WorldWideScience

Sample records for non-sterilized fermentative production

  1. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer's spent grains in two types of continuous bioreactor systems

    International Nuclear Information System (INIS)

    Kopsahelis, Nikolaos; Bosnea, Loulouda; Bekatorou, Argyro; Tzia, Constantina; Kanellaki, Maria

    2012-01-01

    In this work an integrated cost effective system for continuous alcoholic fermentation of a cheap raw material (molasses) is described, involving yeast immobilized by a simple method on brewer's spent grains, able to ferment in the temperature range 30–40 °C, and two types of bioreactors, a Multistage Fixed Bed Tower (MFBT) and a Packed Bed reactor (PB). The MFBT bioreactor gave better results regarding ethanol concentration, productivity and conversion. Furthermore, the use of sterilized and non-sterilized molasses, fed in two similar MFBT bioreactors, showed that ethanol concentration (kg m −3 ) was significantly (p −3 at 35 °C and 44.2–48.2 kg m −3 at 40 °C), compared to sterilized molasses, where ethanol concentration ranged from 35.6 to 46.6 kg m −3 at 35 °C and 30.8–44.2 kg m −3 at 40 °C. During 32 days of continuous operation using non-sterilized molasses no contamination was observed. Industrialization of the proposed system seems to have a potential, mainly due to its high fermentation efficiency and the obtained high operational stability. -- Highlights: ► An integrated cost effective system for continuous alcoholic fermentation. ► Efficient conversion of non-sterilized molasses to ethanol. ► No need for additional treatments to prevent contamination. ► Results showed high fermentation efficiency and high operational stability.

  2. A novel steam explosion sterilization improving solid-state fermentation performance.

    Science.gov (United States)

    Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang

    2015-09-01

    Traditional sterilization of solid medium (SM) requires lengthy time, degrades nutrients, and even sterilizes inadequately compared with that of liquid medium due to its low thermal conductivity. A novel sterilization strategy, high-temperature and short-time steam explosion (SE), was exploited for SM sterilization in this study. Results showed that SE conditions for complete sterilization were 172 °C for 2 min and 128 °C for 5 min. Glucose and xylose contents in medium after SE sterilization increased by 157% and 93% respectively compared with those after conventional sterilization (121 °C, 20 min) while fermentation inhibitors were not detected. FTIR spectra revealed that the mild SE conditions helped to release monosaccharides from the polysaccharides. Bacillus subtilis fermentation productivity on medium after SE sterilization was 3.83 times of that after conventional sterilization. Therefore, SE shortened sterilization time and improved SM nutrition, which facilitated fermentability of SM and should promote economy of solid-state fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of fermentation and sterilization on anthocyanins in blueberry.

    Science.gov (United States)

    Nie, Qixing; Feng, Lei; Hu, Jielun; Wang, Sunan; Chen, Haihong; Huang, Xiaojun; Nie, Shaoping; Xiong, Tao; Xie, Mingyong

    2017-03-01

    Blueberry products have various health benefits due to their high content of dietary anthocyanins. The aim of this study was to investigate the impact of fermentation and sterilization on total anthocyanin content, composition and some quality attributes of blueberry puree. The blueberry puree used here was fermented for 40 h at 37 °C by Lactobacillus after sterilization. The method of ultra-performance liquid chromatography-mass spectrometry was optimized for the rapid analysis of anthocyanins. Quality attributes including pH, color, total soluble solids and viscosity were measured. A total of 21 anthocyanins and five anthocyanidins were quantified by ultra-performance liquid chromatography. Fermented blueberry had reduced total anthocyanin content (29%) and levels of individual anthocyanins compared with fresh blueberry. Total anthocyanin content was decreased 46% by sterilization, and different degradation behavior of individual anthocyanin was appeared between fermented and sterilized-fermented blueberry puree. Fermentation and sterilization decreased the total soluble solids and pH and changed color parameters, while minimally influencing viscosity. The loss of total anthocyanin content by fermentation was related to the unstable structure of blueberry anthocyanins. Anthocyanins are sensitive to temperature (>80 °C), and degradation of anthocyanins by sterilization in blueberry should be considered in the fermentation procedure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain.

    Science.gov (United States)

    Yang, Xiaofeng; Zhu, Muzi; Huang, Xiongliang; Lin, Carol Sze Ki; Wang, Jufang; Li, Shuang

    2015-12-01

    In this study, an advanced biorefinery technology that uses mixed bakery waste has been developed to produce l-lactic acid using an adaptively evolved Thermoanaerobacterium aotearoense LA1002-G40 in a non-sterilized system. Under these conditions, mixed bakery waste was directly hydrolysed by Aspergillus awamori and Aspergillus oryzae, resulting in a nutrient-rich hydrolysate containing 83.6g/L glucose, 9.5 g/L fructose and 612 mg/L free amino nitrogen. T. aotearoense LA1002-G40 was evaluated and then adaptively evolved to grow in this nutrient-rich hydrolysate. Using a 5-L fermenter, the overall lactic acid production from mixed bakery waste was 0.18 g/g with a titer, productivity and yield of 78.5 g/L, 1.63 g/L/h and 0.85 g/g, respectively. This is an innovative procedure involving a complete bioconversion process for l-lactic acid produced from mixed bakery waste under non-sterilized conditions. The proposed process could be potentially applied to turn food waste into l-lactic acid in an economically feasible way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    Science.gov (United States)

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  6. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  8. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose...

  9. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions.

    Science.gov (United States)

    Tasar, Ozden Canli; Erdal, Serkan; Taskin, Mesut

    2016-08-01

    A new chitosan producing fungus was locally isolated from soil samples collected around Erzurum, Turkey and identified as Rhizopus oryzae PAS 17 (GenBank accession number KU318422.1). Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH, thus, undesired microbial contamination could be eliminated when appropriate culture conditions (incubation temperature as 15°C and initial pH of the medium as 4.5) were selected. Medium composition and culture conditions were optimized using Taguchi orthogonal array (OA) design of experiment (DOE). An OA layout of L16 (4(5)) was constructed with five most influensive factors at four levels on chitosan production like, carbon source (molasses), metal ion (Mg(2+)), inoculum amount, agitation speed and incubation time. The optimal combinations of factors (molasses, 70ml/l; MgSO4·7H2O, 0.5g/l; inoculum, 6.7×10(6) spores/disc; agitation speed, 150rpm and incubation time, 8days) obtained from the proposed DOE methodology was further validated by analysis of variance (ANOVA) test and the results revealed the increment of chitosan and biomass yields of 14.45 and 8.58 folds from its unoptimized condition, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  11. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice.

    Science.gov (United States)

    Inoue, Shigeaki; Suzuki-Utsunomiya, Kyoko; Komori, Yukako; Kamijo, Akemi; Yumura, Isao; Tanabe, Koudai; Miyawaki, Ayumi; Koga, Kunimasa

    2013-12-01

    Non-sterilized fish waste containing fish bones was fermented using combined starter cultures of film-forming yeast (Candida ethanolica) and lactic acid bacteria (LAB; Lactobacillus casei and Lactobacillus rhamnosus) in order to obtain a liquefied fermented broth without spoiling. During the entire fermentation, the number of LAB cells was maintained at a high level (6 × 10(8)-5 × 10(7) cells/ml). Although the number of general bacteria was 10(6)cell/ml after adding non-sterilized fish biomass, its growth was suppressed to be 1-3 × 10(4) cells/ml. The entire biomass had completely liquefied and the fermented broth contained all 20 α-amino acids composed of protein and also various kinds of minerals in abundance. The weight of mice group fed the fermented broth content feed (sample feed) for 31 days significantly increased compared with that fed no broth feed (control feed) (21.37 g vs 20.76 g (p < 0.05). No abnormal behavior and appearance were observed. All internal organs (the heart, the liver, the lung, the intestines, and the spleen) of both groups were confirmed to be normal by visual observation. In peripheral blood, the percentages of NK cells and CD8+ T cells of the mice in the sample feed group increased significantly relative to those in the control feed group (NK cells: 19% vs 11%, CD8+ T cells: 9% vs 5%, p < 0.05). In the spleen, the percentage of NK cells in the sample feed group also increased significantly compared to that in the control feed group (p < 0.05). The fermented fish biomass is expected to be effective for innate and adaptive immunity and thus fit for animal feed. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages

    Directory of Open Access Journals (Sweden)

    Chaminda Senaka Ranadheera

    2017-12-01

    Full Text Available Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, mainly through the process of replacing or including beneficial bacteria in the gastrointestinal tract. Fermented dairy foods such as yogurt, fermented milk and cheese are the major vehicle in delivering probiotics, and probiotic delivery have been traditionally associated with these fermented dairy foods. Additionally, many other non-dairy probiotic products and non-food form such as capsules, pills and tablets are also available and some of these non-food forms are highly popular among the consumers. Certain non-dairy probiotic foods, especially beverages that are non-fermented products, can also play an important role in probiotic delivery. There is an increasing demand for non-dairy probiotic foods (both fermented and non-fermented including fruit and vegetable juices, soy and certain cereal products due to vegetarianism, lactose intolerance and dairy allergies, as well as interest in low cholesterol foods. In this context, this review mainly focus on the different types of probiotic food products including beverages with special reference to their viability followed by a brief account on the applicability of using fermented and non-fermented beverage products in probiotic delivery.

  13. Open and continuous fermentation: products, conditions and bioprocess economy.

    Science.gov (United States)

    Li, Teng; Chen, Xiang-bin; Chen, Jin-chun; Wu, Qiong; Chen, Guo-Qiang

    2014-12-01

    Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pre-sterilization contamination of disposable medical products and the choice of minimum sterilization dose

    International Nuclear Information System (INIS)

    Horakova, V.; Buriankova, E.

    1975-01-01

    The bacterial contamination was assessed on randomly taken samples of blood-transfusion devices, donor sets, intra-uterine contraceptive devices and inserters, surgical gloves and dressing material prior to sterilization. The quantitative and qualitative efficiency of six nutrient media was compared. The best results were obtained with the enriched ''Universal'' medium. It was confirmed that the contamination of plastic products was low compared with dressing material. Most frequently, Gram-positive aerobic spore-forming rods and Gram-positive cocci were found on non-sterile medical disposable products. A method was tested to obtain a general informative picture of the resistance of bacteria on products. The methods used for choosing the dose for radiation sterilization of medical products are discussed. (author)

  15. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  16. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  17. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  18. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  19. Radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Khurshid, S.J.; Hussain, A.M.

    1989-01-01

    Radiation sterilization is the best method of sterilization, essentially for single use medical and surgical products. Pakistan has established a commercial gamma irradiation plant for this purpose. This article overviews the advantages and benefits of radiation sterilization to stimulate the interest of industrialists and the users in this technology. This technology can give a better medical care in the country and the growing demand can only be met by bulk sterilization. The radiation sterilized medical products can also compete well with the products sterilized by other methods in the international market, gamma sterilization is accepted internationally and if adopted it can boost our export of medical products. (author)

  20. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  1. Microbial changes during the production of Sufu - a Chinese fermented soybean food

    NARCIS (Netherlands)

    Han, B.; Cao, C.F.; Rombouts, F.M.; Nout, M.J.R.

    2004-01-01

    Sufu is a Chinese soybean cheese obtained by solid-state fungal fermentation of tofu followed by ripening in dressing mixture. The aim of this study was to quantify microflora changes during the sufu process, which is carried out under non-sterile conditions. From tofu to pehtze (tofu overgrown with

  2. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    Energy Technology Data Exchange (ETDEWEB)

    Van Groenestijn, J.W.; Meesters, K.P.M. [TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist (Netherlands); Geelhoed, J.S.; Goorissen, H.P.; Stams, A.J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein, Wageningen (Netherlands); Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group (Netherlands)

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol/H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73C. The volumetric productivity was 22 mmol/H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  3. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer.

    Science.gov (United States)

    van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  4. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    Science.gov (United States)

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A QRM Discussion of Microbial Contamination of Non-sterile Drug Products, Using FDA and EMA Warning Letters Recorded between 2008 and 2016.

    Science.gov (United States)

    Santos, Ana M C; Doria, Mara S; Meirinhos-Soares, Luís; Almeida, António J; Menezes, José C

    2018-01-01

    Microbial quality control of non-sterile drug products has been a concern to regulatory agencies and the pharmaceutical industry since the 1960s. Despite being an old challenge to companies, microbial contamination still affects a high number of manufacturers of non-sterile products. Consequences go well beyond the obvious direct costs related to batch rejections or product recalls, as human lives and a company's reputation are significantly impacted if such events occur. To better manage risk and establish effective mitigation strategies, it is necessary to understand the microbial hazards involved in non-sterile drug products manufacturing, be able to evaluate their potential impact on final product quality, and apply mitigation actions. Herein we discuss the most likely root causes involved in microbial contaminations referenced in warning letters issued by US health authorities and non-compliance reports issued by European health authorities over a period of several years. The quality risk management tools proposed were applied to the data gathered from those databases, and a generic risk ranking was provided based on a panel of non-sterile drug product manufacturers that was assembled and given the opportunity to perform the risk assessments. That panel identified gaps and defined potential mitigation actions, based on their own experience of potential risks expected for their processes. Major findings clearly indicate that the manufacturers affected by the warning letters should focus their attention on process improvements and microbial control strategies, especially those related to microbial analysis and raw material quality control. Additionally, the WLs considered frequently referred to failures in quality-related issues, which indicates that the quality commitment should be reinforced at most companies to avoid microbiological contaminations. LAY ABSTRACT: Microbial contamination of drug products affects the quality of non-sterile drug products produced

  6. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  7. Risk analysis of sterile production plants: a new and simple, workable approach.

    Science.gov (United States)

    Gapp, Guenther; Holzknecht, Peter

    2011-01-01

    , and delivers sound arguments for investments. Practical experience with this risk analysis, which has already been executed in several production sites in various countries, has demonstrated that it is simple, workable, and delivers valuable information. Many important pharmaceutical products need to be sterile because they are to be injected into the patient's bloodstream or muscle. Sterile means that the product must be free of microorganisms (i.e., bacteria, yeast, and moulds). A non-sterile injection or infusion could lead to very serious or even lethal effects on the patient. Therefore one of the biggest challenges in the pharmaceutical industry nowadays is still the sterile production process itself. Microorganisms are everywhere in the environment, and humans are known to be a significant source of microbial contamination of a sterile product. It is necessary to set up a very effective quality assurance system as well as many quality control analysis tools to assure the sterility of the produced vials/syringes or of the bulk material intended for later filling into vials (bulk material, e.g., 10 kg in bags or cans). Above all, to get an accurate indication of the risk of non-compliance of product quality, regulatory agencies such as the U.S. Food and Drug Administration and the updated E.U. Good Manufacturing Practice (GMP) Guide have made it mandatory to perform a risk analysis of the production process. This provides in advance valuable information about the potential risk of a product's non-compliance with product specifications and GMP requirements, in our case regarding sterility. The authors set up a new approach for a risk analysis 4 years ago; this approach stems from fundamental experience gained over the past 15 years. Several specific questions are asked regarding various topics that correlate to the sterile production line and associated quality assurance/control systems. If the answer for an item is satisfactory and the best system is in place with

  8. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages

    OpenAIRE

    Chaminda Senaka Ranadheera; Janak K. Vidanarachchi; Ramon Silva Rocha; Adriano G. Cruz; Said Ajlouni

    2017-01-01

    Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, mainly through the process of replacing or including beneficial bacteria in the gastrointestinal tract. Fermented dairy foods such as yogurt, fermented milk and cheese are the major vehicle in delivering probiotics, and probiotic delivery have been traditionally associated with these fermented dairy foods. Additionally, many other non-dairy probiotic products and non-food form ...

  9. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  10. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    Science.gov (United States)

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  11. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  12. Assessment of Non-Sterile Pharmaceutical Compounding Practices ...

    African Journals Online (AJOL)

    A descriptive cross-sectional survey was conducted to assess the practices of non-sterile pharmaceutical compounding in selected 42 community and 3 hospital pharmacies in Addis Ababa, Ethiopia from 01 April, 2016 to 15 May, 2016. The study revealed that the most commonly prescribed and compounded non-sterile ...

  13. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source

    Energy Technology Data Exchange (ETDEWEB)

    Sansonetti, Sascha; Curcio, Stefano; Calabro, Vincenza; Iorio, Gabriele [Department of Engineering Modeling, University of Calabria, Ponte P. Bucci, Cubo 42/A, 87036 Rende, Cosenza (Italy)

    2009-12-15

    The aim of the present paper is to investigate the feasibility of bio-ethanol production by batch fermentation of ricotta cheese whey (''Scotta''), a dairy industry waste characterized by lactose concentration ranging from 4.5% to 5.0% (w/w) and, with respect to traditional (raw) whey, by much lower protein content. Scotta, therefore, could represent an effective non-vegetable source for renewable energy production. The microrganism used to carry out the fermentation processes was the yeast Kluyveromyces marxianus. Preliminary experiments, performed in aerobic conditions on different volumes of scotta, have shown the actual growth of the yeast. The subsequent fermentation experiments were carried out, in anaerobic conditions, on three different substrates: scotta, raw cheese whey and deproteinized whey. The experimental data have demonstrated the process feasibility: scotta is an excellent substrate for fermentation and exhibits better performance with respect to both raw cheese whey and deproteinized whey. Complete lactose consumption, indeed, was observed in the shortest time (13 h) and with the highest ethanol yield (97% of the theoretical value). (author)

  14. Formation and release of non-extractable 14C-Dicamba residues in soil under sterile and non-sterile regimes

    International Nuclear Information System (INIS)

    Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T.

    2005-01-01

    The role of native soil microorganisms in the formation and release of non-extractable 14 C-residues, previously treated with 14 C-Dicamba, was investigated to examine their significance to the longer-term environmental effects on non-extractable pesticide residues. A 90 d study compared the fate of Dicamba under sterile and non-sterile regimes. In addition, soils were aged for 30 d and repeatedly extracted with a 0.01 M CaCl 2 solution, to an extraction end point, to produce non-extractable residues. The extracted soil containing non-extractable residues was mixed with clean soil that had been freshly spiked with non-labeled Dicamba at 0.2 mg kg -1 to increase the bulk volume of the soil and stimulate microbial activity. Sub-samples were then introduced into microcosms to compare the extent of microbially facilitated release and mineralisation with release rates in sterile microcosms. The results show that microorganisms play a significant role in the formation and release of non-extractable Dicamba residues. The release of 14 C-activity in sterile microcosms was linked to physical mixing of the extracted soil with field soil prior to the beginning of the incubations. The released 14 C-activity may be further mineralized, reincorporated into humus, or taken up by plants or other soil inhabiting biota

  15. Radiation sterilization of some pharmaceutical preparations and medical products

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Makhkamov, Sh.M.; Urinov, Sh.S.; Turaev, A.S.; Sultanov, M.S.; Inagomov, Kh.S.

    2006-01-01

    Full text: In connection with intensive development of pharmacology and medical techniques, use of the products contacting to blood, with the internal environment of an organism, with wound surface, with mucous membranes and skin there were high requirements to sterility of pharmaceutical preparations and medical products. Traditional methods of sterilization (heat treatment, gas processing and processing the ferry) have some restrictions in application, and not insufficient degree of sterilization required for pharmaceutical preparations and medical products. Thermal processing can lead to degradation of structure (medicine), mechanical changes and loss of medical properties. Besides, it is impossible to carry out sterilization of many pharmaceutical preparations by a method of heat treatment. Sterilization of products in packing is very complicated, because sterilization temperature of packing and a product is different. Gas processing is basically applied to sterilization of medical products (syringes, bandage, cotton wools, etc.). However, the degree of sterility is low, because of rather low ability and heterogeneity of sterilizing substance. Sterilization in packing represents special difficulty and demands additional charges related with delivery of the purified gas from abroad. Last years alongside with known technological methods of sterilization of medical products and pharmaceutical preparations radiating methods of processing have found wide application. Use of electronic bunches with the moderate energy and various isotopes became a basis for formation and development of a new direction in the medicine, called by 'radiation sterilization'. The radiation technology is highly harmless and economic, not polluting substance and surrounding space. Unlike the specified traditional methods, radiating processing of products by the isotope 60 Co, radiating the gamma quantum, has unique opportunities - high penetrability in substance, providing uniformity of

  16. Gamma sterilization of disposable medical products (DMP's)

    International Nuclear Information System (INIS)

    Brinston, R.M.

    1990-01-01

    Ten million cubic meters (361 million cubic feet) of disposable medical products (DMP) and related health care items are estimated to be sterilized in the world. In this paper, current conditions and perspectives of gamma sterilization is discussed in comparison with ethylene oxide gas and electron beams. Of the total sterilization estimates for DMP, 2.8 million cubic meters (99 million cubic feet) are sterilized with gamma radiation, with a market share of 27%. Gamma radiation is becoming increased from both general market growth and the introduction of new products, as well as the conversion of product from ethylene oxide gas to cobalt-60. Regulatory pressures, legal considerations, and increasing publicity surrounding ethylene oxide usage are encouraging manufactures to switch to gamma radiation. Gamma's performance features include: no temperature change during the sterilization, high penetration, even through hermetically sealed packages, no residues, and no post-sterilization treatment or quarantine period. Gamma sterilization is economically beneficial in large volumes of product. Cost saving to the end user of gamma sterilization has meant lower minimum dose levels than 25 KGy. Despite of an increasingly accepted gamma radiation, there are still four factors to be considered, including cobalt-60 availability, price, transportation, and disposal. The price of cobalt-60 is based on neutron cost. In the future, cobalt-60 price is expected to be flat and enables gamma processing to become even more competitive with other sterilization methods. Gamma radiation using cobalt-60 has been proven as a safe, effective, and cost-competitive sterilization method for treating DMP and related health care items. It's wide use and many processing advantages will continue to make it a preferred sterilization method. (N.K.)

  17. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Production of a sterile species via active-sterile mixing: An exactly solvable model

    Science.gov (United States)

    Boyanovsky, D.

    2007-11-01

    The production of a sterile species via active-sterile mixing in a thermal medium is studied in an exactly solvable model. The exact time evolution of the sterile distribution function is determined by the dispersion relations and damping rates Γ1,2 for the quasiparticle modes. These depend on γ˜=Γaa/2ΔE, with Γaa the interaction rate of the active species in absence of mixing and ΔE the oscillation frequency in the medium without damping. γ˜≪1, γ˜≫1 describe the weak and strong damping limits, respectively. For γ˜≪1, Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where θm is the mixing angle in the medium and the sterile distribution function does not obey a simple rate equation. For γ˜≫1, Γ1=Γaa and Γ2=Γaasin⁡22θm/4γ˜2, is the sterile production rate. In this regime sterile production is suppressed and the oscillation frequency vanishes at an Mikheyev-Smirnov-Wolfenstein (MSW) resonance, with a breakdown of adiabaticity. These are consequences of quantum Zeno suppression. For active neutrinos with standard model interactions the strong damping limit is only available near an MSW resonance if sin⁡2θ≪αw with θ the vacuum mixing angle. The full set of quantum kinetic equations for sterile production for arbitrary γ˜ are obtained from the quantum master equation. Cosmological resonant sterile neutrino production is quantum Zeno suppressed relieving potential uncertainties associated with the QCD phase transition.

  19. Sterilization of health care products - Radiation. Part 2: Establishing the sterilization dose

    International Nuclear Information System (INIS)

    2006-01-01

    This part of ISO 11137 describes methods that may be used to establish the sterilization dose in accordance with one of the two approaches specified in 8.2 of ISO 11137-1:2006. The methods used in these approaches are: a) dose setting to obtain a product-specific dose; b) dose substantiation to verify a preselected dose of 25 kGy or 15 kGy. The basis of the dose setting methods described in this part of ISO 11137 (Methods 1 and 2) owe much to the ideas first propounded by Tallentire (Tallentire, 1973 [17]; Tallentire, Dwyer and Ley, 1971 [18]; Tallentire and Khan, 1978 [19]). Subsequently, standardized protocols were developed (Davis et al., 1981 [8]; Davis, Strawderman and Whitby, 1984 [9]) which formed the basis of the dose setting methods detailed in the AAMI Recommended Practice for Sterilization by Gamma Radiation (AAMI 1984, 1991 [4], [6]). Methods 1 and 2 and the associated sterilization dose audit procedures use data derived from the inactivation of the microbial population in its natural state on product. The methods are based on a probability model for the inactivation of microbial populations. The probability model, as applied to bioburden made up of a mixture of various microbial species, assumes that each such species has its own unique D 10 value. In the model, the probability that an item will possess a surviving microorganism after exposure to a given dose of radiation is defined in terms of the initial number of microorganisms on the item prior to irradiation and the D 10 values of the microorganisms. The methods involve performance of tests of sterility on product items that have received doses of radiation lower than the sterilization dose. The outcome of these tests is used to predict the dose needed to achieve a predetermined sterility assurance level, SAL. Methods 1 and 2 may also be used to substantiate 25 kGy if, on performing a dose setting exercise, the derived sterilization dose for an SAL of 10 -6 is u ≤25 kGy. The basis of the method

  20. Sterilization of solutions for parenterals products. Problem analysis

    Directory of Open Access Journals (Sweden)

    Yanelys Montes-González

    2017-09-01

    Full Text Available The solutions for the formulation of parenteral products must be sterile before the aseptic formulation process. For this reason, different methods of sterilization referred in the literature are analyzed. Thermodynamic criteria that rule the sterilization are presented. Furthermore, previous experiences in the sterilization of solutions for the formulation of parental products in an autoclave are analyzed, that take large time of processing and only low volumes of solution can be handled. Using jacketed stirred tanks for the sterilization may solve the problem and, therefore, criteria for the design of the later that allow to process high volumes of solution for the formulation of parenteral products are shown.

  1. Optimization of Fermentation Conditions for the Production of Bacteriocin Fermentate

    Science.gov (United States)

    2015-03-30

    FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ” by Anthony Sikes Wayne Muller and Claire Lee March 2015...From - To) October 2010 – November 2013 4. TITLE AND SUBTITLE OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ...nisin and pediocin. Whey + yeast extract was the best performing whey fermentation media. The nisin producer strain Lactococcus. lactis ssp. lactis was

  2. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  3. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  4. Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content

    Directory of Open Access Journals (Sweden)

    Grazina Juodeikiene

    2016-01-01

    Full Text Available The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast-fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast-fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.

  5. Study of continuous acetone-butanol fermentation by Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M; Shcheblykin, N P; Senkevich, V V

    1960-01-01

    Prophylactic sterilization of small scale equipment (2 fermenters, 3.5 cu. m. each) permitted continuous fermentation through 6 cycles (28 days), each with a new inoculum of C. acetobutylicum. Single cycles could be prolonged to 6 to 11 days without sterilization. Contamination, usually with lactic acid bacteria, sometimes preceded exhaustion of the culture. Input of flour mash at 0.6 to 1.2 cu. m./hr. and withdrawal of products were continuous; acetone yield 6.6 to 7.1 g./l.; residual sugars 0.63 to 0.79%.

  6. Reduction of Aflatoxin M1 Levels during Ethiopian Traditional Fermented Milk (Ergo Production

    Directory of Open Access Journals (Sweden)

    Tsige Shigute

    2018-01-01

    Full Text Available In this study, the reduction of aflatoxin M1 (AFM1 levels during lab-scale ergo production was investigated through determination of the residual levels of AFM1 using Enzyme Linked Immunosorbent Assay. The results showed gradual and incubation time dependent reduction of AFM1 level in the raw milk samples being fermented to ergo. The maximum reductions of 57.33 and 54.04% were recorded in AFM1 in natural and LAB inoculums initiated fermentations, respectively, in 5 days of incubation. Although a significant difference (P=0.05 in the AFM1 decrease in the two types of fermentations was recorded, such findings could vary with milk samples depending on initial load of the microorganisms as determined by hygienic conditions. However, the level of AFM1 in control (sterilized samples showed only a 5.5% decrease during the entire period of incubation. Microbiological investigation showed increasing LAB counts with incubation time. A gradual decrease in pH of the milk samples was observed during fermentation. Considering the fact that both viable and dead bacterial cells could remove AFM1 during ergo production, the mechanism is proposed as predominantly involving noncovalent binding of the toxin with the chemical components of the bacterial cell wall.

  7. Radiation sterilization

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1989-01-01

    In view of the application of ionizing radiation to sterilize pharmaceutical products, and the particular advantages of using this mode of sterilization for powders for injection, which cannot be sterilized by more conventional methods, it is important to recognise the possibility of modification of radiation response of bacteria when in close contact with various drug powders. For this study, bacterial spores, which lend themselves to dessication, and which can be dried onto an inert powder matrix, were chosen as the test system. The results of this work indicate that the additives tested have a modest protective effect on the spores. However, when considering a bacterial inactivation for sterilization purposes of between six and ten orders of magnitude, that is, a desired sterility assurance level of an expected maximum probability of a product item being non-sterile of 10 -6 , then the slight protective effect observed in this study approaches insignificance

  8. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  9. [Baked product development based fermented legumes and cereals for schoolchildren snack].

    Science.gov (United States)

    Granito, Marisela; Valero, Yolmar; Zambrano, Rosaura

    2010-03-01

    The objective of this work was to develop three foodstuffs based on mixes of wheat and fermented and non-fermented legumes, for the purpose of contributing with a healthy alternative for school snacks. To this aim, refined wheat flour was partially substituted with whole legume flours for the preparation of cakes, brownies and cookies, foodstuffs traditionally consumed by school age children. Cakes were formulated substituting 20% of wheat flour with Phaseolus vulgaris flour, brownies with 30% of Cajanus cajan flour and cookies with 30% of Vigna sinensis flour, using fermented and non-fermented legumes in the three products. When these products were subjected to sensorial evaluation through a test of degree of acceptability and using a hedonic scale of 7 points, values higher than 5 in the attributes taste, color and overall appraisal were found for all the products. In addition, the preference was measured with a group of 90 school children, corroborating the results obtained at laboratory level. Chemical characterization showed protein contents between 12 and 13% for the cake, 10 and 11% for the brownies and 10% for the cookies and protein digestibilities in vitro of 91%, 87% and 93%, respectively. The calorie supply, calculated per portion was of 199 kcal, 246 kcal and 237 kcal, for cakes, brownies and cookies, respectively. It was concluded that it is technically possible to incorporate fermented and non-fermented Phaseolus vulgaris, Vigna sinensis and Cajanus cajan, to highly consumed products such as cakes, brownies and cookies with a higher nutritional content and well-accepted by school-age children.

  10. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of low-fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults.

    Science.gov (United States)

    Nestel, Paul J; Mellett, Natalie; Pally, Suzana; Wong, Gerard; Barlow, Chris K; Croft, Kevin; Mori, Trevor A; Meikle, Peter J

    2013-12-01

    The association between consumption of full-fat dairy foods and CVD may depend partly on the nature of products and may not apply to low-fat dairy foods. Increased circulating levels of inflammatory biomarkers after consumption of dairy product-rich meals suggest an association with CVD. In the present study, we tested the effects of low-fat and full-fat dairy diets on biomarkers associated with inflammation, oxidative stress or atherogenesis and on plasma lipid classes. Within full-fat dairy diets, we also compared fermented v. non-fermented products. In a randomised cross-over study, twelve overweight/obese subjects consumed during two 3-week periods two full-fat dairy diets containing either yogurt plus cheese (fermented) or butter, cream and ice cream (non-fermented) or a low-fat milk plus yogurt diet, with the latter being consumed between and at the end of the full-fat dairy dietary periods. The concentrations of six inflammatory and two atherogenic biomarkers known to be raised in CVD were measured as well as those of plasma F2-isoprostanes and lipid classes. The concentrations of six of the eight biomarkers tended to be higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet and the concentrations of two plasmalogen lipid classes reported to be associated with increased oxidisability were also higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet (Pfermented dairy diet than on that of the low-fat dairy diet (Pdairy products did not lead to a more favourable biomarker profile associated with CVD risk compared with the full-fat dairy products, suggesting that full-fat fermented dairy products may be the more favourable.

  12. Korean traditional fermented soybean products: Jang

    Directory of Open Access Journals (Sweden)

    Donghwa Shin

    2015-03-01

    Fermented products are going beyond the boundaries of their use as mere side dishes, and are seeing significant increases in their use as a functional food. Kanjang (fermented soy sauce, Doenjang (fermented soybean paste, and Gochujang (fermented red pepper paste are the most well-known fermented products in Korea. These products occupy an important place in people's daily lives as seasonings and are used in many side dishes. It has been proven through clinical studies that these products have many health benefits, such as their ability to fight cancer and diabetes, and to prevent obesity and constipation.

  13. A Traditional Turkish Fermented Non-Alcoholic Grape-Based Beverage, “Hardaliye”

    Directory of Open Access Journals (Sweden)

    Fatma Coskun

    2017-01-01

    Full Text Available Hardaliye is a non-alcoholic fermented beverage produced in a traditional way in Thrace, the European part of Turkey. The nutritional value of hardaliye is derived from the grapes and the fermentation process. Health benefits of hardaliye are also related to etheric oils present in mustard seeds. Hardaliye is a lactic acid fermented traditional beverage produced from grape juice and crushed grapes with the addition of different concentrations of whole/ground or heat-treated mustard seeds and sour cherry leaves. The color of hardaliye reflects the original color of the grapes and has a characteristic aroma. Dark red grape is preferred. Benzoic acid is used as preservative during production. Benzoic acid inhibits or decreases alcohol production by affecting the yeast. Fermentation occurs at room temperature for 7–10 days. If the ambient temperature is low, fermentation process can be extended until 20 days. Once fermented, the hardaliye is stored at 4 °C for three to four months. The hardaliye is consumed either fresh or aged. If it is aged, hardaliye may contain alcohol. The industrial production is just in small-scale and it must be developed. More studies are required to determine characteristic properties of hardaliye. Identification of the product properties will supply improvement for industrial production.

  14. Fermented Dairy Products in the Nutrition of Infants in the Russian Federation: Past and Present

    Directory of Open Access Journals (Sweden)

    Tatiana E. Borovik

    2016-01-01

    Full Text Available Fermented dairy products have a high nutritional and biological value and functional properties beneficial to human health; they are very diverse and have a long history. Fermentation of milk is a complex technological, physical and biochemical process that occurs under the influence of two enzymes of lactic acid bacteria — -galactosidase and lactate dehydrogenase. Requirements for biological properties of starter microorganisms and fermentation technology are strictly regulated. Based on the starter cultures used, we can single out fermented dairy products of lactic acid and mixed (lactic acid and alcohol fermentation. There are adapted, partially adapted and non-adapted cultured milk products for children, some of which are enriched with pro- and prebiotics to enhance functional properties. The article provides information about one of the first Russian non-adapted fermented milk products for infants enriched with inulin, fruit and cereals.

  15. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  16. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 27 CFR 24.197 - Production by fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same manner...

  18. Effective production of fermentable sugars from brown macroalgae biomass.

    Science.gov (United States)

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  19. Fermentative production of isobutene.

    Science.gov (United States)

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  20. Production, characteristics and fermentation of soymilk

    Directory of Open Access Journals (Sweden)

    Rajka Božanić

    2006-12-01

    Full Text Available Interest for soybean increases because of its extraordinary nutritive and health characteristics. In West countries soymilk is intended for population that cannot consume cow’s milk, due to lactose intolerance, allergies to cow’s milk proteins or non consumption of animal foodstuffs from belief. Health benefits of soymilk increase significantly by fermentation with lactic acid bacteria. Because of that, in this paper composition of soybean is described, with special overview on proteins, lipids, and carbohydrates as well as antinutritive factors and isoflavones. Soymilk composition and production, and its nutritive value are represented also. Advantages of fermentation of soybean and soymilk are described, especially with probiotic lactic acid bacteria.

  1. Letters: Milk and Mortality : Study used wrong assumption about galactose content of fermented dairy products

    NARCIS (Netherlands)

    Hettinga, K.A.

    2014-01-01

    Michaëlsson and colleagues’ proposed mechanism for the effect of milk intake on the risk of mortality and fractures is based on the assumption that fermented dairy products (which had the opposite effects to those of non-fermented milk) are free of galactose.1 For most fermented dairy products,

  2. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  3. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    OpenAIRE

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    Nuclear male sterility is common in flowering plants, but its application in hybrid breeding and seed production is limited because of the inability to propagate a pure male sterile line for commercial hybrid seed production. Here, we characterized a rice nuclear gene essential for sporophytic male fertility and constructed a male sterility system that can propagate the pure male sterile seeds on a large scale. This system is fundamentally advantageous over the current cytoplasmic male steril...

  4. Fermented dairy products: knowledge and consumption.

    Science.gov (United States)

    Hekmat, Sharareh; Koba, Lesia

    2006-01-01

    Much has been published on the nutritional and health benefits of fermented dairy products, especially those containing probiotic microorganisms. However, consumers may not be familiar with the term "fermented dairy products," and therefore may not take full advantage of them. University students' knowledge and consumption patterns of fermented dairy products were assessed. University students (n=223) completed a survey consisting of a section on demographics and another on knowledge and consumption patterns. The majority of respondents (62%) were not familiar with the term "fermented dairy products." Most respondents consumed yogourt a few times a week (40%) or a few times a month (30%). Almost all respondents (92%) were unable to identify the difference between regular and probiotic yogourt. Most respondents (93%) had not heard of acidophilus milk, but the majority (65%) would be willing to try it. Most respondents were unsure whether sour cream (65%), yogourt beverages (74%), and cheddar cheese (61%) were fermented dairy products. Sixty percent of respondents never consumed yogourt drinks. Education is needed about fermented dairy products, especially probiotics, and their nutritional and health benefits. Such education may increase their acceptability and consumption.

  5. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  6. Production of a sterile species: Quantum kinetics

    Science.gov (United States)

    Boyanovsky, D.; Ho, C. M.

    2007-10-01

    Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.

  7. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  8. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  10. Sterilization of health care products - Radiation. Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices

    International Nuclear Information System (INIS)

    2006-01-01

    A sterile medical device is one that is free of viable microorganisms. International Standards, which specify requirements for validation and routine control of sterilization processes, require, when it is necessary to supply a sterile medical device, that adventitious microbiological contamination of a medical device prior to sterilization be minimized. Even so, medical devices produced under standard manufacturing conditions in accordance with the requirements for quality management systems (see, for example, ISO 13485) may, prior to sterilization, have microorganisms on them, albeit in low numbers. Such medical devices are non-sterile. The purpose of sterilization is to inactivate the microbiological contaminants and thereby transform the nonsterile medical devices into sterile ones. The kinetics of inactivation of a pure culture of microorganisms by physical and/or chemical agents used to sterilize medical devices can generally best be described by an exponential relationship between the numbers of microorganisms surviving and the extent of treatment with the sterilizing agent; inevitably this means that there is always a finite probability that a microorganism may survive regardless of the extent of treatment applied. For a given treatment, the probability of survival is determined by the number and resistance of microorganisms and by the environment in which the organisms exist during treatment. It follows that the sterility of any one medical device in a population subjected to sterilization processing cannot be guaranteed and the sterility of a processed population is defined in terms of the probability of there being a viable microorganism present on a medical device. This part of ISO 11137 describes requirements that, if met, will provide a radiation sterilization process intended to sterilize medical devices, that has appropriate microbicidal activity. Furthermore, compliance with the requirements ensures that this activity is both reliable and

  11. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers

    NARCIS (Netherlands)

    Gorguet, B.J.M.; Schipper, E.H.; Heusden, van A.W.; Lindhout, P.

    2006-01-01

    Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order

  12. Influence of aeration in the fermentative activity of Kloeckera apiculata during fermentation of apple juice

    International Nuclear Information System (INIS)

    Estela Escalante, Waldir D; Rychtera, Mojmir; Melzoch, Karel; Guerrero Ochoa, Manuel R

    2012-01-01

    The influence of aeration on the fermentative activity of Kloeckera apiculata RIVE 9-2-1 was studied in order to evaluate the production of metabolites of the fermentation. To achieve this, the strain was cultured in Erlenmeyer flasks containing sterilized and aroma removed apple juice, and the chemical compounds produced during fermentation in shaken (200 min-1) and static (without agitation) cultivation were determined. The results showed that the agitation of the culture medium increases production of higher alcohols (till 591.0 mg/L) compared to static cultivation, whereas on the contrary, the production of acetic acid, ethyl acetate and glycerol (260.0 ± 11.0 mg/L, 196.0 ± 10.0 mg/L y 2.6±0.2 g/L) were higher compared to shaken cultivation (222.0 ± 8.0 mg/L, 96.0 ± 4.5 mg/L and 1.8 ± 0.2 g/L) respectively. Batch cultivations carried out in bioreactor with air flux of 25 l/h reported a growth rate μ of 0.17 h-1, production of ethanol (12.5 ± 2.0 g/L) and other compounds typically produced during alcoholic fermentation. The concentration of dissolved oxygen in the fermentation medium affects its metabolism thus; insufficient amounts of oxygen would provoke a respirofermentative metabolism. The best results in terms of organoleptic quality of the fermented beverage regarding to aroma, taste and flavor was obtained when fermented in static cultivation. The control of aeration during fermentation can be used to control the synthesis of chemical compounds of sensory impact in the production of fermented beverages.

  13. Fermentation of sugar-beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Malchenko, A L; Krishtul, F B

    1956-08-25

    Sugar-beet molasses is fermented with yeast separated from the mash, sterilized, and reactivated. To reduce sugar losses and hasten fermentation, the yeast is removed from the mash as the cells fall to the bottom during the fermentation process.

  14. Radiation sterilization of medical products- current trends and future prospects

    International Nuclear Information System (INIS)

    Sharma, G.

    1997-01-01

    In medical practice use of sterile pharmaceuticals and single use disposable medical devices is steadily increasing. Sterile pharmaceuticals like injections and ophthalmic ointments are required for therapy. Medical devices are employed for diagnostic, drug administration or corrective purposes, and as implants for temporary, short term or long term residence in the human system. All these products are made available in sterile form by treating them to a suitable process of sterilization i.e. dry/wet heat, ethylene oxide (EtO) gas or ionizing radiation. In this paper current trends and future prospects of radiation sterilization of medical products are given in detail. 9 refs., 7 tabs

  15. Prospects for radiation sterilization of medical products in Egypt

    International Nuclear Information System (INIS)

    Roushdy, H.M.

    1975-01-01

    The pharmaceutical industry in Egypt is continually expanding its activity and each year marks new accomplishments and additions which enable the companies to apply the most modern scientific means in the production of pharmaceutical preparations and consequently to improve their market potentialities. The certainty of expansion and the possibility of increasing exports of sterilized medical products, particularly to Arab and African countries, indicate a need for a gamma-sterilization plant. This technology permits the introduction of the latest practices with regard to used disposables, thus greatly reducing the chances of cross-contamination which usually results in serious complications enhanced by local environmental conditions. This paper reviews the current state and future prospects for radiation sterilization of medical products and biological tissues in connection with other related industrial radiation processings. Moreover, the paper reviews the Egyptian scientific and technical experience with irradiation facilities and the parameters underlying the choice of Egypt's first industrial gamma and electron-beam irradiators designed for more than a single-purpose use, with hygienic measures taken to avoid biological contamination of sterilized medical packages throughout the sterilization process. In addition, the paper deals with the policy set up for establishing the Egyptian National Centre for Radiation Technology with a view to introducing irradiation techniques in the sterilization of medical products, and to improving the properties and increasing the competitiveness of Egyptian fabrics. Apart from medical sterilization, certain industrial processes have been mentioned to show how a multi-purpose irradiation facility may be utilized in a developing country to justify significantly the large investment required. (author)

  16. Ethanol Production from Non-Food Tubers of Iles-iles (Amorphophallus campanulatus by Using Separated Hydrolysis and Fermentation

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2014-07-01

    Full Text Available The decrease in production and the raise in needs have led to the rise in oil prices. This work investigated the possibility of Iles-iles (Amorphophallus campanulatus tuber flour, which is rich in carbohydrate con-tent, as a raw material to produce bioethanol. To obtain the maximum ethanol concentration, several parameters had been studied, such as: the concentration of α-amylase and β-amylase in liquefaction and sac-charification processes, respectively, the type of S. cerevisiae enzyme (pure, dry, wet and instant and weight of Diammonium phosphate (DAP as a nutrient for S. cerevisiae in fermentation. The result shows that the highest reducing sugar content (12.5% was achieved when 3.2 ml α-amylase/kg flour and 6.4 ml β-amylase/kg flour were used during liquefaction and saccharification processes. Since the concentration of α- and β-amylase increased, the reducing sugar obtained also increased. The higher sugar content resulted the higher the ethanol concentration in the fermentation broth. Furthermore, the highest concentration of ethanol (9 %v/v was obtained at 72 h fermentation using the dry S. cerevisiae, at 3.2 ml and 6.4 ml /kg flour of α-amylase and β-amylase enzymes, respectively. From the study of the effect of S. cerevisiae type, it was shown that dry S. cereviseae produced the highest ethanol concentration 10.2% (v/v at 72 h fermentation. The DAP was used as a nitrogen supply required by S. cerevisiae to growth and as a results can increase the ethanol concentration. The addition of DAP in the fermentation proved that 8.45% (v/v of ethanol was obtained. This result shows that the proposed tuber flour has the potential a raw material for bioethanol production. © 2014 BCREC UNDIP. All rights reservedReceived: 7th January 2014; Revised: 10th March 2014; Accepted: 18th March 2014[How to Cite: Kusmiyati, K. (2014. Ethanol Production from Non-Food Tubers of Iles-iles (Amorphophallus campanulatus by using Separated Hydrolysis and

  17. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  18. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  19. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

  20. Status of radiation sterilization of healthcare products in China

    International Nuclear Information System (INIS)

    Zhu Nankang; Wang Chunlei; Teng Weifang

    2004-01-01

    This paper describes the status of 60 Co radiation facilities both in service and under construction in China and examines the future market for radiation sterilization of healthcare products. Policies for developing the industry of radiation sterilization are also put forward; these include implementation of appropriate quality systems, scale-up and merging of existing radiation facilities, development of electron beam radiation for sterilization purposes and increasing awareness of the technology of radiation sterilization

  1. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    Science.gov (United States)

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  2. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  3. Determination of volatile components in fermented soybean prepared by a co-culture of Bacillus subtilis and Rhizopus oligosporus

    Directory of Open Access Journals (Sweden)

    Chukeatirote, E.,

    2017-07-01

    Full Text Available Fermented soybeans are traditional foods widely consumed in many countries (i.e., Natto in Japan, Jang in Korea, Kinema in India, Douichi in China, and Thua Nao in Thailand. In this study, an attempt was made with an expectation to improve the fermentation process using a co-culture of Bacillus subtilis and Rhizopus oligosporus. Initially, the raw soybeans were washed, sterilized by autoclaving, and inoculated with two inocula; for this, three different ratios between B. subtilis and R. oligosporus used were 100:0, 50:50, and 0:100. The fermentation was then carried out at 30°C for 3 days. The volatile compounds in the non-fermented and the fermented soybean products were determined by gas chromatography/ mass spectrometry (GC/MS and extracted using a solid phase microextraction (SPME technique. In total, 165 compounds were identified in the non-fermented and the fermented soybean products. For the non-fermented products, the predominant volatile compounds were alcohols (25.81%, aldehydes (13.64%, acids and esters (7.57%, furans (6.13% and ketones (0.88%. In contrast, the major volatiles compounds presented in the fermented soybeans were as follows: i The treatment of 100:0 consisted of acids and esters (35.89%, alcohols (14.55%, aldehydes (8.72%, ketones (4.97%, pyrazines (4.87%, and furans (4.22%; ii 50:50 comprised of acids and esters (55.62%, alcohols (16.22%, aldehydes (7.80%, pyrazine (3.65%, ketones (2.55%, furans (1.67%, and aromatic compounds (1.46%; and iii 0:100 included acids and esters (66.50%, alcohols (15.44%, aldehydes (2.59%, ketones (2.72%, furans (1.89%, aromatic compounds (1.80%, pyrazines (1.35%, and sulphur containing compounds (0.24% respectively.

  4. Comparison of postoperative surgical site infection after preoperative marking done with non-sterile stationary grade markers versus sterile surgical markers

    International Nuclear Information System (INIS)

    Mir, Z.A.

    2015-01-01

    Objectives: To compare the frequencies of post- operative surgical site infection after preoperative marking done with non-sterile stationary. grade markers versus sterile surgical markers in the same patient. Design: Randomized control trial. Place and Duration of Study: The department of Plastic surgery, Mayo hospital, Lahore from August 2013 to August 2014. Methods: This study was conducted after taking approval from the departmental ethical committee. Forty consecutive patients were included. A sterile surgical marker was used to mark one incision site while an alcohol based stationary grade marker was used to mark another incision site on the same patient. A standard preoperative, intraoperative and postoperative protocol was followed. Cultures were performed on swabs taken from the incision sites and surgical site infection was assessed for 30 days. Results: The study included 40 patients; 17 males and 23 females. The mean age of subjects was 25.32 ± 19.69 years with the minimum age being 2 years and the maximum being 63 years. No growth was seen in cultures taken from all the incision sites after skin preparation in the non sterile stationary grade marker group as well as the sterile surgical grade marker group. Also no surgical site infection appeared during the 30 day postoperative observation period in the non sterile stationary grade marker group as well as the sterile surgical grade marker group. (author)

  5. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation.

    Science.gov (United States)

    Park, Doo Hyun

    2018-04-24

    Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO 2 -rich environments (CO 2 ) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO 2 , respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO 2 (CO 2 -fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO 2 -fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87-0.06 and 0.46-0.01 in CC-fermenting kimchi, and 1.65-0.44 and 0.63-0.12 in CO 2 -fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO 2 . I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.

  6. Radiation sterilization of medical products in the Philippines

    Science.gov (United States)

    Singson, C.; Carmona, C.; de Guzman, Z.; Barrun, W.; Lanuza, L.

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. Hence, the materials used were directly obtained from local manufacturers. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D 10 values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged. These studies indicated that radiation sterilization is technically feasible for locally manufactured medical products.

  7. Ammonium carboxylate production from sugarcane trash using long-term air-lime pretreatment followed by mixed-culture fermentation.

    Science.gov (United States)

    Nachiappan, Balasubramaniyan; Fu, Zhihong; Holtzapple, Mark T

    2011-03-01

    Sugarcane trash (ST) was converted to ammonium carboxylates using a novel bioprocessing strategy known as long-term air-lime pretreatment/mixed-culture fermentation. At mild conditions (50°C, 5 weeks, 1-atm air, and excess lime loading of 0.4 g Ca(OH)(2)/(g dry biomass)), air-lime pretreatment of ST had moderate delignification (64.4%) with little loss in polysaccharides. Without employing detoxification, sterility, expensive nutrients, or costly enzymes, the feedstock (80% treated ST/20% chicken manure) was fermented to primarily ammonium acetate (>75%) and butyrate by a mixed culture of marine microorganisms at 55°C. In the best four-stage countercurrent fermentation, the product yield was 0.36 g total acids/(g VS fed) and the substrate conversion was 64%. Model predictions indicate both high acid concentrations (>47.5 g/L) and high substrate conversions (>70%) are possible at industrial scale. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  9. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  10. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods.

    Directory of Open Access Journals (Sweden)

    Mayumi Kamada

    Full Text Available Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA, we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.

  11. System for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2016-04-26

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  12. Method for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2014-02-18

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  13. Microbial Evaluation of Some Non-sterile Pharmaceutical ...

    African Journals Online (AJOL)

    Purpose: To determine the type and incidence of predominant microorganisms in certain non-sterile pharmaceuticals immediately after collection and one year later. Methods: All pharmaceutical samples were subjected to the following examinations: total bacterial count and presence of microbial pathogens, using ...

  14. Country status of application, manufacturing and sterilization of single-use medical products

    International Nuclear Information System (INIS)

    Norimah Yusof

    1986-01-01

    The paper reviews the current status of application of single-use medical products in Malaysia. The status of their manufacturing and sterilization is also discussed. The increasing production of such items calls for a more reliable and efficient sterilization technique in particular, radiation sterilization. In line with the demand and the effort to increase local production of medical products, UTN would be providing irradiation service together with research and development in this particular field by 1988. (author)

  15. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    Directory of Open Access Journals (Sweden)

    W. Hao

    2015-06-01

    Full Text Available The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR. The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML, 450 g/kg (medium moisture level, MML, and 500 g/kg (high moisture level, HML, and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  16. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels.

    Science.gov (United States)

    Hao, W; Wang, H L; Ning, T T; Yang, F Y; Xu, C C

    2015-06-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 10(7) to 10(10) cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 10(9) cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  17. Effect of aeration on the fermentative activity of Saccharomyces cerevisiae cultured in apple juice

    OpenAIRE

    Estela-Escalante, W.; Rychtera, M.; Melzoch, K.; Hatta-Sakoda, B.

    2012-01-01

    The influence of aeration on the fermentative activity of Saccharomyces cerevisiaeRTVE V 15-1-416 was studied in order to evaluate the synthesis of fermentation by-products. To achieve this, the strain was cultured in Erlenmeyer flasks and bioreactor containing sterilized and aroma removed apple juice. The chemical compounds produced during fermentations in shaken (200 min-¹) and static (without agitation) flasks and bioreactor, all in batch mode, were determined by GC and HPLC. The results s...

  18. Kefir: a multifaceted fermented dairy product.

    Science.gov (United States)

    Nielsen, Barbara; Gürakan, G Candan; Unlü, Gülhan

    2014-12-01

    Kefir is a fermented dairy beverage produced by the actions of the microflora encased in the "kefir grain" on the carbohydrates in the milk. Containing many bacterial species already known for their probiotic properties, it has long been popular in Eastern Europe for its purported health benefits, where it is routinely administered to patients in hospitals and recommended for infants and the infirm. It is beginning to gain a foothold in the USA as a healthy probiotic beverage, mostly as an artisanal beverage, home fermented from shared grains, but also recently as a commercial product commanding shelf space in retail establishments. This is similar to the status of yogurts in the 1970s when yogurt was the new healthy product. Scientific studies into these reported benefits are being conducted into these health benefits, many with promising results, though not all of the studies have been conclusive. Our review provides an overview of kefir's structure, microbial profile, production, and probiotic properties. Our review also discusses alternative uses of kefir, kefir grains, and kefiran (the soluble polysaccharide produced by the organisms in kefir grains). Their utility in wound therapy, food additives, leavening agents, and other non-beverage uses is being studied with promising results.

  19. Fermented Food and Non-Communicable Chronic Diseases: A Review.

    Science.gov (United States)

    Gille, Doreen; Schmid, Alexandra; Walther, Barbara; Vergères, Guy

    2018-04-04

    Fermented foods represent a significant fraction of human diets. Although their impact on health is positively perceived, an objective evaluation is still missing. We have, therefore, reviewed meta-analyses of randomized controlled trials (RCT) investigating the relationship between fermented foods and non-transmissible chronic diseases. Overall, after summarizing 25 prospective studies on dairy products, the association of fermented dairy with cancer was found to be neutral, whereas it was weakly beneficial, though inconsistent, for specific aspects of cardio-metabolic health, in particular stroke and cheese intake. The strongest evidence for a beneficial effect was for yoghurt on risk factors of type 2 diabetes. Although mechanisms explaining this association have not been validated, an increased bioavailability of insulinotropic amino acids and peptides as well as the bacterial biosynthesis of vitamins, in particular vitamin K2, might contribute to this beneficial effect. However, the heterogeneity in the design of the studies and the investigated foods impedes a definitive assessment of these associations. The literature on fermented plants is characterized by a wealth of in vitro data, whose positive results are not corroborated in humans due to the absence of RCTs. Finally, none of the RCTs were specifically designed to address the impact of food fermentation on health. This question should be addressed in future human studies.

  20. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sterilization of health care products - Ethylene oxide - Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices

    International Nuclear Information System (INIS)

    2007-01-01

    This part of ISO 11135 describes requirements that, if met, will provide an ethylene oxide sterilization process intended to sterilize medical devices, which has appropriate microbicidal activity. Furthermore, compliance with the requirements ensures that this activity is both reliable and reproducible so that it can be predicted, with reasonable confidence, that there is a low level of probability of there being a viable microorganism present on product after sterilization. Specification of this probability is a matter for regulatory authorities and may vary from country to country. The paper provides information on scope, normative references, terms and definitions, quality management systems, sterilizing agent characterization, process and equipment characterization, product definition, process definition, validation, routine monitoring and control, product release from sterilization and maintaining process effectiveness followed by Annex A (Determination of lethal rate of the sterilization process - Biological indicator/bioburden approach), Annex B (Conservative determination of lethal rate of the sterilization process - Overkill approach, annex C (General guidance) and a bibliography.

  2. Torulaspora delbrueckii for secondary fermentation in sparkling wine production.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2018-09-01

    In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions.

    Science.gov (United States)

    Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2016-10-01

    The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Efficacy of gamma sterilization technique for biofertilizer carrier production

    International Nuclear Information System (INIS)

    Rallos, Roland V.; Rivera, Faye G.; Anarna, Julie A.; Rojales, Jacqueline S.

    2013-01-01

    Th use of gamma irradiation as sterilization technique for biofertilizer carrier is very efficient and practical especially in large scale production. The results of this study on the efficacy of gamma sterilization justify research on the effects of established doses of gamma irradiation on the physico-chemical properties of the clay-charcoal mixture

  5. Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis.

    Science.gov (United States)

    Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua

    2014-01-01

    In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.

  6. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    Science.gov (United States)

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Model business plan for a sterile insect production facility

    International Nuclear Information System (INIS)

    2008-01-01

    For over 50 years the sterile insect technique (SIT) is a pest control strategy which has been used for eradication, and more recently for suppression, containment and prevention, of unwanted insect pest populations. Examples of successful applications of SIT, almost always applied in conjunction with other control methods in an area-wide integrated approach, are available from around the world. The development and application of SIT has relied overwhelmingly on public or donor initiative and funding throughout its history, although the private sector has always been involved as participants, cooperators or partners in funding. The demand for SIT, and therefore the market for sterile insects, has increased in recent years. This increase coincides with the introduction of new pests through the expansion of global trade and, at the same time, widespread pressure to find alternatives to pesticides. Recent improvements in the technology supporting SIT facilitate its application and suggest lower costs can be achieved. The conditions are therefore met for a greater commercialization of the technique to bring it in line with other pest control approaches that are fully integrated into a market approach. Several challenges arise, however, in pursuing sterile insect production as a commercial venture, ranging from intellectual property protection to pricing of the product. Routine insurance requirements, for instance, are complicated by the biological aspects of the business. This report is aimed at facilitating private sector involvement in the production of sterile insects for use in pest control. It provides guidelines and tools to support the development of specific business plans for a new SIT venture. By providing an international perspective on such issues as initial capital costs and recurring operational expenditures for a sterile insect facility, it may be used to evaluate the feasibility of proceeding with the construction or expansion of a sterile insect

  8. Resonant Production of Sterile Neutrinos in the Early Universe

    Science.gov (United States)

    Gilbert, Lauren; Grohs, Evan; Fuller, George M.

    2016-06-01

    This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.

  9. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  10. Development of a non-dairy probiotic fermented product based on almond milk and inulin.

    Science.gov (United States)

    Bernat, Neus; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-09-01

    A new fermented almond "milk" that combined the properties of both almonds and probiotics was considered to cover the current versatile health-promoting foods' demand. Almond milk fermentation with probiotic Lactobacillus reuteri and Streptococcus thermophilus was studied by using a Central Composite design with response surface methodology, and different factors (glucose, fructose, inulin and starters) were optimised to assure high probiotic survivals in the final product. The optimal formulation was physicochemically characterised throughout cold storage (28 days) and both probiotic survivals to in vitro digestion and proteolysis were quantified. Results showed that a high probiotic population (>10(7) cfu/mL) was obtained in the previously optimised almond milk throughout storage time, which correspond to the addition of 0.75 g of glucose/100 mL, 0.75 g of fructose/100 mL, 2 g/100 mL inulin and 6 mL/100 mL inoculum. Glucose was used as the main nutrient and the production of mannitol by L. reuteri was detected. The fermentation process increased the viscosity values, forming a weak gel structure, whose physical properties hardly changed. Probiotic bacteria notably survived (51%) to the in vitro digestion, surely related to the inulin presence, which would add value to the developed product by enhancing the potential health benefits of its consumption. © The Author(s) 2014.

  11. The fermented milk product of functional destination

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2016-01-01

    Full Text Available As a flavor component selected syrup made from viburnum. This berry is widely used in various forms in the food industry including the dairy. Particular attention should be paid to the fact that the viburnum is a wild plant, and does not need to land and cultivation costs. Viburnum is rich in biologically active substances and raw materials is a drug. Fruits of Viburnum is rich in organic acids, in particular valeric acid. From berries contain minerals: manganese, zinc, iron, phosphorus, copper, chromium, iodine, selenium. Mass fraction of iron in Kalina in 2–3 times higher compared to other berries. The Kalina 70% more than the C vitamin, than lemon, it also contains vitamins A, E, P and K. In berries contains tannin, pectin, tannins, coumarins, resinous esters, glycoside viburnin (very useful in the composition of Viburnum, namely it makes bitter berries. It is suggested the use of syrup of viburnum in the production of fermented milk product. Since the biologically active substances is not destroyed by freezing and processing was freeze berries and added sucrose. The syrup had the gray edge-ruby color and a pleasant taste. Fermented milk product functionality produced reservoir method. Technological process of obtaining a fermented milk product is different from the traditional operations of preparation components and their introduction in the finished product. The consumption of 100 g of fermented milk product with a vitamin premix meets the daily requirement of vitamins A, B complex, C, D, E 40–50%. According to the research developed formulation of dairy products, assessed their quality. Production of fermented milk product thus expanding the range of dairy products functional orientation.

  12. Fermented Food and Non-Communicable Chronic Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Doreen Gille

    2018-04-01

    Full Text Available Fermented foods represent a significant fraction of human diets. Although their impact on health is positively perceived, an objective evaluation is still missing. We have, therefore, reviewed meta-analyses of randomized controlled trials (RCT investigating the relationship between fermented foods and non-transmissible chronic diseases. Overall, after summarizing 25 prospective studies on dairy products, the association of fermented dairy with cancer was found to be neutral, whereas it was weakly beneficial, though inconsistent, for specific aspects of cardio-metabolic health, in particular stroke and cheese intake. The strongest evidence for a beneficial effect was for yoghurt on risk factors of type 2 diabetes. Although mechanisms explaining this association have not been validated, an increased bioavailability of insulinotropic amino acids and peptides as well as the bacterial biosynthesis of vitamins, in particular vitamin K2, might contribute to this beneficial effect. However, the heterogeneity in the design of the studies and the investigated foods impedes a definitive assessment of these associations. The literature on fermented plants is characterized by a wealth of in vitro data, whose positive results are not corroborated in humans due to the absence of RCTs. Finally, none of the RCTs were specifically designed to address the impact of food fermentation on health. This question should be addressed in future human studies.

  13. Fermentative Alcohol Production

    DEFF Research Database (Denmark)

    Martín, Mariano; Sánchez, Antonio; Woodley, John M.

    2018-01-01

    In this chapter we present some of key principles of bioreactor design for the production of alcohols by fermentation of sugar and syngas . Due to the different feedstocks, a detailed analysis of the hydrodynamics inside the units , bubble columns or stirred tank reactors , the gas-liquid mass...

  14. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    Science.gov (United States)

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  15. Effects of Fermented Milk Products on Bone.

    Science.gov (United States)

    Rizzoli, René; Biver, Emmanuel

    2018-04-01

    Fermented milk products like yogurt or soft cheese provide calcium, phosphorus, and protein. All these nutrients influence bone growth and bone loss. In addition, fermented milk products may contain prebiotics like inulin which may be added to yogurt, and provide probiotics which are capable of modifying intestinal calcium absorption and/or bone metabolism. On the other hand, yogurt consumption may ensure a more regular ingestion of milk products and higher compliance, because of various flavors and sweetness. Bone mass accrual, bone homeostasis, and attenuation of sex hormone deficiency-induced bone loss seem to benefit from calcium, protein, pre-, or probiotics ingestion, which may modify gut microbiota composition and metabolism. Fermented milk products might also represent a marker of lifestyle promoting healthy bone health.

  16. Choice of the irradiation dose for the sterilization of medical products

    International Nuclear Information System (INIS)

    Bochkarev, V.V.; Pavlov, E.P.; Sedov, V.V.; Khrushchev, V.G.; Tushov, Eh.G.; Konyaev, G.A.

    1975-01-01

    The principles for selecting the appropriate dose for the radiation sterilization of medical products are set forth, taking into account the initial contamination of the product, the radiation senstivity of contaminants and the required level of reliability of sterilization. The initial contamination level of certain preparations (glucose and radiopharmaceuticals) is established and the radiation sensitivity of the isolated contaminants is determined in terms of Dio indices. Of the microorganisms isolated the most common were staphylococci, streptococci, Gram-negative bacteria, Aspergilli, Penicillia and yeast fungi. Spore-forming types of microorganisms were isolated with a frequency of the order of 10 -2 . The radiation sensitivity in terms of D 10 was established for more than 3000 strains of microorganisms. For 75-85% of the strains the D 10 indices gave 10-40 krad and for 0.2-1% more than 100 krad. The experimental data were subjected to computer analysis which confirmed the adequacy of the techniques used to determine radiosensitivity. The authors then calculated by computer the radiation sterilizing doses for different degrees of initial contamination of the products with reliability coefficients of 10 6 and 10 8 . For sterilizing radiopharmaceuticals and glucose solutions these doses are 0.8-1 Mrad. Verification experiments show that these doses give reliable sterilization of the medical products concerned. (author)

  17. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    Science.gov (United States)

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  18. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  19. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content.

    Science.gov (United States)

    Contreras, A; Hidalgo, C; Schmidt, S; Henschke, P A; Curtin, C; Varela, C

    2015-07-16

    High alcohol concentrations reduce the complexity of wine sensory properties. In addition, health and economic drivers have the wine industry actively seeking technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol, however commercially available wine yeasts produce very similar ethanol yields. Non-conventional yeast, in particular non-Saccharomyces species, have shown potential for producing wines with lower alcohol content. These yeasts are naturally present in the early stages of fermentation but in general are not capable of completing alcoholic fermentation. We have evaluated 48 non-Saccharomyces isolates to identify strains that, with limited aeration and in sequential inoculation regimes with S. cerevisiae, could be used for the production of wine with lower ethanol concentration. Two of these, Torulaspora delbrueckii AWRI1152 and Zygosaccharomyces bailii AWRI1578, enabled the production of wine with reduced ethanol concentration under limited aerobic conditions. Depending on the aeration regime T. delbrueckii AWRI1152 and Z. bailii AWRI1578 showed a reduction in ethanol concentration of 1.5% (v/v) and 2.0% (v/v) respectively, compared to the S. cerevisiae anaerobic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  1. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  2. Valorization of Agri-Food Waste via Fermentation: Production of l-lactic Acid as a Building Block for the Synthesis of Biopolymers

    Directory of Open Access Journals (Sweden)

    Giovanni Dedenaro

    2016-11-01

    Full Text Available Global interest towards lactic acid production has recently significantly increased because lactic acid can be used as raw material for the production of polylactic acid (PLA, a polymer used in biodegradable plastics for its special, environmentally-friendly properties. However, the high production costs have hindered the large-scale application of PLA due to the high price of lactic acid. Here we evaluated the potential of pear pomace and ricotta cheese whey (RCW as a low-cost source of nutrients for lactic acid fermentation of Lactobacillus casei and Lactobacillus farciminis in microaerophilic conditions and mild sterility. After an initial lab-scale screening of 19 lactic acid bacteria (LAB strains to select the highest producer of lactic acid, we reported the 1L-batch scale-up to test process efficiency and productivity of the most promising LAB strains. Batch fermentation of a 25:75 mixture of pear pomace and RCW, respectively, reached an overall yield factor of 90% and a volumetric productivity of 0.42 g/L·h.

  3. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.

    Science.gov (United States)

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-12-06

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose-methanol-choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.

  4. Quinacrine non-surgical female sterilization in Bangladesh.

    Science.gov (United States)

    Bhuiyan, S N; Begum, R

    2001-11-01

    This study was undertaken to evaluate the efficacy, safety, and acceptability of transcervical applications of quinacrine along with other adjuvants, such as ampicillin and ibuprofen, for sterilization. The cohort consisted of 750 normal women who requested sterilization and volunteered for this method at the family planning clinic of a tertiary hospital and community clinics in Chittagong, Bangladesh. Several different protocols were followed from October 1989 to April 1999. Each woman received one or two insertions of 180 mg or 252 mg quinacrine with or without adjuvants including 55.5 mg ibuprofen or 125 mg ampicillin. Supplementary contraception was given in the form of combined oral contraceptive pills, barrier methods, or injection of depot medroxyprogesterone acetate for 3 months. Details of each protocol are described in the text. The gross pregnancy failure rate for insertion of 180 mg in 590 women was 3.9% compared to 1.9% for the 160 who received 252 mg. There were no serious complications, and side effects were transient. We conclude that quinacrine non-surgical sterilization is a safe, acceptably effective method when two insertions of 252 mg quinacrine with medroxyprogesterone injection as a supplement is used.

  5. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  6. Irradiation of meat for the production of fermented sausage

    International Nuclear Information System (INIS)

    Dickson, J.S.; Maxcy, R.B.

    1985-01-01

    A study assessing the potential of gamma irradiation for reducing pathogenic microflora in the production of fermented sausage revealed that an irradiation dose of 500 Krad could reduce total aerobic microflora in commercial sausage meat batter for up to 2.2 log cycles. Coliform and staphylococci counts were reduced to acceptably safe levels, allowing the use of a lower inoculum level, a longer fermentation time, and a more uniform fermentation and fermented product

  7. Irradiation of meat for the production of fermented sausage

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, J. S.; Maxcy, R. B.

    1985-07-15

    A study assessing the potential of gamma irradiation for reducing pathogenic microflora in the production of fermented sausage revealed that an irradiation dose of 500 Krad could reduce total aerobic microflora in commercial sausage meat batter for up to 2.2 log cycles. Coliform and staphylococci counts were reduced to acceptably safe levels, allowing the use of a lower inoculum level, a longer fermentation time, and a more uniform fermentation and fermented product.

  8. Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures

    Science.gov (United States)

    Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.

    2017-02-01

    In the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino's helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tf-≃5 GeV , whereas positive helicity neutrinos freeze out at Tf+≃8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li

  9. Future growth in the gamma sterilization of disposable medical products (DMPs)

    International Nuclear Information System (INIS)

    Brinston, R.M.

    1990-01-01

    An estimated 361 million cubic feet (10 million cubic meters) of disposable medical products and related health care items are currently being sterilized around the world. Ethylene oxide gas is used to treat approximately 252 million cubic feet (7.1 million cubic meters), gamma radiation is used to sterilize approximately 99 million cubic feet (2.8 million cubic meters), and electron beam is used on approximately 10 million cubic feet (0.3 million cubic meters) of disposable medical products (DMPs). Market share for each of these terminal cold sterilization processes are 70%, 27%, and 3% respectively. There are a number of factors which are affecting the overall growth of the market. The most important factors are summarized. Balancing all of these factors, the pre-sterilized disposable products market is forecasted to grow on average of 5% per year. Gamma radiation is experiencing growth from both general market growth and the introduction of new products, as well as the conversion of product from ethylene oxide (EtO) to cobalt-60 sterilization. Electron beam usage while experiencing good growth in the early 1980s, is predicted to have a flat growth curve during the late 1980s, and then start to experience renewed growth in the mid to late 1990s as two or three new electron beam facilities are built. In the late 1990s other potentially competing technologies are expected to have an impact on the market place. (author)

  10. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  11. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  12. Non-coding RNAs and plant male sterility: current knowledge and future prospects.

    Science.gov (United States)

    Mishra, Ankita; Bohra, Abhishek

    2018-02-01

    Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.

  13. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  14. Radiation sterilization of medical products in the Philippines

    International Nuclear Information System (INIS)

    Singson, C.; Carmona, C.; Guzman, Z. de; Barrun, W.; Lanuza, L.

    1983-01-01

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D 10 values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged. (author)

  15. Radiation sterilization of medical products in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Singson, C; Carmona, C; Guzman, Z de; Barrun, W; Lanuza, L [Philippine Atomic Energy Commission, Diliman, Quezon City

    1983-01-01

    This paper presents the results of a comprehensive investigation of the biological, microbiological, physico-chemical, and dosimetry aspects of using gamma irradiation for the sterilization of locally manufactured medical products and pharmaceuticals. The objective of this study is to determine the technological feasibility of radiation sterilization for the said products in the Philippines. They are polyvinyl chloride or polyethylene based medical plastic disposables namely: absorbent cotton, surgical gauze, bandage, visceral packs, and some antibiotics and opthalmic ointments. The gamma facility of the Philippine Atomic Energy Commission was used for the irradiation. Result of biological studies indicate no signs of toxicity on experimental mice injected with extracts from irradiated samples. The contaminants are identified as Pseudomonas Sp. Staphyloccocus Aureus and Bacillus Subtilis. The D/sub 10/ values of survivors of higher doses ranged below 0.235 Megarad suggesting that these contaminants can be eliminated by the generally used sterilizing dose of 2.5 Mrads. The physico-chemical tests did not indicate any significant degradation of the irradiated products. Opthalmic and topical antibiotic ointments showed no marked decrease in potency. Fading tests on dosimeters used showed that red perspex is a more efficient dosimeter than clear perspex when irradiation time is prolonged.

  16. ISO radiation sterilization standards

    International Nuclear Information System (INIS)

    Lambert, Byron J.; Hansen, Joyce M.

    1998-01-01

    This presentation provides an overview of the current status of the ISO radiation sterilization standards. The ISO standards are voluntary standards which detail both the validation and routine control of the sterilization process. ISO 11137 was approved in 1994 and published in 1995. When reviewing the standard you will note that less than 20% of the standard is devoted to requirements and the remainder is guidance on how to comply with the requirements. Future standards developments in radiation sterilization are being focused on providing additional guidance. The guidance that is currently provided in informative annexes of ISO 11137 includes: device/packaging materials, dose setting methods, and dosimeters and dose measurement, currently, there are four Technical Reports being developed to provide additional guidance: 1. AAMI Draft TIR, 'Radiation Sterilization Material Qualification' 2. ISO TR 13409-1996, 'Sterilization of health care products - Radiation sterilization - Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches' 3. ISO Draft TR, 'Sterilization of health care products - Radiation sterilization Selection of a sterilization dose for a single production batch' 4. ISO Draft TR, 'Sterilization of health care products - Radiation sterilization-Product Families, Plans for Sampling and Frequency of Dose Audits'

  17. The economics of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Daugulis, A J; Axford, D B; McLellan, P J [Queen' s Univ., Kingston, ON (Canada)

    1991-04-01

    Extractive fermentation is a processing strategy in which reaction and recovery occur simultaneously in a fermentation vessel through the use of a water-immiscible solvent which selectively removes an inhibitory product. An ethanol-extractive fermentation process has been developed, incorporating continuous operation and the ability to ferment concentrated feedstocks. A detailed economic assessment of this process is provided relative to current technology for an annual capacity of 100 million litres of ethanol. Extractive fermentation provides significant economic advantages for both grass roots and retrofitted plants. Total production costs are estimated at 45{cents}/l for a conventional plant and 29.4{cents}/l for a retrofitted plant. The main cost saving achievable by extractive fermentation is in energy, used for evaporation and drying, since the process uses significantly less water in its conversion of concentrated feedstocks. Producing anhydrous ethanol without distillation is also a prospect. 15 refs., 5 fig., 10 tabs.

  18. Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation

    Directory of Open Access Journals (Sweden)

    Nestor Sanchez

    2017-12-01

    Full Text Available Cachaza is a type of non-centrifugal sugarcane press-mud that, if it is not employed efficiently, generates water pollution, soil eutrophication, and the spread of possible pathogens. This biomass can be fermented to produce bioethanol. Our intention is to obtain bioethanol that can be catalytically reformed to produce hydrogen (H2 for further use in fuel cells for electricity production. However, some impurities could negatively affect the catalyst performance during the bioethanol reforming process. Hence, the aim of this study was to assess the fermentation of Cachaza using ammonium sulfate ((NH42SO4 loadings and Saccharomyces cerevisiae strain to produce the highest ethanol concentration with the minimum amount of impurities in anticipation of facilitating further bioethanol purification and reforming for H2 production. The results showed that ethanol production from Cachaza fermentation was about 50 g·L−1 and the (NH42SO4 addition did not affect its production. However, it significantly reduced the production of branched alcohols. When a 160 mg·L−1 (NH42SO4 was added to the fermentation culture, 2-methyl-1-propanol was reduced by 41% and 3-methyl-1-butanol was reduced by 6%, probably due to the repression of the catabolic nitrogen mechanism. Conversely, 1-propanol doubled its concentration likely due to the higher threonine synthesis promoted by the reducing sugar presence. Afterwards, we employed the modified Gompertz model to fit the ethanol, 2M1P, 3M1B, and 1-propanol production, which provided acceptable fits (R2 > 0.881 for the tested compounds during Cachaza fermentation. To the best of our knowledge, there are no reports of the modelling of aliphatic production during fermentation; this model will be employed to calculate yields with further scaling and for life cycle assessment.

  19. Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean.

    Science.gov (United States)

    Moy, Yin-Soon; Lu, Ting-Jang; Chou, Cheng-Chun

    2012-02-01

    In the present study, sufu, a soft cheese-like oriental fermented food, was prepared by ripening the salted-tofu cubes in Aspergillus oryzae-fermented soybean-rice koji at 37°C for 16 days (16-day sufu). Sufu was further held at room temperature for another 30 days (46-day sufu). The volatile components of the non-fermented tofu cubes and the sufu products were identified and quantified by GC and GC-MS. A total of 70 volatile compounds including 20 aldehydes, 18 alcohols, 16 esters, 5 ketones, 5 acids and 6 other compounds were identified. Sufu products contained more volatile compounds than non-fermented tofu cubes qualitatively and quantitatively. After 16-days of ripening, fatty acid, aldehyde and ester were noted to be the dominant volatile fractions. In contrast, the 46-day sufu contained ester, and alcohol as the major volatile fractions. They comprise approximately 63.9% of the total volatile components. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Novel Production Protocol for Small-scale Manufacture of Probiotic Fermented Foods

    Science.gov (United States)

    Westerik, Nieke; Wacoo, Alex Paul; Sybesma, Wilbert; Kort, Remco

    2016-01-01

    A novel dried bacterial consortium of Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106 is cultured in 1 L of milk. This fresh starter can be used for the production of fermented milk and other fermented foods either at home or at small-scale in rural settings. For the fresh starter, 1 L of milk is pasteurized in a pan that fits into a larger pan containing water, placed on a source of heat. In this water bath, the milk is heated and incubated at 85 °C for 30 min. Thereafter, the milk is cooled down to 45 °C, transferred to a vacuum flask, inoculated with the dried bacteria and left for at least 16 hr between 30 °C and 45 °C. For the purpose of frequent home production, the fresh starter is frozen into ice cubes, which can be used for the production of small volumes of up to 2 L of fermented milk. For the purpose of small-scale production in resource-poor countries, pasteurization of up to 100 L of milk is conducted in milk cans that are placed in a large sauce pan filled with water and heated on a fire at 85 °C for 30 min, and subsequently cooled to 45 °C. Next, the 100 L batch is inoculated with the 1 L freshly prepared starter mentioned before. To assure an effective fermentation at a temperature between 30 and 45 °C, the milk can is covered with a blanket for 12 hr. For the production of non-dairy fermented foods, the fresh starter is left in a cheese cloth for 12 hr, and the drained-off whey can be subsequently used for the inoculation of a wide range of food raw materials, including vegetables and cereal-based foods. PMID:27684196

  1. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    Science.gov (United States)

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  2. Radiation sterilization of pharmaceuticals and biomedical products

    International Nuclear Information System (INIS)

    Blackburn, R.; Iddon, B.; Moore, J.S.; Phillips, G.O.; Power, D.M.; Woodward, T.W.

    1975-01-01

    Sterilization of pharmaceuticals by radiation is accompanied by chemical degradation which must be eliminated or minimised if the method is to be successfully applied. In order to devise ways in which the pharmaceutical can be protected it is necessary to know the yield and nature of the decomposition products, the mechanisms by which degradation occurs, and the rate constants for the reactions involved. We have obtained such data for a variety of pharmaceutical compounds, viz. vitamin B12, benzyl penicillin, sulphonamides, indoles, heparin, alginates and phenylmercurics, both in the solid state and in aqueous solution. The scope and limitations of radiation sterilization are discussed in the light of these results. (author)

  3. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production.

    Science.gov (United States)

    Duarte, Whasley Ferreira; Dias, Disney Ribeiro; de Melo Pereira, Gilberto Vinicius; Gervásio, Ivani Maria; Schwan, Rosane Freitas

    2009-04-01

    The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml(-1). During indigenous fermentation, yeast population increased from 3.7 log CFU ml(-1) to 8.1 log CFU ml(-1) after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.

  4. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of Mycobacterium bovis BCG.

    Science.gov (United States)

    Macuamule, C L S; Wiid, I J; van Helden, P D; Tanner, M; Witthuhn, R C

    2016-01-18

    Mycobacterium bovis that causes Bovine tuberculosis (BTB) can be transmitted to humans thought consumption of raw and raw fermented milk products from diseased animals. Lactic acid bacteria (LAB) used in popular traditional milk products in Africa produce anti-microbial compounds that inhibit some pathogenic and spoilage bacteria. M. bovis BCG is an attenuated non-pathogenic vaccine strain of M. bovis and the aim of the study was to determine the effect of the fermentation process on the survival of M. bovis BCG in milk. M. bovis BCG at concentrations of 6 log CFU/ml was added to products of kefir fermentation. The survival of M. bovis BCG was monitored at 12-h intervals for 72 h by enumerating viable cells on Middlebrook 7H10 agar plates enriched with 2% BD BACTEC PANTA™. M. bovis BCG was increasingly reduced in sterile kefir that was fermented for a period of 24h and longer. In the milk fermented with kefir grains, Lactobacillus paracasei subsp. paracasei or Lactobacillus casei, the viability of M. bovis BCG was reduced by 0.4 logs after 24h and by 2 logs after 48 h of fermentation. No viable M. bovis BCG was detected after 60 h of fermentation. Results from this study show that long term fermentation under certain conditions may have the potential to inactivate M. bovis BCG present in the milk. However, to ensure safety of fermented milk in Africa, fermentation should be combined with other hurdle technologies such as boiling and milk pasteurisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Investigation of hydrolysis products in the acetone-butanol fermentation of vegetable agricultural waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M

    1960-01-01

    Determinations of the fundamental chemical composition of corn stalk, sunflower husk, and hemp scutch by chromatography were reported, e.g. pentoses (1.98, 1.98, 2.01%), hexoses (1.59, 1.72, 2.01% respectively.) and various amino acids (arginine, asparagine, histidine, glutamine, glycine, lysine, proline, serine, tyrosine, threonine, cysteine, cystine, alanine, and aspartic and glutamic acids). The sterilized products from the hydrolysis (pentoses, hexoses) in a combined mixture with a meal mash were normally fermented at 37/sup 0/ in the presence of acetone-butanol bacteria for 40 to 48 hours, yielding 10.46 to 12.50% of acetone, 15.09 to 18.0% of butanol, 3.79 to 6.08% of ethanol (a total yielding being 30 to 42% of solvents).

  6. Biological fermentative hydrogen production from olive pulp at 35 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Koutrouli, E.C.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering

    2004-07-01

    In response to energy security and environmental concerns, there is renewed interest in the use of hydrogen gas as a renewable energy source. However, many processes for generating hydrogen are extremely energy intensive and costly. This study focused on biological production of hydrogen from wastewater or other biomass. Photosynthetic and fermentation processes were outlined, but the main focus of this paper was on continuous anaerobic fermentation of low cost substrates such as olive pulp at 35 degrees C. This process is linked to the acidogenic stage of anaerobic digestion where carbohydrates are the preferred carbon source. Volatile fatty acids and alcohols are produced simultaneously with the hydrogen gas. An added advantage is that the effluent from the fermentation process can be further used by methanogenesis due to its rich organic acids content. Batch experiments with olive pulp resulted in 2.5 mmole of hydrogen per gram of total carbohydrates. It was noted that more research is required to maximize hydrogen production in a continuous process. It was suggested that hydrogen production could be optimized through hydrolysis of the non-soluble carbohydrates. This could be accomplished through physicochemical or biological pretreatments. 7 refs., 3 tabs., 1 fig.

  7. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  8. Production of Star Fruit Alcoholic Fermented Beverage.

    Science.gov (United States)

    Valim, Flávia de Paula; Aguiar-Oliveira, Elizama; Kamimura, Eliana Setsuko; Alves, Vanessa Dias; Maldonado, Rafael Resende

    2016-12-01

    Star fruit ( Averrhoa carambola ) is a nutritious tropical fruit. The aim of this study was to evaluate the production of a star fruit alcoholic fermented beverage utilizing a lyophilized commercial yeast ( Saccharomyces cerevisiae ). The study was conducted utilizing a 2 3 central composite design and the best conditions for the production were: initial soluble solids between 23.8 and 25 °Brix (g 100 g -1 ), initial pH between 4.8 and 5.0 and initial concentration of yeast between 1.6 and 2.5 g L -1 . These conditions yielded a fermented drink with an alcohol content of 11.15 °GL (L 100 L -1 ), pH of 4.13-4.22, final yeast concentration of 89 g L -1 and fermented yield from 82 to 94 %. The fermented drink also presented low levels of total and volatile acidities.

  9. Upgrading of oil palm wastes to animal feeds by radiation and fermentation treatment

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Ito, Hitoshi; Hashimoto, Shoji; Mutaat, H.H.; Awang, M.R.

    1992-01-01

    Upgrading of oil palm cellulosic wastes to animal feeds by radiation and fermentation treatment has been investigated in order to recycle the agro-resources and to reduce the smoke pollution. The process is as follows; decontamination of microorganisms in fermentation media using oil palm wastes by irradiation, inoculation of useful microorganisms, and subsequent microbial digestion of cellulosic materials as well as production of proteins. The dose of 25 kGy was required to sterilize the contaminated bacteria whereas the dose of 5 - 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus was selected as the most suitable seed microorganism for the fermentation of EFB (Empty Fruit Bunch of oil palm). The protein content increased to 13 % and the crude fiber content decreased to 20 % after 30 days incubation with C. cinereus at 30degC in solid state fermentation. It is considered that these fermented products can be used for the ruminant animal feeds. (author)

  10. Lactic acid production with undefined mixed culture fermentation of potato peel waste.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2014-11-01

    Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g(-1), 0.06 g g(-1), and 0.05 g g(-1). The highest LA concentration of 14.7 g L(-1) was obtained from a bioreactor with initial solids loading of 60 g L(-1) at 35°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. New approaches to non-surgical sterilization for dogs and cats: Opportunities and challenges.

    Science.gov (United States)

    Rhodes, Linda

    2017-04-01

    Over the last 40 years, researchers have explored methods to non-surgically suppress fertility in animals. Immunocontraception has been used to control wildlife populations but does not confer long-term immunity. The gonadotropin-releasing hormone (GnRH) agonist deslorelin, formulated as an implant to provide 6-month to 1-year suppression of fertility in male dogs, is available commercially in some countries. Neither of these approaches provide permanent sterility. A single-dose, permanent treatment would be a valuable tool in dog and cat population control. The Michelson Prize and Grants (MPG) programme was initiated "to eliminate shelter euthanasia of healthy, adoptable companion animals and reduce populations of feral and free-roaming cats and dogs" offering a $25 million US prize for a non-surgical sterilant that is effective as a single treatment in both male and female dogs and cats. Michelson Prize and Grants programme has offered US $50 million in grant money for research and has attracted scientists worldwide. Approaches under study include gene therapy, small interfering RNA to inhibit reproductive targets and delivery of cytotoxins to pituitary gonadotrophs or GnRH producing neurons in the hypothalamus. Research in implant technology that could deliver compounds over an animal's lifetime is also underway. Details of funded grants and results to date can be found at: http://www.michelsonprizeandgrants.org/michelson-grants/research-findings. The next steps are translating the most promising research into products. The Alliance for Contraception of Cats and Dogs (ACC&D) is helping to research practical methods of marking sterilized animals to avoid costly retreatment and population modelling that will help guide field workers in use of resources for sterilization programmes. © 2016 Blackwell Verlag GmbH.

  13. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    Science.gov (United States)

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  14. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Directory of Open Access Journals (Sweden)

    Antoine Gobert

    2017-11-01

    Full Text Available Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available. We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for

  15. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  16. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  17. Feasibility studies of radiation sterilization of some pharmaceutical products

    International Nuclear Information System (INIS)

    Gopal, N.G.S.; Rajagopalan, S.; Sharma, G.

    1975-01-01

    The paper deals with some studies carried out to evaluate the feasibility of radiation sterilization or treatment of some medical products and pharmaceuticals of immediate importance to their respective industries. The products include penicillin G sodium, ampicillin sodium, tetracyclin hydrochloride ointment,hydrocortisone acetate and its ointment, aqueous sodium chloride solutions (0.9 and 20%), fluorescein sodium strips, urea, ethylmorphine hydrochloride, aqueous solution of chlorobutanol and one of its commercial preparations, phenylmercuric nitrate and its aqueous solutions, aqueous solutions of methyl and propyl paraben, lactose, gum karaya, absorbent cotton and poly-(vinyl chloride) based medical products. The irradiated products have been examined for pharmacopoeial specifications wherever available. In general the products have been examined for changes in colour, pH, ultra-violet and infra-red absorption spectra. Thin-layer chromatographic analyses have been carried out to establish the purity of some of the irradiated products. The feasibility or otherwise of radiation sterilization or treatment of the various products from the physicochemical and microbiological (pharmacological) clinical considerations is also described. (author)

  18. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  19. Biohydrogen production from combined dark-photo fermentation under a high ammonia content in the dark fermentation effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; Lo, Yung-Chung; Yeh, Kuei-Ling [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Chang, Jo-Shu [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; National Cheng Kung Univ., Tainan, Taiwan (China). Microalgae Biotechnology and Bioengineering Lab.

    2010-07-01

    Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H{sub 2} production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H{sub 2} production rate and H{sub 2} yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H{sub 2}/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H{sub 2} production process inoculated with Rhodopseudomonas palutris WP 3-5 under the condition of 35oC, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H{sub 2}/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H{sub 2} yield dramatically increased from 1.015 mol H{sub 2}/mol sucrose (in dark fermentation only) to 6.04 mol H{sub 2}/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH{sub 3}-N removal efficiency of 92%, implying that our photo-H{sub 2} production system has a higher NH{sub 3}-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. (orig.)

  20. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  1. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Science.gov (United States)

    Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brandão Mafra; da Silva, Marília Lordêlo Cardoso; da Silva, Gervásio Paulo; Machado, Bruna Aparecida Souza; Uetanabaro, Ana Paula Trovatti

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  2. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Directory of Open Access Journals (Sweden)

    Cassiane da Silva Oliveira Nunes

    Full Text Available This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52, belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil, and a commercial strain of ale yeast (Safale S-04 Belgium were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  3. New alternatives for the fermentation process in the ethanol production from sugarcane: Extractive and low temperature fermentation

    International Nuclear Information System (INIS)

    Palacios-Bereche, Reynaldo; Ensinas, Adriano; Modesto, Marcelo; Nebra, Silvia A.

    2014-01-01

    Ethanol is produced in large scale from sugarcane in Brazil by fermentation of sugars and distillation. This is currently considered as an efficient biofuel technology, leading to significant reduction on greenhouse gases emissions. However, some improvements in the process can be introduced in order to improve the use of energy. In current distilleries, a significant fraction of the energy consumption occurs in the purification step – distillation and dehydration – since conventional fermentation systems employed in the industry require low substrate concentration, which must be distilled, consequently with high energy consumption. In this study, alternatives to the conventional fermentation processes are assessed, through computer simulation: low temperature fermentation and vacuum extractive fermentation. The aim of this study is to assess the incorporation of these alternative fermentation processes in ethanol production, energy consumption and electricity surplus produced in the cogeneration system. Several cases were evaluated. Thermal integration technique was applied. Results shown that the ethanol production increases between 3.3% and 4.8% and a reduction in steam consumption happens of up to 36%. About the electricity surplus, a value of 85 kWh/t of cane can be achieved when condensing – extracting steam turbines are used. - Highlights: • Increasing the wine concentration in the ethanol production from sugarcane. • Alternatives to the conventional fermentation process. • Low temperature fermentation and vacuum extractive fermentation. • Reduction of steam consumption through the thermal integration of the processes. • Different configurations of cogeneration system maximizing the electricity surplus

  4. Traditional Turkish Fermented Cereal Based Products: Tarhana, Boza and Chickpea Bread

    Directory of Open Access Journals (Sweden)

    Hasan Tangüler

    2014-04-01

    Full Text Available Fermented products are one of the important foodstuffs in many countries of the world. People have gradually recognized the nutritional, functional and therapeutic value of these products and this has made them even more popular. Today, almost all consumers have a significant portion of their nutritional requirements fulfilled through these products. Scientific and technological knowledge is quite well developed for some fermented products such as wine, beer, cheese, and bread. These products are produced universally. However, scientific knowledge for some traditional foods produced locally in Turkey is still poor and not thorough. Numerous traditional, cereal-based fermented foods are produced in Turkey. The aim of this paper is to provide knowledge regarding the characterization, raw materials used for production, production methods, fermentation conditions and microorganisms which are effective in the fermentation of traditional foods. The study will focus on Boza, Tarhana, and Chickpea bread which are foods widely produced in Turkey.

  5. The effect of fermentation temperature on the functional dairy product quality

    Directory of Open Access Journals (Sweden)

    Kanurić Katarina G.

    2011-01-01

    Full Text Available The aim of this study was to examine the possibility of fermented dairy beverage production by the application of kombucha cultivated on thyme tea in combination with a probiotic starter and to evaluate the quality of the new functional product. Fermented dairy beverages are produced from milk with 1.6% milk fat at three fermentation temperatures: 37°C, 40ºC and 43ºC.Chemical quality, rheological properties and products of added starter cultures metabolism were determined in the fermented dairy beverages after production and after10 days of storage. Produced fermented dairy beverages have reduced milk fat content and good textural characteristics. Besides the highly valuable milk components, they contain numerous compounds which have pronounced therapeutic properties. These products could be used as functional food in the diet of different populations for health improvement.

  6. Effects of Fermented Dairy Products on Skin: A Systematic Review.

    Science.gov (United States)

    Vaughn, Alexandra R; Sivamani, Raja K

    2015-07-01

    Fermented dairy products, such as yogurt, have been proposed as a natural source of probiotics to promote intestinal health. Growing evidence shows that modulation of the gastrointestinal tract microbiota can modulate skin disease as well. This systematic review was conducted to examine the evidence for the use of ingested fermented dairy products to modulate skin health and function. We also sought to review the effects of the topical application of dairy products. The PubMed and Embase databases were systematically searched for clinical studies involving humans only that examined the relationship between fermented dairy products and skin health. A total of 312 articles were found and a total of 4 studies met inclusion criteria. Three studies evaluated the effects of ingestion, while one evaluated the effects of topical application. All studies noted improvement with the use of fermented dairy. Overall, there is early and limited evidence that fermented dairy products, used both topically and orally, may provide benefits for skin health. However, existing studies are limited and further studies will be important to better assess efficacy and the mechanisms involved.

  7. Effect of production phase on bottle-fermented sparkling wine quality.

    Science.gov (United States)

    Kemp, Belinda; Alexandre, Hervé; Robillard, Bertrand; Marchal, Richard

    2015-01-14

    This review analyzes bottle-fermented sparkling wine research at each stage of production by evaluating existing knowledge to identify areas that require future investigation. With the growing importance of enological investigation being focused on the needs of the wine production industry, this review examines current research at each stage of bottle-fermented sparkling wine production. Production phases analyzed in this review include pressing, juice adjustments, malolactic fermentation (MLF), stabilization, clarification, tirage, lees aging, disgorging, and dosage. The aim of this review is to identify enological factors that affect bottle-fermented sparkling wine quality, predominantly aroma, flavor, and foaming quality. Future research topics identified include regional specific varieties, plant-based products from vines, grapes, and yeast that can be used in sparkling wine production, gushing at disgorging, and methods to increase the rate of yeast autolysis. An internationally accepted sensory analysis method specifically designed for sparkling wine is required.

  8. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  9. Axion-assisted production of sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  10. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  11. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  12. Electron beam sterilization and composting of sludge and its utilization as fertilizer for greenbelt and farmland

    International Nuclear Information System (INIS)

    Machi, Sueo; Hashimoto, Shoji

    1988-01-01

    Sludge should be sterilized to exterminate bacteria prior to its application as a fertilizer in greenbelts or farmland. Furthermore, sludge should be converted into compost to prevent odors or breeding of harmful insects. A technique is developed for complete sterilization of sludge and rapid production of compost. Sludge is first sterilized by electron beams and composting is performed under optimum conditions including the fermentation temperature. Typically, about 10 8 - 10 9 bacteria are contained in 1 g of sludge, with coliforms accounting for about 10 percent of the total bacteria. Irradiation of 15 kGy can reduce the total number of bacteria by 6 - 7 orders of magnitude. Irradiation of 2 kGy can almost completely exterminate coliforms, which are highly sensitive to radiations. This indicates that 0.2-second irradiation is sufficient if a dose rate of 10 kGy/sec is used. After the sterilization process, sludge is composted under the following conditions: temperature of 40 - 50 deg C, initial pH of 7 - 8 and particle size of 5 mm or less. Compared with conventional processes, the maximum fermentation rate is greater by 10 times and can be reached 10 times more rapidly. Conventional processes require more than 10 days while the present technique takes only 2 - 3 days until carbon dioxide stops generating. (Nogami, K.)

  13. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Scleroglucan: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Shrikant A. Survase

    2007-01-01

    Full Text Available Exopolysaccharides produced by a variety of microorganisms find multifarious industrial applications in foods, pharmaceutical and other industries as emulsifiers, stabilizers, binders, gelling agents, lubricants, and thickening agents. One such exopolysaccharide is scleroglucan, produced by pure culture fermentation from filamentous fungi of genus Sclerotium. The review discusses the properties, fermentative production, downstream processing and applications of scleroglucan.

  15. [Effect of products of thermophilous methane fermentation on the fermentation of fruit must by Saccharomyces vini].

    Science.gov (United States)

    Mikhlin, E D; Kotomina, E N; Pisarnitsky

    1975-01-01

    Experiments were carried out to study the effect of extracts from products of thermophilous methane fermentation at a dose of 0.7+2.0 ml/100 ml on the proliferation and fermentation activity of yeast Saccharomyces vini of the Yablochnaya-7 and Vishnevaya-33 race during their cultivation in the Hansen medium and in the apple and cranberry must with a normal and elevated content of sugar and acid. In some experiments the must was enriched in (NH4)2HPO4 at a dose of 0.3 g/l. Additions of small amounts of products of thermophilous methane fermentation accelerated fermentation of fruit musts with a normal sugar content and to a greater extent musts with an increased sugar content (27%). In the must enriched in (NH4)2HPO4 an almost complete (over 98%) fermentation of sugar developed for 27 days. In the must with an increased acidity (due to citric acid added to bring titrable acidity to 25 g/l) additions of the preparation also accerlerated the begining of the fermentation and increased its intensity.

  16. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2006-01-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 μg bacterial biomass ml -1 ). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H 2 h -1 . For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H 2 h -1 were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  17. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Asthana, R.K.; Singh, A.P. [Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, (India)

    2006-07-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 {mu}g bacterial biomass ml{sup -1}). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H{sub 2} h{sup -1}. For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H{sub 2} h{sup -1} were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  18. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-08-01

    Full Text Available The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w on consumed xylose in microaerophilic conditions (kLa = 2·h−1. Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w, against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  19. Gamma-ray sterilization of peat carriers for the production of legume seed inoculants (better production of soya bean)

    International Nuclear Information System (INIS)

    Vojinovic, Z.; Milicic, B.; Radak, B.

    1983-01-01

    In the present work the first Yugoslav experiments on the application of gamma radiation for the sterilization of peat in the production of inoculants for soya bean production are summarised and briefly discussed. A radiation dose of 50 kGy was used. The growth and survival of the soya bean nodule bacteria, Rhizobium japonicum, in the sterilized peat is shown. (U.K.)

  20. Practices of radiation sterilization of medical products and pharmaceutical preparations: egyptian experience

    International Nuclear Information System (INIS)

    Roushdy, H.M.

    1992-01-01

    Radiation sterilization involves the application of sufficient ionizing energy furnished by either x-rays, gamma-rays or accelerated electron beams, to render an article free of viable micro-organisms. The method offers a number of advantages which makes it an attractive choice in a number of situations: It is a suitable means of sterilizing many many materials.. Radiation causes no significant temperature rise, thus permits sterilization of heat-sensitive drugs and low melting-point plastics. It is certainly the best, and often the only method of sterilizing biological tissues and preparations of biological origin. due to its high penetrating ability, gamma-radiation reaches all parts of the object to be sterilized. The radiation sterilized products are not subjected to touching or exposure to the outside environment except by the and users. The chemical reactivity of radiation is relatively low as compared with the highly reactive gases. Radiation can be easily adapted for continuous processing as compared with batch operations currently in use with gas sterilization. The radiation process is the most reliable of all competing sterilization methods due to the obsolete certainty that the radiation source emits radiation of known energy and power

  1. Practices of radiation sterilization of medical products and pharmaceutical preparations: egyptian experience

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H M

    1993-12-31

    Radiation sterilization involves the application of sufficient ionizing energy furnished by either x-rays, gamma-rays or accelerated electron beams, to render an article free of viable micro-organisms. The method offers a number of advantages which makes it an attractive choice in a number of situations: It is a suitable means of sterilizing many many materials.. Radiation causes no significant temperature rise, thus permits sterilization of heat-sensitive drugs and low melting-point plastics. It is certainly the best, and often the only method of sterilizing biological tissues and preparations of biological origin. due to its high penetrating ability, gamma-radiation reaches all parts of the object to be sterilized. The radiation sterilized products are not subjected to touching or exposure to the outside environment except by the and users. The chemical reactivity of radiation is relatively low as compared with the highly reactive gases. Radiation can be easily adapted for continuous processing as compared with batch operations currently in use with gas sterilization. The radiation process is the most reliable of all competing sterilization methods due to the obsolete certainty that the radiation source emits radiation of known energy and power.

  2. Optimization of fermentation conditions for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F J; Izaguirre, M F; Michelena, V; Moreno, B

    1982-01-01

    Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included an initial pH of 4.57 and 30 degrees. Complete fermentation of the available lactose took place without supplementary nutrients; additions of N and P salts, yeast extract, or corn steep liquor resulted in increased yeast production and lower ethanol yields. A possible correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g ethanol/L was obtained within 22 hours by using a yeast inoculum of 13.9 g/L. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.

  3. Development of the microbiological control aspects of radiation sterilization of medical supplies. Part of a coordinated programme on radiation sterilization of medical and biological products

    International Nuclear Information System (INIS)

    Horakova, V.

    1978-06-01

    The variability and extent of microbial contamination of such medical supplies as hydrophilic gauze swabs and dermo-epidermal grafts were investigated. Gross bacterial contamination was observed in the swabs, with a relative absence of water. It was concluded that medical disposable products under dried aerobic conditions can be sterilized by a minimum dose of 25 kJ/kg/2.5 Mrad if the mean value of pre-sterilization bacterial counts does not exceed 100. Products contaminated by 10,000 or more bacteria prior to sterilization must be considered ''decontaminated'' after irradiation but as rather than ''sterile'', as accepted pharmaceutically. The author recommends that the efficacy of the sterilization dose used be evaluated, assuming the decrease in contaminated items to follow the exponential law, with constants estimated as n=1.98 and k=0.44, and that the sterilization process to be controlled dosimetrically. In general, sub-process doses should be used before actual sterilization by ionizing radiation, in order to estimate the constants characterizing the decrease in contamination under given conditions. In skin grafts a dose of 25 kJ/kg was found to give a high guarantee of sterility. A minimum sterilizing dose of 20 kJ/kg was recommended, provided the mean value of microorganisms on 1 cm 2 of the disinfected and freeze-dried skin grafts from human cadavres was 100, without exceeding an upper limit of 130

  4. Optimisation of minimal media for production of aroma compounds typical for fermented milk products

    Directory of Open Access Journals (Sweden)

    Nevenka Mazić

    2008-08-01

    Full Text Available The aim of this research was to optimize the composition of minimalgrowth media containing lactose and milk, in which lactic acid bacteria (LAB would produce the maximum amount of volatile aroma compounds typical for fermented milk products. Ingredients used for the preparation of media were casein, tri-sodium-citrate, lactose, milk minerals, whey proteins and milk with 1.5% fat. The several prepared media differed mainly in the amount of citrate and whey proteins. Fermentation was carried out at room temperature until the media reached pH value of 5. Samples were evaluated for sensory characteristics using quantitative descriptive analysis (QDA. In all media the target pH was reached after 68-71 hours of fermentation, depending on citrate level. Fermentation and the production of aroma compounds were more intensive in media that contained whey proteins compared to media with only casein. Increased citrate level had a positive influence on the aroma production. Citrate increased the initial pH of the media and acted as a buffer during fermentation, which lead to longer fermentation and prolonged production of aroma compounds. At pH around 5, the desired cultured aroma was the most intensive, whereas sour taste was less dominant. The substrate with 0.25% citrate and 0.1% whey proteins, at pH 5, was rated as best regarding its sensory characteristics.

  5. Some microbiological aspects of cassava fermentation with emphasis on detoxification of the fermented end-product

    International Nuclear Information System (INIS)

    Okafor, N.

    1990-01-01

    The search undertaken in this study was for microbial strains able to produce amylase and linamarase simultaneously. A total of 46 organisms (mainly yeasts) were isolated from garri production environments and eighteen more representative isolates were selected for screening. The highest production fo the above enzymes has been found with the yeast strain identified as Saccharomyces sp. Inoculation of this into the cassava mash led to a dramatic reduction of cyanide in the fermenting pulp: 73,4% and 69,2% reduction when compared with controls after 24 and 48 hours of fermentation respectively. The cyanide content of the fermented end-product derived from the inoculated mash was 60,8% and 24% less than in the control after 24 and 48 hours. Preliminary experiments with X-ray radiation of the yeast did not show a sufficient increase in the enzymatic activities of the mutants obtained but only a slight increase in the linamarase production was noticed in mutants derived from irradiation. (author). 27 refs, 9 tabs

  6. Gellan Gum: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Ishwar B. Bajaj

    2007-01-01

    Full Text Available The microbial exopolysaccharides are water-soluble polymers secreted by microorganisms during fermentation. The biopolymer gellan gum is a relatively recent addition to the family of microbial polysaccharides that is gaining much importance in food, pharmaceutical and chemical industries due to its novel properties. It is commercially produced by C. P. Kelco in Japan and the USA. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available information on the gellan gum synthesized by Sphingomonas paucimobilis with special emphasis on its fermentative production and downstream processing. Rheological behaviour of fermentation broth during fermentative production of gellan gum and problems associated with mass transfer have been addressed. Information on the biosynthetic pathway of gellan gum, enzymes and precursors involved in gellan gum production and application of metabolic engineering for enhancement of yield of gellan gum has been specified. Characteristics of gellan gum with respect to its structure, physicochemical properties, rheology of its solutions and gel formation behaviour are discussed. An attempt has also been made to review the current and potential applications of gellan gum in food, pharmaceutical and other industries.

  7. The Effect of Fungicide Residues and Yeast Assimilable Nitrogen on Fermentation Kinetics and H2S Production during Cider Fermentation

    OpenAIRE

    Boudreau IV, Thomas Francis

    2016-01-01

    The Virginia cider industry has grown rapidly in the past decade, and demands research-based recommendations for cider fermentation. This study evaluated relationships between the unique chemistry of apples and production of hydrogen sulfide (H2S) in cider fermentations. Yeast assimilable nitrogen (YAN) concentration and composition and residual fungicides influence H2S production by yeast during fermentation, but these factors have to date only been studied in wine grape fermentations. This ...

  8. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    Science.gov (United States)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  9. Use of whey powder and skim milk powder for the production of fermented cream

    Directory of Open Access Journals (Sweden)

    Ceren AKAL

    2016-01-01

    Full Text Available Abstract This study is about the production of fermented cream samples having 18% fat by addition of starter cultures. In order to partialy increase non-fat solid content of fermented cream samples, skim milk powder and demineralized whey powder in two different rates (50% and 70% were used. Samples were analyzed for changes in their biochemical and physicochemical properties (total solid, ash, fat, titratable acidity, pH value, total nitrogen, viscosity, tyrosine, acid number, peroxide and diacetyl values during 29-day of storage period. Samples tested consisted of 7 different groups; control group (without adding any powder, skim milk powder, 50% demineralized whey powder and 70% demineralized whey powder samples were in two different addition rate (2% and 4%. Also samples were analyzed for sensory properties. According to the results obtained, the addition of milk powder products affected titratable acidity and tyrosine values of fermented cream samples. Although powder addition and/or storage period didn’t cause significant variations in total solid, ash, fat, pH value, viscosity, acid number, peroxide, tyrosine and diacetyl values; sensory properties of fermented cream samples were influenced by both powder addition and storage period. Fermented cream containing 2% skim milk powder gets the top score of sensory evaluation among the samples.

  10. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  11. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The effect of kefir starter on Thai fermented sausage product

    Directory of Open Access Journals (Sweden)

    Marisa Jatupornpipat

    2007-07-01

    Full Text Available The effect of kefir starter from Wilderness Family Naturals Company on the initial formulation of Thai fermented sausage were evaluated. The differences found among batches in the main microbial populations and pH were not significant. Only, the total acid of batch D (added the kefir starter 15 ml was significantly higher (P0.05. It is concluded that the addition of kefir starter (7 ml could be useful to improve the final quality of Thai fermented sausages. The addition of kefir starter that initiates rapid acidification of the raw meat and that leads to a desirable sensory quality of the end-product are used for the production of fermented sausages, and represents a way of improving and optimizing the sausage fermentation process and achieving tastier, safer, and healthier products.

  13. Standard working procedures in production of traditionally fermented Sremska sausage

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica

    2011-01-01

    Full Text Available Investigations conducted within project "Techonological and protective characteristics of autochthonous strains of lactic acid bacteria isolated from traditional fermented sausages and possibilities for their implementation in the meat industry" (Project Number: 20127, financed on behalf of the Ministry for Science and Technology of the Republic of Serbia, have provided an answer on the characteristics of the quality of the used raw materials for the production of Sremska sausage - one of the most well-known Serbian traditionally fermented sausages (choice of meat, fatty tissue, additives and spices, and data have been registered in connection with the procedures of their processing, microclimatic conditions have been established (temperature, relative humidity, and air circulation during the entire process of production and fermentation, as well as the presence and types of microorganisms, primarily lactic acid bacteria (BMK, the carrier of lactic fermentation. The most important characteristics of the filling have been established, the smoking regimen, the regimens of fermentation, maturing, drying, as well as the parameters for quality and safety of the finished product. At the same time, the standard working procedure has been determined for the preparation of the meat, fatty tissue, the forming and inserting of the filling into the wrappers, as well as the characteristics of the finished products. The given standard working procedure should serve as a guideline for the meat industry in the production process of this traditional fermented sausage.

  14. Gamma-sterilization

    International Nuclear Information System (INIS)

    Lindgren, E.

    1974-01-01

    The author makes a survey of his experience in sterilization and sterility control of medical products. At present three different methods are used, steamsterilization, gassterilizing and gammasterilizing. The investments and costs for gamma radiation is presented and a comparison of the costs for gamma- and gassterilization including sterility control is made. (M.S.)

  15. Mechanisms of male sterility in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Yasuo [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1982-03-01

    The mechanisms causing male sterility in higher plants were classified into two major categories: genetic and non-genetic. The former was further divided into six classes: 1) Anomality in spindle mechanism during meiosis, 2) chromosomal anomality such as haploidy, polyploidy, aneuploidy, chromosome some deficiency, inversion and reciprocal translocation, 3) presence of male sterile genes, 4) cytoplasmic abnormality, 5) the combination of some specific cytoplasm with particular genes, and 6) infections of microorganisms or viruses. Each mechanism was briefly explained, and the methods for the maintenance of parent lines for heterosis breeding and hybrid seed production were described. The non-genetic male sterility was classified into four types, which are caused by 1) low or high temperature, 2) water deficiency, 3) application of chemicals, and 4) radiation, with a brief explanation given for each of them.

  16. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  17. EVALUATION OF FERMENTATION PARAMETERS DURING HIGH-GRAVITY BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    R.B. Almeida

    2001-12-01

    Full Text Available A large number of advantages are obtained from the use of highly concentrated worts during the production of beer in a process referred to as "high-gravity". However, problems related to slow or stuck fermentations, which cause the lower productivity and possibility of contamination, are encountered. This study examines the influence of factors pH, percentage of corn syrup, initial wort concentration and fermentation temperature on the fermentation parameters, namely productivity, wort attenuation and the yield coefficient for sugar-to-ethanol conversion. The results show that productivity increased when the higher temperature, the higher wort concentration and the lower syrup percentage were used, while wort attenuation increased when lower wort concentration and no syrup were used. The yield coefficient for sugar-to-ethanol conversion was not influenced by any of the factors studied.

  18. In Vitro Fermentative Production of Plant Lignans from Cereal Products in Relationship with Constituents of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Elena Bartkiene

    2012-01-01

    Full Text Available Recently special attention has been paid to dietary fibre-associated phytoestrogens such as plant lignans, which are related to the prevention of different hormone-dependent diseases. Therefore, phytoestrogens associated with dietary fibre and their metabolites are of interest for investigation. The aim of this work is to investigate the formation of enterolignans: enterolactone (ENL and enterodiol (END from their precursors by the action of intestinal microflora and their relationship with non-starch polysaccharides (NSP in various cereal products from wheat, rye, barley and oats. For the investigation of the bioconversion of plant lignans, a technique of in vitro fermentation was used and the quantitative analysis of their metabolites ENL and END was performed by high-performance liquid chromatography (HPLC with coulometric electrode array detection. The enterolignan formation in various cereal products ranged from 78.3 to 321.9 nmol/g depending on the product type: END from 8.7 to 149.3 nmol/g and ENL from 64.4 to 278.3 nmol/g. The lignan production in bran was about two times higher than that in whole flour of the same kind of cereals. Close correlations were found between the total NSP content and the total amount of enterolignans and ENL; between pentoses and the total amount of enterolignans and ENL; between arabinose or xylose and ENL; and between galactose and END values. Considering the correlations between hexoses and END as well as between pentoses and ENL found in cereals, it can be assumed that pentoses are closely related to the quantities of plant lignans in cereal products and their conversion to enterolignans.

  19. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.

    Science.gov (United States)

    Mann, A; Kiefer, M; Leuenberger, H

    2001-03-01

    High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.

  20. Real-Time Monitoring of Chemical Changes in Three Kinds of Fermented Milk Products during Fermentation Using Quantitative Difference Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Lu, Yi; Ishikawa, Hiroto; Kwon, Yeondae; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2018-02-14

    Fermented milk products are rising in popularity throughout the world as a result of their health benefits, including improving digestion, normalizing the function of the immune system, and aiding in weight management. This study applies an in situ quantitative nuclear magnetic resonance method to monitor chemical changes in three kinds of fermented milk products, Bulgarian yogurt, Caspian Sea yogurt, and kefir, during fermentation. As a result, the concentration changes in nine organic compounds, α/β-lactose, α/β-galactose, lactic acid, citrate, ethanol, lecithin, and creatine, were monitored in real time. This revealed three distinct metabolic processes in the three fermented milk products. Moreover, pH changes were also determined by variations in the chemical shift of citric acid during the fermentation processes. These results can be applied to estimate microbial metabolism in various flora and help guide the fermentation and storage of various fermented milk products to improve their quality, which may directly influence human health.

  1. Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures.

    Science.gov (United States)

    Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G

    2018-06-01

    Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.

  2. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  3. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  4. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  5. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production.

    Science.gov (United States)

    Dikshit, Pritam Kumar; Padhi, Susant Kumar; Moholkar, Vijayanand S

    2017-11-01

    In present study, statistical optimization of biodiesel-derived crude glycerol fermentation to DHA by immobilized G. oxydans cells over polyurethane foam is reported. Effect of DHA (product) inhibition on crude glycerol fermentation was analyzed using conventional biokinetic models and new model that accounts for both substrate and product inhibition. Optimum values of fermentation parameters were: pH=4.7, temperature=31°C, initial substrate concentration=20g/L. At optimum conditions, DHA yield was 89% (17.83g/L). Effect of product inhibition on fermentation was trivial for DHA concentrations ≤30g/L. At higher concentrations (≥50g/L), kinetics and yield of fermentation showed marked reduction with sharp drop in V max and K S values. Inhibition effect was more pronounced for immobilized cells due to restricted transport of fermentation mixture across polyurethane foam. Retention of fermentation mixture in immobilized matrix resulted in higher localized DHA concentration that possibly enhanced inhibition effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sterilization of Carriers by using Gamma Irradiation for Bio fertilizer Inoculum Production

    International Nuclear Information System (INIS)

    Tittabutr, Panlada; Teamtisong, Kamonluck; Pewlong, Wachiraporn; Teaumroong, Neuhg; Laoharojanaphand, Sirinart; Boonkerd, Nantakorn

    2009-07-01

    Full text: Gamma irradiation has been widely used in sterilization process, which leads to improvement in the quality of the products. In the case of bio fertilizer inoculum, the sterilized carrier is also needed for producing high quality bio fertilizer. This study aimed at determining the factors, such as carrier materials, moistures, and packing sizes including packaging materials that may affect the sterilization efficiency by using gamma irradiation. All carrier materials, peat and compost, could be efficiently sterilized by irradiation. The carriers that have moisture content lower than 20% could be sterilized by irradiation at 15 kGy, while carrier with 30% moisture content must be sterilized by irradiation at 25 kGy. Higher irradiation dose was also necessary for sterilization of bigger carrier packing sizes. For, packaging materials, polyethylene bag appeared most durable after gamma irradiation even at high doses. However, contaminants could be detected in irradiated carrier after storage at room temperature for two months. It was hypothesized that these contaminants are spore forming microorganisms, which resist gamma irradiation. This hypothesis, as well as the quality of bio fertilizer produced from irradiated carrier, will be further evaluated

  7. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    Science.gov (United States)

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  8. Influence of aeration in the fermentative activity of Kloeckera apiculata during fermentation of apple juice; Influencia de la aireacion en la actividad fermentativa de Kloeckera apiculata durante la fermentacion de jugo de manzana

    Energy Technology Data Exchange (ETDEWEB)

    Estela Escalante, Waldir D; Rychtera, Mojmir; Melzoch, Karel; Guerrero Ochoa, Manuel R

    2012-07-01

    The influence of aeration on the fermentative activity of Kloeckera apiculata RIVE 9-2-1 was studied in order to evaluate the production of metabolites of the fermentation. To achieve this, the strain was cultured in Erlenmeyer flasks containing sterilized and aroma removed apple juice, and the chemical compounds produced during fermentation in shaken (200 min-1) and static (without agitation) cultivation were determined. The results showed that the agitation of the culture medium increases production of higher alcohols (till 591.0 mg/L) compared to static cultivation, whereas on the contrary, the production of acetic acid, ethyl acetate and glycerol (260.0 ± 11.0 mg/L, 196.0 ± 10.0 mg/L y 2.6±0.2 g/L) were higher compared to shaken cultivation (222.0 ± 8.0 mg/L, 96.0 ± 4.5 mg/L and 1.8 ± 0.2 g/L) respectively. Batch cultivations carried out in bioreactor with air flux of 25 l/h reported a growth rate μ of 0.17 h-1, production of ethanol (12.5 ± 2.0 g/L) and other compounds typically produced during alcoholic fermentation. The concentration of dissolved oxygen in the fermentation medium affects its metabolism thus; insufficient amounts of oxygen would provoke a respirofermentative metabolism. The best results in terms of organoleptic quality of the fermented beverage regarding to aroma, taste and flavor was obtained when fermented in static cultivation. The control of aeration during fermentation can be used to control the synthesis of chemical compounds of sensory impact in the production of fermented beverages.

  9. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  10. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    Science.gov (United States)

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. Studies on bio-hydrogen production of different biomass fermentation types using molasses wastewater as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Jiao, A.Y.; Rao, P.H. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering; Li, W. [Beijing Normal Univ., Beijing (China)

    2010-07-01

    Anaerobic fermentation technology was used to treat molasses wastewater. This study compared the hydrogen production capability of different fermentation types involving dark fermentation hydrogen production. The paper discussed the experiment including the results. It was found that the fermentation type changed by changing engineered control parameters in a continuous stirred tank reactor (CSTR). It was concluded that ethanol-type fermentation resulted in the largest hydrogen production capability, while butyric acid-type fermentation took second place followed by propionic acid-type fermentation.

  12. Mechanisms of male sterility in higher plants

    International Nuclear Information System (INIS)

    Ohta, Yasuo

    1982-01-01

    The mechanisms causing male sterility in higher plants were classified into two major categories: genetic and non-genetic. The former was further divided into six classes: 1) Anomality in spindle mechanism during meiosis, 2) chromosomal anomality such as haploidy, polyploidy, aneuploidy, chromosome some deficiency, inversion and reciprocal translocation, 3) presence of male sterile genes, 4) cytoplasmic abnormality, 5) the combination of some specific cytoplasm with particular genes, and 6) infections of microorganisms or viruses. Each mechanism was briefly explained, and the methods for the maintenance of parent lines for heterosis breeding and hybrid seed production were described. The non-genetic male sterility was classified into four types, which are caused by 1) low or high temperature, 2) water deficiency, 3) application of chemicals, and 4) radiation, with a brief explanation given for each of them. (Kaihara, S.)

  13. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products

    Science.gov (United States)

    Champagne, Claude P.; Lee, Byong H.; Saucier, Linda

    Historically, we can find fermented products in almost all cultural backgrounds around the world. Notably, there are many different milk or meat-based foods and this chapter will focus on them (Kosikowski 1982; Wood 1998). Cheese, yoghurt, sour cream, kefir, or cultured butter are probably the most common fermented dairy products, but many regional varieties exist (Farnworth 2004). Fermented meats are typically found as dry sausages (Lüke 1998). Yeasts are mostly involved in the manufacture of bread and alcoholic beverages, which are basically cereal- or fruit-based products. In fermented meat and milk, the main microorganisms used are the lactic acid bacteria (LAB). Yeast and molds are rather involved in ripening. Therefore, the LAB will constitute the main focus of this chapter.

  15. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    Science.gov (United States)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  16. Ethyl alcohol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1952-02-13

    Ethanol is made from solutions poor in sugar and free of yeast carriers, e.g. from whey, by fermentation under sterile conditions. The CO/sub 2/ formed in the decomposition of sugar is used as an agitating medium to ensure good contact between the yeast and the sugar.

  17. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fermentation Kinetic of Maize Straw-Gliricidia Feed Mixture Supplemented by Fermentable Carbohydrate Measured by In Vitro Gas Production

    Science.gov (United States)

    Yulistiani, D.; Nurhayati

    2018-02-01

    Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (Pfermentation and reduced methane production.

  19. Dynamics of chemical elements in the fermentation process of ethanol production

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Fernandes, E.A.N.; Bacchi, M.A.

    1997-01-01

    Brazil has become the largest producer of biomass ethanol derived from sugar cane. The industrial production is based on the fermentation of sugar cane juice by yeast, inside of large volume vats, in a fed-batch process that recycles yeast cells. To study the dynamics of chemical elements in each operating cycle, five stages of the fermentation process were considered: must, yeast suspension, wine, non-yeast wine and yeast cream. For this, a mass balance of the terrigenous elements, Ce, Co, Cs, Eu, Fe, Hf, La, Na, Sc, Sm, and Th, and the sugar cane plant elements, Br, K, Rb, and Zn, were established in fermentation vats of an industrial scale unit, with sampling undertaken during different climatic conditions (dry and rainy periods). A similar distribution of the sugar cane characteristics elements was found for the stages analysed, while for the terrigenous elements a trend of accumulation in the yeast cream was observed. Preferential absorption of Br, K, Rb, and Zn by yeast cells was indicated by the smaller concentrations observed in yeast suspension than in yeast cream. (author)

  20. Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks.

    Science.gov (United States)

    Patrignani, Francesca; Lanciotti, Rosalba; Mathara, Julius Maina; Guerzoni, Maria Elisabetta; Holzapfel, Wilhelm H

    2006-03-01

    The purpose of this research was the evaluation of technological features and of the ability of functional LAB strains with desirable sensory characteristics, to produce fermented milk. Eight strains of Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus paracasei and Lactococcus lactis, isolated from Maasai traditional fermented milk in Kenya and previously tested for their probiotic properties, were selected for this investigation. Technological features such as growth kinetics in fresh heat-treated whole milk medium and survival in the final product during storage at 4 degrees C, were studied. The strains Lb. acidophilus BFE 6,059, Lb. paracasei BFE 5,264 and Lc. lactis BFE 6,049 showed the best potential and were thus selected for use as starter cultures in further trials with the objective to improve their technological performance and to optimise the sensory features of fermented milk obtained. The effects of fat (F), non-fat milk solids (S) and fermentation temperature (T), modulated according to a Central Composite Design, on fermentation rates and viability losses during refrigerated storage of the chosen starters, and on product texture parameters, were studied. From the data analysis, it was possible to select optimum conditions for enhancing positive sensory traits of final products and for improving the survival of these potentially probiotic cultures.

  1. Linear programming model can explain respiration of fermentation products

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

  2. Linear programming model can explain respiration of fermentation products.

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.

  3. Baby bottle steam sterilizers for disinfecting home nebulizers inoculated with non-tuberculous mycobacteria.

    Science.gov (United States)

    Towle, D; Callan, D A; Lamprea, C; Murray, T S

    2016-03-01

    Non-tuberculous mycobacteria (NTMb), present in environmental water sources, can contribute to respiratory infection in patients with chronic pulmonary disease. Contaminated nebulizers are a potential source of respiratory infection. Treatment with baby bottle steam sterilizers disinfects home nebulizers inoculated with bacterial pathogens but whether this method works for disinfection of NTMb is unclear. Baby bottle steam sterilization was compared with vigorous water washing for disinfecting home nebulizers inoculated with NTMb mixed with cystic fibrosis sputum. No NTMb was recovered from any nebulizers after steam treatment whereas viable NTMb grew after water washing, demonstrating that steam sterilization effectively disinfects NTMb-inoculated nebulizers. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Radiation dose setting for sterilization of health care items in relation to product microbiological quality

    International Nuclear Information System (INIS)

    Norimah Yusof; Nagi Marsit; Asnah Hassan

    1997-01-01

    Radiation dose of 25 k gray is no longer a generally accepted dose for sterilization. ISO document no. 11137 stated that a manufacturer can decide the dose to sterilize his product depending on the product's microbiological quality (number and type of the contaminants) and the sterility assurance level (SAL) should attain in relation to its usage. Five health care products were selected for the microbiological studies including bio burden counts, identification of most commonly found microorganisms and the radioresistance (D sub 10 value) of the selected isolates. Radiation dose was then determined by two methods, namely Method for Dose Validation of ISO 11137, and calculation based on log survival or population cycle reduction. At a given SAL of 10 sup -6 the radiation sterilization dose obtained by both methods was influenced by microbiological quality of the product. Sterilization dose set by the ISO Method I (Cotton Ball 19.4 kGy, Syringe 20.4 kGy, Suture 15. 0 kGy, Surgical Glove 24.9 kGy and Amnion 17.8 kGy) was higher than the dose calculated according to the log cycle reduction concept in all the products (Cotton Ball 14. 0 kGy, Syringe 15.5 kGy, Suture 11. 6 kGy, Surgical Glove 18. 0 kGy and Amnion 12.6 kGy). The ISO method has limitation on bio products such as amnion and other high valued products which are produced in small number with low bio burden and microorganism spectrum different from those commonly found on medical items

  5. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.

    Science.gov (United States)

    Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L

    2015-01-01

    Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.

  6. Solid-state fermentation from dried sweet sorghum stalk for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Omidi, A. [Univ. of Isfahan, Biology Dept., Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Due to depletion of global crude oil, countries are interested to alternate fuel energy resources. Presently bioethanol as a source of energy has been a subject of great interest for the industrialized countries. Therefore, there is need for efficient bioethanol production with low cost raw material and production process. Among energy crops, sweet sorghum is the best candidate for bioethanol production. It has been identified as having higher drought tolerance, lower input cost and higher biomass yield than other energy crops. In addition it has wide adoptability and tolerance to abiotic stresses. Moreover due to the shortage of water in dry and hot countries there is a need to reduce water requirement for bioethanol production and solid state fermentation could be the best process for making bioethanol in these countries. The purpose of this study is to achieve the highest ethanol production with lowest amount of water in solid state fermentation using sweet sorghum stalk. In this study the sweet sorghum particles were used for solid state fermentation. Fermentation medium were: sweet sorghum particles with nutrient media, active yeast powder and different moisture contents. The fermentation medium was incubated for 2-3 days at 30 deg C temperature. The results showed sweet sorghum particles (15% w/w) fermented in medium containing 0.5% yeast inoculums, 73.5% moisture content and 3 days incubation period produced the highest amount of ethanol (13% w/w sorghum)

  7. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch

    2015-03-01

    Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.

  8. Improving hybrid seed production in corn with glyphosate-mediated male sterility.

    Science.gov (United States)

    Feng, Paul C C; Qi, Youlin; Chiu, Tommy; Stoecker, Martin A; Schuster, Christopher L; Johnson, Scott C; Fonseca, Augustine E; Huang, Jintai

    2014-02-01

    Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production. © 2013 Society of Chemical Industry.

  9. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  10. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    Science.gov (United States)

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production.

    Science.gov (United States)

    Tabanelli, Giulia; Pasini, Federica; Riciputi, Ylenia; Vannini, Lucia; Gozzi, Giorgia; Balestra, Federica; Caboni, Maria Fiorenza; Gardini, Fausto; Montanari, Chiara

    2018-03-01

    Because of the impossibility to consume food of animal origin, vegan consumers are looking for substitutes that could enrich their diet. Among many substitutes, fermented nut products are made from different nut types and obtained after soaking, grinding, and fermentation. Although other fermented vegetable products have been deeply investigated, there are few data about the fermentative processes of nut-based products and the microbial consortia able to colonize these products are not yet studied. This study characterized a hand-made vegan product obtained from cashew nut. Lactic acid bacteria responsible for fermentation were identified, revealing a succession of hetero- and homo-fermentative species during process. Successively, some lactic acid bacteria isolates from the home-made vegan product were used for a pilot-scale fermentation. The products obtained were characterized and showed features similar to the home-made one, although the microbiological hazards have been prevented through proper and rapid acidification, enhancing their safety features. Spontaneous fermented products are valuable sources of microorganisms that can be used in many food processes as starter cultures. The lactic acid bacteria isolated in this research can be exploited by industries to develop new foods and therefore to enter new markets. The use of selected starter cultures guarantees good organoleptic characteristics and food safety (no growth of pathogens). © 2018 Institute of Food Technologists®.

  12. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II-Fed-batch fermentation

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Cotta, Michael A.

    2008-01-01

    In these studies, Clostridium beijerinckii P260 was used to produce butanol (acetone-butanol-ethanol, or ABE) from wheat straw (WS) hydrolysate in a fed-batch reactor. It has been demonstrated that simultaneous hydrolysis of WS to achieve 100% hydrolysis to simple sugars (to the extent achievable under present conditions) and fermentation to butanol is possible. In addition to WS, the reactor was fed with a sugar solution containing glucose, xylose, arabinose, galactose, and mannose. The culture utilized all of the above sugars. It was noticed that near the end of fermentation (286-533 h), the culture had difficulties utilizing xylose. As a result of supplemental sugar feed to the reactor, ABE productivity was improved by 16% as compared with previous studies. In our previous experiment on simultaneous saccharification of WS and fermentation to butanol, a productivity of 0.31 g L -1 h -1 was observed, while in the present studies a productivity of 0.36 g L -1 h -1 was observed. It should be noted that a productivity of 0.77 g L -1 h -1 was observed when the culture was highly active. The fed-batch fermentation was operated for 533 h. It should be noted that C. beijerinckii P260 can be used to produce butanol from WS in integrated fermentations

  13. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  14. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    Science.gov (United States)

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  15. The Investigation of Virginiamycin-Added Fungal Fermentation on the Size and Immunoreactivity of Heat-Sensitive Soy Protein

    Directory of Open Access Journals (Sweden)

    Liyan Chen

    2015-01-01

    Full Text Available The usage of soy protein for young monogastric animals is restricted due to potential allergens and high molecular weight. The investigation of fungi fermentation effect on soy protein has been interrupted by substrate sterilization. Virginiamycin at 0.05% was added together with Aspergillus oryzae for solid state fermentation (SSF in unsterilized soy meal (SM. When compared to A. oryzae SSF alone, virginiamycin did not cause the interference of fungal fermentation but elucidated the protein degradation. SDS-PAGE results showed that both α and α′ subunits of β-conglycinin were degraded significantly. In addition, western blot results showed that the immunoreactive signals of soy protein were considerably reduced in virginiamycin-added fermentation with unsterilized SM. Furthermore, fungal fermentation increased total protein and essential amino acid contents, suggesting the value enhancement of SM products. Taken together, this study demonstrated for the first time that virginiamycin could help investigate fermentation effect on heat-sensitive soy protein. Fermented SM has several potential applications in feed industry.

  16. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  17. Chemometric approach to texture profile analysis of kombucha fermented milk products.

    Science.gov (United States)

    Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja

    2015-09-01

    In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.

  18. Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2015-04-01

    Full Text Available New fermented almond milks were developed, using different potentially probiotic bacteria, in order to meet the current demand for healthy, versatile non-dairy products. An in vitro digestion/Caco-2 cell model was used to evaluate the effect of both non-fermented and fermented almond milks on the mitochondrial enzymatic activities of enterocytes. Moreover, macrophages were challenged with the in-vitro digested samples and the production of pro-inflammatory biomarkers TNF-a and IL-6 was quantified. Enzymatic activities of cell cultures seemed to be stimulated by the exposure to both fermented and non-fermented almond milks. Both biomarkers decreased (p< 0.05 in fermented almond milks with either B. bifidum or B. longum. Results showed that fermented almond products favored the energetic metabolism of enterocytes and had a lower inflammatory response than non-fermented almond milk, suggesting its benefits for the management of allergies/intolerances. Moreover, the fermentation process enhanced the uptake of iron by Caco-2 cells, especially when using L. rhamnosus and either B. bifidum or B. longum as starters, thus improving the product bioactivity. Therefore, new non-dairy fermented products with functional properties were developed, which might be positioned as alternatives to cow-milk products for sensitized groups of population (allergic and/or intolerant to cow milk or anemic population, among others.

  19. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  20. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  1. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  2. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  3. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines

    Directory of Open Access Journals (Sweden)

    Heinrich du Plessis

    2017-12-01

    Full Text Available The use of non-Saccharomyces yeasts to improve complexity and diversify wine style is increasing; however, the interactions between non-Saccharomyces yeasts and lactic acid bacteria (LAB have not received much attention. This study investigated the interactions of seven non-Saccharomyces yeast strains of the genera Candida, Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in combination with S. cerevisiae and three malolactic fermentation (MLF strategies in a Shiraz winemaking trial. Standard oenological parameters, volatile composition and sensory profiles of wines were investigated. Wines produced with non-Saccharomyces yeasts had lower alcohol and glycerol levels than wines produced with S. cerevisiae only. Malolactic fermentation also completed faster in these wines. Wines produced with non-Saccharomyces yeasts differed chemically and sensorially from wines produced with S. cerevisiae only. The Candida zemplinina and the one L. thermotolerans isolate slightly inhibited LAB growth in wines that underwent simultaneous MLF. Malolactic fermentation strategy had a greater impact on sensory profiles than yeast treatment. Both yeast selection and MLF strategy had a significant effect on berry aroma, but MLF strategy also had a significant effect on acid balance and astringency of wines. Winemakers should apply the optimal yeast combination and MLF strategy to ensure fast completion of MLF and improve wine complexity.

  4. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    Gas fermentation is a promising technology which gained increasing attention over the last years. In this process, acetogenic bacteria convert gases rich in H2, CO2, and CO, into compounds of higher value. The gas can derive from industrial off-gas or from waste streams via gasification. In the gas...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...... with a review of the feedstock potential for gas fermentation and how thermophilic production strains as well as unconventional fermentation processes such as mixotrophy can help to exploit this potential. I analyzed a process with respect to thermodynamic and economic considerations, in which acetone...

  5. Food Grade Ehanol Production With Fermentation And Distillation Process Using Stem Sorghum

    Directory of Open Access Journals (Sweden)

    Yuliana Setyowati

    2015-03-01

    Full Text Available 10% -12% of sugar in its stem which is the optimum sugar concentration in fermentation process for bioethanol production. Sorghum has a high potential to be developed as a raw material for food-grade ethanol production which can be used to support food-grade ethanol demand in Indonesia through a fermentation process. This research focused on the effect of microorganism varieties in the fermentation process which are mutant Zymomonas mobilis (A3, Saccharomyces cerevisiae and Pichia stipitis mixture. The Research for purification process are separated into two parts, distillation with steel wool structured packing and dehydration process using molecular sieve and eliminating impurities using activated carbon. The research can be concluded that the best productivity shown in continuous fermentation in the amount of 84.049 (g / L.hr using the mixture of Saccharomyces cerevisiae and Pichia stipitis. The highest percentage of ethanol yield produced in batch fermentation using the mixture of Saccharomyces cerevisiae and Pichia stipitis that is equal to 51.269%. And for the adsorption, the best result shown in continuous fermentation by using Zymomonas Mobilis of 88.374%..

  6. Quality, functionality, and shelf life of fermented meat and meat products: A review.

    Science.gov (United States)

    Kumar, Pavan; Chatli, M K; Verma, Akhilesh K; Mehta, Nitin; Malav, O P; Kumar, Devendra; Sharma, Neelesh

    2017-09-02

    Fermentation of meat is a traditional preservation method used widely for improving quality and shelf life of fermented meat products. Fermentation of meat causes a number of physical, biochemical, and microbial changes, which eventually impart functional properties, sensory characteristics, and nutritional aspects to these products and inhibit the growth of various pathogenic and spoilage microorganisms. These changes include acidification (carbohydrate catabolism), solubilization and gelation of myofibrillar and sarcoplasmic proteins of muscle, degradation of proteins and lipids, reduction of nitrate into nitrite, formation of nitrosomyoglobin, and dehydration. Dry-fermented sausages are increasingly being used as carrier of probiotics. The production of biogenic amines during fermentation can be controlled by selecting proper starter cultures and other preventive measures such as quality of raw materials, hygienic measures, temperature, etc.

  7. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  8. Optimization of alcohol production from Jerusalem artichokes

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Caillaud, J.M.; Galzy, P.

    1982-01-01

    Fermentation of Jerusalem artichoke extracts by yeasts with inulinase activity is possible, without prior hydrolysis or sterilization, if carried out at pH 3.5. For semi-continuous production, a small amount of the yeast harvested at the end of the previous fermentation can be used as the subsequent inoculant. Up to 75 hl of alcohol per ha can be obtained by this process under favorable energetic conditions. A partial inhibition of the fermentation was detected in extracts obtained from tubers harvested too early; this inhibition seems unrelated to the extent of polymerization of sugars.

  9. Sterilization validation for medical compresses at IRASM multipurpose irradiation facility

    International Nuclear Information System (INIS)

    Alexandru, Mioara; Ene, Mihaela

    2007-01-01

    In Romania, IRASM Radiation Processing Center is the unique supplier of radiation sterilization services-industrial scale (ISO 9001:2000 and ISO 13485:2003 certified). Its Laboratory of Microbiological Testing is the sole third party competent laboratory (GLPractice License, ISO 17025 certification in progress) for pharmaceutics and medical devices as well. We here refer to medical compresses as a distinct category of sterile products, made from different kind of hydrophilic materials (cotton, non-woven, polyurethane foam) with or without an impregnated ointment base (paraffin, plant extracts). These products are included in the class of medical devices, but for the sterilization validation, from microbiological point of view, there are important differences in testing method compared to the common medical devices (syringes, catheters, etc). In this paper, we present some results and practical solutions chosen to perform a sterilization validation, compliant with ISO 11137: 2006

  10. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec

    Directory of Open Access Journals (Sweden)

    Xiang H. Zhao

    2015-05-01

    Full Text Available A rumen simulation technique (Rusitec apparatus with eight 800 ml fermentation vessels was used to investigate the effects of rumen degradable protein (RDP level and non-fibre carbohydrate (NFC type on ruminal fermentation, microbial growth, and populations of ruminal cellulolytic bacteria. Treatments consisted of two NFC types (starch and pectin supplemented with 0 g/d (low RDP or 1.56 g/d (high RDP sodium caseinate. Apparent disappearance of dry matter and organic matter was greater for pectin than for starch treatment (P<0.01 with low or high RDP. A NFC × RDP interaction was observed for neutral detergent fibre disappearance (P=0.01, which was lower for pectin than for starch only under low RDP conditions. Compared with starch, pectin treatment increased the copy numbers of Ruminococcus albus (P≤0.01 and Ruminococcus flavefaciens (P≤0.09, the molar proportion of acetate (P<0.01, the acetate:propionate ratio (P<0.01, and methane production (P<0.01, but reduced the propionate proportion (P<0.01. Increasing dietary RDP increased the production of total VFA (P=0.01, methane (P<0.01, ammonia N (P<0.01, and microbial N (P<0.01. Significant NFC × RDP interaction and interaction tendency were observed for ammonia N production (P=0.01 and daily N flow of total microorganisms (P=0.07, which did not differ under low RDP conditions, but pectin produced greater microbial N and less ammonia N than starch with increased RDP. Results showed NFC type, RDP level, and their interaction affected ruminal fermentation and microbial growth, and under sufficient ruminal degradable N pectin had greater advantage in microbial N synthesis than starch in vitro.

  11. Effect of Radioactivity of Technetium-99m on the Autosterilization Process of non-sterile Tetrofosmin Kits

    Directory of Open Access Journals (Sweden)

    Widyastuti Widyastuti

    2017-03-01

    Full Text Available Technetium-99m labeled radiopharmaceutical is commonly used in nuclear medicines as a diagnostic agent, by mixing the sterile kit with Tc-99m. Manufacturing of kits requires an aseptic facility which need to be well designed and maintained according to cGMP, since mostly kits can not be terminally sterilized. Radiopharmaceuticals as pharmaceuticals containing radionuclide is assumed to have an autosterilization property, but correlation between radioactivity and capability of killing microorganisms has to be studied so far. The aim of this study is to investigate the effect of radioactivity on the autosterilization process of radiopharmaceuticals. The study was carried out by adding Tc-99m of various radioactivity into non-sterile tetrofosmin kits, then the samples were tested for sterility. Sterile tetrofosmin kit and non-sterile kit with no Tc-99m added will be used as a negative control and positive control respectively. The sterility was tested using standard direct inoculation method, by inoculating samples in culture media for both bacteria and fungi and observing qualitatively within 14 days. The results showed that the samples with radioactivity of 1, 3 and 5 mCi changed the clarity of the media to turbid, conformed with the performance of positive controls but samples with radioactivity of 10 mCi and 20 mCi did not change the clarity of the media, conformed with the performance of negative control, indicating neither growth of bacteria nor fungi. It is concluded that Tc-99m behaves as an autosterilizing agent at certain radioactivity. Therefore the preparation of Tc-99m radiopharmaceutical can be considered as terminal sterilization rather than aseptic preparation.

  12. Urea production by yeasts other than Saccharomyces in food fermentation

    NARCIS (Netherlands)

    Wu, Qun; Cui, Kaixiang; Lin, Jianchun; Zhu, Yang; Xu, Yan

    2017-01-01

    Urea is an important intermediate in the synthesis of carcinogenic ethyl carbamate in various food fermentations. Identifying urea-producing microorganisms can help control or reduce ethyl carbamate production. Using Chinese liquor fermentation as a model system, we identified the yeasts responsible

  13. Stillage reflux in food waste ethanol fermentation and its by-product accumulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Tashiro, Yukihiro; Sonomoto, Kenji

    2016-06-01

    Raw materials and pollution control are key issues for the ethanol fermentation industry. To address these concerns, food waste was selected as fermentation substrate, and stillage reflux was carried out in this study. Reflux was used seven times during fermentation. Corresponding ethanol and reducing sugar were detected. Accumulation of by-products, such as organic acid, sodium chloride, and glycerol, was investigated. Lactic acid was observed to accumulate up to 120g/L, and sodium chloride reached 0.14mol/L. Other by-products did not accumulate. The first five cycles of reflux increased ethanol concentration, which prolonged fermentation time. Further increases in reflux time negatively influenced ethanol fermentation. Single-factor analysis with lactic acid and sodium chloride demonstrated that both factors affected ethanol fermentation, but lactic acid induced more effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation.

    Science.gov (United States)

    Qi, Kai; Xia, Xiao-Xia; Zhong, Jian-Jiang

    2015-01-01

    Commercialization of lignocellulosic ethanol fermentation requires its high titer, but the reactive oxygen species (ROS) accumulation during the bioprocess damaged the cells and compromised this goal. To improve the cellular anti-oxidative activity during non-detoxified corncob residue hydrolysate fermentation, seed cells were prepared to possess a higher level of intracellular biotin pool (IBP), which facilitated the biosyntheses of catalase and porphyrin. As a result, the catalase activity increased by 1.3-folds compared to control while the ROS level reduced by 50%. Cell viability in high-IBP cells was 1.7-folds of control and the final ethanol titer increased from 31.2 to 41.8 g L(-1) in batch fermentation. The high-IBP cells were further used for repeated-batch fermentation in the non-detoxified lignocellulosic hydrolysate, and the highest titer and average productivity of ethanol reached 63.7 g L(-1) and 1.2 g L(-1)h(-1). The results were favorable to future industrial application of this lignocellulosic bioethanol process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    OpenAIRE

    W. Hao; H. L. Wang; T. T. Ning; F. Y. Yang; C. C. Xu

    2015-01-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted...

  16. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  17. Microbiological Characteristics of Trachanas, a Traditional Fermented Dairy Product from Cyprus

    Directory of Open Access Journals (Sweden)

    Despina Bozoudi

    2017-01-01

    Full Text Available The purpose of this study was to characterize the autochthonous microbiota of Cypriot Trachanas, a traditional fermented ewes’ milk product. For this reason, 12 samples of raw and fermented milk as well as natural starter culture were collected in order to count, isolate, and identify the main species present during Trachanas fermentation. In total, 198 colonies were retrieved and 163 were identified by sequencing analysis at species level. Lactic acid bacteria (LAB were the predominant group, followed by yeasts. Lactococcus, Lactobacillus, and Enterococcus were frequently isolated from raw milk, and Lactobacillus casei/paracasei predominated in the starter culture. Lactococcus lactis was isolated in high frequency (27.9% of the isolates at the beginning, while Lactobacillus spp. (20% and Saccharomyces unisporus (17.9% were isolated at the end of fermentation. After assessing their technological potential, selected strains could be used as starters to ferment milk for artisanal Trachanas production.

  18. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.

    Science.gov (United States)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-01

    The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109 ml g VS 0(-1), respectively, which are 1.5-2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  20. Basis for slow growth on non-fermentable substrates by a saccharomyces cerevisiae mutant UV-sensitive for rho- production

    International Nuclear Information System (INIS)

    Crosby, B.; Colson, A.M.; Briquet, M.; Goffeau, A.; Moustacchi, E.

    1978-01-01

    The mutant uvsp 72 of Saccharomyces cerevisiae UV-sensitive for rho - production displays slower growth on media containing non-fermentable carbon sources such as glycerol or lactate. The slower growth on glycerol is not due to any deficiency in glycerol catabolism or mitochondrial oxidative phosphorylation. No modifications of the sensitivity to ethidium bromide of the mitochondrial ATPase activity could be detected. A mathematical model is presented which accounts for slower growth of uvsp 72 on the sole basis of the continuous and elevated rho - production in the mutant strain. This model, which estimates the rate of mutation from the rate of growth and vice versa, has been verified experimentally in the case of uvsp 72. The model has been generalised, so that it can be used for any microbial population subject to constant and high rates of any type of mutation providing that the mutant is stable, and either unable to grow or able to grow at this own rate different from that of the parental strain. (orig.) [de

  1. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    Science.gov (United States)

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Novel strategies for control of fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart; Sin, Gürkan

    Bioprocesses are inherently sensitive to fluctuations in processing conditions and must be tightly regulated to maintain cellular productivity. Industrial fermentations are often difficult to replicate across production sites or between facilities as the small operating differences in the equipment...... of a fermentation. Industrial fermentation processes are typically operated in fed batch mode, which also poses specific challenges for process monitoring and control. This is due to many reasons including non-linear behaviour, and a relatively poor understanding of the system dynamics. It is therefore challenging...

  3. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    Science.gov (United States)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  4. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  5. Production of citric acid from whey permeate by fermentation using Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M; Brooks, J D

    1983-08-01

    The use of lactic casein whey permeate as a substrate for citric acid production by fermentation has been investigated. Using a mutant strain of Aspergillus niger IMI 41874 in fermenter culture, a citric acid concentration of 8.3 g/l, representing a yield of 19% (w/w) based on lactose utilized, has been observed. Supplementation of the permeate with lactose (final concentration 140 g/l) increased the production to 14.8 g/l (yield 23%). The natural pH of the permeate (pH 4.5) was the most suitable initial pH for the process, and pH control during the fermentation was unnecessary. The addition of methanol (final concentration 3% v/v) to the fermentation increased the citric acid production to 25 g/l (yield 33%, based on lactose utilized). 13 references.

  6. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chemical properties and colors of fermenting materials in salmon fish sauce production

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Nakano

    2018-02-01

    Full Text Available This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce (moromi, and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format. Keywords: Fish sauce, Chum salmon, Fermentation, Chemical properties, Color

  8. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.

    Science.gov (United States)

    Arrizon, Javier; Fiore, Concetta; Acosta, Guillermina; Romano, Patrizia; Gschaedler, Anne

    2006-01-01

    Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l(-1)) and low (30 g l(-1)) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l(-1) of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.

  9. Electron sterilization validation techniques using the controlled depth of sterilization process

    International Nuclear Information System (INIS)

    Cleghorn, D.A.; Nablo, S.V.

    1990-01-01

    Many pharmaceutical products, especially parenteral drugs, cannot be sterilized with gamma rays or high energy electrons due to the concomitant product degradation. In view of the well-controlled electron energy spectrum available in modern electron processors, it is practical to deliver sterilizing doses over depths considerably less than those defining the thickness of blister-pack constructions or pharmaceutical containers. Because bremsstrahlung and X-ray production are minimized at these low electron energies and in these low Z materials, very high electron: penetrating X-ray dose ratios are possible for the application of the technique. Thin film dosimetric techniques have been developed utilizing radiochromic film in the 10-60 g/m 2 range for determining the surface dose distribution in occluded surface areas where direct electron illumination is not possible. Procedures for validation of the process using dried spore inoculum on the product as well as in good geometry are employed to determine the process lethality and its dependence on product surface geometry. Applications of the process to labile pharmaceuticals in glass and polystyrene syringes are reviewed. It has been applied to the sterilization of commercial sterile products since 1987, and the advantages and the natural limitations of the technique are discussed. (author)

  10. Study on fermentation kinetics and extraction process of rhamnolipid production by papermaking wastewater

    Science.gov (United States)

    Yu, Keer

    2018-01-01

    Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.

  11. Safety and clinical efficacy of some radiation-sterilized medical products and pharmaceuticals

    International Nuclear Information System (INIS)

    Kulkarni, R.D.; Gopal, N.G.S.

    1975-01-01

    Medical products and pharmaceuticals must conform to certain minimum physico-chemical microbiological and biological requirements. The biological requirements comprise principally testing for toxicity, safety, and pyrogens. Besides the above-mentioned criteria, there are two other important characteristics, viz. clinical efficacy and tolerance in animal and/or human beings. These latter requirements, expected from the final product released for general human use, are not carried out routinely. In the present-day pharmaceutical and medical technology, numerous mew products are appearing, many of them requiring radiation sterilization as they are not stable towards the other conventional methods of sterilization. While the post-irradiation physicochemical changes in a product may not be significant, the bio-availability or biological activity of the product may be affected to a more significant extent. Some evidence of this has recently been reported. Hence, it is desirable to carry out studies on safety as well as clinical efficacy on irradiated products. This paper describes some studies on plastic-based medical products, a pharmaceutical raw material, a typical infusion fluid such as normal saline, antibiotics and their ointments. (author)

  12. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  13. The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory

    Directory of Open Access Journals (Sweden)

    Vitas Jasmina S.

    2013-01-01

    Full Text Available This paper investigates the antioxidant activity of fermented milk products obtained by kombucha fermentation. Two starter cultures were used as follows: starter obtained after kombucha fermentation on sweetened stinging nettle extract; as well as starter obtained after kombucha fermentation on sweetened winter savory extract. The starters were added to milk with 0.8, 1.6 and 2.8% milk fat. Fermentation was carried out at 37, 40 and 43oC and stopped when the pH reached 4.5. Antioxidant activity to hydroxyl and DPPH radicals was monitored using response surface methodology. Kombucha fermented milk products with stinging nettle (KSN and with winter savory (KWS showed the same antioxidant response to hydroxyl and different response to DPPH radicals. Synergetic effect of milk fat and fermentation temperature to antioxidant activity to hydroxyl radicals for both types of kombucha fermented milk products (KSN and KWS was established. Optimum processing conditions in term of antioxidant activity are: milk fat around 2.8% and process temperature around 41 and 43°C for KSN and KWS respectively.

  14. Ethanol production from alfalfa fiber fractions by saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sreenath, H.K. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering; USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Koegel, R.G. [US Department of Agriculture, Madison, WI (United States). Dairy Forage Research Center; Moldes, A.B. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Universidade de Vigo, Ourense (Spain); Jeffries, T.W. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Straub, R.J. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering

    2001-07-01

    This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or 'raffinate'. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. (author)

  15. Evaluation of the possibility of using brewer’s spent grain for the fermentation of lignocellulosic hydrolysates to biobutanol

    Directory of Open Access Journals (Sweden)

    Morozova Tatyana Sergeevna

    2017-06-01

    Full Text Available The paper deals with the investigation of the possible using of brewer’s grain as a source of growth substabces in acetone-butanol fermentation of lignocellulosic hydrolysates in order to reduce the cost of biobutanol production and to utilize the brewery waste. The fermentation of glucose was carried out at different concentrations of the brewer’s grain by Clostridium acetobutylicum ATCC 824. In the experiments on fermentation of the lignocellulosic hydrolysates an enzymatic hydrolysate of miscanthus cellulose containing 34.8 g/l glucose and 15.6 g/l xylose was used as a source of reducing substances. The sterilization of the medium was carried out at 0.5 KPa for 20 minutes. The sterilization of the growth and reducing substances sources was conducted separately to prevent caramelization of products and melanoidins. For inoculation the spores of 3% (vol/vol C. acetobutylicum ATCC 824 were transferred to a fresh medium. The strain was grown at 37 °С under anaerobic conditions. In a series of experiments on the evaluation of the influence of the brewer’s grain on the fermentability of carbohydrates by the strain of C. acetobutylicum АТСС 824, limiting and inhibitive concentrations of brewer’s grain were determined in the medium, which were 2 and 20 % vol., respectively. The optimal amount of the brewer’s grain was about 6 % vol. At the optimal concentration of the brewer’s grain the fermentation of lignocellulosic hydrolysates occured in all replicates. It was characterized by intensive gas and foam formation that corresponds to the data in literature. After 79-88 h of fermentation of miscanthus cellulose hydrolysate the product yield amounted 10.14±0.87 g/L butanol, 02.48±0.53 acetone, 01.02±0.42 g/L ethanol. It was found that at an optimum concentration both the fresh and sour brewer’s grain can be used in the fermentation. After the acetone-butanol fermentation the brewer’s grain can be used as a food for farm animals

  16. Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter

    NARCIS (Netherlands)

    Zheng, X.; Yan, Z.; Nout, M.J.R.; Smid, E.J.; Zwietering, M.H.; Boekhout, T.; Han, J.S.; Han, B.

    2014-01-01

    Chinese Daqu is used as a starter for liquor and vinegar fermentations. It is produced by solid state fermentation of cereal–pulse mixtures. A succession of fungi, lactic acid bacteria and Bacillus spp. was observed during the production of Daqu. Mesophilic bacteria followed by fungi, dominated the

  17. Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter

    NARCIS (Netherlands)

    Zheng, Xiao-Wei; Yan, Zheng; Nout, M J Robert; Smid, Eddy J; Zwietering, Marcel H; Boekhout, Teun; Han, Jian-Shu; Han, Bei-Zhong

    2014-01-01

    Chinese Daqu is used as a starter for liquor and vinegar fermentations. It is produced by solid state fermentation of cereal-pulse mixtures. A succession of fungi, lactic acid bacteria and Bacillus spp. was observed during the production of Daqu. Mesophilic bacteria followed by fungi, dominated the

  18. Method for ph-controlled fermentation and biogas production

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention is in the field of biomass processing and bioenergy production and facilitates efficient biomass processing and an increased production of renewable energy from processing and anaerobic fermentation of a wide variety of organic materials. In order to control the pH value...

  19. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  20. Alcoholic fermentation: an option for renewable energy production from agricultural residues; Fermentacion alcoholica: una opcion para la produccion de energia renovable a partir de desechos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, H. J [Universidad Autonoma Metropolitana (Mexico)]. E-mail: hjv@correo.azc.uam.mx; Dacosta, O [Oficina de Consejo, Desarrollo y Transferencia Tecnologica, Dijon (Francia)]. E-mail: statfor@yahoo.com

    2007-10-15

    Biotechnology offers several options for generating renewable energy. One of these technologies consists on producing bioethanol by fermentation. Bioethanol is mainly used to prepare fuel for motor vehicles. This paper presents a proposal to produce such as fuels with a hundred liters experimental fermentation pilot unit. Results derived from essays are similar, in terms of yield and productivity, to those presented by other systems, if we take into account that our unit works under non sterile conditions, which represents significant energy savings. This technology does not require specialized knowledge for its construction and it would accessible to groups of Mexican farmers. [Spanish] La biotecnologia ofrece diversas opciones para la generacion de energias renovables. Una de ellas es la produccion de bioetanol, el cual se obtiene mediante fermentacion. El bioetanol se usa en la preparacion de carburantes para vehiculos automotores. En este articulo se presenta una propuesta para la obtencion de este combustible mediante una unidad de fermentacion piloto experimental de 100 litros. Los resultados de nuestros ensayos, en rendimiento y productividad, son similares a los de otros laboratorios si se considera que esta unidad piloto funciona en condiciones no esteriles, lo que representa como ventaja un ahorro de energia no despreciable. Ademas, la tecnologia no requiere conocimientos especializados para su realizacion y estaria al alcance de grupos campesinos mexicanos.

  1. Physical and textural characteristics of fermented milk products obtained by kombucha inoculums with herbal teas

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available In this investigation, kombucha fermented milk products were produced from milk with 1.6% milk fat using 10% (v/v kombucha inoculums cultivated on the extracts of peppermint and stinging nettle. The fermentation process was conducted at temperatures of 37, 40 and 43°C. Fermentation was stopped when the pH value of 4.5 was reached. The fermentation process was shortened with an increase of temperature. Physical characteristics of the fermented products were determined by using standard methods of analysis. Textural characteristics were determined by texture profile analysis. The obtained products showed good physical and textural characteristics, typical for the yoghurt-like products. [Projekat Ministarstva nauke Republike Srbije, br. III-46009

  2. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility.

    Science.gov (United States)

    Li, X C; Barringer, B C; Barbash, D A

    2009-01-01

    Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.

  3. MODERN TECHNOLOGY OF FERMENTED MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2015-01-01

    Full Text Available Summary. New trends of meat industry development, on the example of sausages are shown. The detailed description of indicators of quality of meat raw materials, auxiliary materials and their influence on the processes of tissue and microbial fermentation in the process of ripening raw sausages. Measures for improving the quality control of meat raw materials, auxiliary materials, as well as the processing conditions in all stages of production of smoked products are suggested. The modern technology of production of raw sausages with starter cultures and complex products, allowing better standardization process is considered. Questions of chemistry of color formation, the formation of taste and flavor, textures and the suppression of undesired microflora in foods in general, and in particular the raw sausage are thoroughly covered. Ideas about factors affecting the formation of color in sausages are given. It is pointed out that the susceptibility to oxidation of nitrosilmioglobin is directly related to the fat oxidation in the whole redox potential. Trends in the market of raw sausages are shown. Requirements used in the meat industry to starting cultures are shown. Recommendations on the rational use of starter cultures, and other functional additives in technology of uncooked fermented products, which are used to improve the quality and ensure a high level of product safety are given. The characteristic of the innovative series of starter cultures Protect, its species belonging and qualitative composition, providing a unique protection system in the process of ripening and storage of smoked products is given. The properties are proved on the example of smoked poultry sausage.

  4. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  5. Industrial alcohol production via whey and grain fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Friend, B A; Cunningham, M L; Shahani, K M

    1982-01-01

    Six strains of a trained lactose fermenting Kluyveromyces yeast were examined for their ability to utilise lactose in sweet-whey permeate. All strains of K. fragilis tested reduced the concentration of the 5.1% lactose, initially present in whey permeate, to 0.1-0.2% within 48h. Periodic adjustment to maintain the pH during fermentation did not alter the lactose utilisation. The fermentation efficiency of K. fragilis was then compared with that of a mixture of K. fragilis and the classical alcohol fermenter Saccharomyces cerevisiae to verify that no unfavourable interactions occurred in the mixed culture. There were no differences in lactose utilisation or ethanol production between the two groups; both produced approximately 2% ethanol within 24h. This represented approximately 80% of the alcohol which theoretically could be produced from the 5.1% lactose present in the permeate. Whey permeate was also incorporated into the classical grain fermentation by substitution for one-half the water normally added to produce the mash. Fermentation was nearly complete by 36h and alcohol levels ranged from 9.7% for the mixed culture to 9.4% for the K. fragilis and 9.3% for the S. cerevisiae. Since the whey provided significant levels of fermentable sugars, studies were also conducted in which undiluted whey permeate was substituted for all of the water in the mash and the amount of grain was reduced by 20%. At the end of 36h K. fragilis produced 10.9% alcohol and at 60 h of fermentation the level had reached 12.2%. When whole sweet-whey was used, similar levels of alcohol were produced. (Refs. 20).

  6. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    Science.gov (United States)

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  7. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  9. Solid-state fermentation: a continuous process for fungal tannase production.

    Science.gov (United States)

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. Copyright 2004 Wiley Periodicals, Inc.

  10. APPLE VINEGAR PRODUCTION BY FERMENTATION IN PILOT SCALE

    OpenAIRE

    Reyna M., Leoncio; Robles, R.; Huamán R., M. A.

    2014-01-01

    Vinegar has been elaborated from apple juice by inmersed fermentation at room temperature. The process was developed in two stages, firstly, the alcoholic termentation was carried out using Saccharomyces Cerevísíae yeast, Ellipsoideus variety. Secondly, an acetic fermentation was carried out using acetobacter. The global yield of the process, based on row material usage was around 52%. The product obtained has an acidity of 6,8% in acetic acid and fulfill the market requirements. Se ha ela...

  11. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  12. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    Science.gov (United States)

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    Directory of Open Access Journals (Sweden)

    Yujin Cao

    2013-01-01

    Full Text Available Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed.

  14. Optimization of alcohol production from Jerusalem artichokes

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Caillaud, J.M.; Galzy, P.

    1982-01-01

    Fermentation of Jerusalem artichoke extracts by yeasts with inulinase activity is possible, without prior hydrolysis or sterilization, if carried out at pH 3.5. For semi-continuous production, a small amount of the yeast harvested at the end of the previous fermentation can be used as the subsequent inoculant. Up to 75 hl of alcohol per ha can be obtained by this process under favorable energetic conditions. A partial inhibition of the fermentation was detected in extracts obtained from tubers harvested too early; this inhibition seems unrelated to the extent of polymerization of sugars. (Refs. 9).

  15. Change of various enzyme activities of koji and sterilization of koiji by γ-radiation

    International Nuclear Information System (INIS)

    Iwano, Kimio; Mikami, Shigeaki; Oishi, Atsushi; Shiinoki, Satoshi

    1987-01-01

    Sterilization and changes of various enzyme activities of koji by gamma irradiation were investigated. A dose of 1 Mrad gamma irradiation was effective for the sterilization of koji. Various enzymes of koji were inactivated about 10-30% by the irradiation, while no influence was observed for shochu fermentation. There seemed to be no influence for qualities of sake and shochu by the irradiation. (author)

  16. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds.

    NARCIS (Netherlands)

    Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A.

    1996-01-01

    Recently developed time-related gas production techniques to quantify the kinetics of ruminant feed fermentation have a high resolution. Consequently, fermentation processes with clearly contrasting gas production kinetics can be identified. Parameterization of the separate processes is possible

  17. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  18. Temperature Effects on Free Radicals in Gamma-sterilized Beef

    Science.gov (United States)

    Pramanik, S. I.; Jahan, M. S.

    1999-11-01

    Gamma irradiation has become the method of choice for sterilizing frozen meat and their products to reduce levels of food-borne pathogens and to extend shelf life. In this report we have employed ESR technique for detection of free radicals in sterilized and non-sterilized dry beef without bone. We have also determined the heating effects on free radicals at temperatures 176^°C and 250^°C. Meat samples were dried in a food dehydrator at 60^°C and were packaged in dry N_2. They were then sterilized by γ-irradiation (2.5 MRad), ground into powder, and placed in ESR sample tubes. Non-sterilized powder samples were used as control. While all powder samples, sterilized or not, produced a broad single line in the ESR spectra with (Δ H_pp ~ 9 G) and g = 2.013, the radical concentration in the sterilized samples increased by a factor of five. Heat treatment at 176^°C produced similar radicals. But, when samples were heated 250^°C different radical species were formed which are characterized by narrow width (Δ H_pp ~ 6 G) and lower g-value (g =2.010). In contrast with previous work, where free radicals in chicken bones were reduced by heating [1], we observed an increase in concentration. Results of structural analyses of the radicals will be presented. Ref.[1]: Radiat. Phys. Chem., 49, 477-481, 1997. Work supported by Grants from the University of Memphis

  19. Sustainable fermentative hydrogen production: challenges for process optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, F.R.; Dinsdale, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Applied Sciences; Hawkes, D.L.; Hussy, I. [University of Glamorgan, Pontypridd (United Kingdom). School of Technology

    2002-12-01

    This paper reviews information from continuous laboratory studies of fermentative hydrogen production useful when considering practical applications of the technology. Data from reactors operating with pure cultures and mixed microflora enriched from natural sources are considered. Inocula have been derived from heat-treated anaerobically digested sludge, activated sludge, aerobic compost and soil, and non-heat-treated aerobically composted activated sludge. Most studies are on soluble defined substrates, and there are few reports of continuous operation on complex substrates with mixed microflora to produce H{sub 2}. Methanogenesis which consumes H{sub 2} may be prevented by operation at short hydraulic retention times (around 8-12 h on simple substrates) and/or pH below 6. Although the reactor technology for anaerobic digestion and biohydrogen production from complex substrates may be similar, there are important microbiological differences, including the need to manage spore germination and oxygen toxicity on start-up and control sporulation in adverse circumstances during reactor operation. (Author)

  20. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  1. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  2. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2017-01-01

    Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  4. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H2/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H 2/mol-glycerol (43 mL H2/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste. © 2009 Wiley Periodicals, Inc.

  5. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  6. Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk.

    Science.gov (United States)

    Moreno-Fernández, Jorge; Díaz-Castro, Javier; Alférez, Maria J M; Hijano, Silvia; Nestares, Teresa; López-Aliaga, Inmaculada

    2016-02-01

    The aim of this study was to identify the differences between the main macro and micronutrients including proteins, fat, minerals and vitamins in cow and goat dehydrated fermented milks. Fermented goat milk had higher protein and lower ash content. All amino acids (except for Ala), were higher in fermented goat milk than in fermented cow milk. Except for the values of C11:0, C13:0, C16:0, C18:0, C20:5, C22:5 and the total quantity of saturated and monounsaturated fatty acids, all the other fatty acid studied were significantly different in both fermented milks. Ca, Mg, Zn, Fe, Cu and Se were higher in fermented goat milk. Fermented goat milk had lower amounts of folic acid, vitamin E and C, and higher values of vitamin A, D3, B6 and B12. The current study demonstrates the better nutritional characteristics of fermented goat milk, suggesting a potential role of this dairy product as a high nutritional value food.

  7. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  8. Technical and economic assessments of storage techniques for long-term retention of industrial-beet sugar for non-food industrial fermentations

    Science.gov (United States)

    Vargas-Ramirez, Juan Manuel

    Industrial beets may compete against corn grain as an important source of sugars for non-food industrial fermentations. However, dependable and energy-efficient systems for beet sugar storage and processing are necessary to help establish industrial beets as a viable sugar feedstock. Therefore, technical and economic aspects of beet sugar storage and processing were evaluated. First, sugar retention was evaluated in whole beets treated externally with either one of two antimicrobials or a senescence inhibitor and stored for 36 wk at different temperature and atmosphere combinations. Although surface treatment did not improve sugar retention, full retention was enabled by beet dehydration caused by ambient air at 25 °C and with a relative humidity of 37%. This insight led to the evaluation of sugar retention in ground-beet tissue ensiled for 8 wk at different combinations of acidic pH, moisture content (MC), and sugar:solids. Some combinations of pH ≤ 4.0 and MC ≤ 67.5% enabled retentions of at least 90%. Yeast fermentability was also evaluated in non-purified beet juice acidified to enable long-term storage and partially neutralized before fermentation. None of the salts synthesized through juice acidification and partial neutralization inhibited yeast fermentation at the levels evaluated in that work. Conversely, yeast fermentation rates significantly improved in the presence of ammonium salts, which appeared to compensate for nitrogen deficiencies. Capital and operating costs for production and storage of concentrated beet juice for an ethanol plant with a production capacity of 76 x 106 L y-1 were estimated on a dry-sugar basis as U.S. ¢34.0 kg-1 and ¢2.2 kg-1, respectively. Storage and processing techniques evaluated thus far prove that industrial beets are a technically-feasible sugar feedstock for ethanol production.

  9. The causes of genetic male sterility in 3 soybaen lines.

    Science.gov (United States)

    Rubaihayo, P R; Gumisiriza, G

    1978-11-01

    The cause of male sterility in 3 soybean lines, TGM 103-1, N-69-2774 and TGM 242-4 was studied. In TGM 103-1, which was both male and female sterile, two different abnormalities were associated with sterility. Precocious movement of a few chromosomes at the metaphase I stage resulted into the production of non-functional pollen while cells which underwent apparent normal meiotic division had disintergration of the tapetal cell wall immediately after the free microspore stage leading to the starvation and subsequent death of the developing microspores. In lines N-69-2774 and TGM 242-4, both of which were partially sterile, male sterility resulted from a failure of cytokinesis after the telophase II stage. Meiosis proceeded normally but the 4 microspores after telophase II failed to separate into pollen grains and degenerated thereafter.

  10. Digestibility, Milk Production, and Udder Health of Etawah Goats Fed with Fermented Coffee Husk

    Directory of Open Access Journals (Sweden)

    I. Badarina

    2015-04-01

    Full Text Available This study was carried out to assess the utilization of coffee husk fermented by Pleurotus ostreatus as feed supplement by measuring the digestibility, milk production and udder health of Etawah goats suffered from subclinical mastitis (+1. There were three experimental diets consisted of T0 (control diet/basal diet without fermented coffee husk, T1 (basal diet with 6% fermented coffee husk and T2 (basal diet with 6% fermented coffee husk soaked in crude palm oil for an hour before using. Basal diet consisted of napier grass (60% and concentrate (40%. The results showed that supplementation of lactating Etawah does with fermented coffee husk did not affect the palatability of the diets, but increased the protein and crude fiber consumption (P<0.05. There was no significant effect on nutrient digestibility and milk production while milk composition (protein, fat, total solid increased in supplemented groups (P<0.05. The persistency of milk production and the somatic cells count were not different. There was an improvement of somatic cells count on supplemented groups. In conclusion, fermented coffee husk could be used as feed supplement without any negative effects on digestibility and milk production. The positive effects to udder health could be expected from including fermented coffee husk in diets.

  11. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    Science.gov (United States)

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  12. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    Science.gov (United States)

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  13. Assessment of the probiotic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets.

    Science.gov (United States)

    Cousin, Fabien J; Foligné, Benoît; Deutsch, Stéphanie-Marie; Massart, Sébastien; Parayre, Sandrine; Le Loir, Yves; Boudry, Gaëlle; Jan, Gwénaël

    2012-08-15

    Dairy propionibacteria, including Propionibacterium freudenreichii , display promising probiotic properties, including immunomodulation. These properties are highly strain-dependent and rarely studied in a fermented dairy product. We screened 10 strains, grown in a newly developed fermented milk ultrafiltrate, for immunomodulatory properties in vitro. The most anti-inflammatory strain, P. freudenreichii BIA129, was further tested on piglets. P. freudenreichii -fermented product improved food intake and growth of piglets. Colonic mucosa explants of treated pigs secreted less interleukin 8 (-25%, P dairy propionibacteria-fermented products, which are promising for the prevention or healing of inflammatory bowel diseases.

  14. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  15. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    Science.gov (United States)

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  16. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  17. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis.

    Science.gov (United States)

    Ballardo, Cindy; Barrena, Raquel; Artola, Adriana; Sánchez, Antoni

    2017-12-01

    In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·10 7 -2.2·10 7 and 1.3·10 7 -2.1·10 7  CFU g -1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  19. Fed batch fermentation scale up in the production of recombinant streptokinase

    Directory of Open Access Journals (Sweden)

    Salvador Losada-Nerey

    2017-01-01

    Full Text Available Due to the high international demand of the recombinant streptokinase (Skr produced at the National Center for Bioproducts (BioCen, it was necessary to increase the production capacity of the drug, since the current production volume does not cover the demand. A scale up of the process of fermentation of the recombinant streptokinase was made using a fed batch culture, from the bank scale towards a 300L fermenter. The scaling criteria used were: the intensive variables of the process, the relationships of volumes of the fermentation medium and inoculum, the volumetric coefficient of oxygen transfer and air volume to liquid flow relationship which were kept constant. With this scale up procedure it was possible to reproduce the results obtained at the bank scale of and to double the biomass production volume with the same equipment, fulfilling all the quality requirements of the product and to cover the current demand of the market. Techno-economic indicators demonstrated the feasibility of this option.

  20. Peptides in fermented Finnish milk products

    Directory of Open Access Journals (Sweden)

    Minna Kahala

    1993-09-01

    Full Text Available This study was conducted to investigate the rate of proteolysis and peptide profiles of different Finnish fermented milk products. The highest rate of proteolysis was observed in Biokefir, while the greatest change in the rate of proteolysis was observed in Gefilus®. Differences in starters and manufacturing processes reflected on the peptide profiles of the products. Most of the identified peptides originated from either the N- or C-terminal region of β-casein or from the N-terminal region of αs1-casein.

  1. Cashew wine vinegar production: alcoholic and acetic fermentation

    OpenAIRE

    Silva, M. E.; Torres Neto, A. B.; Silva, W. B.; Silva, F. L. H.; Swarnakar, R.

    2007-01-01

    Cashew wine of demi-sec grade was produced in a stirred batch reactor. The kinetic parameters obtained for cashew wine fermentation were Y X/S=0.061, Y P/S=0.3 and µmax=0.16 h-1. The yield and the productivity of cashew wine were 57.7% and 0.78 g/Lh respectively. A 2² factorial experimental design was used for the cashew wine vinegar fermentation optimization study. The cashew wine vinegar process optimization ranges found for initial concentrations of ethanol and acetic acid as independent v...

  2. The Impact of Novel Fermented Products Containing Extruded Wheat Material on the Quality of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaiciulyte-Funk

    2011-01-01

    Full Text Available Lactobacillus sakei MI806, Pediococcus pentosaceus MI810 and Pediococcus acidilactici MI807, able to produce bacteriocin-like inhibitory substances, were originally isolated from Lithuanian spontaneous rye sourdough and adapted in the novel fermentation medium containing extruded wheat material. The novel fermented products (50 and 65 % moisture content were stored at the temperatures used in bakeries (15 days at 30–35 °C in the summer period or 20 days under refrigeration conditions at 0–6 °C. The number of lactic acid bacteria (LAB was determined during the storage of fermented products for 15–20 days. Furthermore, the effect of novel fermented products stored under different conditions on wheat bread quality was examined. Extruded wheat material was found to have a higher positive effect on LAB growth compared to the control medium by lowering the reduction of LAB populations in fermented products with the extension of storage time and increase of temperature. During storage, lower variation and lower decrease in LAB count were measured in the novel fermented products with a moisture content of 65 % compared to those with 50 %. Furthermore, this humidity allows for the production of a product with higher moisture content in continuous production processes. The addition of the new fermented products with 65 % humidity to the wheat bread recipe (10 % of the quantity of flour had a significant effect on bread quality: it increased the acidity of the crumb and specific volume of the bread, and decreased the fractal dimension of the crumb pores and crumb firmness. Based on the microbiological investigations of fermented products during storage and baking tests, the conditions of LAB cultivation in novel fermentation media were optimized (time of cultivation approx. 20 days at 0–6 °C and approx. 10 days at 30–35 °C.

  3. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  4. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  5. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  6. Enhanced amylase production by fusarium solani in solid state fermentation

    International Nuclear Information System (INIS)

    Bakri, Y.; Jawhar, M.; Arabi, M.I.E.

    2014-01-01

    The present study illustrates the investigation carried out on the production of amylase by Fusarium species under solid state fermentation. All the tested Fusarium species were capable of producing amylase. A selected F. solani isolate SY7, showed the highest amylase production in solid state fermentation. Different substrates were screened for enzyme production. Among the several agronomic wastes, wheat bran supported the highest yield of amylase (141.18 U/g of dry substrate) after 3 days of incubation. Optimisation of the physical parameters revealed the optimum pH, temperature and moisture level for amylase production by the isolate as 8.0, 25 C and 70%, respectively. The above results indicate that the production of amylase by F. solani isolate SY7 could be improved by a further optimisation of the medium and culture conditions. (author)

  7. The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results

    International Nuclear Information System (INIS)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-01-01

    Highlights: • Co-digestion process finalized to bio-H 2 production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H 2 production from FW. • When SHW ranging between 50% and 70% the H 2 production is improved. • SHW percentages above 70%, led to a depletion in H 2 production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H 2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H 2 production compared to that in FW only, reaching H 2 -production yields of 145 and 109 ml gVS 0 -1 , respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H 2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process

  8. Batch fermentation of whey ultra filtrate by Lactobacillus helveticus for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D; Goulet, J; Le Duy, Q

    1986-06-01

    Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 revolutions per minute and under conditions of controlled temperature (42 degrees C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). 27 references.

  9. Characterization and product innovation of sufu - a Chinese fermented soybean food

    NARCIS (Netherlands)

    Han, B.

    2003-01-01

     Over the centuries, Chinese people have consumed soybeans in various forms of traditional fermented soybean foods. Sufu ( Furu ), a cheese-like product originating in China, is one of the most popular fermented soybean foods in China, and is becoming popular

  10. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  11. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  12. Microbiological Characteristics of Trachanas, a Traditional Fermented Dairy Product from Cyprus

    OpenAIRE

    Bozoudi, Despina; Agathokleous, Maria; Anastasiou, Iacovos; Papademas, Photis; Tsaltas, Dimitris

    2017-01-01

    The purpose of this study was to characterize the autochthonous microbiota of Cypriot Trachanas, a traditional fermented ewes’ milk product. For this reason, 12 samples of raw and fermented milk as well as natural starter culture were collected in order to count, isolate, and identify the main species present during Trachanas fermentation. In total, 198 colonies were retrieved and 163 were identified by sequencing analysis at species level. Lactic acid bacteria (LAB) were the predominant grou...

  13. Sterilization by gamma irradiation

    International Nuclear Information System (INIS)

    Reyes Frias, L.

    1992-01-01

    Since 1980 the National Institute of Nuclear Research counts with an Industrial Gamma Irradiator, for the sterilization of raw materials and finished products. Through several means has been promoted the use of this technology as alternative to conventional methods of sterilization as well as steam treatment and ethylene oxide. As a result of the made promotion this irradiator has come to its saturation limit being the sterilization irradiation one of the main services that National Institute of Nuclear Research offers to producer enterprises of disposable materials of medical use also of raw materials for the elaboration of cosmetic products and pharmaceuticals as well as dehydrated foods. It is presented the trend to the sterilization service by irradiation showed by the compilation data in a survey made by potential customers. (Author)

  14. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance

    International Nuclear Information System (INIS)

    Cheng, Jun; Ding, Lingkan; Lin, Richen; Yue, Liangchen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-01-01

    Highlights: • Microanalyses revealed food waste had more gelatinized organics and less mineral ash. • Mixed food waste and sewage sludge at 5 ratios were used for H_2 and CH_4 co-production. • Highest H_2 yield of 174.6 mL/gVS was achieved when food waste:sewage sludge was 3:1. • Co-fermentation enhanced carbon conversion by strengthening hydrolysis of substrates. • Energy yield rose from 1.9 kJ/gVS in H_2 to 11.3 kJ/gVS in H_2 and CH_4 co-production. - Abstract: The accumulation of increasingly generated food waste and sewage sludge is currently a heavy burden on environment in China. In this study, the physiochemical properties of food waste and sewage sludge were identified using scanning electron microscopy and Fourier transform infrared spectroscopy to investigate the effects on the fermentation performance in the co-fermentation of food waste and sewage sludge for biohydrogen production. The high gelatinized organic components in food waste, the enhanced bioaccessibility due to the dilution of mineral compounds in sewage sludge, and the balanced C/N ratio synergistically improved the fermentative biohydrogen production through the co-fermentation of food waste and sewage sludge at a volatile solids (VS) mix ratio of 3:1. The biohydrogen yield of 174.6 mL/gVS was 49.9% higher than the weighted average calculated from mono-fermentation of food waste and sewage sludge. Co-fermentation also strengthened the hydrolysis and acidogenesis of the mixture, resulting in a total carbon conversion efficiency of 63.3% and an energy conversion efficiency of 56.6% during biohydrogen production. After the second-stage anaerobic digestion of hydrogenogenic effluent, the energy yield from the mixed food waste and sewage sludge significantly increased from 1.9 kJ/gVS in the first-stage biohydrogen production to 11.3 kJ/gVS in the two-stage fermentative biohydrogen and biomethane co-production.

  15. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Madsen, M.; Sophanodora, P.

    2002-01-01

    % salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation....... LAB counts increased to 108-109 cfu g-1 and yeast counts to 107-5 x 107 cfu g-1 in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus......Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7...

  16. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  17. Research on determination of bio-burden for radiation sterilization of health care products

    International Nuclear Information System (INIS)

    Liu Qinfang

    2008-01-01

    In order to provide data of bio-burden for dose setting in radiation sterilization, determination of bio-burden on 148 kinds of health care products from 52 manufacturers were carried out. The culture of microorganisms, different elution technology, and correction coefficient of the microbiological methods have been used for determination of bio-burden. Frequent distribution of bio-burden was established. 5 kinds of elution processes were checked. Actual data of bio-burden for dose setting in radiation sterilization was gotten. (authors)

  18. A Novel simultaneous-Saccharification-Fermentation Strategy for Efficient Co-fermentation of C5 and C6 Sugars Using Native, Non-GMO Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, Sasidhar [Univ. of Toledo, OH (United States); Relue, Patricia [Univ. of Toledo, OH (United States)

    2013-09-30

    Economic bioethanol production is critically dependent upon the ability to convert both the hexose (C6) and pentose (C5) sugars resulting from cellulose and hemicellulose. C5 sugars are not readily fermentable by native Saccharomyces cerevisiae. Genetically Modified Organisms (GMOs) are designed to ferment xylose, but their stability, ethanol yield, environmental impact, and survival under conditions of industrial fermentation are unproven. In this project, we developed a novel approach for efficient fermentation of both C5 and C6 sugars using native S. Cerevisiae by exploiting its ability to produce ethanol from xylulose - the keto-isomer of xylose. While the isomerization of xylose to xylulose can be accomplished via commercially (and cheaply) available Xylose Isomerase (XI) (Sweetzyme™), this conversion has an extremely unfavorable equilibrium (xylose:xylose is about 5:1). To address this, we developed two alternate strategies. In the first, the two enzymes XI and urease are coimmobilized on solid support particles to enable complete isomerization of xylose to xylulose under pH conditions suitable for fermentation, in a simultaneous-isomerization-fermentation (SIF) mode. The ability of our technology to conduct isomerization of xylose under pH conditions suitable for both saccharification and fermentation opens the possibility of SSF with native yeasts for the first time. Herein, we performed specific research tasks for implementation of our technology in several modes of operation, including simultaneous-isomerization-and-fermentation (SIF), simultaneous-saccharification-and-isomerization (SSI) followed by fermentation, and SSF mode with the biomass feedstock poplar. The projected economics of our process are very favorable in comparison to the costs associated with engineering, licensing and propagating GMOs. This novel fermentation technology is readily accessible to rural farming economies for implementation in cellulosic ethanol production facilities.

  19. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  20. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.

    Science.gov (United States)

    Yu, J; Wang, W H; Menghe, B L G; Jiri, M T; Wang, H M; Liu, W J; Bao, Q H; Lu, Q; Zhang, J C; Wang, F; Xu, H Y; Sun, T S; Zhang, H P

    2011-07-01

    Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of

  1. Audits of radiation sterilization facilities

    International Nuclear Information System (INIS)

    Kelkar, Prabhakar M.

    2001-01-01

    Johnson and Johnson is the world leader in sterilization science and technology. A special group of scientists and technologists are engaged in the development of new methods of sterilization, worldwide monitoring of sterilization processes, equipment and approvals for all types of sterilization processes. Kilmer Conference in the alternate year for the benefit of all those involved in improvement in sterilization science is held. Cobalt-60 gamma radiation for sterilization of medical products on commercial scale is used. This kind of mammoth task can only be achieved through systematic method of planning, auditing, expert review and approval of facilities

  2. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  3. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview

    Directory of Open Access Journals (Sweden)

    María Fernández

    2015-01-01

    Full Text Available Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others. Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  4. Impact on human health of microorganisms present in fermented dairy products: an overview.

    Science.gov (United States)

    Fernández, María; Hudson, John Andrew; Korpela, Riitta; de los Reyes-Gavilán, Clara G

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  5. Methane Production of Different Forages in Ruminal Fermentation

    Directory of Open Access Journals (Sweden)

    S. J. Meale

    2012-01-01

    Full Text Available An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM ranged from 671 to 713 (grasses, 377 to 590 (leguminous shrubs and 288 to 517 (non-leguminous shrubs. After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05 within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

  6. Seeking sterile neutrinos in Finslerian cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2017-11-15

    For the first time, to search for sterile neutrinos in the framework of Finler geometry, we constrain four cosmological models using the most stringent constraint we can provide so far. We find that the Finslerian massless sterile neutrino model can, respectively, give a better cosmological fit to data and alleviate the current H{sub 0} tension more effectively than the other three models. For the Finslerian massless sterile neutrino model, we obtain the constraint N{sub eff} = 3.237{sup +0.092}{sub -0.185}, which is consistent with ΔN{sub eff} > 0 at the 1.03σ confidence level (CL). This gives a very weak hint of massless sterile neutrinos and may imply the non-existence of massless sterile neutrinos in the Finslerian cosmological setting. For the Finslerian massive sterile neutrino model, we obtain the constraints N{sub eff} = 3.143{sup +0.064}{sub -0.066}, which favors ΔN{sub eff} > 0 at the 1.47σ CL, and m{sub ν,sterile}{sup eff} < 0.121 eV at the 2σ CL which is much tighter than the Planck results. This very tight restriction appears to indicate the massive sterile neutrinos are also non-existent in the Finslerian scenarios. Consequently, one may conclude that the sterile neutrinos are possibly non-existent in the Finslerian universe. Our results are compatible with the recent results of the neutrino oscillation experiments implemented by the Daya Bay and MINOS collaborations and the cosmic ray one carried out by the IceCube collaboration. (orig.)

  7. Ethanol production from lignocellulosic materials. Fermentation and on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, L.

    1994-04-01

    The fermentation performance of bacteria, yeast and fungi was investigated in lignocellulosic hydrolysates with the aim of finding microorganisms which both withstand the inhibitors and that have the ability to ferment pentoses. Firstly, the performance of Saccharomyces cidri, Saccharomyces cerevisiae, Lactobacillus brevis, Lactococcus lactis ssp lactis, Escherichia coli and Zymomonas mobilis was investigated in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated willow. Secondly, the performance of natural and recombinant E. coli, Pichia stipitis, recombinant S. cerevisiae, S. cerevisiae in combination with xylose isomerase and Fusarium oxysporum was investigated in a xylose-rich acid hydrolysate of corn cob. Recombinant E. coli was the best alternative for fermentation of lignocellulosic hydrolysates, giving both high yields and productivities. The main drawback was that detoxification was necessary. The kinetics of the fermentation with recombinant E. coli KO11 was investigated in the condensate of steam-pretreated willow. A cost analysis of the ethanol production from willow was made, which predicted an ethanol production cost of 3.9 SEK/l for the pentose fermentation. The detoxification cost constituted 22% of this cost. The monitoring of three monosaccharides and ethanol in lignocellulosic hydro lysates is described. The monosaccharides were determined using immobilized pyranose oxidase in an on-line amperometric analyser. Immobilization and characterization of pyranose oxidase from Phanerochaete chrysosporium is also described. The ethanol was monitored on-line using a micro dialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol bio sensor. The determinations with on-line analysis methods agreed well with off-line methods. 248 refs, 4 figs, 12 tabs

  8. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  9. Production of pizza dough with reduced fermentation time

    Directory of Open Access Journals (Sweden)

    Simone Limongi

    2012-12-01

    Full Text Available The aim of this study was to reduce the fermentation time of pizza dough by evaluating the development of the dough during fermentation using a Chopin® rheofermentometer and verifying the influence of time and temperature using a 2² factorial design. The focus was to produce characteristic soft pizza dough with bubbles and crispy edges and soft in the center. These attributes were verified by the Quantitative Descriptive Analysis (QDA. The dough was prepared with the usual ingredients, fermented at a temperature range from 27 to 33 ºC for 30 to 42 minutes, enlarged, added with tomato sauce, baked, and frozen. The influence of the variables time and temperature on the release of carbon dioxide (H'm was confirmed with positive and significant effect, using a rheofermentometer, which was not observed for the development or maximum height of the dough (Hm. The same fermentation conditions of the experimental design were used for the production of the pizza dough in the industrial process; it was submitted to Quantitative Descriptive Analysis (QDA, in which the samples were described by nine attributes. The results showed that some samples had the desired characteristics of pizza dough, demonstrated by the principal component analysis (PCA, indicating a 30 % fermentation time reduction when compared to the conventional process.

  10. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle

    Science.gov (United States)

    Gniadek, Thomas J.; Carroll, Karen C.

    2016-01-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  11. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial.

    Science.gov (United States)

    Guillemard, E; Tondu, F; Lacoin, F; Schrezenmeir, J

    2010-01-01

    Common infectious diseases (CID) of the airways and the gastrointestinal tract are still a considerable cause of morbidity and mortality in elderly. The present study examined the beneficial effect of a dairy product containing the probiotic strain Lactobacillus casei DN-114 001 (fermented product) on the resistance of free-living elderly to CID. The study was multicentric, double blind and controlled, involving 1072 volunteers (median age = 76.0 years) randomised for consumption of either 200 g/d of fermented (n 537) or control (non-fermented) dairy product (n 535) for 3 months, followed by an additional 1 month's follow-up. The results showed that, when considering all CID, the fermented product significantly reduced the average duration per episode of CID (6.5 v. 8 d in control group; P = 0.008) and the cumulative duration of CID (7 v. 8 d in control group; P = 0.009). Reduction in both episode and cumulative durations was also significant for all upper respiratory tract infections (URTI; P fermented product consumption (2-3.8 x 107 equivalents of colony-forming unit/g of stools, P fermented product was safe and well tolerated. In conclusion, consumption of a fermented dairy product containing the probiotic strain L. casei DN-114 001 in elderly was associated with a decreased duration of CID in comparison with the control group, especially for URTI such as rhinopharyngitis.

  12. Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production

    Science.gov (United States)

    2013-01-01

    Background Industrial fermentations can generally be described as dynamic biotransformation processes in which microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth quantification of these gene activities, since the low background noise and the absence of an upper limit of quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to productivity improvement. Here we present an overview of the dynamics of gene activity during an industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer. Thereby, valuable insights which help to understand the complex interactions during such processes are provided. Results Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth stages of an industrial-oriented protease production process employing a germination deficient derivative of B. licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein secretion have

  13. Probabilistic model for sterilization of food

    International Nuclear Information System (INIS)

    Chepurko, V.V.; Malinovskij, O.V.

    1986-01-01

    The probabilistic model for radiation sterilization is proposed based on the followng suppositions: (1) initial contamination of a volume unit of the sterilized product m is described by the distribution of the probabilities q(m), (2) inactivation of the population from m of microorganisms is approximated by Bernoulli test scheme, and (3) contamination of unit of the sterilized product is independent. The possibility of approximation q(m) by Poisson distribution is demonstrated. The diagrams are presented permitting to evaluate the dose which provides the defined reliability of sterilization of food for chicken-gnotobionts

  14. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  15. Physics and the Production of Antibiotics: 2

    Science.gov (United States)

    Fairbrother, Robert; Riddle, Wendy; Fairbrother, Neil

    2006-01-01

    In an article in the preceding issue we discussed the design and construction of fermenters in which antibiotics are cultured. For industrial purposes these fermenters can range in size up to 500 m[cube]. They have to be sterilized, filled with sterile culture medium and the culture itself and supplied with oxygen continuously. In some cases they…

  16. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor.

    Science.gov (United States)

    Zhang, Danfeng; Wu, Suowei; An, Xueli; Xie, Ke; Dong, Zhenying; Zhou, Yan; Xu, Liwen; Fang, Wen; Liu, Shensi; Liu, Shuangshuang; Zhu, Taotao; Li, Jinping; Rao, Liqun; Zhao, Jiuran; Wan, Xiangyuan

    2018-02-01

    Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  18. Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations.

    Science.gov (United States)

    Valle-Rodríguez, Juan Octavio; Hernández-Cortés, Guillermo; Córdova, Jesús; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2012-02-01

    This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.

  19. [Obtaining a fermented chickpea extract (Cicer arietinum L.) and its use as a milk extensor].

    Science.gov (United States)

    Morales de León, J; Cassís Nosthas, M L; Cecin Salomón, P

    2000-06-01

    Chickpea (Cicer arietinum L) is cultivated in the North part of México and it is considered a good source of vegetal protein of low cost (20% average), nevertheless, the 80% used for the exportation and only the 20% less was used for animal feeding. The main objective in this study is to obtain a fermented chickpea extract for using in dairy extensor. Chickpea water absorbtion kinetics were carried out in e temperature conditions:while the conditions were established, chickpea was grounded and fermented in different amounts with its natural flora, L. casei, L. plantarum and a mixture culture of both microorganism in logarithmic phase. The results showed that the presence of microorganism of chickpea natural flora interferes during the fermentation, so before the inoculation it was necessary treat the chickpea extract (CE) terminally in a dilution 1:4 during 20 min at 7.7 kg/cm2 of pressure. The use of a mixture culture of 5% of L. casei and 5% L. plantarum inoculated in MRS broth was used to decrease fermentation time. Its addition in logarithmic phase to the sterile chickpea extract increased the lactic acid production and decreased the pH value in 6 h which was less time that one obtained with each of lactobacillus. The fermented extract obtained finally, presented similar sensory characteristics to the ones of dairy products. Therefore, chickpea is a good alternative as a extensor for this kind of products.

  20. Research of rheological characteristics and determination of rational parameters of drying process of activated ferment for bakery products

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2017-01-01

    Full Text Available The work is aimed at investigating the rheological properties of the ferment in the process of maturation and storage with subsequent determination of the rational parameters of its drying in various drying plants with the analysing of microflora of dried samples. We studied the rheological properties of the ferment using the strain of the lactobacilli L. Acidothilus 146A (activator and without it, which showed that the ferment for the production of special purpose bakery products to non-Newtonian or anomalously viscous liquids described by the Osthald-de-Vale rheological equation. We found that the introduction the strain of the lactobacilli L. Acidothilus 146A helps to reduce the viscosity during maturation by almost 3 times, and when storing the samples – in 2 times, this is indicated by the value of the consistency coefficient. The activator reduces the influence of temperature, so the structure of the ferment becomes more stable. It is easier to further process in this state. Consequently, the energy consumption for production is significantly reduced and the increases expiration date after the strain of the lactobacilli L. Acidothilus 146A is added to the starter for the production of special purpose bakery products. We detected kinetic patterns of drying of the activated ferment in thermoradiation, convective and sublimation dryers under different temperature operating conditions. We have determined the rational parameters of drying the ferment for the production of bakery products of specialized purpose. We analyzed the useful microflora of the dried samples. It has been revealed that microorganisms undergoing convective and sublimation (freeze drying are subjected to the smallest destructive effect. We found that microorganisms are less destroyed by convective and freeze drying. The microbial titer in these samples is at least 1(105CFU/g. While drying by the method of infrared irradiation, this titer is lower by a factor of ten

  1. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  2. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    Science.gov (United States)

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  3. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group.

    Science.gov (United States)

    Baschali, Aristea; Tsakalidou, Effie; Kyriacou, Adamantini; Karavasiloglou, Nena; Matalas, Antonia-Leda

    2017-06-01

    Fermented beverages hold a long tradition and contribution to the nutrition of many societies and cultures worldwide. Traditional fermentation has been empirically developed in ancient times as a process of raw food preservation and at the same time production of new foods with different sensorial characteristics, such as texture, flavour and aroma, as well as nutritional value. Low-alcoholic fermented beverages (LAFB) and non-alcoholic fermented beverages (NAFB) represent a subgroup of fermented beverages that have received rather little attention by consumers and scientists alike, especially with regard to their types and traditional uses in European societies. A literature review was undertaken and research articles, review papers and textbooks were searched in order to retrieve data regarding the dietary role, nutrient composition, health benefits and other relevant aspects of diverse ethnic LAFB and NAFB consumed by European populations. A variety of traditional LAFB and NAFB consumed in European regions, such as kefir, kvass, kombucha and hardaliye, are presented. Milk-based LAFB and NAFB are also available on the market, often characterised as 'functional' foods on the basis of their probiotic culture content. Future research should focus on elucidating the dietary role and nutritional value of traditional and 'functional' LAFB and NAFB, their potential health benefits and consumption trends in European countries. Such data will allow for LAFB and NAFB to be included in national food composition tables.

  4. Biogas production of Chicken Manure by Two-stage fermentation process

    Science.gov (United States)

    Liu, Xin Yuan; Wang, Jing Jing; Nie, Jia Min; Wu, Nan; Yang, Fang; Yang, Ren Jie

    2018-06-01

    This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.

  5. Acetone-butyl alcohol fermentation of the cornstalk hydrolyzates prepared by the method of Riga

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, N A; Shcheblykina, N A; Kalnina, V; Pelsis, D

    1960-01-01

    The possibility of use of waste instead of food products in the acetone-butyl alcohol fermentation was investigated. Crushed cornstalks hydrolyzed by the method of Riga were inverted at varying conditions. The hydrolyzate containing about 50% of reducing substances (RS), based on dry weight of cornstalks, was neutralized to pH 6.3-6.5, diluted with water to the final concentration 5.0-5.1% of RS filtered, and the filtrate sterilized. The resulting liquor (I) was mixed with the wheat meal mash containing 5% of sugar (starch calculated as glucose) and fermented. The utilization of I depended upon the regime of inversion; the optimal being 20 minutes at 115/sup 0/, hydrocoefficient 1:4. In this case the use of 40% of mash sugar in form of I did not impair the yield of fermentation. The use of corn instead of wheat meal decreased the yield of butanol and increased that of ethanol. The fermentation of the mixture of I (final concentration 3% RS) and corn gluten (final concentration 2%), mineral salts added, gave higher yields than did the fermentation of the wheat meal mash.

  6. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  7. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation

    Directory of Open Access Journals (Sweden)

    Marina Bely

    2005-12-01

    Full Text Available An approach consisting of controlling yeast inoculum to minimize volatile acidity production by Saccharomyces cerevisiae during the alcoholic fermentation of botrytized must was investigated. Direct inoculation of rehydrated active dry yeasts produced the most volatile acidity, while a yeast preparation pre-cultured for 24 hours reduced the final production by up to 23 %. Using yeasts collected from a fermenting wine as a starter must also reduced volatile acidity production. The conditions for preparing the inoculum affected the fermentation capacity of the first generation yeasts: fermentation duration, sugar to ethanol ratio, and wine composition. A pre-culture medium with a low sugar concentration (< 220 g/L is essential to limit volatile acidity production in high sugar fermentations.

  10. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    Directory of Open Access Journals (Sweden)

    Julius Akinbomi

    2015-05-01

    Full Text Available The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected to varying hydraulic retention times (HRTs in a continuous fermentation process at 55 °C for 47 days. The weight distributions of the first, second and third fruit mixtures were 70%, 50% and 20% orange share, respectively, while the residual weight was shared equally by the other fruits. The results indicated that there was an improvement in cumulative hydrogen yield from all of the feedstock when the HRT was five days. Based on the results obtained, apple as a single fruit and a fruit mixture with 20% orange share have the most improved cumulative hydrogen yields of 504 (29.5% of theoretical yield and 513 mL/g volatile solid (VS (30% of theoretical yield , respectively, when compared to other fruits.

  11. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  12. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  13. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Das, K.; Sharma, D.K.

    1984-02-01

    With the developing shortage of petroleum, reliance on biomass as a source of chemicals and fuels will increase. In the present work, bagasse and rice husk were subjected to dilute acid (H2SO4) hydrolysis using pressurised water to obtain furfural and fermentable sugars. Various process conditions such as particle size, solid-liquid ratio, acid concentration, reaction time and temperature have been studied to optimise yields of furfural, xylose and other fermentable sugars. The use of particle sizes smaller than 495 mu m did not further increase the yield of reducing sugars. A solid-liquid ratio of 1:15 was found to be the most suitable for production of reducing sugars. Hydrolysis using 0.4% H2SO4 at 453 K resulted in selective yields (g per 100 g of dried agricultural residues) of xylose from bagasse (22.5%) and rice husk (21.5%). A maximum yield of furfural was obtained using 0.4% H2SO4 at 473 K from bagasse (11.5%) and rice husk (10.9%). It was also found that hydrolysis using 1% H2SO4 at 493 K resulted in maximum yields of total reducing sugar from bagasse (53.5%) and rice husk (50%). The reducing sugars obtained were fermented to ethanol after removal of furfural. The effect of furfural on the fermentation of sugars to ethanol was also studied. Based on these studies, an integrated two-step process for the production of furfural and fermentable sugars could be envisaged. In the first step, using 0.4% H2SO4 at 473 K, furfural could be obtained, while in the second step, the use of 1% H2SO4 at 493 K should result in the production of fermentable sugars. (Refs. 22).

  14. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    Science.gov (United States)

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  15. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties.

    Science.gov (United States)

    Rao, Gundra Sivakrishna; Deveshwar, Priyanka; Sharma, Malini; Kapoor, Sanjay; Rao, Khareedu Venkateswara

    2018-01-01

    We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F 1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F 1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.

  16. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  17. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    Science.gov (United States)

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Validation of the sterile manufacture of the AAEC MARK III molybdenum-99/techtnetium-99m generator

    International Nuclear Information System (INIS)

    Saunders, M.T.; Drummond, C.M.; Harrison, M.A.

    1982-07-01

    The Mark II molybdenum-99/technetium-99m generator now supplied to hospitals by the Australian Atomic Energy Commission is a non-sterile elution system. The Mark III version will be supplied as a sterile elution system. A validation study has been undertaken to assess the capability of the new production facility, to evaluate up-to-date procedures for manufacturing sterile generators and to demonstrate that a sterile radionuclide generator can be made. Generator manufacturing procedures and a time study of the validation are described. Microbiological methods for monitoring in-process aspects of manufacture, disinfectant efficacy and generator sterility are defined

  19. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  20. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  1. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  2. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    Science.gov (United States)

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  3. Accredited dose measurements for validation of radiation sterilized products

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    for control of radiation sterilization. The accredited services include: 1. 1. Irradiation of dosimeters and test samples with cobalt-60 gamma rays. 2. 2. Irradiation of dosimeters and test samples with 10 MeV electrons. 3. 3. Issue of and measurement with calibrated dosimeters. 4. 4. Measurement...... of the dosimetric parameters of an irradiation facility. 5. 5. Measurement of absorbed dose distribution in irradiated products. The paper describes these services and the procedures necessary for their execution....

  4. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  5. Optimization of ethanol production by Zymomonas mobilis in sugar cane molasses fermentation

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Oliveira

    2005-02-01

    Full Text Available The present study aimed at the optimization of the ethanol production by Zymomonas mobilis CP4, during the fermentation of sugar cane molasses. As for the optimization process, the response surface methodology was applied, using a 33 incomplete factorial design, being the independent variables: total reducing sugar (TRS concentration in the molasses from 10, 55 and 100 g/L (x1; yeast extract concentration from 2, 11 and 20 g/L (x2, and fermentation time from 6, 15 and 24 hours (x3. The dependant variables or answers were the production and productivity of ethanol. By the analysis of the results, a good adjustment of the model to the experimental data was obtained. In the levels studied, the best condition for the production of ethanol was with 100 g/L TRS in the syrup, 2.0 g/L of yeast extract and the fermentation time between 20 and 24 hours, producing 30 g/L of ethanol.

  6. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  7. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  8. Inherited sterility in insects

    International Nuclear Information System (INIS)

    Carpenter, J.E.; Marec, F.; Bloem, S.

    2005-01-01

    The unique genetic phenomena responsible for inherited sterility (IS) in Lepidoptera and some other arthropods, as compared with full sterility, provide advantages for pest control. Lepidopteran females are usually more sensitive to radiation than males of the same species. This allows the radiation dose to be adjusted to suit programme requirements. When partially sterile males mate with wild females, the radiation-induced deleterious effects are inherited by the F 1 generation. As a result, egg hatch is reduced and the resulting offspring are both highly sterile and predominately male. Compared with the high radiation required to achieve full sterility in Lepidoptera, the lower dose of radiation used to induce F 1 sterility increases the quality and competitiveness of the released insects as measured by improved dispersal after release, increased mating ability, and superior sperm competition. F 1 sterile progeny produced in the field enhance the efficacy of released partially sterile males, and improve compatibility with other pest control strategies. In addition, F 1 sterile progeny can be used to increase the production of natural enemies, and to study the potential host and geographical ranges of exotic lepidopteran pests. (author)

  9. Effects of humus on acetone-butanol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Kovats, J

    1963-01-01

    Adding 6 to 8 g humus-rich soil dried at 80/sup 0/ to 100 cc sterilized molasses, containing 3.8 sucrose and 0.1% (NH/sub 4/)/sub 2/HPO/sub 4/, inoculated with acetone-butanol fermentative bacteria, increased acetone, butanol, and ethanol yields by 30, 50, and 40%, respectively. The acetone-to-butanol ratio increased from 1.85 to 2.1-2.3 in low and 2.6-2.8 in high sucrose-molasses concentrations. Yields of total organic solvents increased from 25 to 36-8% of the sucrose present. Inorganic salts from ashed humus soils were only 10 to 20% less effective in enhancing fermentation than the whole soil. It is postulated that the fermentation is enhanced by trace elements present in the soil.

  10. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    Science.gov (United States)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  11. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  12. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  13. Following trends in steam sterilizer performance by quantitative monitoring of non-condensable gases

    NARCIS (Netherlands)

    van Wezel, R.A.C.; van Gastel, A.; de Ranitz, A.; van Doornmalen Gomez Hoyos, J.P.C.M.

    2017-01-01

    Standards require a daily steam penetration test before starting production with a steam sterilizer. In many cases the results of steam penetration tests are not used for improvements or optimization of processes. This study aimed to detect whether trend analysis with an objective and quantifying

  14. Induction of male sterility in rice using chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, J L; Gupta, R K [Department of Genetics, Punjab Agricultural University, Ludhiana (India)

    1988-07-01

    Full text: To diversify the sources of cytoplasmic male sterility for hybrid seed production in rice (Oryza sativa L.) attempts were made to induce this character in a popular indica cultivar PR 106 through chemical mutagens. Seeds were treated with 0.4% ethidium bromide (EB) for 24 or 48h at 10 deg. C, with 0.4% ethyl methanesulphonate (EMS) for 24 or 48h at 10 deg. C for 16 hr at 20 deg. C or with 0.2% streptomycin sulphate (SM) for 24 or 48 hr at 10 deg. C. In M{sub 2} male sterile plants were detected in eleven different progenies, one from SM treatment and the remaining from EMS treatments. All the sterile plants had 100% non-stainable aborted pollen. Seed set upon open-pollination of the male sterile plants with the variety PR 106 ranged from 0.03 to 4.93 per cent whereas no seed formed in bagged panicles. In M{sub 3}, open-pollinated progenies of the male sterile plants and their fertile sibs were further studied. Two progenies segregated for male sterility, all others had only fertile plants. In one of the segregating progenies, five out of six and in the other nine out of fourteen plants were male sterile. The progenies of fertile sibs did not have any male sterile plant. The results indicate that sterility of cytoplasmic type has been induced by EMS. The parental variety PR 106 acts as the maintainer. (author)

  15. Induction of male sterility in rice using chemical mutagens

    International Nuclear Information System (INIS)

    Minocha, J.L.; Gupta, R.K.

    1988-01-01

    Full text: To diversify the sources of cytoplasmic male sterility for hybrid seed production in rice (Oryza sativa L.) attempts were made to induce this character in a popular indica cultivar PR 106 through chemical mutagens. Seeds were treated with 0.4% ethidium bromide (EB) for 24 or 48h at 10 deg. C, with 0.4% ethyl methanesulphonate (EMS) for 24 or 48h at 10 deg. C for 16 hr at 20 deg. C or with 0.2% streptomycin sulphate (SM) for 24 or 48 hr at 10 deg. C. In M 2 male sterile plants were detected in eleven different progenies, one from SM treatment and the remaining from EMS treatments. All the sterile plants had 100% non-stainable aborted pollen. Seed set upon open-pollination of the male sterile plants with the variety PR 106 ranged from 0.03 to 4.93 per cent whereas no seed formed in bagged panicles. In M 3 , open-pollinated progenies of the male sterile plants and their fertile sibs were further studied. Two progenies segregated for male sterility, all others had only fertile plants. In one of the segregating progenies, five out of six and in the other nine out of fourteen plants were male sterile. The progenies of fertile sibs did not have any male sterile plant. The results indicate that sterility of cytoplasmic type has been induced by EMS. The parental variety PR 106 acts as the maintainer. (author)

  16. Cashew wine vinegar production: alcoholic and acetic fermentation

    Directory of Open Access Journals (Sweden)

    M. E. Silva

    2007-06-01

    Full Text Available Cashew wine of demi-sec grade was produced in a stirred batch reactor. The kinetic parameters obtained for cashew wine fermentation were Y X/S=0.061, Y P/S=0.3 and µmax=0.16 h-1. The yield and the productivity of cashew wine were 57.7% and 0.78 g/Lh respectively. A 2² factorial experimental design was used for the cashew wine vinegar fermentation optimization study. The cashew wine vinegar process optimization ranges found for initial concentrations of ethanol and acetic acid as independent variables were 4.8 to 6.0% and 1.0 to 1.3% respectively.

  17. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  18. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  19. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Valyasevi, R.; Huss, Hans Henrik

    2002-01-01

    AIMS: To evaluate the importance of garlic for fermentation of a Thai fish product, and to differentiate among garlic-/inulin-fermenting lactic acid bacteria (LAB) at strain level. METHODS AND RESULTS: Som-fak was prepared by fermentation of a mixture of fish, salt, rice, sucrose and garlic. p......H decreased to 4.5 in 2 days, but omitting garlic resulted in a lack of acidification. LAB were predominant and approximately one third of 234 isolated strains fermented garlic and inulin (the carbohydrate reserve in garlic). These strains were identified as Lactobacillus pentosus and Lact. plantarum...... AND IMPACT OF THE STUDY: The present study indicates the role of fructans (garlic/inulin) as carbohydrate sources for LAB. Fructan fermenters may have several biotechnological applications, for example, as probiotics....

  1. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  2. 9 CFR 116.4 - Sterilization and pasteurization -records.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Sterilization and pasteurization... REPORTS § 116.4 Sterilization and pasteurization -records. Records shall be made by means of automatic... ingredients, equipment, or biological product subjected to sterilization or pasteurization. (Approved by the...

  3. Quality Control for Expanded Tsetse Production, Sterilization and Field Application

    International Nuclear Information System (INIS)

    2012-07-01

    The use of the sterile insect technique (SIT) for the control of pest insects as part of an integrated, area-wide approach is widely accepted. Its application for the eradication of different tsetse flies, the vectors of human sleeping sickness and African animal trypanosomosis, is attracting increasing interest. Following several initial demonstrations of the application of the SIT for tsetse control the technique was applied on the island of Unguja, Zanzibar, in the mid-1990s and, as the final component of an integrated control programme, led to the eradication of the only tsetse species on the island, Glossina austeni. This successful programme encouraged a number of countries to embark on projects with an SIT component for tsetse control, most Ethiopia. In 2001 the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) was launched by the Organization of African Unity (now African Union, AU) and, subsequently, six countries obtained funding from the African Development Bank (AfDB) in 2005 to support control programmes with an SIT component. A further six countries have subsequently requested AfDB funding for their programmes. The FAO/IAEA coordinated research project (CRP) on Automation for Tsetse Mass Rearing For Use in Sterile Insect Technique Programmes, which was completed in 2001, led to the development of a semi-automated system for tsetse production. Using this new system, a large rearing facility was established in Addis Ababa, Ethiopia, to supply sterile males for an elimination programme in the southern Rift Valley. The development of large-scale rearing highlighted the need for improved quality control procedures and, with this in mind, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture established a CRP in 2003 entitled Improved and Harmonized Quality Control for Expanded Tsetse Production, Sterilization and Field Application with the Objective of Improving and Expanding the Quality Control Sections of the FAO

  4. Quality Control for Expanded Tsetse Production, Sterilization and Field Application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The use of the sterile insect technique (SIT) for the control of pest insects as part of an integrated, area-wide approach is widely accepted. Its application for the eradication of different tsetse flies, the vectors of human sleeping sickness and African animal trypanosomosis, is attracting increasing interest. Following several initial demonstrations of the application of the SIT for tsetse control the technique was applied on the island of Unguja, Zanzibar, in the mid-1990s and, as the final component of an integrated control programme, led to the eradication of the only tsetse species on the island, Glossina austeni. This successful programme encouraged a number of countries to embark on projects with an SIT component for tsetse control, most Ethiopia. In 2001 the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) was launched by the Organization of African Unity (now African Union, AU) and, subsequently, six countries obtained funding from the African Development Bank (AfDB) in 2005 to support control programmes with an SIT component. A further six countries have subsequently requested AfDB funding for their programmes. The FAO/IAEA coordinated research project (CRP) on Automation for Tsetse Mass Rearing For Use in Sterile Insect Technique Programmes, which was completed in 2001, led to the development of a semi-automated system for tsetse production. Using this new system, a large rearing facility was established in Addis Ababa, Ethiopia, to supply sterile males for an elimination programme in the southern Rift Valley. The development of large-scale rearing highlighted the need for improved quality control procedures and, with this in mind, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture established a CRP in 2003 entitled Improved and Harmonized Quality Control for Expanded Tsetse Production, Sterilization and Field Application with the Objective of Improving and Expanding the Quality Control Sections of the FAO

  5. Production of α-amylase by solid state fermentation by Rhizopus ...

    African Journals Online (AJOL)

    2015-02-18

    Feb 18, 2015 ... However, only a few strains of fungi and bacteria meet the criteria for production of ... amylase production, but solid-state fermentation (SSF) is emerging as a ..... synthesis of lactic acid in R. oryzae and Rhizopus arrhizus using ...

  6. 27 CFR 25.55 - Formulas for fermented products.

    Science.gov (United States)

    2010-04-01

    ... purposes (including consumer taste testing), produce a fermented product without an approved formula, but... is my formula approval valid? Your formula approved under this section remains in effect until: you... request to the Assistant Chief, Advertising, Labeling and Formulation Division, Alcohol and Tobacco Tax...

  7. Yeast dynamics during spontaneous fermentation of mawe and tchoukoutou, two traditional products from Benin

    DEFF Research Database (Denmark)

    Greppi, Anna; Rantisou, Kalliopi; Padonou, Wilfrid

    2013-01-01

    Mawe and tchoukoutou are two traditional fermented foods largely consumed in Benin, West Africa. Their preparations remain as a house art and they are the result of spontaneous fermentation processes. In this study, dynamics of the yeast populations occurring during spontaneous fermentations...... of mawe and tchoukoutou were investigated using both culture-dependent and -independent approaches. For each product, two productions were followed. Samples were taken at different fermentation times and yeasts were isolated, resulting in the collection of 177 isolates. They were identified by the PCR......-DGGE technique followed by the sequencing of the D1/D2 domain of the 26S rRNA gene. The predominant yeast species identified were typed by rep-PCR. Candida krusei was the predominant yeast species in mawe fermentation followed by Candida glabrata and Kluyveromyces marxianus. Other yeast species were detected...

  8. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    Science.gov (United States)

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Evaluation of the production of gases in the acetobutilic fermentation

    International Nuclear Information System (INIS)

    Duarte Torres, Alberto; Alarcon Granobles, John F; Pineros Forero, Edgar R

    1995-01-01

    The growing costs of the raw materials coming from the petroleum, base of the processes of acetone and butane, they have originated a renovated interest for the fermentative processes. These processes stopped to be applied in 1930 by their unfavorable economic conditions in comparison with the synthetic processes. The Institute of Biotechnology of the National University of Colombia, after considering that the country imports annually around 2500 tons of butanol and 80% of acetone, began in 1987 a program of development of the acetobutilic fermentation starting from cane molasses. In accordance with the study of economic pre feasible for the butanol and acetone production for fermentation, of Serrano and Pinzon, the gases constitute 83% of the total revenues received by sales, while the solvents, ethanol, butanol and acetone, only 16%, reason for which is necessary the evaluation of the gases produced in the fermentation

  10. Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation.

    Science.gov (United States)

    Zhang, Jiran; Du, Guocheng; Chen, Jian; Fang, Fang

    2016-10-01

    To reduce the amount of citrulline produced by arginine-consuming bacteria in the moromi mash during soy sauce production. Bacillus amyloliquefaciens JY06, a salt-tolerant strain with high arginine consumption ability and low citrulline accumulation capacity, was isolated from moromi mash. The concentration of citrulline was decreased from 26.8 to 5.1 mM and ethyl carbamate in soy sauce, after sterilization, decreased from 97 to 17 μg kg(-1) when B. amyloliquefaciens JY06 was added during fermentation. The aroma of the sauce was improved by increasing the ester content. B. amyloliquefaciens JY06 is a beneficial bacterium that can be used in soy sauce fermentation to eliminate ethyl carbonate and enhance the flavor of the sauce.

  11. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization.

    Science.gov (United States)

    Huang, Jian-Zhong; E, Zhi-Guo; Zhang, Hua-Li; Shu, Qing-Yao

    2014-12-01

    The exploitation of male sterility systems has enabled the commercialization of heterosis in rice, with greatly increased yield and total production of this major staple food crop. Hybrid rice, which was adopted in the 1970s, now covers nearly 13.6 million hectares each year in China alone. Various types of cytoplasmic male sterility (CMS) and environment-conditioned genic male sterility (EGMS) systems have been applied in hybrid rice production. In this paper, recent advances in genetics, biochemistry, and molecular biology are reviewed with an emphasis on major male sterility systems in rice: five CMS systems, i.e., BT-, HL-, WA-, LD- and CW- CMS, and two EGMS systems, i.e., photoperiod- and temperature-sensitive genic male sterility (P/TGMS). The interaction of chimeric mitochondrial genes with nuclear genes causes CMS, which may be restored by restorer of fertility (Rf) genes. The PGMS, on the other hand, is conditioned by a non-coding RNA gene. A survey of the various CMS and EGMS lines used in hybrid rice production over the past three decades shows that the two-line system utilizing EGMS lines is playing a steadily larger role and TGMS lines predominate the current two-line system for hybrid rice production. The findings and experience gained during development and application of, and research on male sterility in rice not only advanced our understanding but also shed light on applications to other crops.

  12. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    NARCIS (Netherlands)

    Panagiotopoulos, I.; Bakker, R.; Vrije, de G.J.; Niel, van E.W.J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content

  13. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Directory of Open Access Journals (Sweden)

    Rocío eVelázquez

    2015-11-01

    Full Text Available Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by S. cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odour descriptors, including those with the greatest odour activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate, were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odours. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S

  14. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine.

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.

  15. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  16. Bio-hydrogen production from waste fermentation. Mixing and static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Cuetos, M.J.; Prieto, J.I.; Moran, A. [Chemical Engineering Dept. IRENA, University of Leon, Avda. de Portugal 41, 24071 Leon (Spain)

    2009-04-15

    One of the main disadvantages of the dark fermentation process is the cost associated with the stages needed for obtaining H{sub 2} producing microorganisms. Using anaerobic microflora in fermentation systems directly is an alternative which is gaining special interest when considering the implementation of large-scale plants and the use of wastes as substrate material. The performance of two H{sub 2} producing microflora obtained from different anaerobic cultures was studied in this paper. Inoculum obtained from a waste sludge digester and from a laboratory digester treating slaughterhouse wastes were used to start up H{sub 2} fermentation systems. Inoculum acclimatized to slaughterhouse wastes gave better performance in terms of stability. However, due to the limited availability of this seed material, further work was performed to study the behaviour of the inoculum obtained from the municipal wastewater treatment plant. The process was evaluated under static and mixing conditions. It was found that application of a low organic loading rate favoured the performance of the fermentation systems, and that agitation of the reacting mass could alleviate unsteady performance. Specific H{sub 2} production obtained was in the range of 19-26 L/kg SV{sub fed} with maximum peak production of 38-67 L/kg SV{sub fed}. Although the performance of the systems was unsteady, recovery could be achieved by suspending the feeding process and controlling the pH in the range of 5.0-5.5. Testing the recovery capacity of the systems under temperature shocks resulted in total stoppage of H{sub 2} production. (author)

  17. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris

    Czech Academy of Sciences Publication Activity Database

    Stone, James D.; Koloušková, Pavla; Sloan, D.B.; Štorchová, Helena

    2017-01-01

    Roč. 68, č. 7 (2017), s. 1599-1612 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA16-09220S Institutional support: RVO:61389030 Keywords : Cytoplasmic male sterility * Editing * Mitochondrion * Non-coding RNA * Silene vulgaris * Splicing * Transcriptome Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  18. Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane

    International Nuclear Information System (INIS)

    Hirata, Noriko; Matsumoto, Ken-Ichi; Inishita, Takashi; Takenaka, Yoshinori; Suma, Yasunori; Shintani, Hideharu; National Inst. of Health Sciences, Tokyo

    1995-01-01

    Thermosetting polyurethane (PU) is widely used in a large variety of medical devices. 4,4'-methylenedianiline (MDA) was produced from PU by sterilization and it was studied for the relationship between urethane components or polymer characteristics and formation of MDA upon sterilization, using the commercially available dialyzers fabricated with different combination of isocyanate and polyol. We confirmed that the molecular-weight of polyol influenced the production of MDA upon sterilization. (author)

  19. Simulation of rumen fermentation kinetics of by-products from the biodiesel industry with in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Alex Lopes da Silva

    2015-12-01

    Full Text Available The objective of this study was to investigate the rumen fermentation kinetics of 18 by-products from the biodiesel industry exhibiting potential for use in the feeding of ruminants via the in vitro gas production technique. The following feeds were investigated: cottonseed, canudo de pito, crambe, sunflower, castor seed (detoxified with lime and soybean meals and cottonseed, peanut, babassu, crambe, palm kernel, sunflower, licuri nut, macaúba, forage radish and jatropha cakes. The evaluated parameters were total gas production (VfT, gas production from fibrous carbohydrates (VfFC, gas production from non-fibrous carbohydrates (VfNFC, the degradation rate of fibrous carbohydrates (kdFC, the degradation rate of non-fibrous carbohydrates (kdNFC and lag time (lag. The feeds were grouped into six different groups according to rumen fermentation kinetic parameters and adopting an R2 of 0.8. Forage radish cake and the meals of cottonseed, soybean, crambe and sunflower composed the first group, while the cakes of babassu and sunflower formed the second group. Canudo de pito and castor seed meals and the cakes of cottonseed, licuri and jatropha I and II formed the third group. The fourth group was composed by the cakes of crambe, palm kernel and peanut I. The fifth group was formed by peanut cake II, while macauba fruit cake formed the sixth group. The VfNFC and VfFC varied from 16.72 to 200.07 mL and from 53.09 to 242.12 mL, respectively. The mean kdFC and kdNFC values varied from 0.002 to 0.039% h-1and from 0.022 to 0.430% h-1, respectively. The mean lag and VfT varied from 0.0001 to 5.2029 hours and 136.94 to 301.44 mL, respectively. A number of the products exhibited the potential to replace soybean meal, especially the forage radish cake and cottonseed, crambe and sunflower meals.

  20. Food packaging and radiation sterilization

    International Nuclear Information System (INIS)

    Kawamura, Yoko

    1998-01-01

    Radiation sterilization has several merits that it is a positively effective sterilization method, it can be used to sterilize low heat-resistant containers and high gas barrier films, and there is no possibility of residual chemicals being left in the packages. It has been commercially used in 'Bag in a Box' and some food containers. The γ ray and an electron beam are commonly used in radiation sterilization. The γ ray can sterilize large size containers and containers with complex shapes or sealed containers due to its strong transmission capability. However, since the equipment tends to be large and expensive, it is generally used in off production lines. On the other hand, it is possible to install and electron beam system on food production lines since the food can be processed in a short time due to its high beam coefficient and its ease of maintenance, even though an electron beam has limited usage such as sterilizing relatively thin materials and surface sterilization due to the weak transmission. A typical sterilization dose is approximately 10-30 kGy. Direct effects impacting packaging materials, particularly plastics, include scission of polymer links, cross-linkage between polymers, and generating radiolysis products such as hydrogen, methane, aliphatic hydrocarbons, etc. Furthermore, under the existence of oxygen, the oxygen radicals generated by the radiation will oxidize and peroxidize polymer chains and will generate alcohol and carbonyl groups, which shear polymer links, and generate oxygen containing low molecular compounds. As a result, degradation of physical strength such as elongation and seal strength, generating foreign odor, and an increase in global migration values shown in an elution test are sometimes evident. The food packages have different shapes, materials, additives, number of microorganisms and purpose. Therefor the effects of radiation, the optimum dose and so on must be investigated on the individual package. (J.P.N.)

  1. Sensory characteristics and volatile composition of a cereal beverage fermented with Bifidobacterium breve NCIMB 702257.

    Science.gov (United States)

    Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S

    2014-04-01

    Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage.

  2. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    Directory of Open Access Journals (Sweden)

    Fortune Akabanda

    2014-01-01

    Full Text Available Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities. Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures.

  3. Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: implications for fermentation efficiency and DDGS co-product quality.

    Science.gov (United States)

    Bowers, Erin L; Munkvold, Gary P

    2014-09-22

    Mycotoxins in maize grain intended for ethanol production are enriched in co-product dried distiller's grains and solubles (DDGS) and may be detrimental to yeast in fermentation. This study was conducted to examine the magnitude of fumonisin enrichment in DDGS and to analyze the impacts of insect injury, Fusarium ear rot severity, and fumonisin contamination on final ethanol yield. Samples of naturally-contaminated grain (0 to 35 mg/kg fumonisins) from field trials conducted in 2008-2011 were fermented and DDGS collected and analyzed for fumonisin content. Ethanol yield (determined gravimetrically) was unaffected by fumonisins in the range occurring in this study, and was not correlated with insect injury or Fusarium ear rot severity. Ethanol production was unaffected in fumonisin B1-spiked grain with concentrations from 0 to 37 mg/kg. Bacillus thuringiensis (Bt) maize often has reduced fumonisins due to its protection from insect injury and subsequent fungal infection. DDGS derived from Bt and non-Bt maize averaged 2.04 mg/kg and 8.25 mg/kg fumonisins, respectively. Fumonisins were enriched by 3.0× for 50 out of 57 hybrid × insect infestation treatment combinations; those seven that differed were fumonisin enrichment in DDGS, with measurements traceable to individual samples. Under significant insect pest pressures, DDGS derived from Bt maize hybrids were consistently lower in fumonisins than DDGS derived from non-Bt hybrids.

  4. Effect of sterilization on mineralization of straw and black carbon

    OpenAIRE

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 a...

  5. Is Lactate an undervalued functional component of lactic acid bacteria-fermented food products?

    Directory of Open Access Journals (Sweden)

    Graciela eGarrote

    2015-06-01

    Full Text Available Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signalling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria.

  6. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique.

    Science.gov (United States)

    Seresinhe, T; Madushika, S A C; Seresinhe, Y; Lal, P K; Orskov, E R

    2012-10-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (pheterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (pArtocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba

  7. Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

    Directory of Open Access Journals (Sweden)

    T. Seresinhe

    2012-10-01

    Full Text Available In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP, dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL (Trt 1, C. integerrima×Gliricidia sepium (GS (Trt 2, Aporosa lindeliyana×LL (Trt 3, A. lindeliyana×GS (Trt 4, Ceiba perntandra×LL (Trt 5, C. perntandra×GS (Trt 6, Artocarpus heterophyllus×LL (Trt 7, A. heterophyllus×GS (Trt 8. The condensed tannin (CT content of non legumes ranged from 6.2% (Carallia integerrima to 4.9% (Ceiba perntandra while the CT of legumes were 1.58% (Leucaena leucocephala and 0.78% (Gliricidia sepium. Forage mixtures contained more than 14% of crude protein (CP while the CT content ranged from 2.8% to 4.0% respectively. Differences (p0.05 NH3-N (ml/200 mg DM production was observed with the A. heterophyllus×G. sepium (Trt 8 mixture which may be attributed with it’s highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM to be synonimous with IVGP. A higher bacteria population (p<0.05 was found in C. perntandra×G. sepium (Trt 6 followed by Artocarpus heterophyllus+G. sepium (Trt 8 and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus

  8. Vegetable milks and their fermented derivative products

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2014-04-01

    Full Text Available The so-called vegetable milks are in the spotlight thanks to their lactose-free, animal protein-free and cholesterol-free features which fit well with the current demand for healthy food products. Nevertheless, and with the exception of soya, little information is available about these types of milks and their derivatives. The aims of this review, therefore, are to: highlight the main nutritional benefits of the nut and cereal vegetable milks available on the market, fermented or not; describe the basic processing steps involved in their manufacturing process; and analyze the major problems affecting their overall quality, together with the current feasible solutions. On the basis of the information gathered, vegetable milks and their derivatives have excellent nutritional properties which provide them a high potential and positive market expectation. Nevertheless, optimal processing conditions for each raw material or the application of new technologies have to be researched in order to improve the quality of the products. Hence, further studies need to be developed to ensure the physical stability of the products throughout their whole shelf-life. These studies would also allow for a reduction in the amount of additives (hydrocolloids and/or emulsifiers and thus reduce the cost of the products. In the particular case of fermented products, the use of starters which are able to both improve the quality (by synthesizing enhanced flavors and providing optimal textures and exert health benefits for consumers (i.e. probiotics is the main challenge to be faced in future studies.

  9. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    Science.gov (United States)

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  10. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  11. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    Science.gov (United States)

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia, E-mail: letizia.tuccinardi@uniroma1.it

    2013-06-15

    Highlights: • Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H{sub 2} production from FW. • When SHW ranging between 50% and 70% the H{sub 2} production is improved. • SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.

  13. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    Directory of Open Access Journals (Sweden)

    Perdigón Gabriela

    2007-09-01

    Full Text Available Background Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6 to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. Results We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance

  14. Modeling of fermentative hydrogen production from sweet sorghum extract based on modified ADM1

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The Anaerobic digestion model 1 (ADM1) framework can be used to predict fermentative hydrogen production, since the latter is directly related to the acidogenic stage of the anaerobic digestion process. In this study, the ADM1 model framework was used to simulate and predict the process...... used for kinetic parameter validation. Since the ADM1 does not account for metabolic products such as lactic acid and ethanol that are crucial during the fermentative hydrogen production process, the structure of the model was modified to include lactate and ethanol among the metabolites and to improve...... of fermentative hydrogen production from the extractable sugars of sweet sorghum biomass. Kinetic parameters for sugars’ consumption and yield coefficients of acetic, propionic and butyric acid production were estimated using the experimental data obtained from the steady states of a CSTR. Batch experiments were...

  15. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants

    Czech Academy of Sciences Publication Activity Database

    Štorchová, Helena

    2017-01-01

    Roč. 18, č. 11 (2017), č. článku 2429. E-ISSN 1422-0067 R&D Projects: GA ČR GA16-09220S Institutional support: RVO:61389030 Keywords : Cytoplasmic male sterility * Gene expression * Global transcriptome * Non-coding RNA * Pollen development Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.226, year: 2016

  16. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age

    DEFF Research Database (Denmark)

    Bering, S.; Suchdev, S.; Sjoltov, L.

    2006-01-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe...... absorption from a low-Fe bioavailability meal compared with a pasteurised, fermented oat gruel and non-fermented oat gruels. In a cross-over trial twenty-four healthy women with a mean age of 25 (sd 4) years were served (A) fermented gruel, (B) pasteurised fermented gruel, (C) pH-adjusted non-fermented gruel......, and (D) non-fermented gruel with added organic acids. The meals were extrinsically labelled with Fe-55 or Fe-59 and consumed on 4 consecutive days, for example, in the order ABBA or BAAB followed by CDDC or DCCD in a second period. Fe absorption was determined from isotope activities in blood samples...

  17. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  18. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars

    International Nuclear Information System (INIS)

    Merle, Alexander; Niro, Viviana; Schmidt, Daniel

    2014-01-01

    We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent

  19. Cosmological imprints of frozen-in light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Samuel B.; Shakya, Bibhushan, E-mail: rolandsa@umich.edu, E-mail: bshakya@umich.edu [Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-01

    We investigate observable cosmological aspects of sterile neutrino dark matter produced via the freeze-in mechanism. The study is performed in a framework that admits many cosmologically interesting variations: high temperature production via annihilation processes from higher dimensional operators or low temperature production from decays of a scalar, with the decaying scalar in or out of equilibrium with the thermal bath, in supersymmetric or non-supersymmetric setups, thus allowing us to both extract generic properties and highlight features unique to particular variations. We find that while such sterile neutrinos are generally compatible with all cosmological constraints, interesting scenarios can arise where dark matter is cold, warm, or hot, has nontrivial momentum distributions, or provides contributions to the effective number of relativistic degrees of freedom N {sub eff} during Big Bang nucleosynthesis large enough to be probed by future measurements.

  20. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.

    Science.gov (United States)

    Woyengo, T A; Jha, R; Beltranena, E; Zijlstra, R T

    2016-06-01

    Canola co-products are sources of amino acid and energy in pig feeds, but their fermentation characteristics in the pig intestine are unknown. Thus, we determined the in vitro fermentation characteristics of the canola co-products Brassica juncea solvent-extracted canola meal (JSECM), Brassica napus solvent-extracted canola meal (NSECM), B. napus expeller-pressed canola meal (NEPCM) and B. napus cold-pressed canola cake (NCPCC) in comparison with soybean meal (SBM). Samples were hydrolysed in two steps using pepsin and pancreatin. Subsequently, residues were incubated in a buffer solution with fresh pig faeces as inocula for 72 h to measure gas production. Concentration of volatile fatty acids (VFA) per gram of dry matter (DM) of feedstuff was measured in fermented solutions. Apparent ileal digestibility (AID) and apparent hindgut fermentation (AHF) of gross energy (GE) for feedstuffs were obtained from pigs fed the same feedstuffs. On DM basis, SBM, JSECM, NSECM, NEPCM and NCPCC contained 15, 19, 22, 117 and 231 g/kg ether extract; and 85, 223, 306, 208 and 176 g/kg NDF, respectively. In vitro digestibility of DM (IVDDM) of SBM (82.3%) was greater (Pfermentation characteristics of canola co-products and SBM simulated their fermentation in the small and large intestine of pigs, respectively. The 30% greater VFA production for JSECM than NSECM due to lower lignified fibre of JSECM indicates that fermentation characteristics differ between canola species. The NSECM had the highest fermentability followed by NEPCM and then NCPCC, indicating that fat in canola co-products can limit their fermentability in the hindgut.

  1. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  2. Influence of Mode of Fermentation on Production of Polygalacturonase by a Novel Strain of Streptomyces lydicus

    Directory of Open Access Journals (Sweden)

    Nicemol Jacob

    2006-01-01

    Full Text Available Production of different pectinolytic enzymes was attempted using the actinomycete strain Streptomyces lydicus in submerged fermentation. Polygalacturonase and pectin lyase activities were detected in the culture supernatant, but the strain was not able to produce pectin esterase. Polygalacturonase production was studied in submerged, slurry-state and solid-state fermentation systems. All the experiments were carried out under static and shaking conditions. Solid-state fermentation under static condition was found to be promising. Various agroindustrial residues were tried as substrates for solid-state fermentation. Wheat bran was proved to be the best substrate.

  3. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    International Nuclear Information System (INIS)

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-01-01

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H 2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H 2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly

  4. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    De Gioannis, G., E-mail: degioan@unica.it [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Muntoni, A. [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Polettini, A.; Pomi, R. [Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza” (Italy)

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  5. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Directory of Open Access Journals (Sweden)

    Kaushik Pal

    2015-09-01

    Full Text Available Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11, cereal and grass forages (n=11, and different straws and shrubs (n=12, which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01 among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter was lower (p<0.01 for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01 for shrubs than straws. Methane production was correlated (p<0.05 with concentrations of crude protein (CP, ether extract and non-fibrous carbohydrate (NFC negatively, and with neutral detergent (NDF and acid detergent fiber (ADF positively. Potential gas production was negatively correlated (p=0.04 with ADF, but positively (p<0.01 with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05, but by NDF and ADF negatively (p<0.05. Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05 positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease methane production.

  6. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  7. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Science.gov (United States)

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  8. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    Science.gov (United States)

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Strategic supplementation of cassava top silage to enhance rumen fermentation and milk production in lactating dairy cows in the tropics.

    Science.gov (United States)

    Wanapat, Metha; Phesatcha, Kampanat; Viennasay, Bounnaxay; Phesatcha, Burarat; Ampapon, Thiwakorn; Kang, Sungchhang

    2018-04-19

    High-quality protein roughage is an important feed for productive ruminants. This study examined the effects of strategic feeding of lactating cows with cassava (Manihot esculenta) top silage (CTS) on rumen fermentation, feed intake, milk yield, and quality. Four early lactating crossbred dairy cows (75% Holstein-Friesian and 25% Thai) with body weight (BW) 410 ± 30 kg and milk yield 12 ± 2 kg/day were randomly allotted in a 4 × 4 Latin square design to four different supplementation levels of CTS namely, 0, 0.75, 1.50, and 2.25 kg/day of dry matter (DM). Strategic supplementation of CTS significantly affected ruminal fermentation end-products, especially increased propionate production, decreased protozoal population and suppressed methane production (P < 0.05). Increasing the CTS supplementation level substantially enhanced milk yield and the 3.5% FCM from 12.7 to 14.0 kg/day and from 14.6 to 17.2 kg/day (P < 0.05) for non-supplemented group and for the 2.25 kg/day supplemented group, respectively. We conclude that high-quality protein roughage significantly enhances rumen fermentation end-products, milk yield, and quality in dairy cows.

  10. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Yu, Zhang [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhenhong, Yuan; Yongming, Sun; Xiaoying, Kong [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2009-01-15

    The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. (author)

  11. Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium

    Directory of Open Access Journals (Sweden)

    F. A. F. Antunes

    2014-01-01

    Full Text Available Bioconversion of hemicellulosic sugars into second generation (2G ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH. It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance. S. shehatae UFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

  12. Multi-stage high cell continuous fermentation for high productivity and titer.

    Science.gov (United States)

    Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae

    2011-05-01

    We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

  13. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation....... To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml(-1)) and cellulases (0...... other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production....

  14. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  15. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    Science.gov (United States)

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  16. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pal, K.; Patra, A. K.; Sahoo, K.

    2015-07-01

    Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11), cereal and grass forages (n=11), and different straws and shrubs (n=12), which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01) among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter) was lower (p<0.01) for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01) for shrubs than straws. Methane production was correlated (p<0.05) with concentrations of crude protein (CP), ether extract and non-fibrous carbohydrate (NFC) negatively, and with neutral detergent (NDF) and acid detergent fiber (ADF) positively. Potential gas production was negatively correlated (p=0.04) with ADF, but positively (p<0.01) with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05), but by NDF and ADF negatively (p<0.05). Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05) positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease. (Author)

  17. Enhancement of L-Threonine Production by Controlling Sequential Carbon-Nitrogen Ratios during Fermentation.

    Science.gov (United States)

    Lee, Hyeok-Won; Lee, Hee-Suk; Kim, Chun-Suk; Lee, Jin-Gyeom; Kim, Won-Kyo; Lee, Eun-Gyo; Lee, Hong-Weon

    2018-02-28

    Controlling the residual glucose concentration is important for improving productivity in L-threonine fermentation. In this study, we developed a procedure to automatically control the feeding quantity of glucose solution as a function of ammonia-water consumption rate. The feeding ratio (R C/N ) of glucose and ammonia water was predetermined via a stoichiometric approach, on the basis of glucose-ammonia water consumption rates. In a 5-L fermenter, 102 g/l L -threonine was obtained using our glucose-ammonia water combined feeding strategy, which was then successfully applied in a 500-L fermenter (89 g/l). Therefore, we conclude that an automatic combination feeding strategy is suitable for improving L-threonine production.

  18. Effect of fermented bamboo shoot on the quality and shelf life of nuggets prepared from desi spent hen

    Directory of Open Access Journals (Sweden)

    Ankur Das

    Full Text Available Aim: An investigation was carried out to prepare nuggets from the relatively tough and fibrous meat of desi spent hen using fermented bamboo shoot as a phytopreservative in order to enhance the physico-chemical, microbiological and keeping quality of the nuggets. Materials and Methods: Lean meat of desi spent hen was minced and blended along with other non-meat ingredients and fermented bamboo shoot @10%. The emulsion was filled in metallic moulds and steam cooked and cut into pieces. Ready-toeat nuggets thus prepared were packed in sterilized LDPE zip bags and stored at 4±1°C up-to 15 days for quality evaluation. Emulsion stability (%, cooking yield (%, a and proximate composition were studied on the day of preparation, while estimation of pH, TBA values, microbial load and sensory evaluation were carried out at 5 days interval and up-to 15th day of storage. Results: The emulsion stability (%, cooking yield (%, moisture (%, crude protein (% and total ash (% of FBS treated nuggets differed significantly (p<0.01 from the control products. Storage studies revealed significantly lower (p<0.01 pH, TBA value, total plate count, psychrophillic count and counts for yeast and moulds in FBS treated nuggets in comparison to control products. Both control and treated nuggets exhibited gradual loss of panel ratings during the storage period (4±1°C for 15 days, however, nuggets containing fermented bamboo shoot revealed significantly higher (p<0.01 mean sensory scores in terms of flavour, texture, juiciness and overall acceptability. Conclusion: Nuggets with better physico-chemical and shelf life can be prepared with incorporation of fermented bamboo shoot @10% (w/w to the nugget emulsion. [Vet World 2013; 6(7.000: 419-423

  19. Evaluation of a potentially probiotic non-dairy beverage developed with honey and kefir grains: Fermentation kinetics and storage study.

    Science.gov (United States)

    Fiorda, Fernanda A; de Melo Pereira, Gilberto V; Thomaz-Soccol, Vanete; Rakshit, Sudip K; Soccol, Carlos R

    2016-12-01

    The aim of this work was to study the fermentation process of honey with kefir grains through a comprehensive understanding of its rheological properties, probiotic cell viability, instrumental color parameters and kinetic aspects in a batch bioreactor and during storage. The results showed that kefir grains were well adapted to bioreactor conditions, reaching high levels of cell viability (over 10 6 CFU mL -1 for total yeast and bacteria), phenolic compounds content (190 GAE/100 g) and acidification after 24 h of fermentation at 30 ℃. Colorimetric analysis showed that lightness (L*) and redness (a*) remained constant, while yellowness intensities (b*) decreased during fermentation time. After 35 days of storage, honey kefir beverage maintained its chemical characteristics and microbial viability as required to be classified as a probiotic product. The Ostwald-de-Waele (R 2  ≥ 0.98) and Herschel-Bulkley (R 2  ≥ 0.99) models can be used to predict the behavior of honey kefir beverage. The parameters analyzed in this study should be taken into account for industrial production of this novel non-dairy beverage. © The Author(s) 2016.

  20. Utility of routine evaluation of sterility of cellular therapy products with or without extensive manipulation: Best practices and clinical significance.

    Science.gov (United States)

    Golay, Josee; Pedrini, Olga; Capelli, Chiara; Gotti, Elisa; Borleri, Gianmaria; Magri, Mara; Vailati, Francesca; Passera, Marco; Farina, Claudio; Rambaldi, Alessandro; Introna, Martino

    2018-02-01

    We analyzed the results of routine sterility testing performed in our center over the last 10 years, in the context both hematopoietic stem cell transplantation (HSCT) and Advanced Therapeutic Medicinal Products (ATMPs). For sterility tests 14-day cultures were performed in culture media detecting aerobic and anaerobic microorganisms. In this study, 22/1643 (1.3%) of apheretic products for autologous or allogeneic HSCT were contaminated, whereas 14/73 bone marrow (BM) harvests (17.8%) were positive. In 22 cases, the contaminated HSCs were infused to patients, but there was no evidence of any adverse impact of contamination on the hematologic engraftment or on infections. Indeed none of the five positive hemocultures detected in patients following infusion could be linked to the contaminated stem cell product. Our Cell Factory also generated 286 ATMPs in good manufacturing practice (GMP) conditions since 2007 and all final products were sterile. In three cases of mesenchymal stromal cell expansions, the starting BM harvests were contaminated, but the cell products at the end of expansion were sterile, presumably thanks to the presence of an antibiotic in the culture medium. The decreased rate of contamination of cell harvests observed with time suggests that routine sterility testing and communication of the results to the collecting centers may improve clinical practices. Furthermore, we recommend the use of antibiotics in the medium for ATMP expansion, to decrease the likelihood of expanding microorganisms within clean rooms. Finally we discuss the costs of sterility testing of ATMPs by GMP-approved external laboratories. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Effects of restriction of silage fermentation with formic acid on milk production

    Directory of Open Access Journals (Sweden)

    S. JAAKKOLA

    2008-12-01

    Full Text Available The study was conducted to evaluate the effects of silage fermentation quality and type of supplementation on milk production. Thirty two Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and 4 × 2 × 2 factorial arrangement of treatments. Silage fermentation was modified with formic acid (FA, which was applied at the rates equivalent to 0 (FA0, 2 (FA2, 4 (FA4 or 6 (FA6 litres t-1 grass of pure formic acid (as 100% FA. Dietary treatments consisted of four silages, a protein supplementation (no supplement or rapeseed meal 1.8 kg d-1 and a glucogenic substrate (no supplement or propylene glycol 225 g d-1. Increasing the application rate of FA restricted silage fermentation curvilinearly, as evidenced by higher concentrations of ammonia N and butyric acid in FA4 than FA2 silage. Similarly the use of FA resulted in curvilinear changes in the silage dry matter intake and milk yield. The highest milk and protein yields were achieved with FA6, while the milk yield with FA2 was higher than with FA4. Interactions were observed between silage type and supplementation. Rapeseed meal increased milk yield irrespective of the extent of silage fermentation, but the magnitude of response was variable. Propylene glycol was most beneficial with restrictively fermented silages FA4 and FA6. In conclusion, restriction of silage fermentation with a high rate of formic acid is beneficial in milk production. Interactions between silage composition and concentrate types suggest that the responses to supplementary feeding depend on silage fermentation characteristics.;

  2. Halophilic biohydrogen and 1,3-propanediol production from raw glycerol: A genomic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kivisto, A.

    2013-11-01

    : (1) to develop an open raw glycerol degrading bioprocess primarily for H{sub 2} (clean and renewable energy carrier molecule) and secondarily for 1,3-PD (component of biopolymers) production employing halophilic pure cultures and (2) to obtain information on the genome of salttolerant organisms, halophilic survival strategies, and fermentation pathways via wholegenome sequencing. In the present study, glycerol fermentation of halophilic Halanaerobium saccharolyticum subsp. saccharolyticum and Halanaerobium saccharolyticum subsp. senegalense were characterized and H{sub 2} as well as 1,3-PD formation were initially optimized using commercial pure glycerol as a substrate. Growth, as well as the H{sub 2} and 1,3-PD production of H. saccharolyticum subsp. saccharolyticum were further optimized as small-scale batch experiments for vitamin B12 content, process conditions and medium composition. In addition, inhibitory effect of unpurified raw glycerol and the fermentation end-products (H{sub 2}, acetate and 1,3-PD) along with contamination risk of an halophilic bioprocess were assessed. The glycerol fermentation and raw glycerol inhibition were compared to non-halophilic microorganisms Escherichia coli and/or Clostridium butyricum. Eventually, the halophilic H{sub 2} and 1,3-PD production from unpurified raw glycerol were combined in an open (non-sterile) two-stage fermentation process. The halophilic bacterial subspecies fermented glycerol mainly to H{sub 2}, CO{sub 2} and acetate. H. saccharolyticum subsp. saccharolyticum yielded also 1,3-PD via a vitamin B12 dependent pathway. The subsp. senegalense grew poorly and after vitamin B12 optimization produced H{sub 2} less efficiently, and thus the subsp. saccharolyticum was chosen for the further studies. The H{sub 2} and 1,3-PD yielding pathways of H. saccharolyticum subsp. saccharolyticum were observed to compete, and the H{sub 2} production was remarkably enhanced when the 1,3-PD production was blocked by the

  3. [Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection].

    Science.gov (United States)

    Juhász, Emese; Iván, Miklós; Pongrácz, Júlia; Kristóf, Katalin

    2018-01-01

    Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Lower respiratory tract samples of 3589 patients collected in a four-year period (2013-2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23-30.

  4. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    Science.gov (United States)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  5. Contribution of Lactobacillus plantarum in fermented dairy products ...

    African Journals Online (AJOL)

    Strains of Lactobacillus plantarum recently isolated from artisanal fermented milks and milk products include L. plantarum AMA-K, L. plantarum KLDS1.0391, L. plantarum ST27, L. plantarum LL441, L. plantarum ST8K and L. plantarum BR12. The isolates exhibited in vitro antimicrobial activity against saprophytic and ...

  6. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    OpenAIRE

    Rijswijck, van, Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an increasing interest in unravelling features of non-conventional yeast species for beer innovation. In this thesis, features of yeast isolates belonging to the species: Cyberlindnera fabianii, Pichi...

  7. Production of rennin-like acid protease by Mucor pusillus through submerged fermentation

    International Nuclear Information System (INIS)

    Daudi, S.; Mukhtar, H.; Rehman, A.U.; Haq, I.U.

    2015-01-01

    The present study is concerned with the isolation and screening of Mucor species for the production of acid protease in shake flasks. Out of eight mould cultures evaluated, five were isolated from soil and three were provided from the Institute of Industrial Biotechnology, Government College University, Lahore. Of all the isolates tested, Mucor pusillus IHS6 was found to be the best producer of rennin-like acid protease producing 75 U/ml of the enzyme. Different agricultural byproducts were evaluated as fermentation substrates and maximum enzyme synthesis (61 U/ml) was obtained when rapeseed meal was used as a substrate. Optimum pH and fermentation period for the production of protease were 5.5 (56U/ml) and 72 hrs (55U/ml), respectively. The production of protease by Mucor pusillus IHS6 was also studied by adding different carbon and nitrogen sources to the fermentation medium. Fructose at a concentration of 1.5% (66 U/ml) and yeast extract at a concentration of 2% (68.2 U/ml) and ammonium chloride at a concentration of 0.1% (67U/ml) were found to be the best carbon and nitrogen (organic and inorganic) sources respectively. Spore inoculum at a concentration of 1% (68.4 U/ml) was found to be the best for protease production by Mucor pusillus. The fermentation broth was found to have strong milk clotting activity with 200 RU. (author)

  8. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    Science.gov (United States)

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase.

    Science.gov (United States)

    Doriya, K; Jose, N; Gowda, M; Kumar, D S

    l-Asparaginase, an enzyme that catalyzes l-asparagine into aspartic acid and ammonia, has relevant applications in the pharmaceutical and food industry. So, this enzyme is used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. This enzyme is also able to reduce the amount of acrylamide found in carbohydrate-rich fried and baked foods which is carcinogenic to humans. The concentration of acrylamide in food can be reduced by deamination of asparagine using l-Asparaginase. l-Asparaginase is present in plants, animals, and microbes. Various microorganisms such as bacteria, yeast, and fungi are generally used for the production of l-Asparaginase as it is difficult to obtain the same from plants and animals. l-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions. To overcome this, eukaryotic organisms such as fungi can be used for the production of l-Asparaginase. l-Asparaginase can be produced either by solid-state fermentation (SSF) or by submerged fermentation (SmF). SSF is preferred over SmF as it is cost effective, eco-friendly and it delivers high yield of enzyme. SSF process utilizes agricultural and industrial wastes as solid substrate. The contamination level is substantially reduced in SSF through low moisture content. Current chapter will discuss in detail the chemistry and applications of l-Asparaginase enzyme and various methods available for the production of the enzyme, especially focusing on the advantages and limitations of SSF and SmF processes. © 2016 Elsevier Inc. All rights reserved.

  10. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  11. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2016-04-01

    Full Text Available The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO, from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g. olive oil, corn oil could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.. Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  12. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  14. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    Science.gov (United States)

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-03-03

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  15. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products.

    Science.gov (United States)

    Mäkinen, Outi Elina; Wanhalinna, Viivi; Zannini, Emanuele; Arendt, Elke Karin

    2016-01-01

    A growing number of consumers opt for plant-based milk substitutes for medical reasons or as a lifestyle choice. Medical reasons include lactose intolerance, with a worldwide prevalence of 75%, and cow's milk allergy. Also, in countries where mammal milk is scarce and expensive, plant milk substitutes serve as a more affordable option. However, many of these products have sensory characteristics objectionable to the mainstream western palate. Technologically, plant milk substitutes are suspensions of dissolved and disintegrated plant material in water, resembling cow's milk in appearance. They are manufactured by extracting the plant material in water, separating the liquid, and formulating the final product. Homogenization and thermal treatments are necessary to improve the suspension and microbial stabilities of commercial products that can be consumed as such or be further processed into fermented dairy-type products. The nutritional properties depend on the plant source, processing, and fortification. As some products have extremely low protein and calcium contents, consumer awareness is important when plant milk substitutes are used to replace cow's milk in the diet, e.g. in the case of dairy intolerances. If formulated into palatable and nutritionally adequate products, plant-based substitutes can offer a sustainable alternative to dairy products.

  16. Validation of radiation sterilization process

    International Nuclear Information System (INIS)

    Kaluska, I.

    2007-01-01

    The standards for quality management systems recognize that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of sterilization process is monitored routinely and the equipment is maintained according to ISO 13 485. Different aspects of this norm are presented

  17. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  19. Validation of a sterilization dose for products manufactured using a 3D printer

    Science.gov (United States)

    Wangsgard, Wendy; Winters, Martell

    2018-02-01

    As more healthcare products are personalized, the use of unique, patient-specific products will increase. Some of these are manufactured using a 3D printing process (also known as additive manufacturing) for either polymers or metals. For these products, processes such as sterilization validations must be handled in a different manner. The concepts typically used are still relevant but are approached from an alternative perspective to account for a potential production batch size of one, and for the great variability that can occur in size and shape of a product.

  20. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia.

    Science.gov (United States)

    Collins, James W; Chervaux, Christian; Raymond, Benoit; Derrien, Muriel; Brazeilles, Rémi; Kosta, Artemis; Chambaud, Isabelle; Crepin, Valerie F; Frankel, Gad

    2014-10-01

    We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  1. Gene, protein and network of male sterility in rice

    Directory of Open Access Journals (Sweden)

    Wang eKun

    2013-04-01

    Full Text Available Rice is one of the most important model crop plants whose heterosis has been well exploited in commercial hybrid seed production via a variety of types of male sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility, photoperiod sensitive male sterility, self-incompatibility and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein and integrated network levels, and also, present a perspective on the engineering of male sterile lines for hybrid rice production.

  2. The effect of fermentable carbohydrate on sporulation and butanol production by Clostridium acetobutylicum P262

    Energy Technology Data Exchange (ETDEWEB)

    Awang, G.M.; Ingledew, W.M.; Jones, G.A. (Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Applied Microbiology and Food Science)

    1992-10-01

    This study was conducted to determine whether or not a variation in the type of carbohydrate fermented by Clostridium acetobutylicum could be exploited to inhibit sporulation during the butanol-producing phase of fermentation and thus enhance butanol production. C. acetobutylicum P262 was found to ferment a wide variety of carbohydrates, but butanol production was not necessarily enhanced when percentage sporulation was low. Butanol concentration was more related to the total amount of acidic end-products (acetic and butyric acid) reutilized by the microorganism for solvent production and to the type and amount of carbohydrate utilized. Fermentation of cellobiose led to conditions resulting in complete acid reutilization and the highest butanol concentration (10.4-10.6 g/l). In cultures containing a mixture of glucose and cellobiose, glucose repression of cellobiose utilization resulted in lower butanol concentrations (6.6-7.5 g/l). Sporulation was dependent on the type of carbohydrate utilized by the microorgamism. Glucose had a greater enhancing effect on the sporulation process (22-42%) than starch (9-12%) or cellobiose (22-34%). It was concluded that whereas the type of carbohydrate fermented has a specific effect on the extent of sporulation of a culture, conditions of low sporulation did not enhance butanol concentration unless carbohydrate utilization and the reutilization of acidic products were high. (orig.).

  3. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China.

    Science.gov (United States)

    Xu, Lu; Du, Bin; Xu, Baojun

    2015-05-01

    The objectives of this study are to systematically assess the bioactive substances and overall antioxidant capacities of commercially fermented soy products and to find the relationships between the presence of beneficial components in different types of soybean fermented products. The results show that phenolic profiles increased significantly after fermentation as compared with raw yellow soybeans. Among all the samples, the douchi and fermented black bean sauce had the highest detected antioxidant profiles. Even though the total isoflavone content was reduced in fermented soybean products (794.84 μg/g on average) as compared with raw yellow soybeans (3477.6 μg/g), there was an obvious trend of conversion of the glucoside form in raw soybeans into the aglycone-form isoflavones in the fermented soybean products. The highest daidzein and genistein values were found in the "Yangfan" black bean douchi, i.e. 860.3 μg/g and 1025.9 μg/g, respectively. The amounts of essential amino acids also were improved in most fermented soybean products. The douchi and black bean fermented products are recommended for consumption due to their abundant bioactive substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of fermentation temperature on the content of fatty acids in low energy milk-based kombucha products

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2011-01-01

    Full Text Available The aim of this study was to investigate the influence of fermentation temperature on the fatty acids content in low energy milk-based products obtained by kombucha inoculums with herbal teas. In this investigation low energy milk-based kombucha products were produced from milk with 0.8% milk fat using 10% (v/v kombucha inoculums cultivated on winter savory, peppermint, stinging nettle and wild thyme. The process of fermentation was conducted at two temperatures: 40°C and 43°C. Fermentation was stopped after the pH value of 4.5 was reached. Duration of the fermentation process was shorter by applying higher fermentation temperature. Fatty acids content was determined by gas chromatography-mass spectrometry. Predominant fatty acids in all obtained products were saturated fatty acids, first of all the monounsaturated ones. The higher temperature resulted in the formation of lower amount of saturated fatty acids in the obtained milk-based kombucha products.

  5. Enhanced Production of Vitamin K2 from Bacillus subtilis (nattoby Mutation and Optimization of the Fermentation Medium

    Directory of Open Access Journals (Sweden)

    Junying Song

    2014-08-01

    Full Text Available The aim of this study was to enhance the production of vitamin K2 by using N-methyl-N-nitro-N-nitroso-guanidine (NTG and low energy ion beam implantation and optimizing the fermentation medium. Mutation resulted in 1.66-fold higher production of vitamin K2 than that of the parentl strain. The production by the mutant BN-P15-11-1was increased 55% and reached 3.593±0.107 mg/L by using the Plackett-Burman and Box-Behnken designs to optimize the fermentation medium. The optimal fermentation culture medium was composed of (g/L glycerol 69.6, sucrose 34.5, K2HPO4 4.0, peptone 20, yeast extract 25 and fermented at 37 °C and 150 rpm for 72 h. The results showed that the NTG and low energy ion beam implantation mutations and optimizing fermentation medium were effective methods to enhance vitamin K2production.

  6. An evaluation of beta-propiolactone for the sterilization of fermentation media.

    Science.gov (United States)

    HIMMELFARB, P; READ, R B; LITSKY, W

    1961-11-01

    Twenty-five bacterial species were cultured in basal broth plus 1 of 19 different carbohydrates which were sterilized by Seitz filtration, autoclaving (112 C, 10 min), or exposure to 0.2% beta-propiolactone (BPL). No significant differences were found either in the visual observations for acid and gas, pH, or titrable acidity determinations after 3 days of incubation with any of the three preparations tested. An effort was made to further determine the effect of BPL and heat on carbohydrates by assaying for glucose before and after treatment. Results indicated that glucose was not degraded by 0.2% BPL, however, it was shown that autoclave temperatures caused extensive degradation. Statistical treatment of the results from Warburg studies indicated that BPL-treated glucose showed no appreciable toxic effects, although the actual oxygen uptake was not as great as with Seitz- or autoclave-treated glucose. The application of the BPL sterilization process was discussed.

  7. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  9. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    Science.gov (United States)

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.

    Science.gov (United States)

    Zhang, Liang; Li, Zhiqiang; Dai, Bing; Zhang, Wenxue; Yuan, Yongjun

    2013-09-01

    Monascus pigments, which are produced by various species of Monascus, often have been used as a natural colourant and as traditional natural food additives, especially in Southern China, Japan and Southeastern Asia. The limitation of wide using Monascus pigment is attributed to one of its secondary metabolites named citrinin. The aim of this study was to investigate the influence of pigment and citrinin production via submerged fermentation (SmF) and solid-state fermentation (SF) from rice (Oryza sativa L.) by Monascus purpureus AS3.531. The optimal fermentation temperature and pH were significantly different for pigment production through different fermentation mode (35 °C, pH 5.0 for SF and 32 °C, pH 5.5 for SmF, respectively). Adding 2% (w/v) of glycerol in the medium could enhance the pigment production. On the optimized condition, although the concentration of citrinin produced by SmF (19.02 ug/g) increased more than 100 times than that by SF (0.018 ug/g), the pigment yield by SmF (7.93 U/g/g) could be comparable to that by SF (6.63 U/g/g). Those indicate us that fermentation mode seems to be the primary factor which influence the citrinin yield and secondary factor for pigment production.

  11. Continuous dry fermentation of swine manure for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuang; Zheng, Dan [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Liu, Gang–Jin [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Bioprocess Control AB, Scheelevägen 22, 223 63 Lund (Sweden); Deng, Liang–Wei, E-mail: dengliangwei@caas.cn [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041 (China); Southwest Collaborative Innovation Center of Swine for Quality & Safety, Chengdu 611130 (China); Long, Yan; Fan, Zhan–Hui [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China)

    2015-04-15

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  12. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin; Deng, Liang–Wei; Long, Yan; Fan, Zhan–Hui

    2015-01-01

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d) −1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g −1 VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L −1 . Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L −1 . The maximal volumetric biogas production rate of 2.34 L·(L d) −1 and biogas yield of 0.649 L g −1 VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s −1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  13. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  15. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Pedraza de la Cuesta, S.; van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2018-01-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming

  16. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  17. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  19. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  20. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)