, E.B.R.; Pidello, A.

    1999-01-01

    Azospirillum spp. is considered a PGPR (plant growth promoting rhyzobacteria) bacterium, besides this interest, there is little information about its effects on other functional microbial groups or on soil enzymes. In this paper, the impact that Azospirillum brasilense 7001 inoculation has on urease activity expression in a Typic Argiudoll was studied. Evolution of urease activity of soil and of gamma irradiation (25 KGy) sterilized soil, and the inoculated strain survival were tested. The relation between soil urease activity and soil NH 4 +-N was also determined. In γ-sterilized soil, urease activity of inoculated soil increased with time, showing significant differences with regard to the control soil without inoculum at day 15. In non-sterile soil, urease activity decreased during the studied period in all treatments; in inoculated soil, it showed higher or lower values than the control depending on sampling time. Azospirillum survival was important and different according to soil condition conditions. The negative relation between NH 4 +-N concentration and soil urease activity (r 2 = 0.62) was observed in inoculated soil. The role of the addition of autoclaved inoculum in the urease activity expression is discussed. The research proves that in both studied situations Azospirillum modified soil urease activity, and that the competition with native microorganisms and soil NH 4 +-N may affect this bacterium capacity. (author)

  3. Ethanologenic potential of the bacterium Bacillus cereus NB-19 in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Ethanologenic bacterium was cultivated in a suspension of sugarcane ... bagasse is very useful for obtaining yields of the different products including cell mass and ethanol as ... the resources for the green fuel generation.

  4. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  5. [Genetic variability of the bacterium Ralstonia solanacearum (Burkholderiales: Burholderiaceae) in the banana-growing region of Uraba (Colombia)].

    Science.gov (United States)

    Cardozo, Carolina; Rodríguez, Paola; Cotes, José Miguel; Marín, Mauricio

    2010-03-01

    The banana moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most important phytopathological problems of the banana agribusiness in tropical countries. In Uraba and Magdalena (Colombia), the main exporting regions of banana in Colombia, this disease causes a destruction estimated in 16.5 ha/year. The bacterium presents an extremely high level of genetic variation that affects control measures. This is the first study of its variation in Colombia and was done with AFLP molecular markers on a population of 100 isolates from banana plants, soils and "weeds". The high level of genetic diversity, with Nei and Shannon indexes of h=0.32 and I=0.48, respectively, and the AMOVA, showed that this population is subestructured (Fst=0.66): the host is the main factor of differentiation. Even so, previous tests show that all varieties have pathogenicity on Musa.

  6. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  7. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  8. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  9. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  10. The Bacterium That Got Infected by a Cow! - Horizontal Gene

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. The Bacterium That Got Infected by a Cow! - Horizontal Gene Transfer and Evolution. Saurabh Dhawan Tomás John Ryan. General Article Volume 12 Issue 1 January 2007 pp 49-59 ...

  11. Monitoring of a novel bacterium, Lactobacillus thermotolerans , in ...

    African Journals Online (AJOL)

    Abstract. We successfully established fluorescence in situ hybridization (FISH) method for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific FISH probes were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were ...

  12. methoxyethanol by a new bacterium isolate Pseudomonas sp. Strain

    African Journals Online (AJOL)

    Michael Horsfall

    A 2-methoxyethanol degrading bacterium was isolated from anaerobic sludge of a municipal sewage from ... Stoichiometrically, the strain utilized one mole of oxygen per one mole of 2-methoxyethanol instead of ... physiological and biochemical characterization of the .... observed with acetate and the intact resting cells.

  13. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  14. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  15. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  16. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  17. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  18. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  19. Antibacterial marine bacterium deter luminous vibriosis in shrimp larvae

    OpenAIRE

    Abraham, T.J.

    2004-01-01

    Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp...

  20. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  1. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Science.gov (United States)

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  3. An evaluation of the ability of Dichelobacter nodosus to survive in soil

    DEFF Research Database (Denmark)

    Cederlöf, Sara Ellinor; Hansen, Tomas; Klaas, Ilka Christine

    2013-01-01

    Background Dichelobacter nodosus is the causative agent of footrot in sheep. The survival of the bacterium in soil is of importance for the epidemiology of the disease. The investigation evaluates the survival of D. nodosus in soil with and without added hoof powder stored under different tempera...

  4. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  5. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  6. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  7. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  8. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  9. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  10. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  11. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  12. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  13. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  14. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    Science.gov (United States)

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  15. Gracilibacillus aidingensis sp. nov., a novel moderately halophilic bacterium isolated from Aiding salt lake.

    Science.gov (United States)

    Guan, Tong-Wei; Tian, Lei; Li, En-Yuan; Tang, Shu-Kun; Zhang, Xiao-Ping

    2017-11-01

    A novel Gram-positive, aerobe, moderately halophilic bacterium was isolated from saline soil of Aiding lake in Xinjiang, north-west of China, designated strain YIM 98001 T . Cells were rod-shaped, motile and grew at 5-20% (w/v) NaCl (optimum 10%), pH 6-10 (optimum pH 7.0) and 4-45 °C (optimum 37 °C). The major cellular fatty acids were anteiso C 15:0 , anteiso C 17:0 , iso C 15:0 . The predominant respiratory quinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid were the major polar lipids. Meso-diaminopimelic acid was the diagnostic diamino acid of the cell-wall peptidoglycan. The G+C content was 36.46 mol%. 16S rRNA gene sequence analysis showed that the strain belongs to the family Bacillaceae, with the highest sequence similarity to the type strain Gracilibacillus thailandensis TP2-8 T (96.84%), followed by Gracilibacillus saliphilus YIM 91119 T (96.78%) and Gracilibacillus ureilyticus MF38 T (96.57%), thus confirming the affiliation of strain YIM 98001 T to the genus Gracilibacillus. The polyphasic approach indicates that strain YIM 98001 T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus aidingensis is proposed. The type strain is YIM 98001 T (=KCTC 42683 T  = DSMZ 104330 T ).

  16. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB.

    Science.gov (United States)

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan

    2015-07-01

    A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.

  17. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  18. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...

  19. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  20. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii.

    Directory of Open Access Journals (Sweden)

    Konstantinos Mavromatis

    Full Text Available Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  1. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  2. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    Science.gov (United States)

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  3. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  4. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  5. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2016-06-02

    a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. P. agglomerans strains associated with both rhizosphere and plant tissues (as endophytes) efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, P. agglomerans is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the Pantoea strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. P. agglomerans prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of P. agglomerans in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of Pantoea genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the Pantoea biopreparations are maintained.

  6. Pantoea agglomerans : a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. P. agglomerans strains associated with both rhizosphere and plant tissues (as endophytes efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, P. agglomerans is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the Pantoea strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. P. agglomerans prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of P. agglomerans in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of Pantoea genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the Pantoea biopreparations are maintained.

  7. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    production, competition mechanisms or induction of plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. [i]P. agglomerans[/i] strains associated with both rhizosphere and plant tissues (as endophytes efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, [i]P. agglomerans[/i] is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the [i]Pantoea[/i] strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. [i]P. agglomerans[/i] prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of [i]P. agglomerans[/i] in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of [i]Pantoea [/i]genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the [i]Pantoea[/i] biopreparations are maintained.

  8. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  9. Draft Genome Sequence of the Nicotinate-Metabolizing Soil Bacterium Bacillus niacini DSM 2923.

    Science.gov (United States)

    Harvey, Zachary H; Snider, Mark J

    2014-12-04

    Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the availability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears to be unique among the species in its phylogenetic neighborhood. Copyright © 2014 Harvey and Snider.

  10. Extracellular production of avicelase by the thermophilic soil bacterium Bacillus sp. SMIA-2

    Directory of Open Access Journals (Sweden)

    Luciana Ribeiro Coutinho Oliveira

    2014-05-01

    Full Text Available Nowadays, the isolation of new bacterial strains that produce enzymes with novel properties is a subject of great relevance to the scientific community. This study, in order to search for producers of new cellulase strains, investigated the avicelase production by thermophilic Bacillus sp. strain SMIA-2. The best avicelase activity was observed in a culture medium containing 0.5% (w v-1 avicel and 0.5% (w v-1 corn steep liquor with initial pH 7.5-8.0 incubated at 50oC. When avicel was replaced in the medium by the treated sugarcane bagasse (0.5%, w v-1 the avicelase activity levels were not affected. Studies on the avicelase characterization revealed that the optimum pH of the enzyme was found to be 8.5 and the enzyme retained more than 80% of its activity after incubation at room temperature for 2h at pH 6.5-8.5. The optimum temperature of this enzyme was 70oC and the enzyme retained 67% of the original activity after 20 min. of heat treatment at 70oC. Avicelase was stimulated by Mn2+ and Co2+, whereas Hg2+ greatly inhibited the enzyme activity

  11. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  12. Biodegradation of Mexican Diesel for a bacteria consortium of an agricultural soil

    International Nuclear Information System (INIS)

    Cardona, Santiago; Iturbe, Rosario

    2003-01-01

    The biodegradation of diesel in water was done by means of the microorganisms present in an agriculture soil. The kinetics of biodegradation and adsorption of diesel were determined in order to applying the procedure in soil and water resources contaminated with diesel. The methodology and results of biodegradation and adsorption of diesel in synthetic water is presented with a soil characterization. Degradation takes place using the original microorganisms present in the soil but giving nitrogen as nutrient. As oxygen source the hydrogen peroxide was used. The kinetics of diesel volatility is presented too. Kinetics equations for degradation, adsorption and speed constant were determined with the obtained results biodegradation, diesel, agriculture soil, bacterium group

  13. Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola

    Directory of Open Access Journals (Sweden)

    Ying eMa

    2016-02-01

    Full Text Available Application of hyperaccumulator–endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn and Pb. Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn ˃ Cd ˃ Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.

  14. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    Science.gov (United States)

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of the radioresistance in the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Kong Xiangrong; Du Zeji

    1999-01-01

    The radioresistance of wild type Deinococcus radiodurans KD8301 and the factors affecting the radioresistance were investigated. KH3111 which was a DNA repair mutant of KD8301 (Zeji Du, 1998) was used to be compared with KD8301. Deinococcus radiodurans was discovered by Anderson et al (1956) in X-ray sterilized canned meat that was found to have undergone spoilage. this bacterium and other species of this genus share extreme resistance to ionizing radiation and other agents that damage DNA. Wild type KD8301 and its sensitive mutant KH3111 were irradiated with 60 Co γ-ray at the dose range 0.5 ∼ 10 kGy. Dose-survival fraction curves were made and the radio resistances were determined by LD 99 . The relative contents of DNA in cells were measured by Fluorescence Spectrophotometry (Freedman and Bruce, 1971). The results indicated that wild type KD8301 possesses more radioresistant than its mutant KH3111, LD99 were 9.5 kGy and 2.4 kGy respectively. KD8301 grown at exponential phase showed a decreased resistance to radiation, and the LD99 was 5.1 kGy. No differences of DNA/protein in cells were found between the exponential phase and the stationary phase. The results could be concluded that wild type KD8301 possesses remarkable radioresistance, but this ability was decreased or disappeared after mutation (in KH3111). None DNA relative content other than the growth stages were determinant factors of radioresistance in Deinococcus radiodurans. This results were different from other report (Dickie N et al, 1990). The cellular mechanisms might be the deference's of the bacterium cell morphology between the exponential phase and the stationary phase. Recently, the mutation site of KH3111 which was mutated chemically from wild type KD8301 was identified (Zeji Du, 1998). One base pair changed in the novel gene pprA which was isolated from KD8301 genomic DNA. This point mutation was confirmed to be responsible for the sensitivity of KH3111 to γ-ray and other DNA

  16. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  17. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  18. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  19. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  20. Studies on amylase activity of an amylolytic bacterium isolated from ...

    African Journals Online (AJOL)

    Diverse microscopic, macroscopic and biochemical analysis of a starch degrading amylolytic bacterial strain isolated from the soil sample of Rajakkamangalam estuary, Kanyakumari district, Tamil Nadu, India, revealed its identity to the genus Bacillus. Maximum growth was observed at 12 h when the bacteria was cultured ...

  1. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Science.gov (United States)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  2. Echinicola shivajiensis sp. nov., a novel bacterium of the family "Cyclobacteriaceae" isolated from brackish water pond

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Tryambak, B.K.; AnilKumar, P.

    Strain AK12 sup(T), an orange pigmented Gramnegative, rod shaped, non-motile bacterium, was isolated fromamud sample collected froma brackishwater pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase...

  3. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium

    Czech Academy of Sciences Publication Activity Database

    Moon, C. D.; Pacheco, D. M.; Kelly, W. J.; Leahy, S. C.; Li, D.; Kopečný, Jan; Attwood, G. T.

    2008-01-01

    Roč. 58, - (2008), s. 2041-2045 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50450515 Keywords : Butyrivibrio * ruminal bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.222, year: 2008

  4. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  5. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on

  6. Microbial degradation of metalaxyl in soil

    International Nuclear Information System (INIS)

    Musumeci, M.R.; Ruegg, E.F.

    1984-01-01

    The behaviour of the fungicide metalaxyl in purple latosol soil was investigated using a ring - 14 C labelled compound under laboratory conditions. In nonsterile soil samples under aerobic conditions, metalaxyl was degrated into two metabolites. After 60 days, 60% of the radiocarbon on TLC plates corresponded to the parent fungicide, 22% to its metabolite N-(2-methoxyacetyl)-N-(2,6-xylyl)-DL-alanine, and 2.7% to a second and unidentified metabolite. The U.V. absorbance value of metalaxyl decreased after seven days incubation with a soil microorganisms suspension. Incubation of 14 C-metalaxyl for 50 days with a bacterium or a fungus isolated from that suspension resulted in metalaxyl gradual disappearance from the medium, but not metabolites were detected during this period. (Author) [pt

  7. Microbial degradation of metalaxyl in soil

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, M.R.; Ruegg, E.F. (Instituto Biologico, Sao Paulo (Brazil). Centro de Radioisotopos)

    1984-10-01

    The behaviour of the fungicide metalaxyl in purple latosol soil was investigated using a ring - /sup 14/C labelled compound under laboratory conditions. In nonsterile soil samples under aerobic conditions, metalaxyl was degraded into two metabolites. After 60 days, 60% of the radiocarbon on TLC plates corresponded to the parent fungicide, 22% to its metabolite N-(2-methoxyacetyl)-N-(2,6-xylyl)-DL-alanine, and 2.7% to a second and unidentified metabolite. The U.V. absorbance value of metalaxyl decreased after seven days incubation with a soil microorganisms suspension. Incubation of /sup 14/C-metalaxyl for 50 days with a bacterium or a fungus isolated from that suspension resulted in metalaxyl gradual disappearance from the medium, but not metabolites were detected during this period.

  8. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  9. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  10. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  11. Effect of fertilization and soil treatment on the soybean nodulation

    International Nuclear Information System (INIS)

    Abdel aziz, H.A.

    1993-01-01

    Soybean (Glycine max L. ) is one of the most important leguminosae crops all over the world. It is considered one of the most important protein sources for human and animals. During the last 20 years, soybean was introduced to Egypt, however the nodulation of soybean under field conditions remains a problem because the egyptian soils were void of soybean rhizobia. Since soybean is a leguminosae crop, symbiosis with root - nodule R hizobium might play a significant role in the management of its production . Nevertheless, soybean suffers from poor nodulation in egypt, hence nitrogenase fertilization for legume is a logical practice. Soybean can utilize both soil -N or applied N and symbiotically fixed atmospheric nitrogen under normal field condition. The fixation of atmospheric N by the legume/Rhizobium symbiosis is an integrated process in which the host plant ( macrosymbiont) supplies the bacterium (microsymbiont) with energy and the bacterium supplies the plant with reduced N. figs.,172 refs

  12. Soil organism in organic and conventional cropping systems.

    OpenAIRE

    Bettiol, Wagner; Ghini, Raquel; Galvão, José Abrahão Haddad; Ligo, Marcos Antônio Vieira; Mineiro, Jeferson Luiz de Carvalho

    2002-01-01

    Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum) and corn (Zea mays) crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. C...

  13. Degradation of pyrene in soil and in vitro by a Bacillus lentus strain ...

    African Journals Online (AJOL)

    A bacterium isolated from an asphalt plant soil and identified as a strain of Bacillus lentus was tested in vitro and in sterilized and native soils for ability to survive and sustain pyrene degradation over a period of 63 days. The exponential growth rate in vitro was 0.049 d-1 and the doubling time 2.65 d. In the control flask ...

  14. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  15. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  16. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  17. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  18. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  19. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study)

    OpenAIRE

    OCKY KARNA RADJASA; TORBEN MARTENS; HANS-PETER GROSSART; AGUS SABDONO; MEINHARD SIMON; TONNY BACHTIAR

    2005-01-01

    A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved s...

  20. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  1. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  2. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); He, Yan, E-mail: yhe2006@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Feng, Xiaoli [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Liang, Luyi [Experiment Teaching Center for Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Jianming, E-mail: jmxu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Brookes, Philip C.; Wu, Jianjun [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China)

    2014-03-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants.

  3. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    International Nuclear Information System (INIS)

    Xu, Yan; He, Yan; Feng, Xiaoli; Liang, Luyi; Xu, Jianming; Brookes, Philip C.; Wu, Jianjun

    2014-01-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants

  4. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  5. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia.

    Science.gov (United States)

    Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-08-10

    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture

  6. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  7. Extracellular Pectinase from a Novel Bacterium Chryseobacterium indologenes Strain SD and Its Application in Fruit Juice Clarification

    Directory of Open Access Journals (Sweden)

    Karabi Roy

    2018-01-01

    Full Text Available Pectinase is one of the important enzymes of industrial sectors. Presently, most of the pectinases are of plant origin but there are only a few reports on bacterial pectinases. The aim of the present study was to isolate a novel and potential pectinase producing bacterium as well as optimization of its various parameters for maximum enzyme production. A total of forty bacterial isolates were isolated from vegetable dump waste soil using standard plate count methods. Primary screening was done by hydrolysis of pectin. Pectinase activity was determined by measuring the increase in reducing sugar formed by the enzymatic hydrolysis of pectin. Among the bacterial isolates, the isolate K6 exhibited higher pectinase activity in broth medium and was selected for further studies. The selected bacterial isolate K6 was identified as Chryseobacterium indologenes strain SD. The isolate was found to produce maximum pectinase at 37°C with pH 7.5 upon incubation for 72 hours, while cultured in production medium containing citrus pectin and yeast extract as C and N sources, respectively. During enzyme-substrate reaction phase, the enzyme exhibited its best activity at pH of 8.0 and temperature of 40°C using citrus pectin as substrate. The pectinase of the isolate showed potentiality on different types of fruit juice clarification.

  8. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  9. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer......’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...... market price because of a quality downgrade caused by textural changes in the fillet....

  10. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  11. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest.

    Science.gov (United States)

    Llamas, Inmaculada; del Moral, Ana; Martínez-Checa, Fernando; Arco, Yolanda; Arias, Soledad; Quesada, Emilia

    2006-01-01

    Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.

  12. TOF-SIMS investigation of Streptomyces coelicolor, a mycelial bacterium

    International Nuclear Information System (INIS)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Lockyer, Nicholas P.; Vickerman, John C.

    2008-01-01

    Streptomyces coelicolor is a mycelial microorganism that produces several secondary metabolites, including antibiotics. The physiology of the organism has largely been investigated in liquid cultures due to ease of monitoring different physiological parameters and more homogeneous culture conditions. However, solid cultures reflect the natural physiology of the microorganism better, given that in its natural state it grows in the soil. Imaging mass spectrometry with TOF-SIMS and C 60 + primary ion beams offers a potential route to studying chemical changes at the molecular level, both intracellular and extracellular that can help in understanding the natural physiology of the microorganism. Here, we report the application of the technique for studying the lateral distribution of the chemical species detected in a population, grown in both liquid and solid cultures. The capability of the technique for studying biological systems with minimal system intervention is demonstrated.

  13. TOF-SIMS investigation of Streptomyces coelicolor, a mycelial bacterium

    Science.gov (United States)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Lockyer, Nicholas P.; Vickerman, John C.

    2008-12-01

    Streptomyces coelicolor is a mycelial microorganism that produces several secondary metabolites, including antibiotics. The physiology of the organism has largely been investigated in liquid cultures due to ease of monitoring different physiological parameters and more homogeneous culture conditions. However, solid cultures reflect the natural physiology of the microorganism better, given that in its natural state it grows in the soil. Imaging mass spectrometry with TOF-SIMS and C 60+ primary ion beams offers a potential route to studying chemical changes at the molecular level, both intracellular and extracellular that can help in understanding the natural physiology of the microorganism. Here, we report the application of the technique for studying the lateral distribution of the chemical species detected in a population, grown in both liquid and solid cultures. The capability of the technique for studying biological systems with minimal system intervention is demonstrated.

  14. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  15. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  16. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    Science.gov (United States)

    Ross, A.J.; Rucker, R.R.; Ewing, W.H.

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  17. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  18. Soil Mechanics

    OpenAIRE

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  19. Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27.

    Science.gov (United States)

    Park, Doyoung; Kim, Hayeon; Yoon, Sukhwan

    2017-06-15

    ,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes , N 2 O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N 2 O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N 2 O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N 2 O dynamics in environments with frequent transitions between oxic and anoxic conditions. Copyright © 2017 American Society for Microbiology.

  20. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    Science.gov (United States)

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  1. Biodegradation of cyanide using Serratia sp. isolated from contaminated soil of gold mine in Takab

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohseni

    2014-07-01

    Full Text Available   Introduction : Cyanide is a toxic and hazardous compound for all organisms which is produced enormously by human being and causes the environment pollution. Biodegradation is the best method for cyanide elimination in industrial wastewater. The aims of this study were isolation of cyanide degrading bacteria from contaminated soil and investigation of their ability for cyanide degradation.   Materials and methods: After soil samples collection, enrichment of cyanide degrading bacteria was performed in a minimal medium containing 0.5 mM potassium cyanide. The ability of isolated bacterium to utilize the cyanide as sole carbon and nitrogen source was investigated. Cyanide degradation and ammonium production was determined in growth medium using picric acid and Nessler’s regent methods. Toxicity effect of different cyanide compounds on bacterial growth was determined using minimum inhibitory concentration. In addition, the ability of the isolated bacterium to utilize different cyanide compounds was investigated . Identification of the isolate was undertaken using morphological, physiological and biochemical characteristics and molecular analysis .   Results : A bacterium with ability to degrade cyanide as sole carbon and nitrogen source was isolated from soil. This bacterium named as isolate MF1. MF1 degraded cyanide in growth medium in alkaline condition after 40 hours. Moreover this isolate tolerated more than 7 mM potassium cyanide. The results showed that there was a direct relation between decreasing of cyanide concentration, increasing of ammonia concentration and growth of MF1. In addition, the isolated bacterium demonstrated the ability to utilize different cyanide compounds as sole carbon and nitrogen source. The results of morphological and physiological characteristics showed that this bacterium belonged to the Serratia sp. Moreover, 16S rDNA sequencing and phylogenetic analyses exhibited that MF1 strain was similar to Serratia

  2. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  3. Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine

    NARCIS (Netherlands)

    Kläring, K.; Hanske, L.; Bui, T.P.N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T.

    2013-01-01

    Whilst creating a bacterial collection of strains from the mouse intestine, we isolated a Gram-negative, spore-forming, non-motile and strictly anaerobic rod-shaped bacterium from the caecal content of a TNFdeltaARE mouse. The isolate, referred to as strain SRB-521-5-IT, was originally cultured on a

  4. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  5. Design of semi industrial radium separator by a new bacterium MGF-48

    International Nuclear Information System (INIS)

    Ghafourian, H.; Emami, M.R.; Farazmand, A.

    1998-01-01

    Following of a research work which has been recently published in AEOI scientific Bulletin no. 14, a semi industrial bioreactor has been designed for separation of radium using a new bacterium MGF-48. This bioreactor could be utilized for a high rate separation of radium in semi industrial scale. (author)

  6. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  8. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1 sup(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate...

  9. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Ravinder, K.; Korpole, S.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T , was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, L-proline arylamidase...

  10. Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Nupur; AnilKumar, P.

    A novel Gram-negative, rod shaped, motile, non-sporing strictly aerobic bacterium, designated strain AK5 sup(T), was isolated from a sea water sample collected near Visakhapatnam coast, Bay of Bengal, India. Colonies on marine agar were circular, 3...

  11. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  12. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna; Albertsen, Mads; Saikaly, Pascal

    2017-01-01

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  13. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila

    OpenAIRE

    Hammer, Austin J.; Walters, Amber; Carroll, Courtney; Newell, Peter D.; Chaston, John M.

    2017-01-01

    ABSTRACT The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429?bp, with 3,454 predicted genes.

  14. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    Science.gov (United States)

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  15. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

    OpenAIRE

    Masuda, Shinji; Hori, Koichi; Maruyama, Fumito; Ren, Shukun; Sugimoto, Saori; Yamamoto, Nozomi; Mori, Hiroshi; Yamada, Takuji; Sato, Shusei; Tabata, Satoshi; Ohta, Hiroyuki; Kurokawa, Ken

    2013-01-01

    We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments?a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.

  16. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    Science.gov (United States)

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  17. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Svensson, Birte

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS...

  18. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  19. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  20. Oceanospirillum nioense sp. nov., a marine bacterium isolated from sediment sample of Palk bay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.K.; Bhumika, V.; Thomas, M.; AnilKumar, P.; Srinivas, T.N.R.

    A novel Gram-negative, spiral shaped, motile bacterium, designated strain NIO-S6T, was isolated from a sediment sample collected from Offshore Rameswaram, Tamilnadu, India. Strain NIO-S6 sup(T) was found to be positive for oxidase, DNase and lysine...

  1. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    NARCIS (Netherlands)

    Sirota-Madi, A.; Olender, T.; Helman, Y.; Ingham, C.; Brainis, I.; Roth, D.; Hagi, E.; Brodsky, L.; Leshkowitz, D.; Galatenko, V.; Nikolaev, V.; Mugasimangalam, R.C.; Bransburg-Zabary, S.; Gutnick, D.L.; Lancet, D.; Ben-Jacob, E.

    2010-01-01

    Background: The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae)

  2. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  3. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  4. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  5. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  6. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  7. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  8. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  9. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko; Zhang, Lei; Kimura, Zen-ichiro; Ali, Muhammad; Fujii, Takao; Okabe, Satoshi

    2017-01-01

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  10. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  11. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  12. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  13. Persistence of Two Campylobacter jejuni Strains in Soil and on Spinach Plants

    International Nuclear Information System (INIS)

    Jaderlund, L.; Arthurson, V.; Sessitsch, A.

    2011-01-01

    There are indications that the more frequent use of untreated organic residues for fertilization results in increased risk of contamination with human pathogens. Here, we evaluate the ability of two different strains of Campylobacter jejuni to persist in manure and soil as well as spread to spinach plants. It was revealed that different strategies for inoculation of C. jejuni contribute to the persistence of the bacterium in soil, roots, and shoots. Upon inoculation of the bacteria into manure prior to soil application, the amount of C. jejuni subsequently recovered in soil was higher than that from treatments involving the addition of C. jejuni cells to the soil after plant emergence. Irrespective of the bacterial inoculation dose and strategy employed, the C. jejuni content in soil remained relatively constant, whereas the majority of C. jejuni cells applied to spinach leaves could be recovered during the whole evaluation period of 21 days.

  14. Agriculture: Soils

    Science.gov (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  15. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    Science.gov (United States)

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  16. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii.

    Directory of Open Access Journals (Sweden)

    Bao Chen

    Full Text Available The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin.

  17. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  18. [Development of a liquid fermentation system and encystment for a nitrogen-fixing bacterium strain having biofertilizer potential].

    Science.gov (United States)

    Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth

    The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    Science.gov (United States)

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  1. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted...... in a dose- and time-dependent adherence to RBCs. The adherence required functionally intact complement receptor 1 (CR1; also called CD35) on the RBCs and significantly inhibited the uptake of P. gingivalis by neutrophils and B cells within 1 min of incubation (by 64% and 51%, respectively...

  2. Framing in the Spanish press about the health crisis because of the E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2013-12-01

    Full Text Available This research article analyses  the approach made by press media and other institutional advertising about the E. coli bacterium, most commonly known as cucumber crisis in Spain. While in the rest of Europe this crisis receives the same treatment as A Flu or mad cow disease in this country it is treated as a crisis that affects to the spanish economy and not to the health of the citizen. Economic interests prevail over public health and this is due to official information given. An analysis of contents of the most popular journals in Spain, according to OJD, is made to prove this hypothesis, El Pais, El Mundo and ABC, as well as a study of the main institutional advertising made about E. coli bacterium by official spanish organizations and the media.

  3. Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors.

    Science.gov (United States)

    Ham, So-Young; Kim, Han-Shin; Cha, Eunji; Park, Jeong-Hoon; Park, Hee-Deung

    2018-06-01

    In this study, a quorum-quenching (QQ) bacterium named HEMM-1 was isolated at a membrane bioreactor (MBR) plant. HEMM-1 has diplococcal morphology and 99% sequence identity to Enterococcus species. The HEMM-1 cell-free supernatant (CFS) showed higher QQ activities than the CFS of other QQ bacteria, mostly by degrading N-acyl homoserine lactones (AHLs) with short acyl chains. Instrumental analyses revealed that HEMM-1 CFS degraded AHLs via lactonase activity. Under static, flow, and shear conditions, the HEMM-1 CFS was effective in reducing bacterial and activated-sludge biofilms formed on membrane surfaces. In conclusion, the HEMM-1 isolate is a QQ bacterium applicable to the control of biofouling in MBRs via inhibition of biofilm formation on membrane surfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    International Nuclear Information System (INIS)

    Aguayo, S; Bozec, L; Donos, N; Spratt, D

    2015-01-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine. (topical review)

  5. Bioaugmentation-assisted phytoextraction of Co, Pb and Zn: an assessment with a phosphate-solubilizing bacterium isolated from metal-contaminated mines of Boryeong Area in South Korea

    Directory of Open Access Journals (Sweden)

    Arunakumara, KKIU.

    2015-01-01

    Full Text Available Description of the subject. Make use of microbes having remarkable metal tolerance and plant growth-promoting abilities to remediate metal-contaminated soils. Objectives. The objectives were to isolate phosphate solubilizing bacterial strain, assess metal (Co, Pb and Zn mobilization potential of the strain and to evaluate the effects of the strain on growth and uptake of metals by Helianthus annuus. Method. A phosphate solubilizing bacterium was isolated from metal-contaminated soils. Heavy metal (Co, Pb and Zn tolerance of the strain was assessed using the agar dilution method. Bacterial-assisted growth promotion and metal uptake by H. annuus was evaluated in a pot experiment. The impact of bacterial inoculation on the mobility of metals in soil was investigated in a batch experiment. Results. The strain showed close proximity with Klebsiella oxytoca JCM1665, according to 16S rRNA sequence analysis. The strain was efficient in solubilizing phosphate, both in the presence and absence of metals. Inoculation of the strain enhanced the growth of H. annuus (49, 22 and 39% respectively in Co, Pb and Zn contaminated soils compared to non-inoculated plants. Accumulation and translocation of Co, Pb and Zn from roots to shoots were also enhanced by the strain. Water soluble fraction of Co, Pb and Zn in soil was increased by 51, 24 and 76% respectively in inoculated soils with regard to those of non-inoculated soils. Conclusions. Taking the plant growth promotion and metal mobilizing potential of the strain into account, practical application of the strain in enhancing phytoextraction of Co, Pb and Zn from contaminated soils could be recommended.

  6. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens - focus on cotton dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2015-01-01

    The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola) is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS) as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor) that cause

  7. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  8. Pantoea agglomerans : a marvelous bacterium of evil and good. Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans , Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  9. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    Science.gov (United States)

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. Copyright © 2016. Published by

  10. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-01-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  11. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno; Ryu, Tae Woo; Abdelmohsen, Usama Ramadan; Moitinho-Silva, Lucas; Horn, Hannes; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  12. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed; Thompson, Luke R.; Stingl, Ulrich

    2016-01-01

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  13. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  14. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  15. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    OpenAIRE

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia; Daum, Chris; Reddy, T.B.K.; Klenk, Hans-Peter; Spring, Stefan; G?ker, Markus; Reva, Oleg N.; Miroshnichenko, Margarita L.

    2017-01-01

    © 2017 Kublanov, Sigalova, Gavrilov, Lebedinsky, Rinke, Kovaleva, Chernyh, Ivanova, Daum, Reddy, Klenk, Spring, Göker, Reva, Miroshnichenko, Kyrpides, Woyke, Gelfand, Bonch-Osmolovskaya. The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to impl...

  16. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  18. Alteration of the Canine Small-Intestinal Lactic Acid Bacterium Microbiota by Feeding of Potential Probiotics

    OpenAIRE

    Manninen, Titta J. K.; Rinkinen, Minna L.; Beasley, Shea S.; Saris, Per E. J.

    2006-01-01

    Five potentially probiotic canine fecal lactic acid bacterium (LAB) strains, Lactobacillus fermentum LAB8, Lactobacillus salivarius LAB9, Weissella confusa LAB10, Lactobacillus rhamnosus LAB11, and Lactobacillus mucosae LAB12, were fed to five permanently fistulated beagles for 7 days. The survival of the strains and their potential effects on the indigenous intestinal LAB microbiota were monitored for 17 days. Denaturing gradient gel electrophoresis (DGGE) demonstrated that the five fed LAB ...

  19. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  20. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  1. Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium

    OpenAIRE

    Arif, Mohammad; Busot, Grethel Y.; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P.

    2016-01-01

    Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of...

  2. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    OpenAIRE

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidop...

  3. The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration

    OpenAIRE

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists ...

  4. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  5. DNA damage response in a radiation resistant bacterium Deinococcus radiodurans: a paradigm shift

    International Nuclear Information System (INIS)

    Misra, H.S.

    2015-01-01

    Deinococcusradiodurans is best known for its extraordinary resistance to gamma radiation with its D 10 12kGy, and several other DNA damaging agents including desiccation to less than 5% humidity and chemical xenotoxicants. An efficient DNA double strand break (DSB) repair and its ability to protect biomolecules from oxidative damage are a few mechanisms attributed to these phenotypes in this bacterium. Although it regulates its proteome and transcriptome in response to DNA damage for its growth and survival, it lacks LexA mediated classical SOS response mechanism. Since LexA mediated damages response mechanism is highly and perhaps only, characterized DNA damage response processes in prokaryotes, this bacterium keeps us guessing how it responds to extreme doses of DNA damage. Interestingly, this bacterium encodes a large number of eukaryotic type serine threonine/tyrosine protein kinases (eST/YPK), phosphatases and response regulators and roles of eST/YPKs in cellular response to DNA damage and cell cycle regulations are well established in eukaryotes. Here, we characterized an antioxidant and DNA damage inducible eST/YPK (RqkA) and established its role in extraordinary radioresistance and DSB repair in this bacterium. We identified native phosphoprotein substrates for this kinase and demonstrated the involvement of some of these proteins phosphorylation in the regulation of DSB repair and growth under radiation stress. Findings suggesting the possible existence of eST/YPK mediated DNA damage response mechanism as an alternate to classical SOS response in this prokaryote would be discussed. (author)

  6. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  7. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  8. FtsZ from radiation resistant bacterium Deinococcus radiodurans is different from its characterized homologues

    International Nuclear Information System (INIS)

    Mehta, Kruti P.; Misra, H.S.

    2012-01-01

    Polymerization/depolymerization dynamics of FtsZ and its GTPase activity are interdependent and the regulation of these processes determines the growth rate in a bacterium. Deinococcus radiodurans R1 that is best known for its extraordinary radiation resistance and efficient DNA double strand break repair is a comparatively slow growing bacterium and its growth gets arrested in response to gamma radiation. Mechanisms of cell division and its regulation under gamma stressed growth condition would be worth investigating. Genome of this bacterium encodes at least all the known components of divisome. Recombinant FtsZ of D. radiodurans (drFtsZ) preferred Mg 2+ for its GTPase activity. Relatively a very low GTPase activity was observed in presence of Mn 2+ , Co 2+ and Ni 2+ while release of inorganic phosphate could not be detected in presence of other divalent ions including Ca 2+ . GTPase activity of drFtsZ was lower than E. coli but higher than Mycobacterium and it required both Mg 2+ and GTP for its polymerization. Its GTPase activity did not increase with increasing concentration of Mg 2+ and correlates with the bundling of protofilaments. Results obtained from transmission electron microscopy and sedimentation analysis supported the reciprocal correlation of polymerization/depolymerization with the levels of GTPase activity. Dynamic light scattering in presence of 5mM or higher concentration of Mg 2+ and Mn 2 showed a characteristic cyclic change in light scattering without addition of extra metal ion or GTP

  9. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    Science.gov (United States)

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  11. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    Science.gov (United States)

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  12. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  13. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  14. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  15. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  16. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  17. Stenotrophomonas sp. RZS 7, a novel PHB degrader isolated from plastic contaminated soil in Shahada, Maharashtra, Western India.

    Science.gov (United States)

    Wani, S J; Shaikh, S S; Tabassum, B; Thakur, R; Gulati, A; Sayyed, R Z

    2016-12-01

    This paper reports an isolation and identification of novel poly-β-hydroxybutyrate (PHB) degrading bacterium Stenotrophomonas sp. RZS 7 and studies on its extracellular PHB degrading depolymerase enzyme. The bacterium isolated from soil samples of plastic contaminated sites of municipal area in Shahada, Maharashtra, Western India. It was identified as Stenotrophomonas sp. RZS 7 based on polyphasic approach. The bacterium grew well in minimal salt medium (MSM) and produced a zone (4.2 mm) of PHB hydrolysis on MSM containing PHB as the only source of nutrient. An optimum yield of enzyme was obtained on the fifth day of incubation at 37 °C and at pH 6.0. Further increase in enzyme production was recorded with Ca 2+ ions, while other metal ions like Fe 2+ (1 mM) and chemical viz. mercaptoethanol severally affected the production of enzyme.

  18. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  19. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  20. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    Science.gov (United States)

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  1. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  2. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  3. Draft Genome Sequence of Cupriavidus pauculus Strain KF709, a Biphenyl-Utilizing Bacterium Isolated from Biphenyl-Contaminated Soil.

    Science.gov (United States)

    Watanabe, Takahito; Yamazoe, Atsushi; Hosoyama, Akira; Fujihara, Hidehiko; Suenaga, Hikaru; Hirose, Jun; Futagami, Taiki; Goto, Masatoshi; Kimura, Nobutada; Furukawa, Kensuke

    2015-03-26

    We report the draft genome sequence of Cupriavidus pauculus strain KF709, which comprises 6,826,799 bp with 6,272 coding sequences. The strain KF709 utilizes biphenyl and degrades low-chlorinated biphenyls; however, it possesses fewer coding sequences involved in the degradation of aromatic compounds than other strains belonging to the Betaproteobacteria. Copyright © 2015 Watanabe et al.

  4. Draft Genome Sequence of Cupriavidus pauculus Strain KF709, a Biphenyl-Utilizing Bacterium Isolated from Biphenyl-Contaminated Soil

    OpenAIRE

    Watanabe, Takahito; Yamazoe, Atsushi; Hosoyama, Akira; Fujihara, Hidehiko; Suenaga, Hikaru; Hirose, Jun; Futagami, Taiki; Goto, Masatoshi; Kimura, Nobutada; Furukawa, Kensuke

    2015-01-01

    We report the draft genome sequence of Cupriavidus pauculus strain KF709, which comprises 6,826,799 bp with 6,272 coding sequences. The strain KF709 utilizes biphenyl and degrades low-chlorinated biphenyls; however, it possesses fewer coding sequences involved in the degradation of aromatic compounds than other strains belonging to the Betaproteobacteria.

  5. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications

    Science.gov (United States)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis

    2017-07-01

    Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.

  6. Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil.

    Science.gov (United States)

    Zou, Xiao-lin; Li, Xiu-ai; Wang, Xu-Ming; Chen, Qiang; Gao, Miao; Qiu, Tian-lei; Sun, Jian-guang; Gao, Jun-lian

    2013-10-01

    A novel Gram-stain-negative, aerobic, rod-shaped strain designated PG04(T) was isolated from the rhizosphere of watermelon plants cultivated in Beijing, China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, isolate PG04(T) belonged clearly to the genus Hansschlegelia and was most closely related to Hansschlegelia zhihuaiae (97.3 % similarity to the type strain). The predominant respiratory quinone was ubiquinone 10 (Q-10) and the polar lipid profile was composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major fatty acids were C18 : 1ω7c (41.3 %), C19 : 0 cyclo ω8c (30.6 %) and C16 : 0 (19.1 %). The G+C content of the DNA was about 64.4 mol%. DNA-DNA hybridization experiments showed 34.4 % relatedness between strain PG04(T) and H. zhihuaiae DSM 18984(T). The results of physiological and biochemical tests and differences in fatty acid profiles allowed clear phenotypic differentiation of strain PG04(T) from the most closely related species in the genus, H. zhihuaiae. Strain PG04(T) therefore represents a novel species within the genus Hansschlegelia, for which the name Hansschlegelia beijingensis sp. nov. is proposed, with the type strain PG04(T) ( = DSM 25481(T) = ACCC 05759(T)).

  7. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING AND AZO-DYE DECOLORIZING SERRATIA MARCESCENS STRAIN NENI-1 FROM INDONESIAN SOIL

    Directory of Open Access Journals (Sweden)

    Neni Gusmanizar

    2016-01-01

    Full Text Available Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, dmannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Moblue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.

  8. Soil moisture

    Science.gov (United States)

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  9. Soil microbiology

    International Nuclear Information System (INIS)

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  10. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  11. Basic Soils. Revision.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  12. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  13. Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sengeløv, Gitte; Jensen, Lars Bogø

    2004-01-01

    . The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. Result......A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria......: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry....

  14. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  15. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  16. Biofilm treatment of soil for waste containment and remediation

    International Nuclear Information System (INIS)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-01-01

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k sat using a flexible-wall permeameter. Saturated hydraulic conductivity (k sat ) was reduced from 1 x 10 -5 cm/sec to 2 x 10 -8 cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k sat , for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment

  17. The interactions of bacteria with fungi in soil: emerging concepts.

    Science.gov (United States)

    Haq, Irshad Ul; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk

    2014-01-01

    In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions. © 2014 Elsevier Inc. All rights reserved.

  18. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Imam, S.H.; Greene, R.V.; Griffin, H.L.

    1990-01-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35 S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  19. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  20. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence re...... with highest similarity to DNA repair protein from Campylobacter jejuni (25% aa). Orf34 showed similarity to sigma factors with highest similarity (28% aa) to the sporulation specific Sigma factor, Sigma 28(K) from Bacillus thuringiensis....

  1. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    Science.gov (United States)

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  2. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered......% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures....

  3. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1

    Directory of Open Access Journals (Sweden)

    Yunlong Yang

    Full Text Available ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.

  4. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  5. A fatal endocarditis case due to an emerging bacterium: Moraxella nonliquefaciens

    Directory of Open Access Journals (Sweden)

    C. Duployez

    2017-01-01

    Full Text Available Moraxella nonliquefaciens is a Gram-negative coccobacillus considered as a commensal organism from the upper respiratory tract, with low pathogenic potential. The phenotypical conventional identification is difficult and the matrix-assisted laser desorption/ionization time-of-flight technology has increased the resolution of identification of this bacterium. We report a fatal case of endocarditis due to M. nonliquefaciens whose identification was confirmed by 16S rRNA, and we review the literature on this pathogen in endocarditis.

  6. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    International Nuclear Information System (INIS)

    Maurice, P.

    2004-01-01

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals

  7. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    OpenAIRE

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-01-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  8. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    Science.gov (United States)

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-05-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  9. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    Science.gov (United States)

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  10. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  11. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  12. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    Naumov, G.N.; Bokhan, I.K.; Multykh, I.G.

    1986-01-01

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  13. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  14. Soil sampling

    International Nuclear Information System (INIS)

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  15. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Han, Yejun; Agarwal, Vinayak; Dodd, Dylan; Kim, Jason; Bae, Brian; Mackie, Roderick I; Nair, Satish K; Cann, Isaac K O

    2012-10-12

    Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.

  16. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  17. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  18. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    Science.gov (United States)

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  20. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    Science.gov (United States)

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  2. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  4. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    Science.gov (United States)

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  5. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    Science.gov (United States)

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  6. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    Science.gov (United States)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  7. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    Science.gov (United States)

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  9. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.

    Science.gov (United States)

    Windler, Miriam; Leinweber, Katrin; Bartulos, Carolina Rio; Philipp, Bodo; Kroth, Peter G

    2015-04-01

    Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation. © 2015 Phycological Society of America.

  10. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    Science.gov (United States)

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    Science.gov (United States)

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  12. Adopt a Bacterium - an active and collaborative learning experience in microbiology based on social media.

    Science.gov (United States)

    Piantola, Marco Aurélio Floriano; Moreno, Ana Carolina Ramos; Matielo, Heloísa Alonso; Taschner, Natalia Pasternak; Cavalcante, Rafael Ciro Marques; Khan, Samia; Ferreira, Rita de Cássia Café

    2018-04-24

    The "Adopt a Bacterium" project is based on the use of social network as a tool in Microbiology undergraduate education, improving student learning and encouraging students to participate in collaborative learning. The approach involves active participation of both students and teachers, emphasizing knowledge exchange, based on widely used social media. Students were organized in groups and asked to adopt a specific bacterial genus and, subsequently, submit posts about "adopted genus". The formative assessment is based on posting information on Facebook®, and the summative assessment involves presentation of seminars about the adopted theme. To evaluate the project, students filled out three anonymous and voluntary surveys. Most of the students enjoyed the activities and positively evaluated the experience. A large amount of students declared a change in their attitude towards the way they processed information, especially regarding the use of scientific sources. Finally, we evaluated knowledge retention six months after the end of the course and students were able to recall relevant Microbiology concepts. Our results suggest that the "Adopt a Bacterium" project represents a useful strategy in Microbiology learning and may be applied to other academic fields. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  14. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  15. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  16. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  17. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  18. Soil properties and processes

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  19. Soil and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  20. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena

  2. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA.The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena.

  3. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb

    2016-01-01

    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  4. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  5. Assessment of the biostimulation against bioaugmentation and natural attenuation on contaminated soil with diesel-gasoline mixing

    International Nuclear Information System (INIS)

    Gomez, Wilmar; Gaviria, Jair; Cardona, Santiago

    2009-01-01

    In this study carried out the bioremediation of a contaminated soil with a gasoline-diesel fuel mixture in a laboratory scale, to evaluate biostimulation against natural attenuation and bioaugmentation. The reduction of Total Petroleum Hydrocarbons (TPH) concentration during three months was 52.79 % for natural attenuation, 60.45 % for biostimulation and 64.92 % for bioaugmentation. For the inoculation in the bioaugmentation treatment, was isolated a bacterium with the capacity of degrade hydrocarbons which was identified as Bacillus sp.

  6. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  7. Volatile-mediated interactions between phylogenetically different soil bacteria

    Directory of Open Access Journals (Sweden)

    Paolina eGarbeva

    2014-06-01

    Full Text Available There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0-1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp. and Pedobacter sp. growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all 4 bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community.

  8. Detailed Soils 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  9. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  10. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  11. The impact of a pathogenic bacterium on a social carnivore population.

    Science.gov (United States)

    Höner, Oliver P; Wachter, Bettina; Goller, Katja V; Hofer, Heribert; Runyoro, Victor; Thierer, Dagmar; Fyumagwa, Robert D; Müller, Thomas; East, Marion L

    2012-01-01

    1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent

  12. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  13. Airborne Pathogens inside Automobiles for Domestic Use: Assessing In-Car Air Decontamination Devices Using Staphylococcus aureus as the Challenge Bacterium.

    Science.gov (United States)

    Sattar, Syed A; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Ijaz, M Khalid

    2017-05-15

    Family cars represent ∼74% of the yearly global output of motorized vehicles. With a life expectancy of ∼8 decades in many countries, the average person spends >100 min daily inside the confined and often shared space of the car, with exposure to a mix of potentially harmful microbes. Can commercial in-car microbial air decontamination devices mitigate the risk? Three such devices (designated devices 1 to 3) with HEPA filters were tested in the modified passenger cabin (3.25 m 3 ) of a four-door sedan housed within a biosafety level 3 containment facility. Staphylococcus aureus (ATCC 6538) was suspended in a soil load to simulate the presence of body fluids and aerosolized into the car's cabin with a 6-jet Collison nebulizer. A muffin fan (80 mm by 80 mm, with an output of 0.17 m 3 /min) circulated the air inside. Plates (150 mm diameter) of Trypticase soy agar (TSA), placed inside a programmable slit-to-agar sampler, were held at 36 ± 1°C for 18 to 24 h and examined for CFU. The input dose of the test bacterium, its rate of biological decay, and the log 10 reductions by the test devices were analyzed. The arbitrarily set performance criterion was the time in hours a device took for a 3-log 10 reduction in the level of airborne challenge bacterium. On average, the level of S. aureus challenge in the air varied between 4.2 log 10 CFU/m 3 and 5.5 log 10 CFU/m 3 , and its rate of biological decay was -0.0213 ± 0.0021 log 10 CFU/m 3 /min. Devices 1 to 3 took 2.3, 1.5, and 9.7 h, respectively, to meet the performance criterion. While the experimental setup was tested using S. aureus as an archetypical airborne pathogen, it can be readily adapted to test other types of pathogens and technologies. IMPORTANCE This study was designed to test the survival of airborne pathogens in the confined and shared space of a family automobile as well as to assess claims of devices marketed for in-car air decontamination. The basic experimental setup and the test protocols

  14. Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov.

    Science.gov (United States)

    Kulichevskaya, Irina S; Danilova, Olga V; Tereshina, Vera M; Kevbrin, Vadim V; Dedysh, Svetlana N

    2014-08-01

    A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic Sphagnum peat and designated strain Pf56(T). Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll a. However, in contrast to purple non-sulfur bacteria, strain Pf56(T) was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C1 substrates were not utilized. Strain Pf56(T) grew at pH 4.0-7.0 (optimum pH 5.5-6.5) and at 15-30 °C (optimum 22-28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8c and 18 : 1ω7c; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6-94.7 and 92.7-93.7% 16S rRNA gene sequence similarity to members of the families Methylocystaceae and Beijerinckiaceae, respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56(T) suggest that it represents a novel genus and species of bacteriochlorophyll a-containing fermentative bacteria, for which the name Roseiarcus fermentans gen. nov., sp. nov. is proposed. Strain Pf56(T) ( = DSM 24875(T) = VKM B-2876(T)) is the type strain of Roseiarcus fermentans, and is also the first characterized member of a novel family

  15. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  16. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  17. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    OpenAIRE

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  18. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  19. Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils.

    Science.gov (United States)

    Teng, Ying; Wang, Xiaomi; Zhu, Ye; Chen, Wei; Christie, Peter; Li, Zhengao; Luo, Yongming

    2017-04-01

    Pentachloronitrobenzene (PCNB) is a toxic chlorinated nitroaromatic compound. However, only a few bacteria have been reported to be able to utilize PCNB. In the present study, one pentachloronitrobenzene (PCNB)-degrading bacterium, Cupriavidus sp. YNS-85, was isolated from a contaminated Panax notoginseng plantation. The strain co-metabolized 200 mg L -1 PCNB in aqueous solution with a removal rate of 73.8% after 5 days. The bacterium also degraded PCNB effectively under acid conditions (pH 4-6) and showed resistance to toxic trace elements (arsenic, copper, and cadmium). Its ability to utilize proposed PCNB intermediates as sole carbon sources was also confirmed. The soil microcosm experiment further demonstrated that bacterial bioaugmentation enhanced the removal of PCNB (37.8%) from soil and the accumulation of pentachloroaniline (89.3%) after 30 days. Soil enzyme activity and microbial community functional diversity were positively influenced after bioremediation. These findings indicate that Cupriavidus sp. YNS-85 may be a suitable inoculant for in situ bioremediation of PCNB-polluted sites, especially those with acid soils co-contaminated with heavy metal(loid)s.

  20. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  1. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  2. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  4. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis.

    Science.gov (United States)

    Doolittle, J M; Webster-Cyriaque, J

    2014-04-29

    ABSTRACT The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi's sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.

  5. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    Directory of Open Access Journals (Sweden)

    Inga Hänelt

    2013-02-01

    Full Text Available The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus.

  6. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  7. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  8. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  9. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  10. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    Murygina, V.P.

    1978-01-01

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x10 2 erg/mm 2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  11. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V P

    1978-03-01

    Ultroviolet-radioinduced variability in analyase biosynthesis of a thermophilic bacterium Bacillus diastaticus 13, has been studied. It has been shown that amylase biosynthesis varies from 2.2 to 158.7% under UV irradiation. At 41.8x10/sup 2/ erg/mm/sup 2/ UV dose, a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation, two mutants with reduced amylose biosynthesis activity were prepared. Demands for growth factors by some mutants have been studied as well.

  12. Pathogenic bacteriumVibrio harveyi: an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans

    Institute of Scientific and Technical Information of China (English)

    QIAO Ying; WANG Jun; MAO Yong; LIU Min; CHEN Ruanni; SU Yongquan; KE Qiaozhen; HAN Kunhuang; ZHENG Weiqiang

    2017-01-01

    Vibrio harveyi, known as a pathogenic bacterium caused severe secondary bacterial infections of the large yellow croaker Larimichthys crocea, was identified as an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Meta 16S sequencing method was used to identify the bacterial flora in C. irritans, and V. harveyi was isolated via culture-dependent method.Vibrio harveyi was observed in cytoplasm of C. irritans at the stage of tomont both by transmission electron microscopy and by Fluorescencein situ hybridization; no signal, however, was detected in nucleus area. The relationship betweenV. harveyi and C. irritans and the role of endosymbioticV. harveyi inC. irritans merit further investigation.

  13. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    2011-01-01

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  14. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    Science.gov (United States)

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidopsis thaliana lines expressing tengu exhibited similar symptoms, confirming the effects of tengu expression on plants. Although the localization of phytoplasma was restricted to the phloem, TENGU protein was detected in apical buds by immunohistochemical analysis, suggesting that TENGU was transported from the phloem to other cells. Microarray analyses showed that auxin-responsive genes were significantly down-regulated in the tengu-transgenic plants compared with GUS-transgenic control plants. These results suggest that TENGU inhibits auxin-related pathways, thereby affecting plant development. PMID:19329488

  15. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  16. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca

    Science.gov (United States)

    Fossing, H.; Gallardo, V. A.; Jørgensen, B. B.; Hüttel, M.; Nielsen, L. P.; Schulz, H.; Canfield, D. E.; Forster, S.; Glud, R. N.; Gundersen, J. K.; Küver, J.; Ramsing, N. B.; Teske, A.; Thamdrup, B.; Ulloa, O.

    1995-04-01

    MARINE species of Thioploca occur over 3,000 km along the continental shelf off Southern Peru and North and Central Chile1-4. These filamentous bacteria live in bundles surrounded by a common sheath and form thick mats on the sea floor under the oxygen-minimum zone in the upwelling region, at between 40 and 280 m water depth. The metabolism of this marine bacterium5,6 remained a mystery until long after its discovery1,7. We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport this nitrate 5-10 cm down into the sediment and reduce it, with concomitant oxidation of hydrogen sulphide, thereby coupling the nitrogen and sulphur cycles in the sediment.

  17. Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1

    Directory of Open Access Journals (Sweden)

    David R. Colquhoun

    2012-01-01

    Full Text Available Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS to identify proteomic changes induced by growth on dibenzofuran, a surrogate for dioxin, as compared to acetate. Approximately 10% of the entire putative proteome of RW1 could be observed. Several components of the dioxin and dibenzofuran degradation pathway were shown to be upregulated, thereby highlighting the utility of using proteomic analyses for studying bioremediation agents. This is the first global protein analysis of a microorganism capable of utilizing the carbon backbone of both polychlorinated dioxins and dibenzofurans as the sole source for carbon and energy.

  18. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  19. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.

    Science.gov (United States)

    Rieu-Lesme, F; Fonty, G; Doré, J

    1995-01-01

    A new H2/CO2-utilizing acetogenic bacterium was isolated from the rumen of a mature deer. This is the first report of a spore-forming Gram-negative bacterial species from the rumen. The organism was a strictly anaerobic, motile rod and was able to grow autotrophically on hydrogen and carbon dioxide. Acetate was the major product detected. Glucose, fructose and lactate were also fermented heterotrophically. The optimum pH for growth was 7.0-7.5, and the optimum temperature was 37-42 degrees C. Yeast extract was required for growth and rumen fluid was highly stimulatory. The DNA base ratio was 52.9 +/- 0.5 mol% G+C. On the basis of these characteristics and fermentation products, the isolate was considered to be different from acetogenic bacteria described previously.

  20. BOG: R-package for Bacterium and virus analysis of Orthologous Groups

    Directory of Open Access Journals (Sweden)

    Jincheol Park

    2015-01-01

    Full Text Available BOG (Bacterium and virus analysis of Orthologous Groups is a package for identifying groups of differentially regulated genes in the light of gene functions for various virus and bacteria genomes. It is designed to identify Clusters of Orthologous Groups (COGs that are enriched among genes that have gone through significant changes under different conditions. This would contribute to the detection of pathogens, an important scientific research area of relevance in uncovering bioterrorism, among others. Particular statistical analyses include hypergeometric, Mann–Whitney rank sum, and gene set enrichment. Results from the analyses are organized and presented in tabular and graphical forms for ease of understanding and dissemination of results. BOG is implemented as an R-package, which is available from CRAN or can be downloaded from http://www.stat.osu.edu/~statgen/SOFTWARE/BOG/.

  1. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  2. Curiously modern DNA for a "250 million-year-old" bacterium.

    Science.gov (United States)

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  3. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium

    Directory of Open Access Journals (Sweden)

    Leong-Keat eChan

    2012-05-01

    Full Text Available Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC, a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ~50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade under four element limitation regimes (C, N, P, and S. Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S-limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to 6-fold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometery in R. pomeroyi may have implications for global carbon cycling. Strong homeostatic responses to N limitation by heterotrophic marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.

  4. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    Science.gov (United States)

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  5. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology.

    Science.gov (United States)

    Kindzierski, Viktoria; Raschke, Silvia; Knabe, Nicole; Siedler, Frank; Scheffer, Beatrix; Pflüger-Grau, Katharina; Pfeiffer, Friedhelm; Oesterhelt, Dieter; Marin-Sanguino, Alberto; Kunte, Hans-Jörg

    2017-01-01

    Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential.

  6. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  7. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    Science.gov (United States)

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  8. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  9. Virus-Bacterium Interactions in Water and Sediment of West African Inland Aquatic Systems

    Science.gov (United States)

    Bettarel, Yvan; Bouvy, Marc; Dumont, Claire; Sime-Ngando, Télesphore

    2006-01-01

    The ecology of virioplankton in tropical aquatic ecosystems is poorly documented, and in particular, there are no references concerning African continental waters in the literature. In this study, we examined virus-bacterium interactions in the pelagic and benthic zones of seven contrasting shallow inland waters in Senegal, including one hypersaline lake. SYBR Gold-stained samples revealed that in the surface layers of the sites, the numbers of viruses were in the same range as the numbers of viruses reported previously for productive temperate systems. Despite high bacterial production rates, the percentages of visibly infected cells (as determined by transmission electron microscopy) were similar to the lowest percentages (range, 0.3 to 1.1%; mean, 0.5%) found previously at pelagic freshwater or marine sites, presumably because of the local environmental and climatic conditions. Since the percentages of lysogenic bacteria were consistently less than 8% for pelagic and benthic samples, lysogeny did not appear to be a dominant strategy for virus propagation at these sites. In the benthic samples, viruses were highly concentrated, but paradoxically, no bacteria were visibly infected. This suggests that sediment provides good conditions for virus preservation but ironically is an unfavorable environment for proliferation. In addition, given the comparable size distributions of viruses in the water and sediment samples, our results support the paradigm that aquatic viruses are ubiquitous and may have moved between the two compartments of the shallow systems examined. Overall, this study provides additional information about the relevance of viruses in tropical areas and indicates that the intensity of virus-bacterium interactions in benthic habitats may lower than the intensity in the adjacent bodies of water. PMID:16885276

  10. Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments.

    Science.gov (United States)

    Lakhal, Raja; Pradel, Nathalie; Postec, Anne; Ollivier, Bernard; Cayol, Jean-Luc; Godfroy, Anne; Fardeau, Marie-Laure; Galés, Grégoire

    2015-09-01

    A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.

  11. Lethal Effect on Bacterium of Decay of Incorporated Radioactive Atoms (3H, 14C, 32P)

    International Nuclear Information System (INIS)

    Apelgot, Sonia

    1968-01-01

    The biological effect of decay of 3 H, 14 C and 32 P incorporated into a bacterium depends on the nature of the organic molecule labelled, on the position of the isotope within it and on the isotope itself. In sum, results obtained to date show that: The decay of 3 H atoms incorporated into certain macromolecules of a bacterium causes sterilization through ionization by the ß - particle emitted; transmutation is of negligible importance. This self-irradiation is comparable in effect with X-rays and is affected in a similar manner by the same factors: temperature, presence of a radioprotector, radiosensitivity of the strain. Decay of 14 C or 32 P atoms incorporated into bacterial DNA is lethal because of the transmutation effect; ionizations produced by emitted ß - particles may be disregarded. Survival curves for 32 P transmutations depend on the experimental conditions. Some of the results obtained with 32 P are similar to those obtained with X-rays, e.g. effects of temperature, radical capture and oxygen, while others are similar to those of u.v. light, e.g., effect of growth conditions. Comparative tests made with 32 P indicate that the recoil energy of transmutation is not the phenomenon responsible for the lethal effect observed. Comparison of the results obtained after X-irradiation or decay of 3 H or 32 P incorporated into the DNA of bacteria of the same strain of E. coli shows that the efficiency of a 32 P transmutation is about four times greater than that of an ionization produced at random within the same DNA. (author) [fr

  12. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  13. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea

    NARCIS (Netherlands)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged M.

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth-promoting activity and

  14. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  15. First Insights into the Genome Sequence of Clostridium thermopalmarium DSM 5974, a Butyrate-Producing Bacterium Isolated from Palm Wine.

    Science.gov (United States)

    Poehlein, Anja; Hettwer, Eva; Mohnike, Lennart; Daniel, Rolf

    2018-04-26

    Clostridium thermopalmarium is a moderate thermophilic, rod-shaped, and endospore-forming bacterium, which was isolated from palm wine in Senegal. Butyrate is produced from a broad variety of sugar substrates. Here, we present the draft genome sequence of C. thermopalmarium DSM 5974 (2.822 Mb) containing 2,665 predicted protein-encoding genes. Copyright © 2018 Poehlein et al.

  16. ‘Lactobacillus raoultii’ sp. nov., a new bacterium isolated from the vaginal flora of a woman with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    B. Nicaise

    2018-01-01

    Full Text Available We report the isolation of a new bacterium species, ‘Lactobacillus raoultii’ strain Marseille P4006 (CSUR P4006, isolated from a vaginal sample of a 45-year-old woman with bacterial vaginosis. Keywords: Bacterial vaginosis, culturomics, emerging bacteria, human microbiota, Lactobacillus raoultii, vaginal microbiota

  17. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far

  18. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    OpenAIRE

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Fran?oise; Loux, Valentin; Vidal, Marie; Passot, St?phanie; B?al, Catherine; Layec, S?verine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  19. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus ...

  20. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin

  1. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Hansen, Morten Ejby; Majumder, Avishek

    2016-01-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after...

  2. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    Science.gov (United States)

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  3. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  4. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important

  5. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  6. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant?Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, F?bio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.

  7. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    Science.gov (United States)

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  8. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  9. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Draft Genome Sequence of Caenibacillus caldisaponilyticus B157T, a Thermophilic and Phospholipase-Producing Bacterium Isolated from Acidulocompost

    Science.gov (United States)

    Tsujimoto, Yoshiyuki; Saito, Ryo; Sahara, Takehiko; Kimura, Nobutada; Tsuruoka, Naoki; Shigeri, Yasushi

    2017-01-01

    ABSTRACT Caenibacillus caldisaponilyticus B157T (= NBRC 111400T = DSM 101100T), in the family Sporolactobacillaceae, was isolated from acidulocompost as a thermophilic and phospholipid-degrading bacterium. Here, we report the 3.36-Mb draft genome sequence, with a G+C content of 51.8%, to provide the genetic information coding for phospholipases. PMID:28360164

  11. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    Science.gov (United States)

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  12. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    OpenAIRE

    da Silva, F?bio Daniel Flor?ncio; Lima, Alex Ranieri Jer?nimo; Moraes, Pablo Henrique Gon?alves; Siqueira, Andrei Santos; Dall?Agnol, Leonardo Teixeira; Bara?na, Anna Rafaella Ferreira; Martins, Luisa Car?cio; Oliveira, Karol Guimar?es; de Lima, Clayton Pereira Silva; Nunes, M?rcio Roberto Teixeira; Vianez-J?nior, Jo?o L?dio Silva Gon?alves; Gon?alves, Evonnildo Costa

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here.

  13. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae

    Czech Academy of Sciences Publication Activity Database

    Piwosz, Kasia; Kaftan, David; Dean, Jason; Šetlík, Jiří; Koblížek, Michal

    2018-01-01

    Roč. 20, č. 2 (2018), s. 724-733 ISSN 1758-2229 R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : PHOTOSYNTHETIC BACTERIUM * LEUCINE INCORPORATION * SOLAR-RADIATION Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.363, year: 2016

  14. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production

  15. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. Copyright © 2016 Meneghel et al.

  16. ["Candidatus contubernalis alkalaceticum," an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum].

    Science.gov (United States)

    Zhilina, T N; Zavarzina, D G; Kolganova, T V; Turova, T P; Zavarzin, G A

    2005-01-01

    From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."

  17. Successful split thickness skin grafting in the presence of heavy colonisation with rare bacterium Aeromonas hydrophila: A case report

    Directory of Open Access Journals (Sweden)

    S. Koschel

    2017-09-01

    Discussion: Contemporary literature is yet to make the distinction between colonisation and infection of this bacterium, with clinicians relying solely on the presence of infective stigmata and serum analysis. However, this is a critically important distinction when ascertaining the likelihood of success of wound healing.

  18. Soil geochemical parameters influencing the spatial distribution of anthrax in Northwest Minnesota, USA

    International Nuclear Information System (INIS)

    Nath, Samuel; Dere, Ashlee

    2016-01-01

    Bacillus anthracis is the pathogenic bacterium that causes anthrax, which dwells in soils as highly resilient endospores. B. anthracis spore viability in soil is dependent upon environmental conditions, but the soil properties necessary for spore survival are unclear. In this study we used a range of soil geochemical and physical parameters to predict the spatial distribution of B. anthracis in northwest Minnesota, where 64 cases of anthrax in livestock were reported from 2000 to 2013. Two modeling approaches at different spatial scales were used to identify the soil conditions most correlated to known anthrax cases using both statewide and locally collected soil data. Ecological niche models were constructed using the Maximum Entropy (Maxent) approach and included 11 soil parameters as environmental inputs and recorded anthrax cases as known presences. One ecological niche model used soil data and anthrax presences for the entire state while a second model used locally sampled soil data (n = 125) and a subset of anthrax presences, providing a test of spatial scale. In addition, simple logistic regression models using the localized soil data served as an independent measure of variable importance. Maxent model results indicate that at a statewide level, soil calcium and magnesium concentrations, soil pH, and sand content are the most important properties for predicting soil suitability for B. anthracis while at the local level, clay and sand content along with phosphorous and strontium concentrations are most important. These results also show that the spatial scale of analysis is important when considering soil parameters most important for B. anthracis spores. For example, at a broad scale, B. anthracis spores may require Ca-rich soils and an alkaline pH, but may also concentrate in microenvironments with high Sr concentrations. The study is also one of the first ecological niche models that demonstrates the major importance of soil texture for defining

  19. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    Science.gov (United States)

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  20. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  1. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  2. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Directory of Open Access Journals (Sweden)

    Zhiping Wang

    Full Text Available Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  3. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  4. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  5. Visual soil evaluation

    DEFF Research Database (Denmark)

    Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic...... and nutrient leaching, and for diagnosing and rectifying erosion and compaction in soils....

  6. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  7. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  8. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  9. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  10. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil.

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    Full Text Available Endoparasitic root-knot (Meloidogyne spp. and lesion (Pratylenchus spp. nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of

  11. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  12. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  13. Soil stabilization 1982

    Science.gov (United States)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  14. Impact of Ag and Al2O3 nanoparticles on soil organisms: In vitro and soil experiments

    International Nuclear Information System (INIS)

    Fajardo, C.; Saccà, M.L.; Costa, G.; Nande, M.; Martin, M.

    2014-01-01

    In vitro analyses were conducted to assess the impact of Al 2 O 3 and Ag nanoparticles on two common soil bacteria, Bacillus cereus and Pseudomonas stutzeri. Al 2 O 3 nanoparticles did not show significant toxicity at any dose or time assayed, whereas exposure to 5 mg L −1 Ag nanoparticles for 48 h caused bactericidal effects. Moreover, alterations at the morphological level were observed by transmission electron microscopy (TEM); Ag but not Al 2 O 3 nanoparticles evoked the entrance of B. cereus cells in an early sporulation stage and both nanoparticles penetrated P. stutzeri cells. At the molecular level, a dramatic increase (8.2-fold) in katB gene expression was found in P. stutzeri following Al 2 O 3 nanoparticles exposure, indicative of an oxidative stress-defence system enhancement in this bacterium. In the microcosm experiment, using two different natural soils, Al 2 O 3 or Ag nanoparticles did not affect the Caenorhabditis elegans toxicity endpoints growth, survival, or reproduction. However, differences in microbial phylogenetic compositions were detected by fluorescence in situ hybridization (FISH). The use of katB- and pykA-based sequences showed that the microbial transcriptional response to nanoparticle exposure decreased, suggesting a decrease in cellular activity. These changes were attributable to both the nanoparticles treatment and soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. - Highlights: • Al 2 O 3 or Ag NPs impact on bacteria was assessed at phenotypic and molecular level. • katB gene involved in oxidative-stress response was overexpressed in P. stutzeri following Al 2 O 3 NPs exposure. • A decrease in bacterial transcriptional response was detected in NPs-treated soils. • A soil-dependent response to specific NP treatment was observed. • In NPs-treated soils no acute toxic effects on C. elegans were found

  15. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  16. Perturbation of an arctic soil microbial community by metal nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Niraj; Shah, Vishal; Walker, Virginia K.

    2011-01-01

    Highlights: → Silver, copper and silica nanoparticles had an impact on arctic soil → A microbial community toxicity indicator was developed → Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity → Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78 o N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  17. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  18. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  19. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Seder-Colomina, Marina

    2014-01-01

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O 2 .L -1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  20. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; Codd, Rachel

    2011-01-01

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap Sgel ) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap Sput ) was examined at varied temperature. Irreversible deactivation of Nap Sgel and Nap Sput occurred at 54.5 and 65 °C, respectively. When Nap Sgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that Nap Sgel was poised for optimal catalysis at modest temperatures and, unlike Nap Sput , did not benefit from thermally-induced refolding. At 20 °C, Nap Sgel reduced selenate at 16% of the rate of nitrate reduction. Nap Sput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap Sgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap Sgel cold-adapted phenotype. Protein homology modeling of Nap Sgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic

  1. Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs

    Directory of Open Access Journals (Sweden)

    Ana Cristina dos Reis Ferreira

    2015-06-01

    Full Text Available ABSTRACT. Ferreira A.C.dosR. & dos Santos B.M. [Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs.] Avaliação de três métodos de extração de DNA de Salmonella sp. em ovos de galinhas contaminados artificialmente. Revista Brasileira de Medicina Veterinária, 37(2:115-119, 2015. Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Av. Peter Henry Rolfs, s/n, Viçosa, MG 36571-000, Brasil. E-mail: bmsantos@ufv.br The present study evaluated the efficiency of different protocols for the genomic DNA extraction of Salmonella bacteria in chicken eggs free of specific pathogens – SPF. Seventy-five eggs were used and divided into five groups with fifteen eggs each. Three of the five groups of eggs were inoculated with enteric Salmonella cultures. One of the five groups was inoculated with Escherichia coli bacterium culture. And another group of eggs was the negative control that received saline solution 0.85% infertile. The eggs were incubated on a temperature that varied from 20 to 25°C during 24, 48 and 72 hours. Five yolks of each group were collected every 24 hours. These yolks were homogenized and centrifuged during 10 minutes. The supernatant was rejected. After the discard, PBS ph 7.2 was added and centrifuged again. The sediment obtained of each group was used for the extraction of bacterial genomic DNA. Silica particles and a commercial kit were utilized as the extraction methods. The extracted DNA was kept on a temperature of 20°C until the evaluation through PCR. The primers utilized were related with the invA gene and they were the following: 5’ GTA AAA TTA TCG CCA CGT TCG GGC AA 3’ and 5’ TCA TCG CAC CGT CAA AGG AAC C 3’. The amplification products were visualized in transilluminator with ultraviolet light. The obtained results through the bacterial DNA extractions demonstrated that the extraction method utilizing silica particles was

  2. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  3. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    Science.gov (United States)

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  4. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.

    Science.gov (United States)

    Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.

    2016-01-01

    Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423

  5. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    Science.gov (United States)

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  6. Degradation and utilization of polycyclic aromatic hydrocarbons by indigenous soil bacteria

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.A.

    1986-01-01

    The persistence of industrially derived polycyclic aromatic hydrocarbons in the subsurface may be significantly affected by the metabolism of soil bacteria. This study was conducted to determine the ability of indigenous soil bacteria to decrease the concentration of four polycyclic aromatic hydrocarbons (naphthalene, fluorene, anthracene, and pyrene) and to utilize the compounds as a substrate for growth. Soil cores from petroleum contaminated and noncontaminated sites contained 10 5 -10 7 viable microorganisms per gram dryweight of soil. Gram negative rod-shaped bacteria predominated. Decreases in the concentration of the four polycyclic aromatic hydrocarbons were observed during incubation with bacterial isolates in aqueous suspension by the use of high performance liquid chromatography. Corresponding increases in bacterial numbers indicated utilization of the compounds as a carbon source. Soil samples from the contaminated sites contained greater numbers of bacteria utilizing anthracene and pyrene than soil samples from uncontaminated sites. Degradation rates of the four polycyclic aromatic hydrocarbons were related to the compound, its concentration, and the bacterium. Biodegradation of pyrene was positively correlated with the presence of oxygen. Pyrene was biodegraded by an Acinetobacter sp. under aerobic conditions but not under anaerobic or microaerophilic conditions. Studies with radiolabeled 14 C-anthracene demonstrated utilization of the labeled carbon as a source of carbon by viable bacterial cells in aqueous suspension. Incorporation of 14 C into cellular biomass however was not observed during incubation of 14 C-anthracene in soil

  7. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  8. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils

    International Nuclear Information System (INIS)

    Hung, T.P.; Truong, L.V.; Binh, N.D.; Frutos, R.; Quiquampoix, H.; Staunton, S.

    2016-01-01

    Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. - Graphical abstract: Biotest, presenting Cry-contaminated feed to Manduca sexta larvae in individual Perspex boxes. Display Omitted - Highlights: • Toxicity of Cry protein is initially conserved after adsorption on soil. • Toxicity and extractability decline with time, more rapidly at 25 °C than 4 °C. • Similar dynamics of Cry1AC and Cry2A on soil with varying texture and organic C. • Sterilization of soil does not change Cry dynamics or temperature effect in soil. • Cry decline is determined by progressive fixation on soil not microbial breakdown. - Toxicity was initially maintained after adsorption on soil and both extractable Cry and toxicity declined rapidly, more slowly at low temperature, due to different fixation dynamics. Toxicity of Cry protein is initially conserved after adsorption on soil.

  9. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  10. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  11. Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393.

    Science.gov (United States)

    Hong, Pei-Ying; Iakiviak, Michael; Dodd, Dylan; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac

    2014-04-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  12. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  13. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1.

    Science.gov (United States)

    Qing, Hui; Donde, Oscar Omondi; Tian, Cuicui; Wang, Chunbo; Wu, Xingqiang; Feng, Shanshan; Liu, Yao; Xiao, Bangding

    2018-04-18

    AD-1, an aerobic denitrifier, was isolated from activated sludge and identified as Pseudomonas stutzeri. AD-1 completely removed NO 3 - or NO 2 - and removed 99.5% of NH 4 + during individual culturing in a broth medium with an initial nitrogen concentration of approximately 50 mg L -1 . Results showed that larger amounts of nitrogen were removed through assimilation by the bacteria. And when NH 4 + was used as the sole nitrogen source in the culture medium, neither NO 2 - nor NO 3 - was detected, thus indicating that AD-1 may not be a heterotrophic nitrifier. Only trace amount of N 2 O was detected during the denitrification process. Single factor experiments indicated that the optimal culture conditions for AD-1 were: a carbon-nitrogen ratio (C/N) of 15, a temperature of 25°C and sodium succinate or glucose as a carbon source. In conclusion, due to the ability of AD-1 to utilize nitrogen of different forms with high efficiencies for its growth while producing only trace emissions of N 2 O, the bacterium had outstanding potential to use in the bioremediation of high-nitrogen-containing wastewaters. Meanwhile, it may also be a proper candidate for biotreatment of high concentration organic wastewater. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    Science.gov (United States)

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  15. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  16. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-07-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  17. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  18. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Alvaro Banderas

    2013-08-01

    Full Text Available The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS, we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  19. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  20. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  1. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    Science.gov (United States)

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  2. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  3. Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica.

    Science.gov (United States)

    Li, Tiansheng; Li, Mengjie; Hou, Linlin; Guo, Yameng; Wang, Lei; Sun, Guiqin; Chen, Li

    2018-01-26

    All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Purification and Characterization of Catalase from Marine Bacterium Acinetobacter sp. YS0810

    Directory of Open Access Journals (Sweden)

    Xinhua Fu

    2014-01-01

    Full Text Available The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.

  5. Experimental Infection and Detection of Necrotizing Hepatopancreatitis Bacterium in the American Lobster Homarus americanus

    Directory of Open Access Journals (Sweden)

    Luz A. Avila-Villa

    2012-01-01

    Full Text Available Necrotizing hepatopancreatitis bacterium (NHPB is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo.

  6. Experimental Infection and Detection of Necrotizing Hepatopancreatitis Bacterium in the American Lobster Homarus americanus

    Science.gov (United States)

    Avila-Villa, Luz A.; Gollas-Galván, Teresa; Martínez-Porchas, Marcel; Mendoza-Cano, Fernando; Hernández-López, Jorge

    2012-01-01

    Necrotizing hepatopancreatitis bacterium (NHPB) is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus) with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo. PMID:22645497

  7. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  8. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  9. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice.

    Science.gov (United States)

    Zhang, De-Chao; Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Zhou, Pei-Jin; Zhou, Yu-Guang

    2008-08-01

    A novel psychrotolerant, Gram-negative, aerobic bacterium, designated strain 537T, was isolated from sea-ice samples from the Arctic. Strain 537T was able to grow at 4-26 degrees C, with optimum growth occurring at 20-21 degrees C. Strain 537T had Q-8 as the major respiratory quinone and contained iso-C15:0 2-OH and/or C16:1 omega7c (22.95 %), C15:1 (17.64 %) and C17:1 omega8c (13.74 %) as the predominant cellular fatty acids. The genomic DNA G+C content was 38.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 537T formed a coherent cluster within the genus Colwellia. The highest level of 16S rRNA gene sequence similarity (97.5 %) exhibited by strain 537T was obtained with respect to the type strain of Colwellia aestuarii. On the basis of phenotypic, chemotaxonomic and phylogenetic properties and DNA-DNA relatedness data, strain 537T represents a novel species of the genus Colwellia, for which the name Colwellia polaris sp. nov. is proposed. The type strain is 537T (=CGMCC 1.6132T =JCM 13952T).

  10. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    Science.gov (United States)

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  11. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  12. Physiological role of vitamin B12 in a methanol-utilizing bacterium, Protaminobacter ruber

    International Nuclear Information System (INIS)

    Shimizu, S.; Ueda, S.; Sato, K.

    1984-01-01

    The methanol-utilizing bacterium Protaminobacter ruber is able to produce a relatively large amount of vitamin B 12 . The present study aims at the physiological role of vitamin B 12 in P. ruber. P. ruber was found to contain the two sequential reactions of glutamate mutase with β-methylaspartase and propionyl-CoA carboxylase with methylmalonyl-CoA mutase. Considering the presence of these enzyme systems and the reaction from mesaconyl-CoA to glyoxylate and propionyl-CoA, it could be considered that the formation of glutamate from α-ketoglutarate, the conversion of glutamate to mesaconate via β-methylaspartate, the activation of mesaconate with CoA to form mesaconyl-CoA, the cleavage of mesaconyl-CoA to glyoxylate and propionyl-CoA, the carboxylation of propionyl-CoA to methylmalonyl-CoA, and the isomerization of methylmalonyl-CoA to succinyl-CoA require cobalamine as a cofactor. 29 refs., 2 figs., 2 tabs

  13. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    Directory of Open Access Journals (Sweden)

    Alexander B. Chase

    2017-11-01

    Full Text Available Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment.

  14. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  15. Interactions of protamine with the marine bacterium, Pseudoalteromonas sp. NCIMB 2021.

    Science.gov (United States)

    Pustam, A; Smith, C; Deering, C; Grosicki, K M T; Leng, T Y; Lin, S; Yang, J; Pink, D; Gill, T; Graham, L; Derksen, D; Bishop, C; Demont, M E; Wyeth, R C; Smith-Palmer, T

    2014-03-01

    Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021) was grown in synthetic seawater (SSW) containing pyruvate, in the presence (SSW(++) ) and absence (SSW(-) ) of divalent cations. Cultures contained single cells. Addition of the cationic antibacterial peptide (CAP), protamine, did not inhibit, but rather increased, the growth of NCIMB 2021 in SSW(++) and caused the bacteria to grow in chains. Bacterial growth was assessed using turbidity, cell counts and the sodium salt of resazurin. In SSW(-) , NCIMB 2021 was no longer resistant to protamine. The minimum inhibitory concentration (MIC) was 5 mg ml(-1) . Protamine is a cationic antimicrobial peptide (CAP), which is active against a variety of bacteria. This is the first in-depth study of the interaction of protamine with a marine bacterium, Pseudoalteromonas sp. NCIMB 2021. Our results show that protamine is only active in seawater in the absence of divalent cations. In the presence of the divalent cations, Mg(2+) and Ca(2+) , protamine enhances the growth of Pseudoalteromonas sp. NCIMB 2021 and produces chains rather than individual cells. These are important considerations when deciding on applications for protamine and in terms of understanding its mechanism of action. © 2013 The Society for Applied Microbiology.

  16. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  17. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  18. Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101

    Directory of Open Access Journals (Sweden)

    Malashetty Vidyasagar

    2009-03-01

    Full Text Available An extreme halophilic bacterium was isolated from solar saltern samples and identified based on biochemical tests and 16S r RNA sequencing as Chromohalobacter sp. strain TVSP101. The halophilic protease was purified using ultrafiltration, ethanol precipitation, hydrophobic interaction column chromatography and gel permeation chromatography to 180 fold with 22% yield. The molecular mass of the protease determined by SDS PAGE was 66 kDa. The purified enzyme was salt dependent for its activity and stability with an optimum of 4.5 M NaCl. The optimum temperature for maximum protease activity was 75°C. The protease was optimally active at pH 8 and retained more than 80% of its activity in the range of pH 7-10. Sucrose and glycine at 10% (w/v were the most effective osmolytes, retained 100% activity in the absence of NaCl. The activity was completely inhibited by ZnCl2 (2 mM, 0.1% SDS and PMSF (1mM. The enzyme was not inhibited by 1mM of pepstatin, EDTA and PCMB. The protease was active and retained 100% it activity in 10% (v/v DMSO, DMF, ethanol and acetone.

  19. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila

    International Nuclear Information System (INIS)

    Zebisch, Matthias; Schäfer, Petra; Lauble, Peter; Sträter, Norbert

    2013-01-01

    The soluble NTPDase1 from L. pneumophila was crystallized in six crystal forms and the structure was solved using a sulfur SAD approach. Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map

  20. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  1. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    Science.gov (United States)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  2. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    Science.gov (United States)

    Showalter, G M; Deming, J W

    2018-02-01

    A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  3. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  5. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  6. Exopolysaccharides play a role in the swarming of the benthic bacterium Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Ang eLiu

    2016-04-01

    Full Text Available Most marine bacteria secrete exopolysaccharide (EPS, which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913 by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria.

  7. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  8. A self-lysis pathway that enhances the virulence of a pathogenic bacterium.

    Science.gov (United States)

    McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L

    2015-07-07

    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.

  9. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  10. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  11. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  12. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    Science.gov (United States)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  13. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium.

    Directory of Open Access Journals (Sweden)

    Johannes Schneider

    2015-04-01

    Full Text Available Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.

  14. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    Science.gov (United States)

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Cesiribacter roseus sp. nov., a pink-pigmented bacterium isolated from desert sand.

    Science.gov (United States)

    Liu, Ming; Qi, Huan; Luo, Xuesong; Dai, Jun; Peng, Fang; Fang, Chengxiang

    2012-01-01

    A pink-pigmented, Gram-negative, rod-shaped, motile, strictly aerobic bacterium, designated strain 311(T), was isolated from desert sand in Xinjiang, China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 311(T) was related closely to Cesiribacter andamanensis AMV16(T) (94.6% similarity). The DNA G+C content of strain 311(T) was 47.1 mol% and the major respiratory quinone was menaquinone 7 (MK-7). The main cellular fatty acids were C(16:1)ω5c (29.9%), iso-C(15:0) (21.9%), iso-C(17:0) 3-OH (13.3%) and summed feature 4 (iso-C(17:1) I and/or anteiso-C(17:1) B; 13.0%). Based on phenotypic and chemotaxonomic data and phylogenetic analysis, strain 311(T) is considered to represent a novel species of the genus Cesiribacter, for which the name Cesiribacter roseus sp. nov. is proposed. The type strain is 311(T) (=CCTCC AB 207142(T) =KACC 15456(T)).

  17. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    Science.gov (United States)

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  18. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium Halomonas xianhensis SUR308.

    Science.gov (United States)

    Biswas, Jhuma; Ganguly, J; Paul, A K

    2015-01-01

    A moderately halophilic bacterium, Halomonas xianhensis SUR308 (Genbank Accession No. KJ933394) was isolated from a multi-pond solar saltern at Surala, Ganjam district, Odisha, India. The isolate produced a significant amount (7.87 g l(-1)) of extracellular polysaccharides (EPS) when grown in malt extract-yeast extract medium supplemented with 2.5% NaCl, 0.5% casein hydrolysate and 3% glucose. The EPS was isolated and purified following the conventional method of precipitation and dialysis. Chromatographic analysis (paper, GC and GC-MS) of the hydrolyzed EPS confirmed its heteropolymeric nature and showed that it is composed mainly of glucose (45.74 mol%), galactose (33.67 mol %) and mannose (17.83 mol%). Fourier-transform infrared spectroscopy indicated the presence of methylene and carboxyl groups as characteristic functional groups. In addition, its proton nuclear magnetic resonance spectrum revealed functional groups specific for extracellular polysaccharides. X-ray diffraction analysis revealed the amorphous nature (CIxrd, 0.56) of the EPS. It was thermostable up to 250 °C and displayed pseudoplastic rheology and remarkable stability against pH and salts. These unique properties of the EPS produced by H. xianhensis indicate its potential to act as an agent for detoxification, emulsification and diverse biological activities.

  19. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle.

    Science.gov (United States)

    Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H

    2014-11-01

    Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes. © 2014 The Author(s).

  20. Purification and characterization of an endoglucanase from a newly isolated thermophilic anaerobic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Creuzet, N; Frixon, C [Laboratoire de Chimie Bacterienne, C.N.R.S., 13 - Marseille (France)

    1983-02-01

    An endoglucanase (1,4-..beta..-D-glucan glucanohydrolase, EC 3.2.1.4) from a new cellulotytic thermophilic bacterium was purified to apparent homogeneity after being separated from a xylanase. Little carbohydrate was associated with the endoglucanase. A molecular weight of 91,000 and 99,000 was determined by SDS-polyacrylamide gel electrophoresis and by gel filtration of the native enzyme on Ultrogel ACA 34. The optimal pH was approximately 6.4 and the enzyme was isoelectric at pH 3.85. The enzyme was found highly thermostable: it retained 50% of its activity after 1 hour at 85/sup 0/C. Hydrolysis of CMC took place with a rapid decrease in viscosity but a slow liberation of reducing sugars, indicating to hydrolyze highly ordered cellulose. Cellobiose inhibited the activity of the endoglucanase. None of the metal ions tested stimulated the activity. The enzyme was completely inactivated by 1 mM Hg/sup 2 +/ and was inhibited by thiol reagents.

  1. The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT

    Directory of Open Access Journals (Sweden)

    Maria Michela Corsaro

    2013-01-01

    Full Text Available Lipid A is a major constituent of the lipopolysaccharides (or endotoxins, which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR mass spectrometry and chemical analysis.

  2. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    Science.gov (United States)

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  3. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  4. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    Science.gov (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  5. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis.

    Science.gov (United States)

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun

    2016-05-10

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.

  6. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  7. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Flora Ambre Honoré

    2017-04-01

    Full Text Available The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.

  8. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  9. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    Science.gov (United States)

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  10. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  11. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Sergio de Oliveira Procópio

    2014-10-01

    Full Text Available The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], glyphosate, MSMA e 2,4-D were tested in their respective commercial doses regarding their impact on the growth of the bacteria in liquid medium DIGs. For this, we determined the duration of lag phase, generation time and maximum cell density of H. seropedicae, calculated from optical density data obtained at regular intervals during the incubation of cultures for 33 h at 32oC. We also evaluated the impact of herbicides on nitrogenase activity of H. seropedicae grown in semi-solid N-free JNFb medium. The effects of herbicides on the growth variables and the ARA were compared with the untreated control by Dunnett test. A completely randomized design was used. The herbicides paraquat, imazapyr, ametryne, glyphosate and oxyfluorfen inhibited the growth of H. seropedicae in vitro. Ametryne, oxyfluorfen and glyphosate caused a small reduction in the duration of the lag phase of diazotrophic bacteria H. seropedicae. Oxyfluorfen, ametryne and imazapyr resulted in increased the generation time by H. seropedicae. Glyphosate promoted drastic reduction in biological nitrogen fixation in vitro by H. seropedicae. The other tested herbicides did not affect the growth or the same BNF by H. seropedicae.

  12. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  13. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment.

    Science.gov (United States)

    Finster, K; Coates, J D; Liesack, W; Pfennig, N

    1997-07-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27T belongs to the Desulfuromonas cluster in the recently proposed family "Geobacteracea" in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publication, is the name proposed for strain NZ27T in this paper.

  14. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M J [Univ. of Illinois, Urbana; Bryant, M P; Pfennig, N

    1979-01-01

    A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H/sub 2/ and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H/sub 2/ was obtained in coculture with either an H/sub 2/-utilizing methanogen or H/sub 2/-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H/sub 2/-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5 x 10/sup -6/ per g of anaerobic digest or sludge.

  15. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring.

    Science.gov (United States)

    Kozina, Irina V; Kublanov, Ilya V; Kolganova, Tatyana V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A

    2010-06-01

    An anaerobic thermophilic bacterium, strain K67(T), was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858(T), suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67(T) was characterized as an obligate anaerobe, a thermophile (growth at 50-75 degrees capital ES, Cyrillic; optimum 68-70 degrees C), a neutrophile (growth at pH(25 degrees C) 4.8-8.0; optimum pH(25 degrees C) 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67(T) (=DSM 18923(T) =VKM capital VE, Cyrillic-2408(T)).

  16. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  17. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  18. Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium.

    Science.gov (United States)

    Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd; Rabus, Ralf

    2017-05-01

    The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43-. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10-2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50-120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. © FEMS 2017.

  19. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    Science.gov (United States)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  20. Adhesion of glucosyltransferase phase variants to Streptococcus gordonii bacterium-glucan substrata may involve lipoteichoic acid.

    Science.gov (United States)

    Vickerman, M M; Jones, G W

    1992-10-01

    Growing Streptococcus gordonii Spp+ phase variants, which have normal levels of glucosyltransferase (GTF) activity, use sucrose to promote their accumulation on surfaces by forming a cohesive bacterium-insoluble glucan polymer mass (BPM). Spp- phase variants, which have lower levels of GTF activity, do not form BPMs and do not remain in BPMs formed by Spp+ cells when grown in mixed cultures. To test the hypothesis that segregation of attached Spp+ and unattached Spp- cells was due to differences in adhesiveness, adhesion between washed, [3H]thymidine-labeled cells and preformed BPM substrata was measured. Unexpectedly, the results showed that cells of both phenotypes, as well as GTF-negative cells, attached equally well to preformed BPMs, indicating that attachment to BPMs was independent of cell surface GTF activity. Initial characterization of this binding interaction suggested that a protease-sensitive component on the washed cells may be binding to lipoteichoic acids sequestered in the BPM, since exogenous lipoteichoic acid inhibited adhesion. Surprisingly, the adhesion of both Spp+ and Spp- cells was markedly inhibited in the presence of sucrose, which also released lipoteichoic acid from the BPM. These in vitro findings suggest that, in vivo, sucrose and lipoteichoic acid may modify dental plaque development by enhancing or inhibiting the attachment of additional bacteria.