WorldWideScience

Sample records for non-sterilized fermentative production

  1. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions.

    Science.gov (United States)

    Tasar, Ozden Canli; Erdal, Serkan; Taskin, Mesut

    2016-08-01

    A new chitosan producing fungus was locally isolated from soil samples collected around Erzurum, Turkey and identified as Rhizopus oryzae PAS 17 (GenBank accession number KU318422.1). Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH, thus, undesired microbial contamination could be eliminated when appropriate culture conditions (incubation temperature as 15°C and initial pH of the medium as 4.5) were selected. Medium composition and culture conditions were optimized using Taguchi orthogonal array (OA) design of experiment (DOE). An OA layout of L16 (4(5)) was constructed with five most influensive factors at four levels on chitosan production like, carbon source (molasses), metal ion (Mg(2+)), inoculum amount, agitation speed and incubation time. The optimal combinations of factors (molasses, 70ml/l; MgSO4·7H2O, 0.5g/l; inoculum, 6.7×10(6) spores/disc; agitation speed, 150rpm and incubation time, 8days) obtained from the proposed DOE methodology was further validated by analysis of variance (ANOVA) test and the results revealed the increment of chitosan and biomass yields of 14.45 and 8.58 folds from its unoptimized condition, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose...

  3. Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain.

    Science.gov (United States)

    Yang, Xiaofeng; Zhu, Muzi; Huang, Xiongliang; Lin, Carol Sze Ki; Wang, Jufang; Li, Shuang

    2015-12-01

    In this study, an advanced biorefinery technology that uses mixed bakery waste has been developed to produce l-lactic acid using an adaptively evolved Thermoanaerobacterium aotearoense LA1002-G40 in a non-sterilized system. Under these conditions, mixed bakery waste was directly hydrolysed by Aspergillus awamori and Aspergillus oryzae, resulting in a nutrient-rich hydrolysate containing 83.6g/L glucose, 9.5 g/L fructose and 612 mg/L free amino nitrogen. T. aotearoense LA1002-G40 was evaluated and then adaptively evolved to grow in this nutrient-rich hydrolysate. Using a 5-L fermenter, the overall lactic acid production from mixed bakery waste was 0.18 g/g with a titer, productivity and yield of 78.5 g/L, 1.63 g/L/h and 0.85 g/g, respectively. This is an innovative procedure involving a complete bioconversion process for l-lactic acid produced from mixed bakery waste under non-sterilized conditions. The proposed process could be potentially applied to turn food waste into l-lactic acid in an economically feasible way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    Science.gov (United States)

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  6. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  7. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer's spent grains in two types of continuous bioreactor systems

    International Nuclear Information System (INIS)

    Kopsahelis, Nikolaos; Bosnea, Loulouda; Bekatorou, Argyro; Tzia, Constantina; Kanellaki, Maria

    2012-01-01

    In this work an integrated cost effective system for continuous alcoholic fermentation of a cheap raw material (molasses) is described, involving yeast immobilized by a simple method on brewer's spent grains, able to ferment in the temperature range 30–40 °C, and two types of bioreactors, a Multistage Fixed Bed Tower (MFBT) and a Packed Bed reactor (PB). The MFBT bioreactor gave better results regarding ethanol concentration, productivity and conversion. Furthermore, the use of sterilized and non-sterilized molasses, fed in two similar MFBT bioreactors, showed that ethanol concentration (kg m −3 ) was significantly (p −3 at 35 °C and 44.2–48.2 kg m −3 at 40 °C), compared to sterilized molasses, where ethanol concentration ranged from 35.6 to 46.6 kg m −3 at 35 °C and 30.8–44.2 kg m −3 at 40 °C. During 32 days of continuous operation using non-sterilized molasses no contamination was observed. Industrialization of the proposed system seems to have a potential, mainly due to its high fermentation efficiency and the obtained high operational stability. -- Highlights: ► An integrated cost effective system for continuous alcoholic fermentation. ► Efficient conversion of non-sterilized molasses to ethanol. ► No need for additional treatments to prevent contamination. ► Results showed high fermentation efficiency and high operational stability.

  8. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A QRM Discussion of Microbial Contamination of Non-sterile Drug Products, Using FDA and EMA Warning Letters Recorded between 2008 and 2016.

    Science.gov (United States)

    Santos, Ana M C; Doria, Mara S; Meirinhos-Soares, Luís; Almeida, António J; Menezes, José C

    2018-01-01

    Microbial quality control of non-sterile drug products has been a concern to regulatory agencies and the pharmaceutical industry since the 1960s. Despite being an old challenge to companies, microbial contamination still affects a high number of manufacturers of non-sterile products. Consequences go well beyond the obvious direct costs related to batch rejections or product recalls, as human lives and a company's reputation are significantly impacted if such events occur. To better manage risk and establish effective mitigation strategies, it is necessary to understand the microbial hazards involved in non-sterile drug products manufacturing, be able to evaluate their potential impact on final product quality, and apply mitigation actions. Herein we discuss the most likely root causes involved in microbial contaminations referenced in warning letters issued by US health authorities and non-compliance reports issued by European health authorities over a period of several years. The quality risk management tools proposed were applied to the data gathered from those databases, and a generic risk ranking was provided based on a panel of non-sterile drug product manufacturers that was assembled and given the opportunity to perform the risk assessments. That panel identified gaps and defined potential mitigation actions, based on their own experience of potential risks expected for their processes. Major findings clearly indicate that the manufacturers affected by the warning letters should focus their attention on process improvements and microbial control strategies, especially those related to microbial analysis and raw material quality control. Additionally, the WLs considered frequently referred to failures in quality-related issues, which indicates that the quality commitment should be reinforced at most companies to avoid microbiological contaminations. LAY ABSTRACT: Microbial contamination of drug products affects the quality of non-sterile drug products produced

  10. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice.

    Science.gov (United States)

    Inoue, Shigeaki; Suzuki-Utsunomiya, Kyoko; Komori, Yukako; Kamijo, Akemi; Yumura, Isao; Tanabe, Koudai; Miyawaki, Ayumi; Koga, Kunimasa

    2013-12-01

    Non-sterilized fish waste containing fish bones was fermented using combined starter cultures of film-forming yeast (Candida ethanolica) and lactic acid bacteria (LAB; Lactobacillus casei and Lactobacillus rhamnosus) in order to obtain a liquefied fermented broth without spoiling. During the entire fermentation, the number of LAB cells was maintained at a high level (6 × 10(8)-5 × 10(7) cells/ml). Although the number of general bacteria was 10(6)cell/ml after adding non-sterilized fish biomass, its growth was suppressed to be 1-3 × 10(4) cells/ml. The entire biomass had completely liquefied and the fermented broth contained all 20 α-amino acids composed of protein and also various kinds of minerals in abundance. The weight of mice group fed the fermented broth content feed (sample feed) for 31 days significantly increased compared with that fed no broth feed (control feed) (21.37 g vs 20.76 g (p < 0.05). No abnormal behavior and appearance were observed. All internal organs (the heart, the liver, the lung, the intestines, and the spleen) of both groups were confirmed to be normal by visual observation. In peripheral blood, the percentages of NK cells and CD8+ T cells of the mice in the sample feed group increased significantly relative to those in the control feed group (NK cells: 19% vs 11%, CD8+ T cells: 9% vs 5%, p < 0.05). In the spleen, the percentage of NK cells in the sample feed group also increased significantly compared to that in the control feed group (p < 0.05). The fermented fish biomass is expected to be effective for innate and adaptive immunity and thus fit for animal feed. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  12. Fermentative production of isobutene.

    Science.gov (United States)

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  13. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  14. Fermentative Alcohol Production

    DEFF Research Database (Denmark)

    Martín, Mariano; Sánchez, Antonio; Woodley, John M.

    2018-01-01

    In this chapter we present some of key principles of bioreactor design for the production of alcohols by fermentation of sugar and syngas . Due to the different feedstocks, a detailed analysis of the hydrodynamics inside the units , bubble columns or stirred tank reactors , the gas-liquid mass...

  15. Optimization of Fermentation Conditions for the Production of Bacteriocin Fermentate

    Science.gov (United States)

    2015-03-30

    FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ” by Anthony Sikes Wayne Muller and Claire Lee March 2015...From - To) October 2010 – November 2013 4. TITLE AND SUBTITLE OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ...nisin and pediocin. Whey + yeast extract was the best performing whey fermentation media. The nisin producer strain Lactococcus. lactis ssp. lactis was

  16. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  17. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  18. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  19. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  20. Korean traditional fermented soybean products: Jang

    Directory of Open Access Journals (Sweden)

    Donghwa Shin

    2015-03-01

    Fermented products are going beyond the boundaries of their use as mere side dishes, and are seeing significant increases in their use as a functional food. Kanjang (fermented soy sauce, Doenjang (fermented soybean paste, and Gochujang (fermented red pepper paste are the most well-known fermented products in Korea. These products occupy an important place in people's daily lives as seasonings and are used in many side dishes. It has been proven through clinical studies that these products have many health benefits, such as their ability to fight cancer and diabetes, and to prevent obesity and constipation.

  1. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    Science.gov (United States)

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  2. Assessment of Non-Sterile Pharmaceutical Compounding Practices ...

    African Journals Online (AJOL)

    A descriptive cross-sectional survey was conducted to assess the practices of non-sterile pharmaceutical compounding in selected 42 community and 3 hospital pharmacies in Addis Ababa, Ethiopia from 01 April, 2016 to 15 May, 2016. The study revealed that the most commonly prescribed and compounded non-sterile ...

  3. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  4. Scleroglucan: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Shrikant A. Survase

    2007-01-01

    Full Text Available Exopolysaccharides produced by a variety of microorganisms find multifarious industrial applications in foods, pharmaceutical and other industries as emulsifiers, stabilizers, binders, gelling agents, lubricants, and thickening agents. One such exopolysaccharide is scleroglucan, produced by pure culture fermentation from filamentous fungi of genus Sclerotium. The review discusses the properties, fermentative production, downstream processing and applications of scleroglucan.

  5. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  6. 27 CFR 24.197 - Production by fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same manner...

  7. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    Energy Technology Data Exchange (ETDEWEB)

    Van Groenestijn, J.W.; Meesters, K.P.M. [TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist (Netherlands); Geelhoed, J.S.; Goorissen, H.P.; Stams, A.J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein, Wageningen (Netherlands); Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group (Netherlands)

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol/H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73C. The volumetric productivity was 22 mmol/H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  8. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer.

    Science.gov (United States)

    van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  9. Microbial changes during the production of Sufu - a Chinese fermented soybean food

    NARCIS (Netherlands)

    Han, B.; Cao, C.F.; Rombouts, F.M.; Nout, M.J.R.

    2004-01-01

    Sufu is a Chinese soybean cheese obtained by solid-state fungal fermentation of tofu followed by ripening in dressing mixture. The aim of this study was to quantify microflora changes during the sufu process, which is carried out under non-sterile conditions. From tofu to pehtze (tofu overgrown with

  10. Fermented dairy products: knowledge and consumption.

    Science.gov (United States)

    Hekmat, Sharareh; Koba, Lesia

    2006-01-01

    Much has been published on the nutritional and health benefits of fermented dairy products, especially those containing probiotic microorganisms. However, consumers may not be familiar with the term "fermented dairy products," and therefore may not take full advantage of them. University students' knowledge and consumption patterns of fermented dairy products were assessed. University students (n=223) completed a survey consisting of a section on demographics and another on knowledge and consumption patterns. The majority of respondents (62%) were not familiar with the term "fermented dairy products." Most respondents consumed yogourt a few times a week (40%) or a few times a month (30%). Almost all respondents (92%) were unable to identify the difference between regular and probiotic yogourt. Most respondents (93%) had not heard of acidophilus milk, but the majority (65%) would be willing to try it. Most respondents were unsure whether sour cream (65%), yogourt beverages (74%), and cheddar cheese (61%) were fermented dairy products. Sixty percent of respondents never consumed yogourt drinks. Education is needed about fermented dairy products, especially probiotics, and their nutritional and health benefits. Such education may increase their acceptability and consumption.

  11. Effects of Fermented Milk Products on Bone.

    Science.gov (United States)

    Rizzoli, René; Biver, Emmanuel

    2018-04-01

    Fermented milk products like yogurt or soft cheese provide calcium, phosphorus, and protein. All these nutrients influence bone growth and bone loss. In addition, fermented milk products may contain prebiotics like inulin which may be added to yogurt, and provide probiotics which are capable of modifying intestinal calcium absorption and/or bone metabolism. On the other hand, yogurt consumption may ensure a more regular ingestion of milk products and higher compliance, because of various flavors and sweetness. Bone mass accrual, bone homeostasis, and attenuation of sex hormone deficiency-induced bone loss seem to benefit from calcium, protein, pre-, or probiotics ingestion, which may modify gut microbiota composition and metabolism. Fermented milk products might also represent a marker of lifestyle promoting healthy bone health.

  12. Probiotics in Dairy Fermented Products

    OpenAIRE

    Araújo, Emiliane Andrade; Pires, Ana Clarissa dos Santos; Pinto, Maximiliano Soares; Jan, Gwénaël; Carvalho, Antônio Fernandes de

    2012-01-01

    Interest in the role of probiotics for human health began as early as 1908 when Metchnikoff associated the intake of fermented milk with prolonged life (Lourens-Hattingh and Vilijoen, 2001b). However, the relationship between intestinal microbiota and good health and nutrition has only recently been investigated. Therefore, it was not until the 1960’s that health benefit claims began appearing on foods labels. In recent years,there has been an increasing interest in probiotic foods, which...

  13. The fermented milk product of functional destination

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2016-01-01

    Full Text Available As a flavor component selected syrup made from viburnum. This berry is widely used in various forms in the food industry including the dairy. Particular attention should be paid to the fact that the viburnum is a wild plant, and does not need to land and cultivation costs. Viburnum is rich in biologically active substances and raw materials is a drug. Fruits of Viburnum is rich in organic acids, in particular valeric acid. From berries contain minerals: manganese, zinc, iron, phosphorus, copper, chromium, iodine, selenium. Mass fraction of iron in Kalina in 2–3 times higher compared to other berries. The Kalina 70% more than the C vitamin, than lemon, it also contains vitamins A, E, P and K. In berries contains tannin, pectin, tannins, coumarins, resinous esters, glycoside viburnin (very useful in the composition of Viburnum, namely it makes bitter berries. It is suggested the use of syrup of viburnum in the production of fermented milk product. Since the biologically active substances is not destroyed by freezing and processing was freeze berries and added sucrose. The syrup had the gray edge-ruby color and a pleasant taste. Fermented milk product functionality produced reservoir method. Technological process of obtaining a fermented milk product is different from the traditional operations of preparation components and their introduction in the finished product. The consumption of 100 g of fermented milk product with a vitamin premix meets the daily requirement of vitamins A, B complex, C, D, E 40–50%. According to the research developed formulation of dairy products, assessed their quality. Production of fermented milk product thus expanding the range of dairy products functional orientation.

  14. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  15. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  16. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  17. Production, characteristics and fermentation of soymilk

    Directory of Open Access Journals (Sweden)

    Rajka Božanić

    2006-12-01

    Full Text Available Interest for soybean increases because of its extraordinary nutritive and health characteristics. In West countries soymilk is intended for population that cannot consume cow’s milk, due to lactose intolerance, allergies to cow’s milk proteins or non consumption of animal foodstuffs from belief. Health benefits of soymilk increase significantly by fermentation with lactic acid bacteria. Because of that, in this paper composition of soybean is described, with special overview on proteins, lipids, and carbohydrates as well as antinutritive factors and isoflavones. Soymilk composition and production, and its nutritive value are represented also. Advantages of fermentation of soybean and soymilk are described, especially with probiotic lactic acid bacteria.

  18. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  19. System for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2016-04-26

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  20. Method for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2014-02-18

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  1. Microbial Evaluation of Some Non-sterile Pharmaceutical ...

    African Journals Online (AJOL)

    Purpose: To determine the type and incidence of predominant microorganisms in certain non-sterile pharmaceuticals immediately after collection and one year later. Methods: All pharmaceutical samples were subjected to the following examinations: total bacterial count and presence of microbial pathogens, using ...

  2. Production of Star Fruit Alcoholic Fermented Beverage.

    Science.gov (United States)

    Valim, Flávia de Paula; Aguiar-Oliveira, Elizama; Kamimura, Eliana Setsuko; Alves, Vanessa Dias; Maldonado, Rafael Resende

    2016-12-01

    Star fruit ( Averrhoa carambola ) is a nutritious tropical fruit. The aim of this study was to evaluate the production of a star fruit alcoholic fermented beverage utilizing a lyophilized commercial yeast ( Saccharomyces cerevisiae ). The study was conducted utilizing a 2 3 central composite design and the best conditions for the production were: initial soluble solids between 23.8 and 25 °Brix (g 100 g -1 ), initial pH between 4.8 and 5.0 and initial concentration of yeast between 1.6 and 2.5 g L -1 . These conditions yielded a fermented drink with an alcohol content of 11.15 °GL (L 100 L -1 ), pH of 4.13-4.22, final yeast concentration of 89 g L -1 and fermented yield from 82 to 94 %. The fermented drink also presented low levels of total and volatile acidities.

  3. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  4. Irradiation of meat for the production of fermented sausage

    International Nuclear Information System (INIS)

    Dickson, J.S.; Maxcy, R.B.

    1985-01-01

    A study assessing the potential of gamma irradiation for reducing pathogenic microflora in the production of fermented sausage revealed that an irradiation dose of 500 Krad could reduce total aerobic microflora in commercial sausage meat batter for up to 2.2 log cycles. Coliform and staphylococci counts were reduced to acceptably safe levels, allowing the use of a lower inoculum level, a longer fermentation time, and a more uniform fermentation and fermented product

  5. Irradiation of meat for the production of fermented sausage

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, J. S.; Maxcy, R. B.

    1985-07-15

    A study assessing the potential of gamma irradiation for reducing pathogenic microflora in the production of fermented sausage revealed that an irradiation dose of 500 Krad could reduce total aerobic microflora in commercial sausage meat batter for up to 2.2 log cycles. Coliform and staphylococci counts were reduced to acceptably safe levels, allowing the use of a lower inoculum level, a longer fermentation time, and a more uniform fermentation and fermented product.

  6. Hydrogen production by fermentative consortia

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Department of Marine Biotechnology, Ensenada, B.C. Mexico (Mexico); Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department of Biotechnology and Bioengineering, PO Box 14-740, Mexico D.F. 07000 (Mexico)

    2009-06-15

    In this work, H{sub 2} production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H{sub 2} are discussed. Then, the different methods used to inhibit the H{sub 2}-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H{sub 2}, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H{sub 2}-producers communities are detailed. Later, the hydrogenase structure and activity is related with H{sub 2} production. Also, the causes for H{sub 2} production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H{sub 2} production. (author)

  7. Peptides in fermented Finnish milk products

    Directory of Open Access Journals (Sweden)

    Minna Kahala

    1993-09-01

    Full Text Available This study was conducted to investigate the rate of proteolysis and peptide profiles of different Finnish fermented milk products. The highest rate of proteolysis was observed in Biokefir, while the greatest change in the rate of proteolysis was observed in Gefilus®. Differences in starters and manufacturing processes reflected on the peptide profiles of the products. Most of the identified peptides originated from either the N- or C-terminal region of β-casein or from the N-terminal region of αs1-casein.

  8. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  9. Kefir: a multifaceted fermented dairy product.

    Science.gov (United States)

    Nielsen, Barbara; Gürakan, G Candan; Unlü, Gülhan

    2014-12-01

    Kefir is a fermented dairy beverage produced by the actions of the microflora encased in the "kefir grain" on the carbohydrates in the milk. Containing many bacterial species already known for their probiotic properties, it has long been popular in Eastern Europe for its purported health benefits, where it is routinely administered to patients in hospitals and recommended for infants and the infirm. It is beginning to gain a foothold in the USA as a healthy probiotic beverage, mostly as an artisanal beverage, home fermented from shared grains, but also recently as a commercial product commanding shelf space in retail establishments. This is similar to the status of yogurts in the 1970s when yogurt was the new healthy product. Scientific studies into these reported benefits are being conducted into these health benefits, many with promising results, though not all of the studies have been conclusive. Our review provides an overview of kefir's structure, microbial profile, production, and probiotic properties. Our review also discusses alternative uses of kefir, kefir grains, and kefiran (the soluble polysaccharide produced by the organisms in kefir grains). Their utility in wound therapy, food additives, leavening agents, and other non-beverage uses is being studied with promising results.

  10. MODERN TECHNOLOGY OF FERMENTED MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2015-01-01

    Full Text Available Summary. New trends of meat industry development, on the example of sausages are shown. The detailed description of indicators of quality of meat raw materials, auxiliary materials and their influence on the processes of tissue and microbial fermentation in the process of ripening raw sausages. Measures for improving the quality control of meat raw materials, auxiliary materials, as well as the processing conditions in all stages of production of smoked products are suggested. The modern technology of production of raw sausages with starter cultures and complex products, allowing better standardization process is considered. Questions of chemistry of color formation, the formation of taste and flavor, textures and the suppression of undesired microflora in foods in general, and in particular the raw sausage are thoroughly covered. Ideas about factors affecting the formation of color in sausages are given. It is pointed out that the susceptibility to oxidation of nitrosilmioglobin is directly related to the fat oxidation in the whole redox potential. Trends in the market of raw sausages are shown. Requirements used in the meat industry to starting cultures are shown. Recommendations on the rational use of starter cultures, and other functional additives in technology of uncooked fermented products, which are used to improve the quality and ensure a high level of product safety are given. The characteristic of the innovative series of starter cultures Protect, its species belonging and qualitative composition, providing a unique protection system in the process of ripening and storage of smoked products is given. The properties are proved on the example of smoked poultry sausage.

  11. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  12. Vegetable milks and their fermented derivative products

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2014-04-01

    Full Text Available The so-called vegetable milks are in the spotlight thanks to their lactose-free, animal protein-free and cholesterol-free features which fit well with the current demand for healthy food products. Nevertheless, and with the exception of soya, little information is available about these types of milks and their derivatives. The aims of this review, therefore, are to: highlight the main nutritional benefits of the nut and cereal vegetable milks available on the market, fermented or not; describe the basic processing steps involved in their manufacturing process; and analyze the major problems affecting their overall quality, together with the current feasible solutions. On the basis of the information gathered, vegetable milks and their derivatives have excellent nutritional properties which provide them a high potential and positive market expectation. Nevertheless, optimal processing conditions for each raw material or the application of new technologies have to be researched in order to improve the quality of the products. Hence, further studies need to be developed to ensure the physical stability of the products throughout their whole shelf-life. These studies would also allow for a reduction in the amount of additives (hydrocolloids and/or emulsifiers and thus reduce the cost of the products. In the particular case of fermented products, the use of starters which are able to both improve the quality (by synthesizing enhanced flavors and providing optimal textures and exert health benefits for consumers (i.e. probiotics is the main challenge to be faced in future studies.

  13. Rapid analytical extraction of volatile fermentation products

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, N B; Flickinger, M C; Tsao, G T

    1979-10-01

    With renewed interest in production of liquid fuels and chemical feedstocks from carbohydrates, numerous authors have utilized gas-liquid chromatography (GC) for quantification of volatile products. Poor separation and short column life will result if residual sugars present in the medium are not separated from the volatile compounds before injection. In our current investigation of 2,3-butanediol production from xylose, we have developed a rapid GC assay for 2,3-butanediol, acetyl methyl carbinol (acetoin), 2,3-butanedione (diacetyl), and ethanol. This method extracts the fermentation products at high pH from residual xylose before injection into the GC. This routine is a modification of the method of Kolfenbach et al. and is more rapid than the method of separation of diacetyl and acetoin from carbohydrates by distillation reported by Gupta et al. Their erroneous reports of yields of 640 mg diacetyl + acetoin/g sugar are 30% higher than the theoretical maximum for Enterobacter cloacae (ATCC 27613) and points out the need for a reliable, accurate assay for these products.

  14. The economics of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Daugulis, A J; Axford, D B; McLellan, P J [Queen' s Univ., Kingston, ON (Canada)

    1991-04-01

    Extractive fermentation is a processing strategy in which reaction and recovery occur simultaneously in a fermentation vessel through the use of a water-immiscible solvent which selectively removes an inhibitory product. An ethanol-extractive fermentation process has been developed, incorporating continuous operation and the ability to ferment concentrated feedstocks. A detailed economic assessment of this process is provided relative to current technology for an annual capacity of 100 million litres of ethanol. Extractive fermentation provides significant economic advantages for both grass roots and retrofitted plants. Total production costs are estimated at 45{cents}/l for a conventional plant and 29.4{cents}/l for a retrofitted plant. The main cost saving achievable by extractive fermentation is in energy, used for evaporation and drying, since the process uses significantly less water in its conversion of concentrated feedstocks. Producing anhydrous ethanol without distillation is also a prospect. 15 refs., 5 fig., 10 tabs.

  15. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  16. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  17. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550......L stirred tank pilot plant reactors well. For each strain, 8 biological parameters are needed as well as a correlation of viscosity, as viscosity has a major influence on oxygen transfer. The parameters were measured averages of at least 9 batches for each strain. The model is successfully able...... to cover a wide range of process conditions (0.3-2 vvm of aeration, 0.2-10.0 kW/m3 of specific agitation power input, and 0.1-1.3 barg head space pressure). Uncertainty and sensitivity analysis have shown that the uncertainty of the model is mainly due to difficulties surrounding the estimation...

  18. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    Science.gov (United States)

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Urea production by yeasts other than Saccharomyces in food fermentation

    NARCIS (Netherlands)

    Wu, Qun; Cui, Kaixiang; Lin, Jianchun; Zhu, Yang; Xu, Yan

    2017-01-01

    Urea is an important intermediate in the synthesis of carcinogenic ethyl carbamate in various food fermentations. Identifying urea-producing microorganisms can help control or reduce ethyl carbamate production. Using Chinese liquor fermentation as a model system, we identified the yeasts responsible

  20. Improving the yield from fermentative hydrogen production.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  1. Improved fermentative alcohol production. [Patent application

    Science.gov (United States)

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  2. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Science.gov (United States)

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  3. The Effect of Fungicide Residues and Yeast Assimilable Nitrogen on Fermentation Kinetics and H2S Production during Cider Fermentation

    OpenAIRE

    Boudreau IV, Thomas Francis

    2016-01-01

    The Virginia cider industry has grown rapidly in the past decade, and demands research-based recommendations for cider fermentation. This study evaluated relationships between the unique chemistry of apples and production of hydrogen sulfide (H2S) in cider fermentations. Yeast assimilable nitrogen (YAN) concentration and composition and residual fungicides influence H2S production by yeast during fermentation, but these factors have to date only been studied in wine grape fermentations. This ...

  4. Continuous saccharification and fermentation in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, I Ya; Gracheva, I M; Mikhailova, L E; Babaeva, S A; Ustinnikov, B A

    1968-01-01

    Submerged cultures of Aspergillus niger NRRL 337 and A. batatae 61, or a mixture of submerged A. niger culture with a surface culture of A. oryzae Kc are used for fermentations and compared with the usual barley malt procedure. The latter yields 71% maltose and 24 to 28% glucose, wherease the fungal procedure gives 14 to 21% maltose and 80 to 85% glucose in a continuous mashing-fermentation process with barley. The fungal method gives a higher degree of fermentation for sugars and dextrins and a lower content of total and high-molecular-weight residual dextrins. The amounts of propanol PrOH and iso-BuOH isobutyl alcohol are almost equal, whereas the amount of isoamylalcohol is lower in fungal fermentations.

  5. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Science.gov (United States)

    Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brandão Mafra; da Silva, Marília Lordêlo Cardoso; da Silva, Gervásio Paulo; Machado, Bruna Aparecida Souza; Uetanabaro, Ana Paula Trovatti

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  7. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Directory of Open Access Journals (Sweden)

    Cassiane da Silva Oliveira Nunes

    Full Text Available This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52, belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil, and a commercial strain of ale yeast (Safale S-04 Belgium were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  8. [Effect of products of thermophilous methane fermentation on the fermentation of fruit must by Saccharomyces vini].

    Science.gov (United States)

    Mikhlin, E D; Kotomina, E N; Pisarnitsky

    1975-01-01

    Experiments were carried out to study the effect of extracts from products of thermophilous methane fermentation at a dose of 0.7+2.0 ml/100 ml on the proliferation and fermentation activity of yeast Saccharomyces vini of the Yablochnaya-7 and Vishnevaya-33 race during their cultivation in the Hansen medium and in the apple and cranberry must with a normal and elevated content of sugar and acid. In some experiments the must was enriched in (NH4)2HPO4 at a dose of 0.3 g/l. Additions of small amounts of products of thermophilous methane fermentation accelerated fermentation of fruit musts with a normal sugar content and to a greater extent musts with an increased sugar content (27%). In the must enriched in (NH4)2HPO4 an almost complete (over 98%) fermentation of sugar developed for 27 days. In the must with an increased acidity (due to citric acid added to bring titrable acidity to 25 g/l) additions of the preparation also accerlerated the begining of the fermentation and increased its intensity.

  9. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  10. The effect of kefir starter on Thai fermented sausage product

    Directory of Open Access Journals (Sweden)

    Marisa Jatupornpipat

    2007-07-01

    Full Text Available The effect of kefir starter from Wilderness Family Naturals Company on the initial formulation of Thai fermented sausage were evaluated. The differences found among batches in the main microbial populations and pH were not significant. Only, the total acid of batch D (added the kefir starter 15 ml was significantly higher (P0.05. It is concluded that the addition of kefir starter (7 ml could be useful to improve the final quality of Thai fermented sausages. The addition of kefir starter that initiates rapid acidification of the raw meat and that leads to a desirable sensory quality of the end-product are used for the production of fermented sausages, and represents a way of improving and optimizing the sausage fermentation process and achieving tastier, safer, and healthier products.

  11. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  12. Open and continuous fermentation: products, conditions and bioprocess economy.

    Science.gov (United States)

    Li, Teng; Chen, Xiang-bin; Chen, Jin-chun; Wu, Qiong; Chen, Guo-Qiang

    2014-12-01

    Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Standard working procedures in production of traditionally fermented Sremska sausage

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica

    2011-01-01

    Full Text Available Investigations conducted within project "Techonological and protective characteristics of autochthonous strains of lactic acid bacteria isolated from traditional fermented sausages and possibilities for their implementation in the meat industry" (Project Number: 20127, financed on behalf of the Ministry for Science and Technology of the Republic of Serbia, have provided an answer on the characteristics of the quality of the used raw materials for the production of Sremska sausage - one of the most well-known Serbian traditionally fermented sausages (choice of meat, fatty tissue, additives and spices, and data have been registered in connection with the procedures of their processing, microclimatic conditions have been established (temperature, relative humidity, and air circulation during the entire process of production and fermentation, as well as the presence and types of microorganisms, primarily lactic acid bacteria (BMK, the carrier of lactic fermentation. The most important characteristics of the filling have been established, the smoking regimen, the regimens of fermentation, maturing, drying, as well as the parameters for quality and safety of the finished product. At the same time, the standard working procedure has been determined for the preparation of the meat, fatty tissue, the forming and inserting of the filling into the wrappers, as well as the characteristics of the finished products. The given standard working procedure should serve as a guideline for the meat industry in the production process of this traditional fermented sausage.

  14. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  15. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    Gas fermentation is a promising technology which gained increasing attention over the last years. In this process, acetogenic bacteria convert gases rich in H2, CO2, and CO, into compounds of higher value. The gas can derive from industrial off-gas or from waste streams via gasification. In the gas...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...... with a review of the feedstock potential for gas fermentation and how thermophilic production strains as well as unconventional fermentation processes such as mixotrophy can help to exploit this potential. I analyzed a process with respect to thermodynamic and economic considerations, in which acetone...

  16. APPLE VINEGAR PRODUCTION BY FERMENTATION IN PILOT SCALE

    OpenAIRE

    Reyna M., Leoncio; Robles, R.; Huamán R., M. A.

    2014-01-01

    Vinegar has been elaborated from apple juice by inmersed fermentation at room temperature. The process was developed in two stages, firstly, the alcoholic termentation was carried out using Saccharomyces Cerevísíae yeast, Ellipsoideus variety. Secondly, an acetic fermentation was carried out using acetobacter. The global yield of the process, based on row material usage was around 52%. The product obtained has an acidity of 6,8% in acetic acid and fulfill the market requirements. Se ha ela...

  17. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  18. Evaluation of the production of gases in the acetobutilic fermentation

    International Nuclear Information System (INIS)

    Duarte Torres, Alberto; Alarcon Granobles, John F; Pineros Forero, Edgar R

    1995-01-01

    The growing costs of the raw materials coming from the petroleum, base of the processes of acetone and butane, they have originated a renovated interest for the fermentative processes. These processes stopped to be applied in 1930 by their unfavorable economic conditions in comparison with the synthetic processes. The Institute of Biotechnology of the National University of Colombia, after considering that the country imports annually around 2500 tons of butanol and 80% of acetone, began in 1987 a program of development of the acetobutilic fermentation starting from cane molasses. In accordance with the study of economic pre feasible for the butanol and acetone production for fermentation, of Serrano and Pinzon, the gases constitute 83% of the total revenues received by sales, while the solvents, ethanol, butanol and acetone, only 16%, reason for which is necessary the evaluation of the gases produced in the fermentation

  19. Effects of Fermented Dairy Products on Skin: A Systematic Review.

    Science.gov (United States)

    Vaughn, Alexandra R; Sivamani, Raja K

    2015-07-01

    Fermented dairy products, such as yogurt, have been proposed as a natural source of probiotics to promote intestinal health. Growing evidence shows that modulation of the gastrointestinal tract microbiota can modulate skin disease as well. This systematic review was conducted to examine the evidence for the use of ingested fermented dairy products to modulate skin health and function. We also sought to review the effects of the topical application of dairy products. The PubMed and Embase databases were systematically searched for clinical studies involving humans only that examined the relationship between fermented dairy products and skin health. A total of 312 articles were found and a total of 4 studies met inclusion criteria. Three studies evaluated the effects of ingestion, while one evaluated the effects of topical application. All studies noted improvement with the use of fermented dairy. Overall, there is early and limited evidence that fermented dairy products, used both topically and orally, may provide benefits for skin health. However, existing studies are limited and further studies will be important to better assess efficacy and the mechanisms involved.

  20. EVALUATION OF FERMENTATION PARAMETERS DURING HIGH-GRAVITY BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    R.B. Almeida

    2001-12-01

    Full Text Available A large number of advantages are obtained from the use of highly concentrated worts during the production of beer in a process referred to as "high-gravity". However, problems related to slow or stuck fermentations, which cause the lower productivity and possibility of contamination, are encountered. This study examines the influence of factors pH, percentage of corn syrup, initial wort concentration and fermentation temperature on the fermentation parameters, namely productivity, wort attenuation and the yield coefficient for sugar-to-ethanol conversion. The results show that productivity increased when the higher temperature, the higher wort concentration and the lower syrup percentage were used, while wort attenuation increased when lower wort concentration and no syrup were used. The yield coefficient for sugar-to-ethanol conversion was not influenced by any of the factors studied.

  1. Optimization of fermentation conditions for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F J; Izaguirre, M F; Michelena, V; Moreno, B

    1982-01-01

    Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included an initial pH of 4.57 and 30 degrees. Complete fermentation of the available lactose took place without supplementary nutrients; additions of N and P salts, yeast extract, or corn steep liquor resulted in increased yeast production and lower ethanol yields. A possible correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g ethanol/L was obtained within 22 hours by using a yeast inoculum of 13.9 g/L. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.

  2. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  3. Method for ph-controlled fermentation and biogas production

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention is in the field of biomass processing and bioenergy production and facilitates efficient biomass processing and an increased production of renewable energy from processing and anaerobic fermentation of a wide variety of organic materials. In order to control the pH value...

  4. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  5. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  6. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  7. Studies on bio-hydrogen production of different biomass fermentation types using molasses wastewater as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Jiao, A.Y.; Rao, P.H. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering; Li, W. [Beijing Normal Univ., Beijing (China)

    2010-07-01

    Anaerobic fermentation technology was used to treat molasses wastewater. This study compared the hydrogen production capability of different fermentation types involving dark fermentation hydrogen production. The paper discussed the experiment including the results. It was found that the fermentation type changed by changing engineered control parameters in a continuous stirred tank reactor (CSTR). It was concluded that ethanol-type fermentation resulted in the largest hydrogen production capability, while butyric acid-type fermentation took second place followed by propionic acid-type fermentation.

  8. Torulaspora delbrueckii for secondary fermentation in sparkling wine production.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2018-09-01

    In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Industrial alcohol production via whey and grain fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Friend, B A; Cunningham, M L; Shahani, K M

    1982-01-01

    Six strains of a trained lactose fermenting Kluyveromyces yeast were examined for their ability to utilise lactose in sweet-whey permeate. All strains of K. fragilis tested reduced the concentration of the 5.1% lactose, initially present in whey permeate, to 0.1-0.2% within 48h. Periodic adjustment to maintain the pH during fermentation did not alter the lactose utilisation. The fermentation efficiency of K. fragilis was then compared with that of a mixture of K. fragilis and the classical alcohol fermenter Saccharomyces cerevisiae to verify that no unfavourable interactions occurred in the mixed culture. There were no differences in lactose utilisation or ethanol production between the two groups; both produced approximately 2% ethanol within 24h. This represented approximately 80% of the alcohol which theoretically could be produced from the 5.1% lactose present in the permeate. Whey permeate was also incorporated into the classical grain fermentation by substitution for one-half the water normally added to produce the mash. Fermentation was nearly complete by 36h and alcohol levels ranged from 9.7% for the mixed culture to 9.4% for the K. fragilis and 9.3% for the S. cerevisiae. Since the whey provided significant levels of fermentable sugars, studies were also conducted in which undiluted whey permeate was substituted for all of the water in the mash and the amount of grain was reduced by 20%. At the end of 36h K. fragilis produced 10.9% alcohol and at 60 h of fermentation the level had reached 12.2%. When whole sweet-whey was used, similar levels of alcohol were produced. (Refs. 20).

  11. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  12. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  13. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  14. Some microbiological aspects of cassava fermentation with emphasis on detoxification of the fermented end-product

    International Nuclear Information System (INIS)

    Okafor, N.

    1990-01-01

    The search undertaken in this study was for microbial strains able to produce amylase and linamarase simultaneously. A total of 46 organisms (mainly yeasts) were isolated from garri production environments and eighteen more representative isolates were selected for screening. The highest production fo the above enzymes has been found with the yeast strain identified as Saccharomyces sp. Inoculation of this into the cassava mash led to a dramatic reduction of cyanide in the fermenting pulp: 73,4% and 69,2% reduction when compared with controls after 24 and 48 hours of fermentation respectively. The cyanide content of the fermented end-product derived from the inoculated mash was 60,8% and 24% less than in the control after 24 and 48 hours. Preliminary experiments with X-ray radiation of the yeast did not show a sufficient increase in the enzymatic activities of the mutants obtained but only a slight increase in the linamarase production was noticed in mutants derived from irradiation. (author). 27 refs, 9 tabs

  15. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds.

    NARCIS (Netherlands)

    Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A.

    1996-01-01

    Recently developed time-related gas production techniques to quantify the kinetics of ruminant feed fermentation have a high resolution. Consequently, fermentation processes with clearly contrasting gas production kinetics can be identified. Parameterization of the separate processes is possible

  16. Contribution of Lactobacillus plantarum in fermented dairy products ...

    African Journals Online (AJOL)

    Strains of Lactobacillus plantarum recently isolated from artisanal fermented milks and milk products include L. plantarum AMA-K, L. plantarum KLDS1.0391, L. plantarum ST27, L. plantarum LL441, L. plantarum ST8K and L. plantarum BR12. The isolates exhibited in vitro antimicrobial activity against saprophytic and ...

  17. Amylase production under solid state fermentation by a bacterial ...

    African Journals Online (AJOL)

    This study was concerned with the screening of a suitable isolate and optimization of cultural conditions for the biosynthesis of thermostable amylase under solid state fermentation (SSF). Twenty seven isolates were screened for amylase production out of which one isolate designated as W74 showed maximal amylase ...

  18. 27 CFR 25.55 - Formulas for fermented products.

    Science.gov (United States)

    2010-04-01

    ... purposes (including consumer taste testing), produce a fermented product without an approved formula, but... is my formula approval valid? Your formula approved under this section remains in effect until: you... request to the Assistant Chief, Advertising, Labeling and Formulation Division, Alcohol and Tobacco Tax...

  19. The Bacteria Quality Of The Indigenously Fermented Milk Product ...

    African Journals Online (AJOL)

    Fifty samples of 'nono', a fermented milk product akin to yoghurt, were carefully collected from three markets in Maiduguri municipality, and were examined for the presence of pathogenic bacteria. Twenty-eight percent of the samples were found to be contaminated with aciduric pathogenic bacteria that may cause ...

  20. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  1. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  2. Cashew wine vinegar production: alcoholic and acetic fermentation

    OpenAIRE

    Silva, M. E.; Torres Neto, A. B.; Silva, W. B.; Silva, F. L. H.; Swarnakar, R.

    2007-01-01

    Cashew wine of demi-sec grade was produced in a stirred batch reactor. The kinetic parameters obtained for cashew wine fermentation were Y X/S=0.061, Y P/S=0.3 and µmax=0.16 h-1. The yield and the productivity of cashew wine were 57.7% and 0.78 g/Lh respectively. A 2² factorial experimental design was used for the cashew wine vinegar fermentation optimization study. The cashew wine vinegar process optimization ranges found for initial concentrations of ethanol and acetic acid as independent v...

  3. Productivity and fermentability of Jerusalem artichoke according to harvesting date

    Energy Technology Data Exchange (ETDEWEB)

    Chabbert, N.; Arnoux, M.; Braun, Ph.; Galzy, P.; Guiraud, J.P.

    1983-01-01

    The amount of alcohol obtained per hectare of Jerusalem artichoke culture depends on the yield of tubers, the sugar content of the tubers and the fermentability of these sugars. Under Mediterranean climate conditions, the cultivar 'Violet commun' attained its maximum tuber production by 15 November, when the stems and leaves dried up, and then remained constant through the winter. The sugar content of the tubers varied little during this period. However, the sugar composition did vary with time: the polyfructosans were depolymerized. The fermentability of sugars without prior chemical hydrolysis was quite good with Kluyveromyces marxianus which showed high inulinase activity in contrast to Saccharomyces cerevisiae.

  4. Productivity and fermentability of Jerusalem artichoke according to harvesting date

    Energy Technology Data Exchange (ETDEWEB)

    Chabbert, N.; Braun, P.; Guiraud, J.P.; Arnoux, M.; Galzy, P.

    1983-01-01

    The amount of alcohol obtained per hectare of Jerusalem artichoke culture depends on the yield of tubers, the sugar content of the tubers and the fermentability of these sugars. Under Mediterranean climate conditions, the cultivar Violet commun attained its maximum tuber production by 15 November, when the stems and leaves dried up, and then remained constant through the winter. The sugar content of the tubers varied little during this period. However, the sugar composition did vary with time: the polyfructosans were depolymerized. The fermentability of sugars without prior chemical hydrolysis was quite good with Kluyveromyces marxianus which showed high inulinase activity in contrast to Saccaromyces cerevisiae. 5 figures, 1 table.

  5. Productivity and fermentability of Jerusalem artichoke according to harvesting date

    Energy Technology Data Exchange (ETDEWEB)

    Chabbert, M.; Braunt, Ph.; Guiraud, J.P.; Arnoux, M.; Galzy, P.

    1983-01-01

    The amount of alcohol obtained per hectare of Jerusalem artichoke culture depends on the yield of tubers, the sugar content of the tubers and the fermentability of these sugars. Under Mediterranean climate conditions, the cultivar 'Violet commun' attained its maximum tuber production by 15 November, when the stems and leaves dried up, and then remained constant through the winter. The sugar content of the tubers varied little during this period. However, the sugar composition did vary with time: the polyfructosans were depolymerized. The fermentability of sugars without prior chemical hydrolysis was quite good with Kluyveromyces marxianus which showed high inulinase activity in contrast to Saccharomyces cerevisiae. (Refs. 13).

  6. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  7. Enhanced amylase production by fusarium solani in solid state fermentation

    International Nuclear Information System (INIS)

    Bakri, Y.; Jawhar, M.; Arabi, M.I.E.

    2014-01-01

    The present study illustrates the investigation carried out on the production of amylase by Fusarium species under solid state fermentation. All the tested Fusarium species were capable of producing amylase. A selected F. solani isolate SY7, showed the highest amylase production in solid state fermentation. Different substrates were screened for enzyme production. Among the several agronomic wastes, wheat bran supported the highest yield of amylase (141.18 U/g of dry substrate) after 3 days of incubation. Optimisation of the physical parameters revealed the optimum pH, temperature and moisture level for amylase production by the isolate as 8.0, 25 C and 70%, respectively. The above results indicate that the production of amylase by F. solani isolate SY7 could be improved by a further optimisation of the medium and culture conditions. (author)

  8. Production of pizza dough with reduced fermentation time

    Directory of Open Access Journals (Sweden)

    Simone Limongi

    2012-12-01

    Full Text Available The aim of this study was to reduce the fermentation time of pizza dough by evaluating the development of the dough during fermentation using a Chopin® rheofermentometer and verifying the influence of time and temperature using a 2² factorial design. The focus was to produce characteristic soft pizza dough with bubbles and crispy edges and soft in the center. These attributes were verified by the Quantitative Descriptive Analysis (QDA. The dough was prepared with the usual ingredients, fermented at a temperature range from 27 to 33 ºC for 30 to 42 minutes, enlarged, added with tomato sauce, baked, and frozen. The influence of the variables time and temperature on the release of carbon dioxide (H'm was confirmed with positive and significant effect, using a rheofermentometer, which was not observed for the development or maximum height of the dough (Hm. The same fermentation conditions of the experimental design were used for the production of the pizza dough in the industrial process; it was submitted to Quantitative Descriptive Analysis (QDA, in which the samples were described by nine attributes. The results showed that some samples had the desired characteristics of pizza dough, demonstrated by the principal component analysis (PCA, indicating a 30 % fermentation time reduction when compared to the conventional process.

  9. New alternatives for the fermentation process in the ethanol production from sugarcane: Extractive and low temperature fermentation

    International Nuclear Information System (INIS)

    Palacios-Bereche, Reynaldo; Ensinas, Adriano; Modesto, Marcelo; Nebra, Silvia A.

    2014-01-01

    Ethanol is produced in large scale from sugarcane in Brazil by fermentation of sugars and distillation. This is currently considered as an efficient biofuel technology, leading to significant reduction on greenhouse gases emissions. However, some improvements in the process can be introduced in order to improve the use of energy. In current distilleries, a significant fraction of the energy consumption occurs in the purification step – distillation and dehydration – since conventional fermentation systems employed in the industry require low substrate concentration, which must be distilled, consequently with high energy consumption. In this study, alternatives to the conventional fermentation processes are assessed, through computer simulation: low temperature fermentation and vacuum extractive fermentation. The aim of this study is to assess the incorporation of these alternative fermentation processes in ethanol production, energy consumption and electricity surplus produced in the cogeneration system. Several cases were evaluated. Thermal integration technique was applied. Results shown that the ethanol production increases between 3.3% and 4.8% and a reduction in steam consumption happens of up to 36%. About the electricity surplus, a value of 85 kWh/t of cane can be achieved when condensing – extracting steam turbines are used. - Highlights: • Increasing the wine concentration in the ethanol production from sugarcane. • Alternatives to the conventional fermentation process. • Low temperature fermentation and vacuum extractive fermentation. • Reduction of steam consumption through the thermal integration of the processes. • Different configurations of cogeneration system maximizing the electricity surplus

  10. Alcoholic fermentation: an option for renewable energy production from agricultural residues; Fermentacion alcoholica: una opcion para la produccion de energia renovable a partir de desechos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, H. J [Universidad Autonoma Metropolitana (Mexico)]. E-mail: hjv@correo.azc.uam.mx; Dacosta, O [Oficina de Consejo, Desarrollo y Transferencia Tecnologica, Dijon (Francia)]. E-mail: statfor@yahoo.com

    2007-10-15

    Biotechnology offers several options for generating renewable energy. One of these technologies consists on producing bioethanol by fermentation. Bioethanol is mainly used to prepare fuel for motor vehicles. This paper presents a proposal to produce such as fuels with a hundred liters experimental fermentation pilot unit. Results derived from essays are similar, in terms of yield and productivity, to those presented by other systems, if we take into account that our unit works under non sterile conditions, which represents significant energy savings. This technology does not require specialized knowledge for its construction and it would accessible to groups of Mexican farmers. [Spanish] La biotecnologia ofrece diversas opciones para la generacion de energias renovables. Una de ellas es la produccion de bioetanol, el cual se obtiene mediante fermentacion. El bioetanol se usa en la preparacion de carburantes para vehiculos automotores. En este articulo se presenta una propuesta para la obtencion de este combustible mediante una unidad de fermentacion piloto experimental de 100 litros. Los resultados de nuestros ensayos, en rendimiento y productividad, son similares a los de otros laboratorios si se considera que esta unidad piloto funciona en condiciones no esteriles, lo que representa como ventaja un ahorro de energia no despreciable. Ademas, la tecnologia no requiere conocimientos especializados para su realizacion y estaria al alcance de grupos campesinos mexicanos.

  11. Gellan Gum: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Ishwar B. Bajaj

    2007-01-01

    Full Text Available The microbial exopolysaccharides are water-soluble polymers secreted by microorganisms during fermentation. The biopolymer gellan gum is a relatively recent addition to the family of microbial polysaccharides that is gaining much importance in food, pharmaceutical and chemical industries due to its novel properties. It is commercially produced by C. P. Kelco in Japan and the USA. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available information on the gellan gum synthesized by Sphingomonas paucimobilis with special emphasis on its fermentative production and downstream processing. Rheological behaviour of fermentation broth during fermentative production of gellan gum and problems associated with mass transfer have been addressed. Information on the biosynthetic pathway of gellan gum, enzymes and precursors involved in gellan gum production and application of metabolic engineering for enhancement of yield of gellan gum has been specified. Characteristics of gellan gum with respect to its structure, physicochemical properties, rheology of its solutions and gel formation behaviour are discussed. An attempt has also been made to review the current and potential applications of gellan gum in food, pharmaceutical and other industries.

  12. Ethanol production from alfalfa fiber fractions by saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sreenath, H.K. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering; USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Koegel, R.G. [US Department of Agriculture, Madison, WI (United States). Dairy Forage Research Center; Moldes, A.B. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Universidade de Vigo, Ourense (Spain); Jeffries, T.W. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Straub, R.J. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering

    2001-07-01

    This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or 'raffinate'. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. (author)

  13. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  14. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Linear programming model can explain respiration of fermentation products

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

  16. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  17. Linear programming model can explain respiration of fermentation products.

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.

  18. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  19. Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter

    NARCIS (Netherlands)

    Zheng, X.; Yan, Z.; Nout, M.J.R.; Smid, E.J.; Zwietering, M.H.; Boekhout, T.; Han, J.S.; Han, B.

    2014-01-01

    Chinese Daqu is used as a starter for liquor and vinegar fermentations. It is produced by solid state fermentation of cereal–pulse mixtures. A succession of fungi, lactic acid bacteria and Bacillus spp. was observed during the production of Daqu. Mesophilic bacteria followed by fungi, dominated the

  20. Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter

    NARCIS (Netherlands)

    Zheng, Xiao-Wei; Yan, Zheng; Nout, M J Robert; Smid, Eddy J; Zwietering, Marcel H; Boekhout, Teun; Han, Jian-Shu; Han, Bei-Zhong

    2014-01-01

    Chinese Daqu is used as a starter for liquor and vinegar fermentations. It is produced by solid state fermentation of cereal-pulse mixtures. A succession of fungi, lactic acid bacteria and Bacillus spp. was observed during the production of Daqu. Mesophilic bacteria followed by fungi, dominated the

  1. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  2. Effective production of fermentable sugars from brown macroalgae biomass.

    Science.gov (United States)

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  3. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  4. Letters: Milk and Mortality : Study used wrong assumption about galactose content of fermented dairy products

    NARCIS (Netherlands)

    Hettinga, K.A.

    2014-01-01

    Michaëlsson and colleagues’ proposed mechanism for the effect of milk intake on the risk of mortality and fractures is based on the assumption that fermented dairy products (which had the opposite effects to those of non-fermented milk) are free of galactose.1 For most fermented dairy products,

  5. fermentation

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... genes in glycolysis pathway, trehalose and steroid biosynthesis and heat shock proteins (HSP) in .... com) and prepared for microarray construction and analysis. .... a single time point of the late stage of VHG fermentation.

  6. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  7. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    NARCIS (Netherlands)

    Panagiotopoulos, I.; Bakker, R.; Vrije, de G.J.; Niel, van E.W.J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content

  8. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    Science.gov (United States)

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  9. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  10. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  11. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  12. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  13. Methane production from fermentation of winery waste

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale reactor receiving a mixture of screened dairy manure and winery waste was studied at 35 degrees C and a hydraulic retention time of 4 days. The maximum methane production rate of 8.14 liter CH/sub 4//liter/day was achieved at a loading rate of 7.78 g VS/liter/day (VS = volatile solids). The corresponding methane yield was 1.048 liter CH/sub 4//g VS added. Using a mixture of winery wastes and screened dairy manure as the feed material to anaerobic reactor resulted in a significant increase in total methane production compared to that from screened dairy manure alone. The biodegradation efficiency increased with the addition of winery wastes to screened dairy manure. 18 references.

  14. Process for the fermentative production of acetone, butanol and ethanol

    Science.gov (United States)

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  15. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk.

    Science.gov (United States)

    Moreno-Fernández, Jorge; Díaz-Castro, Javier; Alférez, Maria J M; Hijano, Silvia; Nestares, Teresa; López-Aliaga, Inmaculada

    2016-02-01

    The aim of this study was to identify the differences between the main macro and micronutrients including proteins, fat, minerals and vitamins in cow and goat dehydrated fermented milks. Fermented goat milk had higher protein and lower ash content. All amino acids (except for Ala), were higher in fermented goat milk than in fermented cow milk. Except for the values of C11:0, C13:0, C16:0, C18:0, C20:5, C22:5 and the total quantity of saturated and monounsaturated fatty acids, all the other fatty acid studied were significantly different in both fermented milks. Ca, Mg, Zn, Fe, Cu and Se were higher in fermented goat milk. Fermented goat milk had lower amounts of folic acid, vitamin E and C, and higher values of vitamin A, D3, B6 and B12. The current study demonstrates the better nutritional characteristics of fermented goat milk, suggesting a potential role of this dairy product as a high nutritional value food.

  18. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  19. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2017-01-01

    Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    Science.gov (United States)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  1. Cashew wine vinegar production: alcoholic and acetic fermentation

    Directory of Open Access Journals (Sweden)

    M. E. Silva

    2007-06-01

    Full Text Available Cashew wine of demi-sec grade was produced in a stirred batch reactor. The kinetic parameters obtained for cashew wine fermentation were Y X/S=0.061, Y P/S=0.3 and µmax=0.16 h-1. The yield and the productivity of cashew wine were 57.7% and 0.78 g/Lh respectively. A 2² factorial experimental design was used for the cashew wine vinegar fermentation optimization study. The cashew wine vinegar process optimization ranges found for initial concentrations of ethanol and acetic acid as independent variables were 4.8 to 6.0% and 1.0 to 1.3% respectively.

  2. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  3. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    2014) at 3.50 and 3.95 $ per kg product (for S1 and S2 respectively) and a plant capacity of 10,000 tonnes indicated an internal rate of return of 14.92% and 12.42% and payback time of 4.28 and 4.70 years for S1 and S2 respectively. Sensitivity analysis showed that under the assumptions of the present......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...

  4. Optimisation of minimal media for production of aroma compounds typical for fermented milk products

    Directory of Open Access Journals (Sweden)

    Nevenka Mazić

    2008-08-01

    Full Text Available The aim of this research was to optimize the composition of minimalgrowth media containing lactose and milk, in which lactic acid bacteria (LAB would produce the maximum amount of volatile aroma compounds typical for fermented milk products. Ingredients used for the preparation of media were casein, tri-sodium-citrate, lactose, milk minerals, whey proteins and milk with 1.5% fat. The several prepared media differed mainly in the amount of citrate and whey proteins. Fermentation was carried out at room temperature until the media reached pH value of 5. Samples were evaluated for sensory characteristics using quantitative descriptive analysis (QDA. In all media the target pH was reached after 68-71 hours of fermentation, depending on citrate level. Fermentation and the production of aroma compounds were more intensive in media that contained whey proteins compared to media with only casein. Increased citrate level had a positive influence on the aroma production. Citrate increased the initial pH of the media and acted as a buffer during fermentation, which lead to longer fermentation and prolonged production of aroma compounds. At pH around 5, the desired cultured aroma was the most intensive, whereas sour taste was less dominant. The substrate with 0.25% citrate and 0.1% whey proteins, at pH 5, was rated as best regarding its sensory characteristics.

  5. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  6. Biohydrogen production from combined dark-photo fermentation under a high ammonia content in the dark fermentation effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; Lo, Yung-Chung; Yeh, Kuei-Ling [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Chang, Jo-Shu [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; National Cheng Kung Univ., Tainan, Taiwan (China). Microalgae Biotechnology and Bioengineering Lab.

    2010-07-01

    Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H{sub 2} production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H{sub 2} production rate and H{sub 2} yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H{sub 2}/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H{sub 2} production process inoculated with Rhodopseudomonas palutris WP 3-5 under the condition of 35oC, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H{sub 2}/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H{sub 2} yield dramatically increased from 1.015 mol H{sub 2}/mol sucrose (in dark fermentation only) to 6.04 mol H{sub 2}/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH{sub 3}-N removal efficiency of 92%, implying that our photo-H{sub 2} production system has a higher NH{sub 3}-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. (orig.)

  7. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  8. Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase.

    Science.gov (United States)

    Doriya, K; Jose, N; Gowda, M; Kumar, D S

    l-Asparaginase, an enzyme that catalyzes l-asparagine into aspartic acid and ammonia, has relevant applications in the pharmaceutical and food industry. So, this enzyme is used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. This enzyme is also able to reduce the amount of acrylamide found in carbohydrate-rich fried and baked foods which is carcinogenic to humans. The concentration of acrylamide in food can be reduced by deamination of asparagine using l-Asparaginase. l-Asparaginase is present in plants, animals, and microbes. Various microorganisms such as bacteria, yeast, and fungi are generally used for the production of l-Asparaginase as it is difficult to obtain the same from plants and animals. l-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions. To overcome this, eukaryotic organisms such as fungi can be used for the production of l-Asparaginase. l-Asparaginase can be produced either by solid-state fermentation (SSF) or by submerged fermentation (SmF). SSF is preferred over SmF as it is cost effective, eco-friendly and it delivers high yield of enzyme. SSF process utilizes agricultural and industrial wastes as solid substrate. The contamination level is substantially reduced in SSF through low moisture content. Current chapter will discuss in detail the chemistry and applications of l-Asparaginase enzyme and various methods available for the production of the enzyme, especially focusing on the advantages and limitations of SSF and SmF processes. © 2016 Elsevier Inc. All rights reserved.

  9. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. PRODUCTION OF AN EXTRACELLULAR CELLOBIASE IN SOLID STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ruchi Agrawal

    2013-02-01

    Full Text Available The bioethanol production from lignocellulosic biomass has attracted wide interest globally in last decade. One of the main reasons for the high cost of bioethanol production from lignocellulosic biomass is the expensive enzymes involved in enzymatic hydrolysis of cellulose (cellulase. The utilization of agro-industrial waste as a potential substrate for producing enzymes may serve a dual purpose of reducing the environmental pollution along with producing a high value commercial product. Twelve different agro-industrial wastes were evaluated for extracellular cellobiose or β-glucosidase production by a mutant of Bacillus subtilis on solid state fermentations (SSF. The Citrus sinensis peel waste was found to be the most suitable substrate with highest BGL titre (35 U/gds. Optimum incubation time, inoculum size, moisture content and volume of buffer for enzyme extraction were 72 h, 40 % v/w, 10 mL and 20 mL respectively.

  11. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  12. Optimization of asparaginase production from Zymomonas mobilis by continuous fermentation

    Directory of Open Access Journals (Sweden)

    Francieli Bortoluzzi Menegat

    2016-10-01

    Full Text Available Asparaginase is an enzyme used in clinical treatments as a chemotherapeutic agent and in food technology to prevent acrylamide formation in fried and baked foods. Asparaginase is industrially produced by microorganisms, mainly gram-negative bacteria. Zymomonas mobilis is a Gram-negative bacterium that utilizes glucose, fructose and sucrose as carbon source and has been known for its efficiency in producing ethanol, sorbitol, levan, gluconic acid and has recently aroused interest for asparaginase production. Current assay optimizes the production of Z. mobilis asparaginase by continuous fermentation using response surface experimental design and methodology. The studied variables comprised sucrose, yeast extract and asparagine. Optimized condition obtained 117.45 IU L-1 with dilution rate 0.20 h-1, yeast extract 0.5 g L-1, sucrose 20 g L-1 and asparagine 1.3 g L-1. Moreover, carbon:nitrogen ratio (1:0.025 strongly affected the response of asparaginase activity. The use of Z. mobilis by continuous fermentation has proved to be a promising alternative for the biotechnological production of asparaginase.

  13. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  14. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia.

    Science.gov (United States)

    Collins, James W; Chervaux, Christian; Raymond, Benoit; Derrien, Muriel; Brazeilles, Rémi; Kosta, Artemis; Chambaud, Isabelle; Crepin, Valerie F; Frankel, Gad

    2014-10-01

    We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  15. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.

  16. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Kaur, Pardeep; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  17. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II-Fed-batch fermentation

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Cotta, Michael A.

    2008-01-01

    In these studies, Clostridium beijerinckii P260 was used to produce butanol (acetone-butanol-ethanol, or ABE) from wheat straw (WS) hydrolysate in a fed-batch reactor. It has been demonstrated that simultaneous hydrolysis of WS to achieve 100% hydrolysis to simple sugars (to the extent achievable under present conditions) and fermentation to butanol is possible. In addition to WS, the reactor was fed with a sugar solution containing glucose, xylose, arabinose, galactose, and mannose. The culture utilized all of the above sugars. It was noticed that near the end of fermentation (286-533 h), the culture had difficulties utilizing xylose. As a result of supplemental sugar feed to the reactor, ABE productivity was improved by 16% as compared with previous studies. In our previous experiment on simultaneous saccharification of WS and fermentation to butanol, a productivity of 0.31 g L -1 h -1 was observed, while in the present studies a productivity of 0.36 g L -1 h -1 was observed. It should be noted that a productivity of 0.77 g L -1 h -1 was observed when the culture was highly active. The fed-batch fermentation was operated for 533 h. It should be noted that C. beijerinckii P260 can be used to produce butanol from WS in integrated fermentations

  18. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    Science.gov (United States)

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Characterization of casein phosphopeptides from fermented milk products.

    Science.gov (United States)

    Kawahara, Takeshi; Aruga, Kaori; Otani, Hajime

    2005-10-01

    This study dealt with the potential of fermented milk products as a source of functional casein phosphopeptides (CPPs) using plain yogurts and Camembert cheeses. The CPPs were prepared by tryptic digestion from four commercially available plain yogurts (P1-P4), five Camembert cheeses (C1-C5), and raw milk. From portions with a 1-g protein content of the plain yogurts, the Camembert cheeses, and the raw milk, 171 mg, 139 mg, and 146 mg of CPPs were obtained, respectively. The Camembert cheeses retained high amounts of organic phosphorus (32 microg) per 1 mg CPPs compared to the raw milk (15 microg) and plain yogurts (16 microg). Reverse-phase high-performance liquid chromatographic analysis showed that the elution patterns and retention times of the three major peaks of CPPs from P1 and C1 were similar to those from raw milk. Moreover, CPPs from P1 and C1 showed a mitogenic effect, while CPPs from C1 showed an IgA-enhancing effect in mouse spleen cell cultures. These results suggest that fermented milk products such as plain yogurts and Camembert cheeses generate functional CPPs in the body and exert beneficial effects on the immune system.

  20. Fermented Dairy Products in the Nutrition of Infants in the Russian Federation: Past and Present

    Directory of Open Access Journals (Sweden)

    Tatiana E. Borovik

    2016-01-01

    Full Text Available Fermented dairy products have a high nutritional and biological value and functional properties beneficial to human health; they are very diverse and have a long history. Fermentation of milk is a complex technological, physical and biochemical process that occurs under the influence of two enzymes of lactic acid bacteria — -galactosidase and lactate dehydrogenase. Requirements for biological properties of starter microorganisms and fermentation technology are strictly regulated. Based on the starter cultures used, we can single out fermented dairy products of lactic acid and mixed (lactic acid and alcohol fermentation. There are adapted, partially adapted and non-adapted cultured milk products for children, some of which are enriched with pro- and prebiotics to enhance functional properties. The article provides information about one of the first Russian non-adapted fermented milk products for infants enriched with inulin, fruit and cereals.

  1. Production of hydrogen from fermentation of pina agroindustrial waste

    International Nuclear Information System (INIS)

    Montoya Perez, Luisa

    2012-01-01

    The performance of biohydrogen production was assesed a laboratory level, by anaerobic fermentation using agroindustrial residue of pineapple heart and employing microorganisms own of sludges from the bottom of an anaerobic digester belonging to a wastewater treatment plant from a seafood processor. Residue of pineapple heart was characterized physicochemically. The amounts were quantified: moisture, ashes, crude fiber, glucose, reducing sugars, hydrogen potential, soluble solids (Brix grades), boron, nitrogen, phosphorus, calcium, magnesium, potassium, sulfur, zinc, iron, copper and manganese. Per gram of pineapple heart is obtained 0,113 g of reducing sugars and 0,0114 g of glucose, which has made it a carbohydrate rich material that could ferment and produce hydrogen or other metabolites of commercial interest. A maximum yield was obtained of 0,0484 mol H 2 / mol of glucose consumed with a hydrogen maximum output of 1,260 mmol, at a maximum production rate of 0.070 mmol/h with a time lag in the production of hydrogen to 7,833 h under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a medium of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum, in a container 125 mL where was consumed 88,4% of the initial glucose. A maximum yield of 1,541 mol H 2 / mol of consumed glucose was obtained, in a fermentation time of 30 h, with a maximum hydrogen production of 41,227 mmol, at a maximum production rate of 6,740 mmol/h with a lag time in the production of hydrogen for 16 h, under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a middle of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum in a fermentor of 5 L where 96,39% was consumed of the initial glucose. The maximum yield from 1,541 mol H 2 / mol of glucose consumed has corresponded to 38% of the target value of the United States Department of Energy equivalent

  2. Continuous dry fermentation of swine manure for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuang; Zheng, Dan [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Liu, Gang–Jin [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Bioprocess Control AB, Scheelevägen 22, 223 63 Lund (Sweden); Deng, Liang–Wei, E-mail: dengliangwei@caas.cn [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041 (China); Southwest Collaborative Innovation Center of Swine for Quality & Safety, Chengdu 611130 (China); Long, Yan; Fan, Zhan–Hui [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China)

    2015-04-15

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  3. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin; Deng, Liang–Wei; Long, Yan; Fan, Zhan–Hui

    2015-01-01

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d) −1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g −1 VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L −1 . Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L −1 . The maximal volumetric biogas production rate of 2.34 L·(L d) −1 and biogas yield of 0.649 L g −1 VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s −1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  4. Fermentation process for alcoholic beverage production from mahua ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-09-25

    Sep 25, 2013 ... Key words: Madhuca indica, ethanol, reducing sugar, fermentation. ... The mahua flowers obtained were cleaned and dried in hot air oven at 60°C ... methanol in the fermented sample was determined with the help of.

  5. Real-Time Monitoring of Chemical Changes in Three Kinds of Fermented Milk Products during Fermentation Using Quantitative Difference Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Lu, Yi; Ishikawa, Hiroto; Kwon, Yeondae; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2018-02-14

    Fermented milk products are rising in popularity throughout the world as a result of their health benefits, including improving digestion, normalizing the function of the immune system, and aiding in weight management. This study applies an in situ quantitative nuclear magnetic resonance method to monitor chemical changes in three kinds of fermented milk products, Bulgarian yogurt, Caspian Sea yogurt, and kefir, during fermentation. As a result, the concentration changes in nine organic compounds, α/β-lactose, α/β-galactose, lactic acid, citrate, ethanol, lecithin, and creatine, were monitored in real time. This revealed three distinct metabolic processes in the three fermented milk products. Moreover, pH changes were also determined by variations in the chemical shift of citric acid during the fermentation processes. These results can be applied to estimate microbial metabolism in various flora and help guide the fermentation and storage of various fermented milk products to improve their quality, which may directly influence human health.

  6. Secondary Metabolites Production by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barrios-González, J.

    2005-01-01

    Full Text Available Microbial secondary metabolites are useful high value products with an enormous range of biological activities. Moreover, the past two decades have been a phase of rapid discovery of new activities and development of major compounds for use in different industrial fields, mainly pharmaceuticals, cosmetics, food, agriculture and farming. Many of these metabolites could be produced advantageously in industry by solid–state fermentation (SSF. Two types of SSF can be distinguished, depending on the nature of the solid phase used: 1 Solid cultures of one support-substrate phase in which solid phase is constituted by a material that assumes, simultaneously, the functions of support and of nutrients source; and 2 Solid cultures of two substrate-support phases: solid phase is constituted by an inert support impregnated with a liquid medium. Besides good production performance, two phases systems have provided a convenient model for basic studies. Studies in our laboratory, as well as in others, have shown that physiology of idiophase (production phase in SSF share several similarities with the physiology in liquid medium, so similar strategies must be adapted for efficient production processes. However, our studies indicate the need to develop special strains for SSF since overproducing strains, generated for liquid fermentation, cannot be relied upon to perform well in SSF. On the other hand, there are important parameters, specific for SSF, that have to be optimized (pretreatment, initial moisture content, medium concentration and aeration. Respiration studies of secondary metabolites SSF, performed in our laboratory, have shown more subtle aspects of efficient production in SSF. This indicates that there are certain particularities of physiology in SSF that represent the point that needs a better understanding, and that promise to generate knowledge that will be the basis for efficient processes development and control strategies, as well as for

  7. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation.

    Science.gov (United States)

    Park, Doo Hyun

    2018-04-24

    Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO 2 -rich environments (CO 2 ) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO 2 , respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO 2 (CO 2 -fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO 2 -fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87-0.06 and 0.46-0.01 in CC-fermenting kimchi, and 1.65-0.44 and 0.63-0.12 in CO 2 -fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO 2 . I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.

  8. Assessment of the probiotic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets.

    Science.gov (United States)

    Cousin, Fabien J; Foligné, Benoît; Deutsch, Stéphanie-Marie; Massart, Sébastien; Parayre, Sandrine; Le Loir, Yves; Boudry, Gaëlle; Jan, Gwénaël

    2012-08-15

    Dairy propionibacteria, including Propionibacterium freudenreichii , display promising probiotic properties, including immunomodulation. These properties are highly strain-dependent and rarely studied in a fermented dairy product. We screened 10 strains, grown in a newly developed fermented milk ultrafiltrate, for immunomodulatory properties in vitro. The most anti-inflammatory strain, P. freudenreichii BIA129, was further tested on piglets. P. freudenreichii -fermented product improved food intake and growth of piglets. Colonic mucosa explants of treated pigs secreted less interleukin 8 (-25%, P dairy propionibacteria-fermented products, which are promising for the prevention or healing of inflammatory bowel diseases.

  9. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  10. Traditional Turkish Fermented Cereal Based Products: Tarhana, Boza and Chickpea Bread

    Directory of Open Access Journals (Sweden)

    Hasan Tangüler

    2014-04-01

    Full Text Available Fermented products are one of the important foodstuffs in many countries of the world. People have gradually recognized the nutritional, functional and therapeutic value of these products and this has made them even more popular. Today, almost all consumers have a significant portion of their nutritional requirements fulfilled through these products. Scientific and technological knowledge is quite well developed for some fermented products such as wine, beer, cheese, and bread. These products are produced universally. However, scientific knowledge for some traditional foods produced locally in Turkey is still poor and not thorough. Numerous traditional, cereal-based fermented foods are produced in Turkey. The aim of this paper is to provide knowledge regarding the characterization, raw materials used for production, production methods, fermentation conditions and microorganisms which are effective in the fermentation of traditional foods. The study will focus on Boza, Tarhana, and Chickpea bread which are foods widely produced in Turkey.

  11. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    Science.gov (United States)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  12. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  13. Continuous dry fermentation of swine manure for biogas production.

    Science.gov (United States)

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui

    2015-04-01

    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  15. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    Science.gov (United States)

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of methanogenic effluent recycle on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J.T.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Most research on fermentative hydrogen production has focused on optimizing the process and not on the practicalities of pH control although active pH control in a hydrogen reactor is necessary for stable and efficient performance. Batch experiments have shown that hydrogen ceases to be produced when there is no pH control. This study determined if recycle effluent from the methane reactor of a two-phase hydrogen-producing system would reduce the external alkali needed for pH control in a hydrogen reactor. It also determined if recycle affected the performance of the hydrogen reactor and the overall two-phase system. This paper describes the experimental laboratory-scale, two-phase hydrogen producing system which was operated alternately with and without effluent recycle from a methane reactor to the hydrogen reactor. The two-phase hydrogen producing system yielded 5.7 times more energy recovery than that obtained by the fermentative hydrogen producing reactor alone. The use of effluent from the methane reactor can reduce the operational cost of external alkali for pH control. 6 refs., 5 figs.

  17. The influence of petroleum products on the methane fermentation process.

    Science.gov (United States)

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of Mode of Fermentation on Production of Polygalacturonase by a Novel Strain of Streptomyces lydicus

    Directory of Open Access Journals (Sweden)

    Nicemol Jacob

    2006-01-01

    Full Text Available Production of different pectinolytic enzymes was attempted using the actinomycete strain Streptomyces lydicus in submerged fermentation. Polygalacturonase and pectin lyase activities were detected in the culture supernatant, but the strain was not able to produce pectin esterase. Polygalacturonase production was studied in submerged, slurry-state and solid-state fermentation systems. All the experiments were carried out under static and shaking conditions. Solid-state fermentation under static condition was found to be promising. Various agroindustrial residues were tried as substrates for solid-state fermentation. Wheat bran was proved to be the best substrate.

  19. Chemical properties and colors of fermenting materials in salmon fish sauce production

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Nakano

    2018-02-01

    Full Text Available This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce (moromi, and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format. Keywords: Fish sauce, Chum salmon, Fermentation, Chemical properties, Color

  20. The effect of fermentation temperature on the functional dairy product quality

    Directory of Open Access Journals (Sweden)

    Kanurić Katarina G.

    2011-01-01

    Full Text Available The aim of this study was to examine the possibility of fermented dairy beverage production by the application of kombucha cultivated on thyme tea in combination with a probiotic starter and to evaluate the quality of the new functional product. Fermented dairy beverages are produced from milk with 1.6% milk fat at three fermentation temperatures: 37°C, 40ºC and 43ºC.Chemical quality, rheological properties and products of added starter cultures metabolism were determined in the fermented dairy beverages after production and after10 days of storage. Produced fermented dairy beverages have reduced milk fat content and good textural characteristics. Besides the highly valuable milk components, they contain numerous compounds which have pronounced therapeutic properties. These products could be used as functional food in the diet of different populations for health improvement.

  1. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  2. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Mi-Sun Kim; You-Kwan Oh; Young-Su Yun; Dong-Yeol Lee

    2006-01-01

    Continuous H 2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H 2 -producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H 2 production rate increased but the H 2 production yield to glucose decreased gradually. The H 2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH 4 was detected during the operation. The maximal volumetric H 2 production rate and H 2 yield to glucose were 1714 mmol H 2 /L.d and 1.1 mol H 2 /mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H 2 production. (authors)

  3. Stillage reflux in food waste ethanol fermentation and its by-product accumulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Tashiro, Yukihiro; Sonomoto, Kenji

    2016-06-01

    Raw materials and pollution control are key issues for the ethanol fermentation industry. To address these concerns, food waste was selected as fermentation substrate, and stillage reflux was carried out in this study. Reflux was used seven times during fermentation. Corresponding ethanol and reducing sugar were detected. Accumulation of by-products, such as organic acid, sodium chloride, and glycerol, was investigated. Lactic acid was observed to accumulate up to 120g/L, and sodium chloride reached 0.14mol/L. Other by-products did not accumulate. The first five cycles of reflux increased ethanol concentration, which prolonged fermentation time. Further increases in reflux time negatively influenced ethanol fermentation. Single-factor analysis with lactic acid and sodium chloride demonstrated that both factors affected ethanol fermentation, but lactic acid induced more effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  5. Microbial production of four biodegradable siderophores under submerged fermentation.

    Science.gov (United States)

    Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu

    2016-07-01

    Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antibiotic susceptibility of enterococci isolated from traditional fermented meat products.

    Science.gov (United States)

    Barbosa, J; Ferreira, V; Teixeira, P

    2009-08-01

    Antibiotic susceptibility was evaluated for 182 Enterococcus spp. isolated from Alheira, Chouriça de Vinhais and Salpicão de Vinhais, fermented meat products produced in the North of Portugal. Previously, a choice was made from a group of 1060 isolates, using phenotypic and genotypic tests. From these, 76 were previously identified as Enterococcus faecalis, 44 as Enterococcus faecium, one as Enterococcus casseliflavus and 61 as Enteroccocus spp. In order to encompass several of the known chemical and functional classes of antibiotics, resistance to ampicillin, penicillin G, ciprofloxacin, chloramphenicol, erythromycin, nitrofurantoin, rifampicin, tetracycline and vancomycin was evaluated. All the isolates were sensitive to antibiotics of clinical importance, such as penicillins and vancomycin. Some differences in Minimal Inhibitory Concentrations (MICs) of antibiotics, could be associated with the enterococcal species.

  7. Fermentation Kinetic of Maize Straw-Gliricidia Feed Mixture Supplemented by Fermentable Carbohydrate Measured by In Vitro Gas Production

    Science.gov (United States)

    Yulistiani, D.; Nurhayati

    2018-02-01

    Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (Pfermentation and reduced methane production.

  8. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  9. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch

    2015-03-01

    Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.

  10. Microbiological Characteristics of Trachanas, a Traditional Fermented Dairy Product from Cyprus

    OpenAIRE

    Bozoudi, Despina; Agathokleous, Maria; Anastasiou, Iacovos; Papademas, Photis; Tsaltas, Dimitris

    2017-01-01

    The purpose of this study was to characterize the autochthonous microbiota of Cypriot Trachanas, a traditional fermented ewes’ milk product. For this reason, 12 samples of raw and fermented milk as well as natural starter culture were collected in order to count, isolate, and identify the main species present during Trachanas fermentation. In total, 198 colonies were retrieved and 163 were identified by sequencing analysis at species level. Lactic acid bacteria (LAB) were the predominant grou...

  11. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  12. Physical and textural characteristics of fermented milk products obtained by kombucha inoculums with herbal teas

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available In this investigation, kombucha fermented milk products were produced from milk with 1.6% milk fat using 10% (v/v kombucha inoculums cultivated on the extracts of peppermint and stinging nettle. The fermentation process was conducted at temperatures of 37, 40 and 43°C. Fermentation was stopped when the pH value of 4.5 was reached. The fermentation process was shortened with an increase of temperature. Physical characteristics of the fermented products were determined by using standard methods of analysis. Textural characteristics were determined by texture profile analysis. The obtained products showed good physical and textural characteristics, typical for the yoghurt-like products. [Projekat Ministarstva nauke Republike Srbije, br. III-46009

  13. Microbiological detection of probiotic microorganisms in fermented milk products

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2007-01-01

    Full Text Available A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp. and Lactobacillus rhamnosus. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, to reach health benefits, the concentration of probiotics have to be 106 CFU/g of a product. For assessing of required probiotic bacteria quantity, it is important to have a working method for selective enumeration of these probiotic bacteria. Five bacteriological media were evaluated to assess their suitability to selectively enumerate Streptococcus thermophilus, Lactobacillus rhamnosus, Lactobacillus acidophilus and Bifidobacterium spp. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar and BSM (Bifidus selective medium agar under different culture conditions.Seven selected fermented milk products with probiotic culture were analyzed for their bacterial populations using the described selective bacteriological media and culture conditions. All milk products contained probiotic microorganisms claimed to be present in declared quantity (106–107/g.

  14. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  15. Study on fermentation kinetics and extraction process of rhamnolipid production by papermaking wastewater

    Science.gov (United States)

    Yu, Keer

    2018-01-01

    Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.

  16. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production.

    Science.gov (United States)

    Duarte, Whasley Ferreira; Dias, Disney Ribeiro; de Melo Pereira, Gilberto Vinicius; Gervásio, Ivani Maria; Schwan, Rosane Freitas

    2009-04-01

    The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml(-1). During indigenous fermentation, yeast population increased from 3.7 log CFU ml(-1) to 8.1 log CFU ml(-1) after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.

  17. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  18. Quality, functionality, and shelf life of fermented meat and meat products: A review.

    Science.gov (United States)

    Kumar, Pavan; Chatli, M K; Verma, Akhilesh K; Mehta, Nitin; Malav, O P; Kumar, Devendra; Sharma, Neelesh

    2017-09-02

    Fermentation of meat is a traditional preservation method used widely for improving quality and shelf life of fermented meat products. Fermentation of meat causes a number of physical, biochemical, and microbial changes, which eventually impart functional properties, sensory characteristics, and nutritional aspects to these products and inhibit the growth of various pathogenic and spoilage microorganisms. These changes include acidification (carbohydrate catabolism), solubilization and gelation of myofibrillar and sarcoplasmic proteins of muscle, degradation of proteins and lipids, reduction of nitrate into nitrite, formation of nitrosomyoglobin, and dehydration. Dry-fermented sausages are increasingly being used as carrier of probiotics. The production of biogenic amines during fermentation can be controlled by selecting proper starter cultures and other preventive measures such as quality of raw materials, hygienic measures, temperature, etc.

  19. The Impact of Novel Fermented Products Containing Extruded Wheat Material on the Quality of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaiciulyte-Funk

    2011-01-01

    Full Text Available Lactobacillus sakei MI806, Pediococcus pentosaceus MI810 and Pediococcus acidilactici MI807, able to produce bacteriocin-like inhibitory substances, were originally isolated from Lithuanian spontaneous rye sourdough and adapted in the novel fermentation medium containing extruded wheat material. The novel fermented products (50 and 65 % moisture content were stored at the temperatures used in bakeries (15 days at 30–35 °C in the summer period or 20 days under refrigeration conditions at 0–6 °C. The number of lactic acid bacteria (LAB was determined during the storage of fermented products for 15–20 days. Furthermore, the effect of novel fermented products stored under different conditions on wheat bread quality was examined. Extruded wheat material was found to have a higher positive effect on LAB growth compared to the control medium by lowering the reduction of LAB populations in fermented products with the extension of storage time and increase of temperature. During storage, lower variation and lower decrease in LAB count were measured in the novel fermented products with a moisture content of 65 % compared to those with 50 %. Furthermore, this humidity allows for the production of a product with higher moisture content in continuous production processes. The addition of the new fermented products with 65 % humidity to the wheat bread recipe (10 % of the quantity of flour had a significant effect on bread quality: it increased the acidity of the crumb and specific volume of the bread, and decreased the fractal dimension of the crumb pores and crumb firmness. Based on the microbiological investigations of fermented products during storage and baking tests, the conditions of LAB cultivation in novel fermentation media were optimized (time of cultivation approx. 20 days at 0–6 °C and approx. 10 days at 30–35 °C.

  20. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g

  1. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  2. Estimation of protein fermentation in the large intestine of pigs using a gas production technique

    NARCIS (Netherlands)

    Cone, J.W.; Jongbloed, A.W.; Gelder, van A.H.; Lange, L.

    2005-01-01

    Proteolytic fermentation in the colon of pigs and the caecum of poultry can have negative effects on their performance and health due to formation of harmful end products. To reduce this, rations can be formulated with expected carbohydrate fermentation being higher in level, and rate, than that of

  3. Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium

    Directory of Open Access Journals (Sweden)

    Jixian Mo

    2015-05-01

    Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM; the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.

  4. Characterization and product innovation of sufu - a Chinese fermented soybean food

    NARCIS (Netherlands)

    Han, B.

    2003-01-01

     Over the centuries, Chinese people have consumed soybeans in various forms of traditional fermented soybean foods. Sufu ( Furu ), a cheese-like product originating in China, is one of the most popular fermented soybean foods in China, and is becoming popular

  5. Effects of fermentation conditions on the production of 4-α ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... studied the recombinant protein of human IGF-1 in rich and minimal ... recombinant protein A-β-lactamase compared to the medium pH at 7.0. ... shake flask fermentation and provided desired conditions for fermentation in 5 L ..... expression kinetics study in bioreactor, which would help to enhance cell ...

  6. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  7. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

    Science.gov (United States)

    He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng

    2018-04-15

    A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sustainable fermentative hydrogen production: challenges for process optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, F.R.; Dinsdale, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Applied Sciences; Hawkes, D.L.; Hussy, I. [University of Glamorgan, Pontypridd (United Kingdom). School of Technology

    2002-12-01

    This paper reviews information from continuous laboratory studies of fermentative hydrogen production useful when considering practical applications of the technology. Data from reactors operating with pure cultures and mixed microflora enriched from natural sources are considered. Inocula have been derived from heat-treated anaerobically digested sludge, activated sludge, aerobic compost and soil, and non-heat-treated aerobically composted activated sludge. Most studies are on soluble defined substrates, and there are few reports of continuous operation on complex substrates with mixed microflora to produce H{sub 2}. Methanogenesis which consumes H{sub 2} may be prevented by operation at short hydraulic retention times (around 8-12 h on simple substrates) and/or pH below 6. Although the reactor technology for anaerobic digestion and biohydrogen production from complex substrates may be similar, there are important microbiological differences, including the need to manage spore germination and oxygen toxicity on start-up and control sporulation in adverse circumstances during reactor operation. (Author)

  9. Genetic diversity for fermentable carbohydrates production in alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Y.; Bertrand, A.; Duceppe, M.O.; Dube, M.P.; Michaud, R. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2009-07-01

    Alfalfa has many attributes that renders it suitable for bioethanol production, including its adaptability to diverse environmental conditions without any need for nitrogen fertilizer. However research is needed to develop biofuel-type alfalfa with improved biomass production and standability, increased persistence, and better cell wall degradability. The ethanol conversion rates from alfalfa biomass could be increased by genetically improving the accumulation of readily fermentable non-structural carbohydrates (NSC). This presentation reported on a screening project where genotypes with superior cell wall degradability were identified. NSC accumulation within 300 genotypes was randomly selected within six genetic backgrounds from Europe and North America. Biochemical analyses of dried stems revealed a large genetic variability for NSC content, with concentrations ranging from 20 to 100 mg per g DW. NSC variability was considerably higher in a genetic background of European origin compared to the other populations, therefore emphasizing the potential for genetic improvement for that trait. A modified commercial enzymatic cocktail known as AcceleraseTM 1000 Genencor is being developed to optimize the degradation of alfalfa biomass. DNA extracted from genotypes with the highest and lowest cell wall degradability or NSC accumulation will be pooled and used for bulk segregant analysis of DNA polymorphisms using the PCR-based sequence-related amplified polymorphism technique. It was concluded that the commercial release of biofuel-type alfalfa can be accelerated if the genetic markers associated with these traits can be identified.

  10. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Yu, Zhang [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhenhong, Yuan; Yongming, Sun; Xiaoying, Kong [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2009-01-15

    The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. (author)

  11. Effect of production phase on bottle-fermented sparkling wine quality.

    Science.gov (United States)

    Kemp, Belinda; Alexandre, Hervé; Robillard, Bertrand; Marchal, Richard

    2015-01-14

    This review analyzes bottle-fermented sparkling wine research at each stage of production by evaluating existing knowledge to identify areas that require future investigation. With the growing importance of enological investigation being focused on the needs of the wine production industry, this review examines current research at each stage of bottle-fermented sparkling wine production. Production phases analyzed in this review include pressing, juice adjustments, malolactic fermentation (MLF), stabilization, clarification, tirage, lees aging, disgorging, and dosage. The aim of this review is to identify enological factors that affect bottle-fermented sparkling wine quality, predominantly aroma, flavor, and foaming quality. Future research topics identified include regional specific varieties, plant-based products from vines, grapes, and yeast that can be used in sparkling wine production, gushing at disgorging, and methods to increase the rate of yeast autolysis. An internationally accepted sensory analysis method specifically designed for sparkling wine is required.

  12. The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory

    Directory of Open Access Journals (Sweden)

    Vitas Jasmina S.

    2013-01-01

    Full Text Available This paper investigates the antioxidant activity of fermented milk products obtained by kombucha fermentation. Two starter cultures were used as follows: starter obtained after kombucha fermentation on sweetened stinging nettle extract; as well as starter obtained after kombucha fermentation on sweetened winter savory extract. The starters were added to milk with 0.8, 1.6 and 2.8% milk fat. Fermentation was carried out at 37, 40 and 43oC and stopped when the pH reached 4.5. Antioxidant activity to hydroxyl and DPPH radicals was monitored using response surface methodology. Kombucha fermented milk products with stinging nettle (KSN and with winter savory (KWS showed the same antioxidant response to hydroxyl and different response to DPPH radicals. Synergetic effect of milk fat and fermentation temperature to antioxidant activity to hydroxyl radicals for both types of kombucha fermented milk products (KSN and KWS was established. Optimum processing conditions in term of antioxidant activity are: milk fat around 2.8% and process temperature around 41 and 43°C for KSN and KWS respectively.

  13. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  14. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    Directory of Open Access Journals (Sweden)

    Yujin Cao

    2013-01-01

    Full Text Available Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed.

  15. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  16. Methane Production of Different Forages in Ruminal Fermentation

    Directory of Open Access Journals (Sweden)

    S. J. Meale

    2012-01-01

    Full Text Available An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM ranged from 671 to 713 (grasses, 377 to 590 (leguminous shrubs and 288 to 517 (non-leguminous shrubs. After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05 within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

  17. Microbiological Characteristics of Trachanas, a Traditional Fermented Dairy Product from Cyprus

    Directory of Open Access Journals (Sweden)

    Despina Bozoudi

    2017-01-01

    Full Text Available The purpose of this study was to characterize the autochthonous microbiota of Cypriot Trachanas, a traditional fermented ewes’ milk product. For this reason, 12 samples of raw and fermented milk as well as natural starter culture were collected in order to count, isolate, and identify the main species present during Trachanas fermentation. In total, 198 colonies were retrieved and 163 were identified by sequencing analysis at species level. Lactic acid bacteria (LAB were the predominant group, followed by yeasts. Lactococcus, Lactobacillus, and Enterococcus were frequently isolated from raw milk, and Lactobacillus casei/paracasei predominated in the starter culture. Lactococcus lactis was isolated in high frequency (27.9% of the isolates at the beginning, while Lactobacillus spp. (20% and Saccharomyces unisporus (17.9% were isolated at the end of fermentation. After assessing their technological potential, selected strains could be used as starters to ferment milk for artisanal Trachanas production.

  18. Yeast dynamics during spontaneous fermentation of mawe and tchoukoutou, two traditional products from Benin

    DEFF Research Database (Denmark)

    Greppi, Anna; Rantisou, Kalliopi; Padonou, Wilfrid

    2013-01-01

    Mawe and tchoukoutou are two traditional fermented foods largely consumed in Benin, West Africa. Their preparations remain as a house art and they are the result of spontaneous fermentation processes. In this study, dynamics of the yeast populations occurring during spontaneous fermentations...... of mawe and tchoukoutou were investigated using both culture-dependent and -independent approaches. For each product, two productions were followed. Samples were taken at different fermentation times and yeasts were isolated, resulting in the collection of 177 isolates. They were identified by the PCR......-DGGE technique followed by the sequencing of the D1/D2 domain of the 26S rRNA gene. The predominant yeast species identified were typed by rep-PCR. Candida krusei was the predominant yeast species in mawe fermentation followed by Candida glabrata and Kluyveromyces marxianus. Other yeast species were detected...

  19. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Madsen, M.; Sophanodora, P.

    2002-01-01

    % salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation....... LAB counts increased to 108-109 cfu g-1 and yeast counts to 107-5 x 107 cfu g-1 in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus......Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7...

  20. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  1. Economic and process optimization of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report demonstrates by computer simulation the economic advantages of extractive fermentation on an industrial scale compared to the best alternative technology currently available. The simulations were based on a plant capacity of 100 x 10 6 L/y of azeotropic ethanol. The simulation results were verified with a fully integrated, computer controlled extractive fermentation process demonstration unit based around a 7 L fermentor operated with a synthetic glucose medium and using Saccharomyces cerevisiae. The system was also operated with natural substrates (blackstrap molasses and grain hydrolyzate). Preliminary tests with the organism Zymomonas mobilis were also carried out under extractive fermentation conditions.

  2. Study of the optimal production process and application of apple fruit (malus domestica (l.) borkh) fermentation

    International Nuclear Information System (INIS)

    Zhang, J.; Shao, W.; Ziang, R.

    2015-01-01

    In orchard production, fruit abscission is common due to insect damage, disease, crop thinning and natural dropping. However, the utilization of these discarded plant resources has received little research attention. In this study, we used apple fruit from such plant resources, mainly young and mature dropped fruit, as materials and mixed them with a fermentation agent, brown sugar and water. The effects of the proportion of fermentation agent and the fermentation conditions (O2, temperature, fermenting time and fruit crushing degree) were studied using an orthogonal experimental design. We discovered a novel fermented fertilizer, apple fruit fermentation nutrient solution (AFF), for which the optimal fermentation formula and conditions were comminuted young apples: fermentation agent: brown sugar: water weight ratio of 5:0.1:1:4 and 45 days of aerobic fermentation. Analysis of the fermentation solutions showed that the supernatant obtained using these optimized parameters had the highest mineral element content among the fermentation formulas and conditions studied. The results of a spraying experiment with 200-, 500- and 800-fold dilutions showed that AFF significantly promoted the net photosynthetic rate, leaf area and thickness, specific leaf weight, and chlorophyll and mineral element content in the leaves of young apple trees relative to the control treatment. The effects of 200-fold diluted AFF on the photosynthetic rate, the developmental quality and mineral element contents were greater than those of the 500- and 800-fold dilutions. The results of the spraying of adult trees with 200-fold diluted AFF compared to a water control demonstrated that AFF significantly enhanced the average weight of a single fruit, the shape index, hardness, content of soluble solids, titratable acid content, vitamin C content, and aroma compound content of the fruit of the adult trees. This evidence suggests that the AFF obtained using the optimal production process could

  3. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Liu, Lifang; Petranovic, Dina

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes....

  4. Digestibility, Milk Production, and Udder Health of Etawah Goats Fed with Fermented Coffee Husk

    Directory of Open Access Journals (Sweden)

    I. Badarina

    2015-04-01

    Full Text Available This study was carried out to assess the utilization of coffee husk fermented by Pleurotus ostreatus as feed supplement by measuring the digestibility, milk production and udder health of Etawah goats suffered from subclinical mastitis (+1. There were three experimental diets consisted of T0 (control diet/basal diet without fermented coffee husk, T1 (basal diet with 6% fermented coffee husk and T2 (basal diet with 6% fermented coffee husk soaked in crude palm oil for an hour before using. Basal diet consisted of napier grass (60% and concentrate (40%. The results showed that supplementation of lactating Etawah does with fermented coffee husk did not affect the palatability of the diets, but increased the protein and crude fiber consumption (P<0.05. There was no significant effect on nutrient digestibility and milk production while milk composition (protein, fat, total solid increased in supplemented groups (P<0.05. The persistency of milk production and the somatic cells count were not different. There was an improvement of somatic cells count on supplemented groups. In conclusion, fermented coffee husk could be used as feed supplement without any negative effects on digestibility and milk production. The positive effects to udder health could be expected from including fermented coffee husk in diets.

  5. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A REVIEW OF PERVAPORATION FOR PRODUCT RECOVERY FROM BIOMASS FERMENTATION PROCESSES

    Science.gov (United States)

    Although several separation technologies are technically capable of removing volatile products from fermentation broths, distillation remains the dominant technology. This is especially true for the recovery of biofuels such as ethanol. In this paper, the status of an emerging m...

  7. In vitro ruminal fermentation and methane production of different seaweed species

    DEFF Research Database (Denmark)

    Molina-Alcaide, E.; Carro, M.D.; Roleda, M. Y.

    2017-01-01

    production kinetics and in vitro rumen fermentation in batch cultures of ruminal microorganisms. The seaweeds were three red species (Mastocarpus stellatus, Palmaria palmata and Porphyra sp.), three brown species (Alaria esculenta, Laminaria digitata and Pelvetia canaliculata) and one green species...

  8. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  9. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  10. Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production

    International Nuclear Information System (INIS)

    Chng, Lee Muei; Lee, Keat Teong; Chan, Derek Juinn Chieh

    2017-01-01

    Highlights: • Biomass of Scenedesmus dimorphus is degradable to produce fermentable sugar. • Sugar yield improves with acidic, enzymatic and organosolv pretreatment. • Pretreatment strategies are positively correlated with fermentation process. • SSF with organosolv-treated biomass is promising for bioethanol production. - Abstract: Significant development in conversion technologies to produce bioethanol from microalgae biomass is causing paradigm-shift in energy management. In this study, carbohydrate-rich microalgae, Scenedesmus dimorphus (49% w/w of carbohydrate) is selected with the aim to obtain qualitative correlation between pretreatment and fermentation process. In view of this, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) were conducted experimentally. The fermentation behavior were investigated for microalgae biomass treated via organosolv, enzymatic and acidic pretreatment. Fermentation process was carried out by ethanologen microbe, Saccharomyces cerevisiae. From the result, it is observed that a combination of two treatment is found to be the most effective in producing fermentable sugar for the subsequent fermentation process. The organosolv treatment which is followed with the SSF process produced a theoretical yield of bioethanol that exceeded 90%. On the other hand, hydrothermal acid-hydrolyzed fermentation produced the bioethanol yield with 80% of its theoretical yield. Enzymatic-hydrolyzed SHF produced 84% of theoretical yield at longer reaction time compared with others. The results were obtained with constant fermentation parameters conducted at pH 5, temperature of 34 °C, and microalgae biomass loading at 18 g/L. Ultimately, the coupling of organosolv-treated biomass with SSF process is found to be the most cost-effective for S. dimorphus biomass as bioethanol feedstock.

  11. Solid-state fermentation: a continuous process for fungal tannase production.

    Science.gov (United States)

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. Copyright 2004 Wiley Periodicals, Inc.

  12. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    Science.gov (United States)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  13. Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products

    Science.gov (United States)

    Champagne, Claude P.; Lee, Byong H.; Saucier, Linda

    Historically, we can find fermented products in almost all cultural backgrounds around the world. Notably, there are many different milk or meat-based foods and this chapter will focus on them (Kosikowski 1982; Wood 1998). Cheese, yoghurt, sour cream, kefir, or cultured butter are probably the most common fermented dairy products, but many regional varieties exist (Farnworth 2004). Fermented meats are typically found as dry sausages (Lüke 1998). Yeasts are mostly involved in the manufacture of bread and alcoholic beverages, which are basically cereal- or fruit-based products. In fermented meat and milk, the main microorganisms used are the lactic acid bacteria (LAB). Yeast and molds are rather involved in ripening. Therefore, the LAB will constitute the main focus of this chapter.

  14. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  15. Production of citric acid from whey permeate by fermentation using Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M; Brooks, J D

    1983-08-01

    The use of lactic casein whey permeate as a substrate for citric acid production by fermentation has been investigated. Using a mutant strain of Aspergillus niger IMI 41874 in fermenter culture, a citric acid concentration of 8.3 g/l, representing a yield of 19% (w/w) based on lactose utilized, has been observed. Supplementation of the permeate with lactose (final concentration 140 g/l) increased the production to 14.8 g/l (yield 23%). The natural pH of the permeate (pH 4.5) was the most suitable initial pH for the process, and pH control during the fermentation was unnecessary. The addition of methanol (final concentration 3% v/v) to the fermentation increased the citric acid production to 25 g/l (yield 33%, based on lactose utilized). 13 references.

  16. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  17. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Solid-state fermentation from dried sweet sorghum stalk for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Omidi, A. [Univ. of Isfahan, Biology Dept., Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Due to depletion of global crude oil, countries are interested to alternate fuel energy resources. Presently bioethanol as a source of energy has been a subject of great interest for the industrialized countries. Therefore, there is need for efficient bioethanol production with low cost raw material and production process. Among energy crops, sweet sorghum is the best candidate for bioethanol production. It has been identified as having higher drought tolerance, lower input cost and higher biomass yield than other energy crops. In addition it has wide adoptability and tolerance to abiotic stresses. Moreover due to the shortage of water in dry and hot countries there is a need to reduce water requirement for bioethanol production and solid state fermentation could be the best process for making bioethanol in these countries. The purpose of this study is to achieve the highest ethanol production with lowest amount of water in solid state fermentation using sweet sorghum stalk. In this study the sweet sorghum particles were used for solid state fermentation. Fermentation medium were: sweet sorghum particles with nutrient media, active yeast powder and different moisture contents. The fermentation medium was incubated for 2-3 days at 30 deg C temperature. The results showed sweet sorghum particles (15% w/w) fermented in medium containing 0.5% yeast inoculums, 73.5% moisture content and 3 days incubation period produced the highest amount of ethanol (13% w/w sorghum)

  19. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  20. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  1. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production.

    Science.gov (United States)

    Dikshit, Pritam Kumar; Padhi, Susant Kumar; Moholkar, Vijayanand S

    2017-11-01

    In present study, statistical optimization of biodiesel-derived crude glycerol fermentation to DHA by immobilized G. oxydans cells over polyurethane foam is reported. Effect of DHA (product) inhibition on crude glycerol fermentation was analyzed using conventional biokinetic models and new model that accounts for both substrate and product inhibition. Optimum values of fermentation parameters were: pH=4.7, temperature=31°C, initial substrate concentration=20g/L. At optimum conditions, DHA yield was 89% (17.83g/L). Effect of product inhibition on fermentation was trivial for DHA concentrations ≤30g/L. At higher concentrations (≥50g/L), kinetics and yield of fermentation showed marked reduction with sharp drop in V max and K S values. Inhibition effect was more pronounced for immobilized cells due to restricted transport of fermentation mixture across polyurethane foam. Retention of fermentation mixture in immobilized matrix resulted in higher localized DHA concentration that possibly enhanced inhibition effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pyrosequencing Analysis of the Microbial Diversity of Airag, Khoormog and Tarag, Traditional Fermented Dairy Products of Mongolia

    OpenAIRE

    OKI, Kaihei; DUGERSUREN, Jamyan; DEMBEREL, Shirchin; WATANABE, Koichi

    2014-01-01

    Here, we used pyrosequencing to obtain a detailed analysis of the microbial diversities of traditional fermented dairy products of Mongolia. From 22 Airag (fermented mare’s milk), 5 Khoormog (fermented camel’s milk) and 26 Tarag (fermented milk of cows, goats and yaks) samples collected in the Mongolian provinces of Arhangai, Bulgan, Dundgobi, Tov, Uburhangai and Umnugobi, we obtained a total of 81 operational taxonomic units, which were assigned to 15 families, 21 genera and 41 species in 3 ...

  3. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.

    Science.gov (United States)

    Arrizon, Javier; Fiore, Concetta; Acosta, Guillermina; Romano, Patrizia; Gschaedler, Anne

    2006-01-01

    Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l(-1)) and low (30 g l(-1)) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l(-1) of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.

  4. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  5. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    Science.gov (United States)

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  6. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    Science.gov (United States)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  7. Production of lactic acid from corn cobs through fermentation lactobacillus delbruekii

    International Nuclear Information System (INIS)

    Ali, Z.; Anjum, M.; Zahoor, T.

    2007-01-01

    Corn cobs were used as the source of reducing sugars for conversion into lactic acid through fermentation by a local strain of Lactobacillus delbruekii, under varying parameters of time, temperature, pH and glucose concentration, The production of lactic acid significantly increased with increase in Ph, fermentation time and glucose concentration (1-5%) and was significantly high (8.40 g/1) at pH 6, while significantly low (7.67 g/1) at pH 5. (author)

  8. Monitoring of metabolites and by-products in a down-scaled industrial lager beer fermentation

    OpenAIRE

    Sjöström, Fredrik

    2013-01-01

    The sugar composition of the wort and how these sugars are utilised by the yeast affects the organoleptic properties of the beer. To monitor the saccharides in the wort before inoculation and during fermentation is important in modern brewing industry. Reducing the duration of the brewing process is valuable and can be achieved by reducing the fermentation time by an increase in temperature. However, this must be done without changing the quality and characteristics of the end product, anothe...

  9. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    OpenAIRE

    Lin,Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxyl...

  10. Ethanol production in an integrated fermentation/membrane system. Process simulations and economics

    Energy Technology Data Exchange (ETDEWEB)

    Groot, W J; Kraayenbrink, M R; Lans, R.G.J.M. van der; Luyben, K C.A.M. [Delft Univ. of Technology (Netherlands). Dept. of Biochemical Engineering

    1993-01-01

    Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices. (orig.).

  11. Aureobasidium pullulans Fermented Feruloyl Oligosaccharide: Optimization of Production, Preliminary Characterization, and Antioxidant Activity

    OpenAIRE

    Xiaohong Yu; Zhenxin Gu

    2013-01-01

    Wheat bran (WB) was subjected to processing with Aureobasidium pullulans (A. pullulans) under selected conditions to partially break down the xylan into soluble products (mainly feruloyl oligosaccharides, FOs). The objective of this study was to investigate the technology for one-step fermentation of WB by A. pullulans without melanin secretion to produce FOs as well as to determine their structural features and antioxidant activity. Initial pH, inoculation quantity, and fermentation temperat...

  12. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    Science.gov (United States)

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    Science.gov (United States)

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures

    KAUST Repository

    Selembo, Priscilla A.

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H 2/mol-glycerol (72 mL-H2/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H2/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H 2/mol-glycerol (43 mL H2/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste. © 2009 Wiley Periodicals, Inc.

  15. Fermentative intensity of L-lactic acid production using self ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-25

    May 25, 2016 ... Full Length Research Paper. Fermentative ... This study investigated the medium compositions for .... shaker for 12 or 24 h (12 h for stirred tank fermentor, 24 h for flask) at 32°C, with ..... was about 5% of relative error when compared with .... Rhizopus Oryzae in 3-L airlift bioreactor using response surface.

  16. Saccharomyces cerevisiae in the Production of Fermented Beverages

    Directory of Open Access Journals (Sweden)

    Graeme M Walker

    2016-11-01

    Full Text Available Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane in the case of rums, or from fruits (which do not require pre-hydrolysis in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.

  17. Processing and fermentation of Jerusalem artichoke for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.A.; Ziobro, G.

    1982-01-01

    Processing and fermentation trials on Jerusalem artichoke (Helianthus tuberosus) tubers, and on pure inulin media were carried out. Acid and thermal treatments, pure and mixed cultures of yeast, and enzyme preparations were investigated. Best EtOH yields on either substrate were obtained with pH 2 thermal treatments, resulting in 131.6lEtOH/ton fresh tuber.

  18. Bioethanol production from date palm fruit waste fermentation using ...

    African Journals Online (AJOL)

    CDPW is a renewable and sustainable resource of energy that is not greatly used in industries. The date is rich in biodegradable sugars, providing bioethanol after fermentation during 72 h at 30°C in the presence of Saccharomyces cerevisiae yeast and the distillation of date's juice obtained. In the first experience, a solar ...

  19. Optimization of fermentation medium for enhanced production of ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... The Plackett-Burman design indicated that yeast extract, soybean flour, KH2PO4, FeSO4 .... Extraction and HPLC analysis of the milbemycin ... performed with an Agilent 1200 HPLC system and the elution was detected at ..... fermentation, isolation, structural elucidation and biological activities. J. Antibiot.

  20. Food Grade Ehanol Production With Fermentation And Distillation Process Using Stem Sorghum

    Directory of Open Access Journals (Sweden)

    Yuliana Setyowati

    2015-03-01

    Full Text Available 10% -12% of sugar in its stem which is the optimum sugar concentration in fermentation process for bioethanol production. Sorghum has a high potential to be developed as a raw material for food-grade ethanol production which can be used to support food-grade ethanol demand in Indonesia through a fermentation process. This research focused on the effect of microorganism varieties in the fermentation process which are mutant Zymomonas mobilis (A3, Saccharomyces cerevisiae and Pichia stipitis mixture. The Research for purification process are separated into two parts, distillation with steel wool structured packing and dehydration process using molecular sieve and eliminating impurities using activated carbon. The research can be concluded that the best productivity shown in continuous fermentation in the amount of 84.049 (g / L.hr using the mixture of Saccharomyces cerevisiae and Pichia stipitis. The highest percentage of ethanol yield produced in batch fermentation using the mixture of Saccharomyces cerevisiae and Pichia stipitis that is equal to 51.269%. And for the adsorption, the best result shown in continuous fermentation by using Zymomonas Mobilis of 88.374%..

  1. Modeling of fermentative hydrogen production from sweet sorghum extract based on modified ADM1

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The Anaerobic digestion model 1 (ADM1) framework can be used to predict fermentative hydrogen production, since the latter is directly related to the acidogenic stage of the anaerobic digestion process. In this study, the ADM1 model framework was used to simulate and predict the process...... used for kinetic parameter validation. Since the ADM1 does not account for metabolic products such as lactic acid and ethanol that are crucial during the fermentative hydrogen production process, the structure of the model was modified to include lactate and ethanol among the metabolites and to improve...... of fermentative hydrogen production from the extractable sugars of sweet sorghum biomass. Kinetic parameters for sugars’ consumption and yield coefficients of acetic, propionic and butyric acid production were estimated using the experimental data obtained from the steady states of a CSTR. Batch experiments were...

  2. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  3. Oxidative Stability and Sensory Attributes of Fermented Milk Product Fortified with Fish Oil and Marine Phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Thomsen, Birgitte Raagaard; Hyldig, Grethe

    2013-01-01

    Marine phospholipids (PL) are potential ingredients for food fortification due to its numerous advantages. The main objective of this study was to investigate whether a fermented milk product fortified with a mixture of marine PL and fish oil had better oxidative stability than a fermented milk...... product fortified with fish oil alone. Fortification of a fermented milk product with marine PL was performed by incorporating 1 % w/w lipids, either in the form of neat oil or in the form of a pre-emulsion. Lipid oxidation was investigated in the neat emulsions and fortified products by the measurements...... of primary, secondary volatile oxidation products and tocopherol content upon 32 days storage at 2 °C and 28 days storage at 5 °C, respectively. Analyses of particle size distribution, viscosity and microbial growth were also performed. In addition, sensory attributes such as sour, fishy and rancid flavor...

  4. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Directory of Open Access Journals (Sweden)

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  5. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    Science.gov (United States)

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  6. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    Science.gov (United States)

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  7. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.

    Science.gov (United States)

    Kawaguchi, Hideo; Katsuyama, Yohei; Danyao, Du; Kahar, Prihardi; Nakamura-Tsuruta, Sachiko; Teramura, Hiroshi; Wakai, Keiko; Yoshihara, Kumiko; Minami, Hiromichi; Ogino, Chiaki; Ohnishi, Yasuo; Kondo, Ahikiko

    2017-07-01

    Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  8. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  9. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Valyasevi, R.; Huss, Hans Henrik

    2002-01-01

    AIMS: To evaluate the importance of garlic for fermentation of a Thai fish product, and to differentiate among garlic-/inulin-fermenting lactic acid bacteria (LAB) at strain level. METHODS AND RESULTS: Som-fak was prepared by fermentation of a mixture of fish, salt, rice, sucrose and garlic. p......H decreased to 4.5 in 2 days, but omitting garlic resulted in a lack of acidification. LAB were predominant and approximately one third of 234 isolated strains fermented garlic and inulin (the carbohydrate reserve in garlic). These strains were identified as Lactobacillus pentosus and Lact. plantarum...... AND IMPACT OF THE STUDY: The present study indicates the role of fructans (garlic/inulin) as carbohydrate sources for LAB. Fructan fermenters may have several biotechnological applications, for example, as probiotics....

  10. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    Science.gov (United States)

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  11. Procyanidin A2 and Its Degradation Products in Raw, Fermented, and Roasted Cocoa.

    Science.gov (United States)

    De Taeye, Cédric; Caullet, Gilles; Eyamo Evina, Victor Jos; Collin, Sonia

    2017-03-01

    Cocoa is known as an important source of flavan-3-ols, but their fate "from the bean to the bar" is not yet clear. Here, procyanidin A2 found in native cocoa beans (9-13 mg/kg) appeared partially epimerized into A2 E1 through fermentation, whereas a second epimer (A2 E2 ) emerged after roasting. At m/z 575, dehydrodiepicatechin A was revealed to be the major HPLC peak before fermentation, whereas F1, a marker of well-conducted fermentations, becomes the most intense after roasting. RP-HPLC-ESI(-)-HRMS/MS analysis performed on a procyanidin A2 model medium after 12 h at 90 °C revealed many more degradation products than those identified in fermented cocoa, including the last epimer of A2, A2 open structure intermediates (m/z 577), and oxidized A-type dimers (m/z 573).

  12. The effect of fermentable carbohydrate on sporulation and butanol production by Clostridium acetobutylicum P262

    Energy Technology Data Exchange (ETDEWEB)

    Awang, G.M.; Ingledew, W.M.; Jones, G.A. (Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Applied Microbiology and Food Science)

    1992-10-01

    This study was conducted to determine whether or not a variation in the type of carbohydrate fermented by Clostridium acetobutylicum could be exploited to inhibit sporulation during the butanol-producing phase of fermentation and thus enhance butanol production. C. acetobutylicum P262 was found to ferment a wide variety of carbohydrates, but butanol production was not necessarily enhanced when percentage sporulation was low. Butanol concentration was more related to the total amount of acidic end-products (acetic and butyric acid) reutilized by the microorganism for solvent production and to the type and amount of carbohydrate utilized. Fermentation of cellobiose led to conditions resulting in complete acid reutilization and the highest butanol concentration (10.4-10.6 g/l). In cultures containing a mixture of glucose and cellobiose, glucose repression of cellobiose utilization resulted in lower butanol concentrations (6.6-7.5 g/l). Sporulation was dependent on the type of carbohydrate utilized by the microorgamism. Glucose had a greater enhancing effect on the sporulation process (22-42%) than starch (9-12%) or cellobiose (22-34%). It was concluded that whereas the type of carbohydrate fermented has a specific effect on the extent of sporulation of a culture, conditions of low sporulation did not enhance butanol concentration unless carbohydrate utilization and the reutilization of acidic products were high. (orig.).

  13. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  14. Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products.

    Science.gov (United States)

    Ghosh, Debasree; Chattopadhyay, Parimal

    2012-06-01

    The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.

  15. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    Science.gov (United States)

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  16. Detoxification and fermentation of pyrolytic sugar for ethanol production.

    Science.gov (United States)

    Wang, Hui; Livingston, Darrell; Srinivasan, Radhakrishnan; Li, Qi; Steele, Philip; Yu, Fei

    2012-11-01

    The sugars present in bio-oil produced by fast pyrolysis can potentially be fermented by microbial organisms to produce cellulosic ethanol. This study shows the potential for microbial digestion of the aqueous fraction of bio-oil in an enrichment medium to consume glucose and produce ethanol. In addition to glucose, inhibitors such as furans and phenols are present in the bio-oil. A pure glucose enrichment medium of 20 g/l was used as a standard to compare with glucose and aqueous fraction mixtures for digestion. Thirty percent by volume of aqueous fraction in media was the maximum additive amount that could be consumed and converted to ethanol. Inhibitors were removed by extraction, activated carbon, air stripping, and microbial methods. After economic analysis, the cost of ethanol using an inexpensive fermentation medium in a large scale plant is approximately $14 per gallon.

  17. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    Directory of Open Access Journals (Sweden)

    Fortune Akabanda

    2014-01-01

    Full Text Available Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities. Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures.

  18. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  19. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Pedraza de la Cuesta, S.; van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2018-01-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming

  20. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.

    Science.gov (United States)

    Zhang, Liang; Li, Zhiqiang; Dai, Bing; Zhang, Wenxue; Yuan, Yongjun

    2013-09-01

    Monascus pigments, which are produced by various species of Monascus, often have been used as a natural colourant and as traditional natural food additives, especially in Southern China, Japan and Southeastern Asia. The limitation of wide using Monascus pigment is attributed to one of its secondary metabolites named citrinin. The aim of this study was to investigate the influence of pigment and citrinin production via submerged fermentation (SmF) and solid-state fermentation (SF) from rice (Oryza sativa L.) by Monascus purpureus AS3.531. The optimal fermentation temperature and pH were significantly different for pigment production through different fermentation mode (35 °C, pH 5.0 for SF and 32 °C, pH 5.5 for SmF, respectively). Adding 2% (w/v) of glycerol in the medium could enhance the pigment production. On the optimized condition, although the concentration of citrinin produced by SmF (19.02 ug/g) increased more than 100 times than that by SF (0.018 ug/g), the pigment yield by SmF (7.93 U/g/g) could be comparable to that by SF (6.63 U/g/g). Those indicate us that fermentation mode seems to be the primary factor which influence the citrinin yield and secondary factor for pigment production.

  1. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    Science.gov (United States)

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  3. Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation

    Directory of Open Access Journals (Sweden)

    Nestor Sanchez

    2017-12-01

    Full Text Available Cachaza is a type of non-centrifugal sugarcane press-mud that, if it is not employed efficiently, generates water pollution, soil eutrophication, and the spread of possible pathogens. This biomass can be fermented to produce bioethanol. Our intention is to obtain bioethanol that can be catalytically reformed to produce hydrogen (H2 for further use in fuel cells for electricity production. However, some impurities could negatively affect the catalyst performance during the bioethanol reforming process. Hence, the aim of this study was to assess the fermentation of Cachaza using ammonium sulfate ((NH42SO4 loadings and Saccharomyces cerevisiae strain to produce the highest ethanol concentration with the minimum amount of impurities in anticipation of facilitating further bioethanol purification and reforming for H2 production. The results showed that ethanol production from Cachaza fermentation was about 50 g·L−1 and the (NH42SO4 addition did not affect its production. However, it significantly reduced the production of branched alcohols. When a 160 mg·L−1 (NH42SO4 was added to the fermentation culture, 2-methyl-1-propanol was reduced by 41% and 3-methyl-1-butanol was reduced by 6%, probably due to the repression of the catabolic nitrogen mechanism. Conversely, 1-propanol doubled its concentration likely due to the higher threonine synthesis promoted by the reducing sugar presence. Afterwards, we employed the modified Gompertz model to fit the ethanol, 2M1P, 3M1B, and 1-propanol production, which provided acceptable fits (R2 > 0.881 for the tested compounds during Cachaza fermentation. To the best of our knowledge, there are no reports of the modelling of aliphatic production during fermentation; this model will be employed to calculate yields with further scaling and for life cycle assessment.

  4. Defined media and inert supports : their potential as solid-state fermentation production systems

    NARCIS (Netherlands)

    Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A.

    2000-01-01

    Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its

  5. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  6. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  7. Production of α-amylase by solid state fermentation by Rhizopus ...

    African Journals Online (AJOL)

    2015-02-18

    Feb 18, 2015 ... However, only a few strains of fungi and bacteria meet the criteria for production of ... amylase production, but solid-state fermentation (SSF) is emerging as a ..... synthesis of lactic acid in R. oryzae and Rhizopus arrhizus using ...

  8. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Science.gov (United States)

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  9. Design of an integrated fermentation-crystallization process applied to the production of DOIP

    NARCIS (Netherlands)

    Blokker, S.; Dabkowski, M.; Groendijk, W.; Renckens, D.; De Rond, J.

    2004-01-01

    The design problem of CPD3312 was the comparison of the conventional batch (Base case) and the new integrated fermentation-crystallization process (In Situ Product Removal or ISPR case) in particular for the production of 2 tonnes 6R-dihydrooxoisophorone (DOIP) from 4-oxo-isophorone (OIP) per year.

  10. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production

    Science.gov (United States)

    Berłowska, Joanna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr

    2016-01-01

    Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield. PMID:27722169

  11. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production.

    Science.gov (United States)

    Berłowska, Joanna; Pielech-Przybylska, Katarzyna; Balcerek, Maria; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Dziugan, Piotr; Kręgiel, Dorota

    2016-01-01

    Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015-0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red ( S. cerevisiae ) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.

  12. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    Science.gov (United States)

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  13. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    Science.gov (United States)

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.

    Science.gov (United States)

    Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L

    2015-01-01

    Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.

  15. Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor.

    Science.gov (United States)

    España-Gamboa, Elda; Vicent, Teresa; Font, Xavier; Dominguez-Maldonado, Jorge; Canto-Canché, Blondy; Alzate-Gaviria, Liliana

    2017-01-01

    During hydrous ethanol production from the sugar refinery industry in Mexico, vinasse is generated. Phenolic compounds and melanoidins contribute to its color and make degradation of the vinasse a difficult task. Although anaerobic digestion (AD) is feasible for vinasse treatment, the presence of recalcitrant compounds can be toxic or inhibitory for anaerobic microorganism. Therefore, this study presents new data on the coupled of the FBR (Fluidized Bed Bioreactor) to the UASB (Upflow Anaerobic Sludge Blanket) reactor under non-sterile conditions by T. versicolor . Nevertheless, for an industrial application, it is necessary to evaluate the performance in this kind of proposal system. Therefore, this study used a FBR for the removal of phenolic compounds (67%) and COD (38%) at non-sterile conditions. Continuous operation of the FBR was successfully for 26 days according to the literature. When the FBR was coupled to the UASB reactor, we obtained a better quality of effluent, furthermore methane content and yield were 74% and 0.18 m 3 CH 4 / kg COD removal respectively. This study demonstrated the possibility of using for an industrial application the coupled of the FBR to the UASB reactor under non-sterile conditions. Continuous operation of the FBR was carried out successfully for 26 days, which is the highest value found in the literature.

  16. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121 Using Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Dibyangana Raul

    2014-01-01

    Full Text Available Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF for α-amylase production has been used in lieu of submerged fermentation (SmF due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH42SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  17. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  18. Effects of fermentation conditions on valuable products of ethanolic fungus Mucor indicus

    Directory of Open Access Journals (Sweden)

    Shabnam Sharifyazd

    2017-11-01

    Conclusions: It is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.

  19. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end-products

    NARCIS (Netherlands)

    Bosch, G.; Wrigglesworth, D.J.; Cone, J.W.; Pellikaan, W.F.; Hendriks, W.H.

    2013-01-01

    This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end-product profiles from carbohydrate-rich (in vitro run 1) and protein-rich substrates (in vitro run 2). Feces were collected from 3 adult Retriever-type dogs

  20. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  1. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview

    Directory of Open Access Journals (Sweden)

    María Fernández

    2015-01-01

    Full Text Available Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others. Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  2. Impact on human health of microorganisms present in fermented dairy products: an overview.

    Science.gov (United States)

    Fernández, María; Hudson, John Andrew; Korpela, Riitta; de los Reyes-Gavilán, Clara G

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  3. Effects of restriction of silage fermentation with formic acid on milk production

    Directory of Open Access Journals (Sweden)

    S. JAAKKOLA

    2008-12-01

    Full Text Available The study was conducted to evaluate the effects of silage fermentation quality and type of supplementation on milk production. Thirty two Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and 4 × 2 × 2 factorial arrangement of treatments. Silage fermentation was modified with formic acid (FA, which was applied at the rates equivalent to 0 (FA0, 2 (FA2, 4 (FA4 or 6 (FA6 litres t-1 grass of pure formic acid (as 100% FA. Dietary treatments consisted of four silages, a protein supplementation (no supplement or rapeseed meal 1.8 kg d-1 and a glucogenic substrate (no supplement or propylene glycol 225 g d-1. Increasing the application rate of FA restricted silage fermentation curvilinearly, as evidenced by higher concentrations of ammonia N and butyric acid in FA4 than FA2 silage. Similarly the use of FA resulted in curvilinear changes in the silage dry matter intake and milk yield. The highest milk and protein yields were achieved with FA6, while the milk yield with FA2 was higher than with FA4. Interactions were observed between silage type and supplementation. Rapeseed meal increased milk yield irrespective of the extent of silage fermentation, but the magnitude of response was variable. Propylene glycol was most beneficial with restrictively fermented silages FA4 and FA6. In conclusion, restriction of silage fermentation with a high rate of formic acid is beneficial in milk production. Interactions between silage composition and concentrate types suggest that the responses to supplementary feeding depend on silage fermentation characteristics.;

  4. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  5. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover.

    Science.gov (United States)

    Idris, Ayman Salih Omer; Pandey, Ashok; Rao, S S; Sukumaran, Rajeev K

    2017-10-01

    The production of cellulase by Trichoderma reesei RUT C-30 under solid-state fermentation (SSF) on wheat bran and cellulose was optimized employing a two stage statistical design of experiments. Optimization of process parameters resulted in a 3.2-fold increase in CMCase production to 959.53IU/gDS. The process was evaluated at pilot scale in tray fermenters and yielded 457IU/gDS using the lab conditions and indicating possibility for further improvement. The cellulase could effectively hydrolyze alkali pretreated sorghum stover and addition of Aspergillus niger β-glucosidase improved the hydrolytic efficiency 174%, indicating the potential to use this blend for effective saccharification of sorghum stover biomass. The enzymatic hydrolysate of sorghum stover was fermented to ethanol with ∼80% efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  7. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    Science.gov (United States)

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cross-cultural acceptance of a traditional yoghurt-like product made from fermented cereal.

    Science.gov (United States)

    Akissoé, Noël H; Sacca, Carole; Declemy, Anne-Laure; Bechoff, Aurelie; Anihouvi, Victor B; Dalodé, Générose; Pallet, Dominique; Fliedel, Géneviève; Mestres, Christian; Hounhouigan, Joseph D; Tomlins, Keith I

    2015-07-01

    Akpan is a traditional ready-to-drink fermented yoghurt-like cereal beverage consumed in urban and rural areas in Benin. With the aim of adapting the product to new local and export markets, this work maps African and European consumer preferences for different types of Akpan. A sensory profile of Akpan was created and consumer tests were conducted with 103 consumers of African origin and 74 consumers of European origin. Consumer acceptance was significantly correlated with fermented odour (r = -0.94) and milky taste (r = 0.92-0.97) attributes. Cluster analysis revealed different behaviour by African and European consumers with respect to acceptability of Akpan; European consumers did not like the sour taste and African consumers liked an intense sweet milky taste. This study provides information on how Akpan, and other fermented yoghurt-type cereal products, could be adapted to African and European consumer preferences. © 2014 Society of Chemical Industry.

  9. Enhancement of L-Threonine Production by Controlling Sequential Carbon-Nitrogen Ratios during Fermentation.

    Science.gov (United States)

    Lee, Hyeok-Won; Lee, Hee-Suk; Kim, Chun-Suk; Lee, Jin-Gyeom; Kim, Won-Kyo; Lee, Eun-Gyo; Lee, Hong-Weon

    2018-02-28

    Controlling the residual glucose concentration is important for improving productivity in L-threonine fermentation. In this study, we developed a procedure to automatically control the feeding quantity of glucose solution as a function of ammonia-water consumption rate. The feeding ratio (R C/N ) of glucose and ammonia water was predetermined via a stoichiometric approach, on the basis of glucose-ammonia water consumption rates. In a 5-L fermenter, 102 g/l L -threonine was obtained using our glucose-ammonia water combined feeding strategy, which was then successfully applied in a 500-L fermenter (89 g/l). Therefore, we conclude that an automatic combination feeding strategy is suitable for improving L-threonine production.

  10. Cow dung is an ideal fermentation medium for amylase production in solid-state fermentation by Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Ponnuswamy Vijayaraghavan

    2015-12-01

    Full Text Available Amylase production by Bacillus cereus IND4 was investigated by solid state fermentation (SSF using cow dung substrate. The SSF conditions were optimized by using one-variable-at-a-time approach and two level full factorial design. Two level full factorial design demonstrated that moisture, pH, fructose, yeast extract and ammonium sulphate have significantly influenced enzyme production (p < 0.05. A central composite design was employed to investigate the optimum concentration of these variables affecting amylase production. Maximal amylase production of 464 units/ml of enzyme was observed in the presence of 100% moisture, 0.1% fructose and 0.01% ammonium sulphate. The enzyme production increased three fold compared to the original medium. The optimum pH and temperature for the activity of amylase were found to be 8.0 and 50 °C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0 and showed 32% enzyme activity after initial denaturation at 50 °C for 1 h. This is the first detailed report on the production of amylase by microorganisms using cow dung as the low cost medium.

  11. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  12. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  13. The role of Staphylococcus species in the production of iru during the fermentation of African locust beans (Parkia biglobosa

    Directory of Open Access Journals (Sweden)

    Amao, J.A.

    2017-12-01

    Full Text Available Staphylococcus spp. are regularly isolated from iru, but the role(s they play in the fermentation process has not yet been determined; this work thus seeks to determine if Staphylococcus spp. isolated from iru play any role in the fermentation of African locust bean. Bacillus spp. and Staphylococcus spp. isolated from spontaneously fermented African locust bean (iru were used to ferment African locust beans. The temperature, pH and moisture content were determined as fermentation progress while the total soluble sugar and total free amino acid were determined after fermentation. The microbial load for the three iru products increased gradually until the end of fermentation. The total free amino acids increased in all three iru (1.10, 1.51 and 2.35 mg leucine ml-1 for Staphylococcus spp. iru, Bacillus spp. iru and iru produced with combination of the two species of bacteria when compared with that of the unfermented bean, while the total soluble sugars reduced after fermentation with Staphylococcus spp. iru having 3.84, Bacillus spp. iru has 3.60, and the unfermented bean has 5.30 mg glucose ml-1 total soluble sugar. The increased free amino acids in the iru fermented with Staphylococcus spp. and the ability of the Staphylococcus spp. to produce lipase showed that Staphylococcus spp. isolated from iru has the ability to ferment African locust bean and carry out the lipolytic activity during the fermentation.

  14. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    Directory of Open Access Journals (Sweden)

    Julius Akinbomi

    2015-05-01

    Full Text Available The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected to varying hydraulic retention times (HRTs in a continuous fermentation process at 55 °C for 47 days. The weight distributions of the first, second and third fruit mixtures were 70%, 50% and 20% orange share, respectively, while the residual weight was shared equally by the other fruits. The results indicated that there was an improvement in cumulative hydrogen yield from all of the feedstock when the HRT was five days. Based on the results obtained, apple as a single fruit and a fruit mixture with 20% orange share have the most improved cumulative hydrogen yields of 504 (29.5% of theoretical yield and 513 mL/g volatile solid (VS (30% of theoretical yield , respectively, when compared to other fruits.

  15. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  16. Use of whey powder and skim milk powder for the production of fermented cream

    Directory of Open Access Journals (Sweden)

    Ceren AKAL

    2016-01-01

    Full Text Available Abstract This study is about the production of fermented cream samples having 18% fat by addition of starter cultures. In order to partialy increase non-fat solid content of fermented cream samples, skim milk powder and demineralized whey powder in two different rates (50% and 70% were used. Samples were analyzed for changes in their biochemical and physicochemical properties (total solid, ash, fat, titratable acidity, pH value, total nitrogen, viscosity, tyrosine, acid number, peroxide and diacetyl values during 29-day of storage period. Samples tested consisted of 7 different groups; control group (without adding any powder, skim milk powder, 50% demineralized whey powder and 70% demineralized whey powder samples were in two different addition rate (2% and 4%. Also samples were analyzed for sensory properties. According to the results obtained, the addition of milk powder products affected titratable acidity and tyrosine values of fermented cream samples. Although powder addition and/or storage period didn’t cause significant variations in total solid, ash, fat, pH value, viscosity, acid number, peroxide, tyrosine and diacetyl values; sensory properties of fermented cream samples were influenced by both powder addition and storage period. Fermented cream containing 2% skim milk powder gets the top score of sensory evaluation among the samples.

  17. 40 CFR 180.522 - Fumigants for processed grains used in production of fermented malt beverage; tolerances for...

    Science.gov (United States)

    2010-07-01

    ... production of fermented malt beverage; tolerances for residues. 180.522 Section 180.522 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.522 Fumigants for processed grains used in production of fermented malt beverage; tolerances for residues. (a) General. Fumigants for processed grain...

  18. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  19. [Baked product development based fermented legumes and cereals for schoolchildren snack].

    Science.gov (United States)

    Granito, Marisela; Valero, Yolmar; Zambrano, Rosaura

    2010-03-01

    The objective of this work was to develop three foodstuffs based on mixes of wheat and fermented and non-fermented legumes, for the purpose of contributing with a healthy alternative for school snacks. To this aim, refined wheat flour was partially substituted with whole legume flours for the preparation of cakes, brownies and cookies, foodstuffs traditionally consumed by school age children. Cakes were formulated substituting 20% of wheat flour with Phaseolus vulgaris flour, brownies with 30% of Cajanus cajan flour and cookies with 30% of Vigna sinensis flour, using fermented and non-fermented legumes in the three products. When these products were subjected to sensorial evaluation through a test of degree of acceptability and using a hedonic scale of 7 points, values higher than 5 in the attributes taste, color and overall appraisal were found for all the products. In addition, the preference was measured with a group of 90 school children, corroborating the results obtained at laboratory level. Chemical characterization showed protein contents between 12 and 13% for the cake, 10 and 11% for the brownies and 10% for the cookies and protein digestibilities in vitro of 91%, 87% and 93%, respectively. The calorie supply, calculated per portion was of 199 kcal, 246 kcal and 237 kcal, for cakes, brownies and cookies, respectively. It was concluded that it is technically possible to incorporate fermented and non-fermented Phaseolus vulgaris, Vigna sinensis and Cajanus cajan, to highly consumed products such as cakes, brownies and cookies with a higher nutritional content and well-accepted by school-age children.

  20. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  2. Molecular characterization, technological properties and safety aspects of enterococci from 'Hussuwa', an African fermented sorghum product.

    Science.gov (United States)

    Yousif, N M K; Dawyndt, P; Abriouel, H; Wijaya, A; Schillinger, U; Vancanneyt, M; Swings, J; Dirar, H A; Holzapfel, W H; Franz, C M A P

    2005-01-01

    To identify enterococci from Hussuwa, a Sudanese fermented sorghum product, and determine their technological properties and safety for possible inclusion in a starter culture preparation. Twenty-two Enterococcus isolates from Hussuwa were identified as Enterococcus faecium by using phenotypic and genotypic tests such as 16S rDNA gene sequencing, RAPD-PCR and restriction fragment length polymorphism of the 16S/23S intergenic spacer region fingerprinting. Genotyping revealed that strains were not clonally related and exhibited a considerable degree of genomic diversity. Some strains possessed useful technological properties such as production of bacteriocins and H2O2 or utilization of raffinose and stachyose. None produced alpha-amylase or tannase. A safety investigation revealed that all strains were susceptible to the antibiotics ampicillin, gentamicin, chloramphenicol, tetracycline and streptomycin, but some were resistant to ciprofloxacin, erythromycin, penicillin and vancomycin. Production of biogenic amines or presence of genes encoding virulence determinants occurred in some strains. Enterococcus faecium strains are associated with fermentation of Sudanese Hussuwa. Some strains exhibited useful technological properties such as production of antimicrobial agents and fermentation of indigestible sugars, which may aid in stabilizing and improving the digestibility of the product respectively. Enterococci were shown to play a role in the fermentation of African foods. While beneficial properties of these bacteria are indicated, their presence in this food may also imply a hygienic risk as a result of antimicrobial resistances or presence of virulence determinants.

  3. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved....

  4. Biotechnological process for obtaining new fermented products from cashew apple fruit by Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Araújo, Suzane Macêdo; Silva, Cristina Ferraz; Moreira, Jane Jesus Silveira; Narain, Narendra; Souza, Roberto Rodrigues

    2011-09-01

    In Brazil, the use of cashew apple (Anacardium occidentale L.) to obtain new products by biotechnological process represents an important alternative to avoid wastage of a large quantity of this fruit, which reaches about 85% of the annual production of 1 million tons. This work focuses on the development of an alcoholic product obtained by the fermentation of cashew apple juice. The inoculation with two different strains of yeast Saccharomyces cerevisiae viz. SCP and SCT, were standardized to a concentration of 10(7 )cells ml(-1). Each inoculum was added to 1,500 ml of cashew must. Fermentation was performed at 28 ± 3°C and aliquots were withdrawn every 24 h to monitor soluble sugar concentrations, pH, and dry matter contents. The volatile compounds in fermented products were analyzed using the gas chromatography/mass spectrometry (GC/MS) system. After 6 days, the fermentation process was completed, cells removed by filtration and centrifugation, and the products were stabilized under refrigeration for a period of 20 days. The stabilized products were stored in glass bottles and pasteurized at 60 ± 5°C/30 min. Both fermented products contained ethanol concentration above 6% (v v(-1)) while methanol was not detected and total acidity was below 90 mEq l(-1), representing a pH of 3.8-3.9. The volatile compounds were characterized by the presence of aldehyde (butyl aldehyde diethyl acetal, 2,4-dimethyl-hepta-2,4-dienal, and 2-methyl-2-pentenal) and ester (ethyl α-methylbutyrate) representing fruity aroma. The strain SCT was found to be better and efficient and this produced 10% more alcohol over that of strain SCP.

  5. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.

    Science.gov (United States)

    Yu, J; Wang, W H; Menghe, B L G; Jiri, M T; Wang, H M; Liu, W J; Bao, Q H; Lu, Q; Zhang, J C; Wang, F; Xu, H Y; Sun, T S; Zhang, H P

    2011-07-01

    Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of

  6. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    Science.gov (United States)

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    Science.gov (United States)

    2012-03-01

    process.7 The reaction is of great economic importance given that the world’s industrial production of nitrogenous fertilizer increased 27-fold between... Enzymatic Saccharification and Fermentation of Paper and Pulp Industry Effluent for Biohydrogen Production . Int. J. Hydrogen Energy 2010, 35, pp...Reactor Setup and Operation 11 4.2 Operational Comparison: SBR and CBR 12 4.3 Effect of pH and Loading on Hydrogen Production 13 4.4 Enzymatic Source

  9. Optimization of culture conditions for tannase production by Aspergillus sp. gm4 in solid state fermentation

    OpenAIRE

    Souza, Patrícia Nirlane da Costa; Universidade Federal de Lavras; Maia, Natália da Costa; Universidade Federal de Lavras; Guimarães, Luís Henrique Souza; Universidade de São Paulo; Resende, Mário Lúcio Vilela de; Universidade Federal de Lavras; Cardoso, Patrícia Gomes; Universidade Federal de Lavras

    2015-01-01

    The production of tannase by Aspergillus sp. GM4 under solid-state fermentation (SSF)  was investigated using different vegetables leaves such as mango, jamun, coffee and agricultural residues such as coffee husks, rice husks and wheat bran. Among substrates used jamun leaves yielded high tannase production. The Plackett-Burman design was conducted to evaluate the effects of 12 independent variables on the production of tannase under SSF using jamun leaves as substrate. Among these variables,...

  10. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    Science.gov (United States)

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Das, K.; Sharma, D.K.

    1984-02-01

    With the developing shortage of petroleum, reliance on biomass as a source of chemicals and fuels will increase. In the present work, bagasse and rice husk were subjected to dilute acid (H2SO4) hydrolysis using pressurised water to obtain furfural and fermentable sugars. Various process conditions such as particle size, solid-liquid ratio, acid concentration, reaction time and temperature have been studied to optimise yields of furfural, xylose and other fermentable sugars. The use of particle sizes smaller than 495 mu m did not further increase the yield of reducing sugars. A solid-liquid ratio of 1:15 was found to be the most suitable for production of reducing sugars. Hydrolysis using 0.4% H2SO4 at 453 K resulted in selective yields (g per 100 g of dried agricultural residues) of xylose from bagasse (22.5%) and rice husk (21.5%). A maximum yield of furfural was obtained using 0.4% H2SO4 at 473 K from bagasse (11.5%) and rice husk (10.9%). It was also found that hydrolysis using 1% H2SO4 at 493 K resulted in maximum yields of total reducing sugar from bagasse (53.5%) and rice husk (50%). The reducing sugars obtained were fermented to ethanol after removal of furfural. The effect of furfural on the fermentation of sugars to ethanol was also studied. Based on these studies, an integrated two-step process for the production of furfural and fermentable sugars could be envisaged. In the first step, using 0.4% H2SO4 at 473 K, furfural could be obtained, while in the second step, the use of 1% H2SO4 at 493 K should result in the production of fermentable sugars. (Refs. 22).

  12. Improving hydrogen production from cassava starch by combination of dark and photo fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huibo; Cheng, Jun; Zhou, Junhu; Song, Wenlu; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2009-02-15

    The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10-25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H{sub 2}/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H{sub 2}/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with {alpha}-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H{sub 2}/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H{sub 2}/l/h. Meanwhile, the lag time ({lambda}) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75-110 h to 44-68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H{sub 2}/g starch and 16.4 ml H{sub 2}/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H{sub 2}/g starch only in the dark fermentation to 402.3 ml H{sub 2}/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5-18.6% to 26.4-27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46-6.04%. (author)

  13. Production of rennin-like acid protease by Mucor pusillus through submerged fermentation

    International Nuclear Information System (INIS)

    Daudi, S.; Mukhtar, H.; Rehman, A.U.; Haq, I.U.

    2015-01-01

    The present study is concerned with the isolation and screening of Mucor species for the production of acid protease in shake flasks. Out of eight mould cultures evaluated, five were isolated from soil and three were provided from the Institute of Industrial Biotechnology, Government College University, Lahore. Of all the isolates tested, Mucor pusillus IHS6 was found to be the best producer of rennin-like acid protease producing 75 U/ml of the enzyme. Different agricultural byproducts were evaluated as fermentation substrates and maximum enzyme synthesis (61 U/ml) was obtained when rapeseed meal was used as a substrate. Optimum pH and fermentation period for the production of protease were 5.5 (56U/ml) and 72 hrs (55U/ml), respectively. The production of protease by Mucor pusillus IHS6 was also studied by adding different carbon and nitrogen sources to the fermentation medium. Fructose at a concentration of 1.5% (66 U/ml) and yeast extract at a concentration of 2% (68.2 U/ml) and ammonium chloride at a concentration of 0.1% (67U/ml) were found to be the best carbon and nitrogen (organic and inorganic) sources respectively. Spore inoculum at a concentration of 1% (68.4 U/ml) was found to be the best for protease production by Mucor pusillus. The fermentation broth was found to have strong milk clotting activity with 200 RU. (author)

  14. Batch fermentation of whey ultra filtrate by Lactobacillus helveticus for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D; Goulet, J; Le Duy, Q

    1986-06-01

    Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 revolutions per minute and under conditions of controlled temperature (42 degrees C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). 27 references.

  15. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    Science.gov (United States)

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    Science.gov (United States)

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  17. Bifurcation analysis of a product inhibition model of a continuous fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Lenbury, Y; Chiaranai, C

    1987-03-01

    A product inhibition model of a continuous fermentation process is considered. If the yield term is a variable function of ethanol concentration, oscillation in the cell and ethanol concentrations is shown to be a Hopf bifurcation in the underlying system of nonlinear, ordinary differential equations which comprises the model.

  18. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    Science.gov (United States)

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  19. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

    NARCIS (Netherlands)

    HUYEN, N. T.; FRYGANAS, C.; UITTENBOGAARD, G.; MUELLER-HARVEY, I.; VERSTEGEN, M. W. A.; HENDRIKS, W. H.|info:eu-repo/dai/nl/298620936; PELLIKAAN, W. F.

    2016-01-01

    An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH 4 ) production and fermentation

  20. Improved process for producing a fermentation product from a lignocellulose-containing material

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose...

  1. A process for producing a fermentation product from a lignocellulose-containing material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose...

  2. Chemometric approach to texture profile analysis of kombucha fermented milk products.

    Science.gov (United States)

    Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja

    2015-09-01

    In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.

  3. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...

  4. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation

    DEFF Research Database (Denmark)

    Topakas, E.; Kalogeris, E.; Kekos, D.

    2003-01-01

    A number of factors affecting production of feruloyl esterase an enzyme that hydrolyse ester linkages of ferulic acid (FA) in plant cell walls, by the thermophylic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon...

  5. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  6. Measuring and modelling in-vitro gas production kinetics to evaluate ruminal fermentation of feedstuffs

    NARCIS (Netherlands)

    Beuvink, J.M.W.

    1993-01-01

    In this thesis, the possibilities of kinetic gas production measurements for the evaluation of ruminant feedstuffs have been examined. Present in-vitro methods were mostly end- point methods. There was a need for a kinetic in-vitro method that described ruminal fermentation, due to new

  7. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  8. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jinming [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Zhang, Ruihong; Sun, Huawei [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); El-Mashad, Hamed M. [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Department of Agricultural Engineering, Mansoura University, El-Mansoura (Egypt); Ying, Yibin [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-12-15

    The effect of different food to microorganism ratios (F/M) (1-10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 {+-} 2 C and 50 {+-} 2 C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H{sub 2}/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H{sub 2}/g VS at the F/M of 6. A modified Gompertz equation adequately (R{sup 2} > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation. (author)

  9. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effects of Lactobacillus Acidophilus fermentation products as an alternative to antibiotics

    Science.gov (United States)

    This experiment compared the effects of Lactobacillus acidophilus fermentation products (LAFP) to carbadox and copper sulfate on growth performance and complete blood counts (CBC). Eight hundred pigs were weaned at 24 d of age and utilized in a randomized block design (4 farrowing groups, blocked by...

  11. Redox mediators modify end product distribution in biomass fermentations by mixed ruminal microbes in vitro

    Science.gov (United States)

    The fermentation system of mixed ruminal bacteria is capable of generating large amounts of short-chain volatile fatty acids (VFA) via the carboxylate platform in vitro. These VFAs are subject to elongation to larger, more energy-dense products through reverse beta-oxidation. This study examined the...

  12. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    OpenAIRE

    B. Munkhtsetseg; M. Margad-Erdene; B. Batjargal

    2009-01-01

    The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacterio...

  13. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    De Gioannis, G., E-mail: degioan@unica.it [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Muntoni, A. [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Polettini, A.; Pomi, R. [Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza” (Italy)

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  14. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    International Nuclear Information System (INIS)

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-01-01

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H 2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H 2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly

  15. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Directory of Open Access Journals (Sweden)

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  16. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Science.gov (United States)

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  17. Modeling of the substrate and product transfer coefficients for ethanol fermentation

    International Nuclear Information System (INIS)

    Zerajic, S.; Grbavcic, Z.; Savkovic-Stevanovic, J.

    2008-01-01

    The transfer phenomena of the substrate and product for ethanol fermentation with immobilized biocatalyst were investigated. Fermentation was carried out with a biocatalyst consisting of Ca-alginate gel in the form of two-layer spherical beads in anaerobic conditions. The determination of kinetic parameters was achieved by fitting bioreaction progress curves to the experimental data. The calculation of the diffusion coefficients was performed by numerical methods for experimental conditions. Finally, the glucose and ethanol transfer coefficients are defined and determined, using the effective diffusion coefficients. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  18. Effect of Fermentation Parameters on Extra Cellular Tannase Production by Lactobacillus plantarum MTCC 1407

    OpenAIRE

    Kannan Natarajan; Aravindan Rajendran

    2009-01-01

    Lactobacillus plantarum MTCC 1407 represents a valuable source of an economically attractive stable long-life tannase with potential for application in various industries. The effect of fermentation parameters such as pH, temperature and agitation speed on the growth of biomass and production of tannase using liquid medium were determined at the end of fermentation period. The optimum values of pH, reaction temperature and agitation speed for tannase activity were 6.0, 30 °C and 125 rpm respe...

  19. Effect of Fermentation Parameters on Extra Cellular Tannase Production by Lactobacillus plantarum MTCC 1407

    Directory of Open Access Journals (Sweden)

    Kannan Natarajan

    2009-01-01

    Full Text Available Lactobacillus plantarum MTCC 1407 represents a valuable source of an economically attractive stable long-life tannase with potential for application in various industries. The effect of fermentation parameters such as pH, temperature and agitation speed on the growth of biomass and production of tannase using liquid medium were determined at the end of fermentation period. The optimum values of pH, reaction temperature and agitation speed for tannase activity were 6.0, 30 °C and 125 rpm respectively. The maximum tannase activity was found to be 9.29 U/mL.

  20. Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures.

    Science.gov (United States)

    Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G

    2018-06-01

    Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.

  1. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  2. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China.

    Science.gov (United States)

    Xu, Lu; Du, Bin; Xu, Baojun

    2015-05-01

    The objectives of this study are to systematically assess the bioactive substances and overall antioxidant capacities of commercially fermented soy products and to find the relationships between the presence of beneficial components in different types of soybean fermented products. The results show that phenolic profiles increased significantly after fermentation as compared with raw yellow soybeans. Among all the samples, the douchi and fermented black bean sauce had the highest detected antioxidant profiles. Even though the total isoflavone content was reduced in fermented soybean products (794.84 μg/g on average) as compared with raw yellow soybeans (3477.6 μg/g), there was an obvious trend of conversion of the glucoside form in raw soybeans into the aglycone-form isoflavones in the fermented soybean products. The highest daidzein and genistein values were found in the "Yangfan" black bean douchi, i.e. 860.3 μg/g and 1025.9 μg/g, respectively. The amounts of essential amino acids also were improved in most fermented soybean products. The douchi and black bean fermented products are recommended for consumption due to their abundant bioactive substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Production of Protein Concentrate and 1,3-Propanediol by Wheat-Based Thin Stillage Fermentation.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2017-05-17

    Fermentation of wheat with yeast produces thin stillage (W-TS) and distiller's wet grains. A subsequent fermentation of W-TS (two-stage fermentation, TSF) with endemic bacteria at 25 and 37 °C decreased glycerol and lactic acid concentrations, while 1,3-propanediol (1,3-PD) and acetic acid accumulated with greater 1,3-PD and acetic acid produced at 37 °C. During TSF, W-TS colloids coagulated and floated in the fermentation medium producing separable liquid and slurry fractions. The predominant endemic bacteria in W-TS were Lactobacillus panis, L. gallinarum, and L. helveticus, and this makeup did not change substantially as fermentation progressed. As nutrients were exhausted, floating particles precipitated. Protein contents of slurry and clarified liquid increased and decreased, respectively, as TSF progressed. The liquid was easily filtered through an ultrafiltration membrane. These results suggested that TSF is a novel method for W-TS clarification and production of protein concentrates and 1,3-PD from W-TS.

  4. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akihiro; Bando, Yukiko; Fujimoto, Naoshi; Suzuki, Masaharu [Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502 (Japan)

    2010-08-15

    In order to ensure efficient functioning of hydrogen fermentation systems that use Clostridium as the dominant hydrogen producer, energy-intensive process such as heat pretreatment of inoculum and/or substrate, continuous injection, and control of anaerobic conditions are required. Here, we describe a simple hydrogen fermentation system designed using microflora from leaf-litter cattle-waste compost. Hydrogen and volatile fatty acid production was measured at various hydraulic retention times, and bacterial genera were determined by PCR amplification and sequencing. Although hydrogen fermentation yield was approximately one-third of values reported in previous studies, this system requires no additional treatment and thus may be advantageous in terms of cost and operational control. Interestingly, Clostridium was absent from this system. Instead, Megasphaera elsdenii was the dominant hydrogen-producing bacterium, and lactic acid-producing bacteria (LAB) were prevalent. This study is the first to characterize M. elsdenii as a useful hydrogen producer in hydrogen fermentation systems. These results demonstrate that pretreatment is not necessary for stable hydrogen fermentation using food waste. (author)

  5. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-08-01

    Full Text Available The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w on consumed xylose in microaerophilic conditions (kLa = 2·h−1. Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w, against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  6. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    Science.gov (United States)

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  7. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    Science.gov (United States)

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  8. Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow

    DEFF Research Database (Denmark)

    Brask, Maike; Weisbjerg, Martin Riis; Hellwing, Anne Louise Frydendahl

    2015-01-01

    Many feeding trials have been conducted to quantify enteric methane (CH(4)) production in ruminants. Although a relationship between diet composition, rumen fermentation and CH(4) production is generally accepted, the efforts to quantify this relationship within the same experiment remain scarce....... In the present study, a data set was compiled from the results of three intensive respiration chamber trials with lactating rumen and intestinal fistulated Holstein cows, including measurements of rumen and intestinal digestion, rumen fermentation parameters and CH(4) production. Two approaches were used...... for endogenous matter, and contribution of fermentation in the large intestine was accounted for. Hydrogen (H(2)) arising from fermentation was calculated using the fermentation pattern measured in rumen fluid. CH(4) was calculated from H(2) production corrected for H(2) use with biohydrogenation of fatty acids...

  9. Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation

    Directory of Open Access Journals (Sweden)

    Marina Bely

    2005-12-01

    Full Text Available An approach consisting of controlling yeast inoculum to minimize volatile acidity production by Saccharomyces cerevisiae during the alcoholic fermentation of botrytized must was investigated. Direct inoculation of rehydrated active dry yeasts produced the most volatile acidity, while a yeast preparation pre-cultured for 24 hours reduced the final production by up to 23 %. Using yeasts collected from a fermenting wine as a starter must also reduced volatile acidity production. The conditions for preparing the inoculum affected the fermentation capacity of the first generation yeasts: fermentation duration, sugar to ethanol ratio, and wine composition. A pre-culture medium with a low sugar concentration (< 220 g/L is essential to limit volatile acidity production in high sugar fermentations.

  10. Novel Production Protocol for Small-scale Manufacture of Probiotic Fermented Foods

    Science.gov (United States)

    Westerik, Nieke; Wacoo, Alex Paul; Sybesma, Wilbert; Kort, Remco

    2016-01-01

    A novel dried bacterial consortium of Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106 is cultured in 1 L of milk. This fresh starter can be used for the production of fermented milk and other fermented foods either at home or at small-scale in rural settings. For the fresh starter, 1 L of milk is pasteurized in a pan that fits into a larger pan containing water, placed on a source of heat. In this water bath, the milk is heated and incubated at 85 °C for 30 min. Thereafter, the milk is cooled down to 45 °C, transferred to a vacuum flask, inoculated with the dried bacteria and left for at least 16 hr between 30 °C and 45 °C. For the purpose of frequent home production, the fresh starter is frozen into ice cubes, which can be used for the production of small volumes of up to 2 L of fermented milk. For the purpose of small-scale production in resource-poor countries, pasteurization of up to 100 L of milk is conducted in milk cans that are placed in a large sauce pan filled with water and heated on a fire at 85 °C for 30 min, and subsequently cooled to 45 °C. Next, the 100 L batch is inoculated with the 1 L freshly prepared starter mentioned before. To assure an effective fermentation at a temperature between 30 and 45 °C, the milk can is covered with a blanket for 12 hr. For the production of non-dairy fermented foods, the fresh starter is left in a cheese cloth for 12 hr, and the drained-off whey can be subsequently used for the inoculation of a wide range of food raw materials, including vegetables and cereal-based foods. PMID:27684196

  11. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  13. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  14. Between-cow variation in digestion and rumen fermentation variables associated with methane production.

    Science.gov (United States)

    Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P

    2017-06-01

    A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive

  15. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  16. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)

  17. Is Lactate an undervalued functional component of lactic acid bacteria-fermented food products?

    Directory of Open Access Journals (Sweden)

    Graciela eGarrote

    2015-06-01

    Full Text Available Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signalling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria.

  18. Maximising methane production in stressed fermentation systems for swine production units

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D T

    1984-01-01

    For economic reasons, digestion systems must be designed to allow the most compact plant. This forces heavy organic loading and relatively short detention times. Consequently, the digestion system is operating in the region approaching instability. An investigation into the effects on methane productivity of the method used to load anaerobic digesters has shown that when operating in regions approaching stress the method of loading plays a major role in maximising energy output. Since the digestion system is designed for steady-state loading, while the actual operating conditions are dynamic, the loading of the system actually varies greatly and is never at steady state. In loading the digestion system, two methods are available. Either Volatile Solids (VS) loading concentration will vary and loading volume remain constant or loading volume will vary and VS loading concentration remain constant. The choice of which operational method is used in a digestion system already operating under heavy loading greatly affects methane productivity. The internal energy usage of the plant also is affected. Results indicate that gross methane production is approximately 33% higher and VS reduction is increased by 28% for the fermentation plant operating with a varying detention time when compared to operating the same plant with a varying loading concentration. (Refs. 14).

  19. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  20. Production of proteinase A by Saccharomyces cerevisiae in a cell-recycling fermentation system: Experiments and computer simulations

    DEFF Research Database (Denmark)

    Grøn, S.; Biedermann, K.; Emborg, Claus

    1996-01-01

    experimentally and by computer simulations. Experiments and simulations showed that cell mass and product concentration were enhanced by high ratios of recycling. Additional simulations showed that the proteinase A concentration decreased drastically at high dilution rates and the optimal volumetric...... productivities were at high dilution rates just below washout and at high ratios of recycling. Cell-recycling fermentation gave much higher volumetric productivities and stable product concentrations in contrast to simple continuous fermentation....

  1. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  2. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    Science.gov (United States)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  3. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  4. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  5. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2016-04-01

    Full Text Available The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO, from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g. olive oil, corn oil could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.. Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  6. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products.

    Science.gov (United States)

    Dehkordi, Farhad Safarpoor; Yazdani, Farshad; Mozafari, Jalal; Valizadeh, Yousef

    2014-04-07

    From a clinical perspective, it is essential to know the microbial safety of fermented dairy products. Doogh and kashk are fermented dairies. These products are used by millions of people but their microbial qualities are unknown. Shiga toxin producing Escherichia coli (STEC) is one of the most commonly detected pathogens in the cases of food poisoning and food-borne illnesses. The present investigation was carried out in order to study the molecular characterization and antimicrobial resistance properties of STEC strains isolated from fermented dairy products. Six hundred fermented dairy samples were collected and immediately transferred to the laboratory. All samples were cultured immediately and those that were E. coli-positive were analyzed for the presence of O157 , O26, O103, O111, O145, O45, O91, O113, O121 and O128 STEC serogroups, tetA, tetB, blaSHV, CITM, cmlA, cat1, aadA1, dfrA1, qnr, aac (3)-IV, sul1 and ereA antibiotic resistance genes and stx1, stx2, eaeA, ehly, cnf1, cnf2, iutA, cdtB, papA, traT, sfaS and fyuA virulence factors using PCR. Antimicrobial susceptibility testing was performed also using disk diffusion methodology with Mueller-Hinton agar. Fifty out of 600 (8.33%) dairy samples harbored E. coli. In addition, yoghurt was the most commonly contaminated dairy. O157 (26%) and O26 (12%) were the most commonly detected serogroups. A significant difference was found between the frequency of Attaching and Effacing E. coli and Enterohaemorrhagic E. coli (P Fermented dairy products can easily become contaminated by antibiotic resistant STEC strains. Our findings should raise awareness about antibiotic resistance in Iran. Clinicians should exercise caution when prescribing antibiotics, especially in veterinary treatments.

  7. Multi-stage high cell continuous fermentation for high productivity and titer.

    Science.gov (United States)

    Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae

    2011-05-01

    We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

  8. Statistical Optimization of Tannase Production by Penicillium sp. EZ-ZH390 in Submerged Fermentation

    OpenAIRE

    Zohreh Hamidi-Esfahani; Mohammad Ali Sahari; Mohammad Hossein Azizi

    2015-01-01

    Tannase has several important applications in food, feed, chemical and pharmaceutical industries. In the present study, production of tannase by mutant strain, Penicillium sp. EZ-ZH390, was optimized in submerged fermentation utilizing two statistical approaches. At first step, a one factor at a time design was employed to screen the preferable nutriments (carbon and nitrogen sources of the medium) to produce tannase. Screening of the carbon source resulted in the production of 10.74 U/mL of ...

  9. Sucrose Fermentation by Brazilian Ethanol Production Yeasts in Media Containing Structurally Complex Nitrogen Sources

    OpenAIRE

    Miranda Junior, Messias [UNESP; Batistote, Margareth [UNESP; Cilli, Eduardo Maffud [UNESP; Ernandes, Jose Roberto [UNESP

    2009-01-01

    Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability o...

  10. Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation.

    Science.gov (United States)

    Banerjee, D; Mondal, K C; Pati, B R

    2007-06-01

    Tannase an industrially important enzyme was produced by Aspergillus aculeatus DBF9 through a solid-state fermentation (SSF). The organism produced good amount of enzyme and gallic acid in wheat bran among the solid substrate used in SSF. Maximum enzyme and gallic acid production occurred in 5% tannic acid after 72 h. Eighty percent initial substrate moisture and 30 degrees C temperature was found suitable for tannase production.

  11. Hydrogen evolution by fermentation using seaweed as substrates and the contribution to the clean energy production

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Suganuma, T.; Yamaguchi, A. [Yokohama National Univ. (Japan). Dept. of Environmental Sciences

    2001-07-01

    It is an important theme in Japan to use the sea for energy production, because Japan is surrounded by seas on all sides. Brown algae such as Laminaria have high value as the substrate of fermentative hydrogen production, since they have very high growth rate and also have high ability on the productivity of mannitol. I would like to present about the affection of salt concentration on the hydrogen production of Enterobacter aerogenes, and also the contribution on clean energy production by the seaweed cultivation in Japan. (orig.)

  12. Fermentation of maize (Zea mays L.) meal or mawe production in Benin : physical, chemical and microbiological aspects

    NARCIS (Netherlands)

    Hounhouigan, D.J.

    1994-01-01

    Mawè is a sour dough made from partially dehulled maize meal, which has undergone natural fermentation for 1 to 3 days.

    In this thesis, the processing methods, the characteristics of the products and the physical, chemical and microbiological changes during natural fermentation of

  13. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    Science.gov (United States)

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  14. KINETICS OF GROWTH AND ETHANOL PRODUCTION ON DIFFERENT CARBON SUBSTRATES USING GENETICALLY ENGINEERED XYLOSE-FERMENTING YEAST

    Science.gov (United States)

    Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentra...

  15. Effect of different phosphates on the manurial value of aerobically fermented cowdung in the production of combustible gas

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A; Paul, N B; Rewari, R B

    1956-01-01

    N content of cow dung was increased by anaerobic fermentation (for combustible gas production), though to a lesser extent if phosphates were added. Rates of nitrification of the fermented manure in soil were low and were not improved by P additions; the manure consequently induced little response in rice, but it improved pea yields considerably.

  16. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique

    NARCIS (Netherlands)

    Cone, J.W.; Rodrigues, M.A.M.; Guedes, C.M.; Blok, M.C.

    2009-01-01

    In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to

  17. Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production.

    Science.gov (United States)

    Tabanelli, Giulia; Pasini, Federica; Riciputi, Ylenia; Vannini, Lucia; Gozzi, Giorgia; Balestra, Federica; Caboni, Maria Fiorenza; Gardini, Fausto; Montanari, Chiara

    2018-03-01

    Because of the impossibility to consume food of animal origin, vegan consumers are looking for substitutes that could enrich their diet. Among many substitutes, fermented nut products are made from different nut types and obtained after soaking, grinding, and fermentation. Although other fermented vegetable products have been deeply investigated, there are few data about the fermentative processes of nut-based products and the microbial consortia able to colonize these products are not yet studied. This study characterized a hand-made vegan product obtained from cashew nut. Lactic acid bacteria responsible for fermentation were identified, revealing a succession of hetero- and homo-fermentative species during process. Successively, some lactic acid bacteria isolates from the home-made vegan product were used for a pilot-scale fermentation. The products obtained were characterized and showed features similar to the home-made one, although the microbiological hazards have been prevented through proper and rapid acidification, enhancing their safety features. Spontaneous fermented products are valuable sources of microorganisms that can be used in many food processes as starter cultures. The lactic acid bacteria isolated in this research can be exploited by industries to develop new foods and therefore to enter new markets. The use of selected starter cultures guarantees good organoleptic characteristics and food safety (no growth of pathogens). © 2018 Institute of Food Technologists®.

  18. Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Colunga, Luis Manuel; De Leon Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc, San Luis Potosi, SLP 78216 (Mexico); Garcia, Raul Gonzalez [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava 6, San Luis Potosi, SLP 78210 (Mexico)

    2010-12-15

    Biological hydrogen production is an active research area due to the importance of this gas as an energy carrier and the advantages of using biological systems to produce it. A cheap and practical on-line hydrogen determination is desired in those processes. In this study, an artificial neural network (ANN) was developed to estimate the hydrogen production in fermentative processes. A back propagation neural network (BPNN) of one hidden layer with 12 nodes was selected. The BPNN training was done using the conjugated gradient algorithm and on-line measurements of dissolved CO{sub 2}, pH and oxidation-reduction potential during the fermentations of cheese whey by Escherichia coli {delta}hycA {delta}lacI (WDHL) strain with or without pH control. The correlation coefficient between the hydrogen production determined by gas chromatography and the hydrogen production estimated by the BPNN was 0.955. Results showed that the BPNN successfully estimated the hydrogen production using only on-line parameters in genetically modified E. coli fermentations either with or without pH control. This approach could be used for other hydrogen production systems. (author)

  19. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production

    Science.gov (United States)

    2013-01-01

    Background Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. Results The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield. The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. Conclusions Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the

  20. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography

    International Nuclear Information System (INIS)

    Diamantis, V.; Melidis, P.; Aivasidis, A.

    2006-01-01

    Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer

  1. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  3. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    Science.gov (United States)

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  4. Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean.

    Science.gov (United States)

    Moy, Yin-Soon; Lu, Ting-Jang; Chou, Cheng-Chun

    2012-02-01

    In the present study, sufu, a soft cheese-like oriental fermented food, was prepared by ripening the salted-tofu cubes in Aspergillus oryzae-fermented soybean-rice koji at 37°C for 16 days (16-day sufu). Sufu was further held at room temperature for another 30 days (46-day sufu). The volatile components of the non-fermented tofu cubes and the sufu products were identified and quantified by GC and GC-MS. A total of 70 volatile compounds including 20 aldehydes, 18 alcohols, 16 esters, 5 ketones, 5 acids and 6 other compounds were identified. Sufu products contained more volatile compounds than non-fermented tofu cubes qualitatively and quantitatively. After 16-days of ripening, fatty acid, aldehyde and ester were noted to be the dominant volatile fractions. In contrast, the 46-day sufu contained ester, and alcohol as the major volatile fractions. They comprise approximately 63.9% of the total volatile components. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Banat, I.M. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Biolology; Singh, D. [Haryana Agriculture Univ., Hisar (India). Dept. of Microbiology; Marchant, R. [Ulster Univ. (United Kingdom). School of Applied Biological and Chemical Sciences

    1996-12-31

    An investigation was carried out on the growth and ethanol production of a novel thermotolerant ethanol-producing Kluyveromyces marxianus IMB3 yeast strain. It grew aerobically on glucose, lactose, cellobiose, xylose and whey permeate and fermented all the above carbon sources to ethanol at 45 C. This strain was capable of growing under anaerobic chemostat fermentation conditions at 45 C and a dilution rate of 0.15 h{sup -1} and produced {<=}0.9 g/l biomass and 1.8% (v/v) ethanol. An increase in biomass (up to 10.0 g/l) and ethanol (up to 4.3% v/v at 45 C and 7.7% v/v at 40 C) were achieved by applying a continuous two-stage fermentation in sequence (one aerobic and one anerobic stage) or a two-stage anaerobic fermentation with cell recycling. Potential applications, involving alcohol production systems, for use in dairy and wood related industries, were discussed. (orig.)

  6. Reduction of Aflatoxin M1 Levels during Ethiopian Traditional Fermented Milk (Ergo Production

    Directory of Open Access Journals (Sweden)

    Tsige Shigute

    2018-01-01

    Full Text Available In this study, the reduction of aflatoxin M1 (AFM1 levels during lab-scale ergo production was investigated through determination of the residual levels of AFM1 using Enzyme Linked Immunosorbent Assay. The results showed gradual and incubation time dependent reduction of AFM1 level in the raw milk samples being fermented to ergo. The maximum reductions of 57.33 and 54.04% were recorded in AFM1 in natural and LAB inoculums initiated fermentations, respectively, in 5 days of incubation. Although a significant difference (P=0.05 in the AFM1 decrease in the two types of fermentations was recorded, such findings could vary with milk samples depending on initial load of the microorganisms as determined by hygienic conditions. However, the level of AFM1 in control (sterilized samples showed only a 5.5% decrease during the entire period of incubation. Microbiological investigation showed increasing LAB counts with incubation time. A gradual decrease in pH of the milk samples was observed during fermentation. Considering the fact that both viable and dead bacterial cells could remove AFM1 during ergo production, the mechanism is proposed as predominantly involving noncovalent binding of the toxin with the chemical components of the bacterial cell wall.

  7. Protein enrichment, cellulase production and in vitro digestion improvement of pangolagrass with solid state fermentation.

    Science.gov (United States)

    Hu, Chan-Chin; Liu, Li-Yun; Yang, Shang-Shyng

    2012-02-01

    Pangolagrass, Digitaria decumbens Stent, is a major grass for cow feeding, and may be a good substrate for protein enrichment. To improve the quality of pangolagrass for animal feeding, cellulolytic microbes were isolated from various sources and cultivated with solid state fermentation to enhance the protein content, cellulase production and in vitro digestion. The microbes, culture conditions and culture media were studied. Cellulolytic microbes were isolated from pangolagrass and its extracts, and composts. Pangolagrass supplemented with nitrogen and minerals was used to cultivate the cellulolytic microbes with solid state fermentation. The optimal conditions for protein enrichment and cellulase activity were pangolagrass substrate at initial moisture 65-70%, initial pH 6.0-8.0, supplementation with 2.5% (NH(4))(2)SO(4), 2.5% KH(2)PO(4) and K(2)HPO(4) mixture (2:1, w/w) and 0.3% MgSO(4).7H(2)O and cultivated at 30(o)C for 6 days. The protein content of fermented pangolagrass increased from 5.97-6.28% to 7.09-16.96% and the in vitro digestion improved from 4.11-4.38% to 6.08-19.89% with the inoculation of cellulolytic microbes by solid state fermentation. Each 1 g of dried substrate yielded Avicelase 0.93-3.76 U, carboxymethylcellulase 1.39-4.98 U and β-glucosidase 1.20-6.01 U. The isolate Myceliophthora lutea CL3 was the strain found to be the best at improving the quality of pangolagrass for animal feeding with solid state fermentation. Solid state fermentation of pangolagrass inoculated with appropriate microbes is a feasible process to enrich protein content, increase in vitro digestibility and improve the quality for animal feeding. Copyright © 2011. Published by Elsevier B.V.

  8. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance

    International Nuclear Information System (INIS)

    Cheng, Jun; Ding, Lingkan; Lin, Richen; Yue, Liangchen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-01-01

    Highlights: • Microanalyses revealed food waste had more gelatinized organics and less mineral ash. • Mixed food waste and sewage sludge at 5 ratios were used for H_2 and CH_4 co-production. • Highest H_2 yield of 174.6 mL/gVS was achieved when food waste:sewage sludge was 3:1. • Co-fermentation enhanced carbon conversion by strengthening hydrolysis of substrates. • Energy yield rose from 1.9 kJ/gVS in H_2 to 11.3 kJ/gVS in H_2 and CH_4 co-production. - Abstract: The accumulation of increasingly generated food waste and sewage sludge is currently a heavy burden on environment in China. In this study, the physiochemical properties of food waste and sewage sludge were identified using scanning electron microscopy and Fourier transform infrared spectroscopy to investigate the effects on the fermentation performance in the co-fermentation of food waste and sewage sludge for biohydrogen production. The high gelatinized organic components in food waste, the enhanced bioaccessibility due to the dilution of mineral compounds in sewage sludge, and the balanced C/N ratio synergistically improved the fermentative biohydrogen production through the co-fermentation of food waste and sewage sludge at a volatile solids (VS) mix ratio of 3:1. The biohydrogen yield of 174.6 mL/gVS was 49.9% higher than the weighted average calculated from mono-fermentation of food waste and sewage sludge. Co-fermentation also strengthened the hydrolysis and acidogenesis of the mixture, resulting in a total carbon conversion efficiency of 63.3% and an energy conversion efficiency of 56.6% during biohydrogen production. After the second-stage anaerobic digestion of hydrogenogenic effluent, the energy yield from the mixed food waste and sewage sludge significantly increased from 1.9 kJ/gVS in the first-stage biohydrogen production to 11.3 kJ/gVS in the two-stage fermentative biohydrogen and biomethane co-production.

  9. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and Methane Production

    Directory of Open Access Journals (Sweden)

    S. H. Nguyen

    2016-06-01

    Full Text Available Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy dodecane (Empicol. After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0. On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3 was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining

  10. Ethanol production from lignocellulosic materials. Fermentation and on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, L.

    1994-04-01

    The fermentation performance of bacteria, yeast and fungi was investigated in lignocellulosic hydrolysates with the aim of finding microorganisms which both withstand the inhibitors and that have the ability to ferment pentoses. Firstly, the performance of Saccharomyces cidri, Saccharomyces cerevisiae, Lactobacillus brevis, Lactococcus lactis ssp lactis, Escherichia coli and Zymomonas mobilis was investigated in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated willow. Secondly, the performance of natural and recombinant E. coli, Pichia stipitis, recombinant S. cerevisiae, S. cerevisiae in combination with xylose isomerase and Fusarium oxysporum was investigated in a xylose-rich acid hydrolysate of corn cob. Recombinant E. coli was the best alternative for fermentation of lignocellulosic hydrolysates, giving both high yields and productivities. The main drawback was that detoxification was necessary. The kinetics of the fermentation with recombinant E. coli KO11 was investigated in the condensate of steam-pretreated willow. A cost analysis of the ethanol production from willow was made, which predicted an ethanol production cost of 3.9 SEK/l for the pentose fermentation. The detoxification cost constituted 22% of this cost. The monitoring of three monosaccharides and ethanol in lignocellulosic hydro lysates is described. The monosaccharides were determined using immobilized pyranose oxidase in an on-line amperometric analyser. Immobilization and characterization of pyranose oxidase from Phanerochaete chrysosporium is also described. The ethanol was monitored on-line using a micro dialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol bio sensor. The determinations with on-line analysis methods agreed well with off-line methods. 248 refs, 4 figs, 12 tabs

  11. Extracellular methionine amino peptidase (MAP production by Streptomyces gedanensis in solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Raji Rahulan

    2014-04-01

    Full Text Available A bioprocess was developed for extracellular MAP production from Streptomyces gedanensis by solid-state fermentation. Response surface methodology of Box Behken Design was performed to evaluate the interaction effects of most significant variables {inoculum size, (NH42SO4 concentration, MgSO4.7H2O and tryptone on MAP production after the single parameter optimization and it resulted a maximum MAP production of 55.26 IU/g PUF after 120 h of fermentation. The concentrated crude MAP displayed a pH and temperature optimum of 8.5 and 50°C. By analyzing the thermal stability, the MAP was found to be stable in a temperature range of 50 to 55°C but lost about 50% of its activity at 65°C after 30 min. This is a first report of this kind of study for MAP.

  12. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Gastón Ezequiel Ortiz

    2016-01-01

    Full Text Available A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (Ea, quotient energy (Q10, Km, and Vmax were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively.

  13. Immunomodulatory activities and antioxidant properties of polysaccharides from Monascus-fermented products in vitro.

    Science.gov (United States)

    Tseng, Kuo-Chuan; Fang, Tony J; Chiang, Shen-Shih; Liu, Chin-Feng; Wu, Cheng-Lun; Pan, Tzu-Ming

    2012-05-01

    Monascus-fermented products have featured in Chinese cuisine for thousands of years and are widely used as food colourants and dietary materials in many Asian countries. Rice and dioscorea fermented with Monascus purpureus NTU 568 have health-promoting attributes in vitro and in vivo. The aim of this study was to investigate the immunomodulatory and antioxidant effects of polysaccharides from red mould rice (RMRP) and red mould dioscorea (RMDP) in Raw 264.7 cells. The results showed the antioxidant capabilities (including scavenging, chelating, inhibition of lipid peroxidation, and reducing power) of RMRP and RMDP at a concentration of 10 mg mL(-1). RMRP and RMDP also stimulated cell proliferation, nitric oxide production, phagocytosis and cytokine production (including IL1-β, IL-6 and TNF-α) in Raw 264.7 cells. These findings demonstrate that RMRP and RMDP have antioxidant and immunomodulation potential to be developed as novel dietary supplements. Copyright © 2011 Society of Chemical Industry.

  14. Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium

    Directory of Open Access Journals (Sweden)

    F. A. F. Antunes

    2014-01-01

    Full Text Available Bioconversion of hemicellulosic sugars into second generation (2G ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH. It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance. S. shehatae UFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

  15. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  16. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    Science.gov (United States)

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  17. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  18. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR.

    Science.gov (United States)

    Furet, Jean-Pierre; Quénée, Pascal; Tailliez, Patrick

    2004-12-15

    Real-time quantitative PCR assays were developed for the absolute quantification of lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus delbrueckii, L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. johnsonii) in fermented milk products. The results of molecular quantification and classic bacterial enumeration did not differ significantly with respect to S. thermophilus and the species of the L. casei group which were detected in the six commercial fermented products tested, thus showing that DNA extraction was efficient and that genomic DNA solutions were free of PCR inhibitors. For L. delbrueckii, the results of bacterial enumeration were generally lower by a factor 10 to 100 than those of PCR quantification, suggesting a loss of viability during storage of the dairy products at 1-8 degrees C for most of the strains in this species. Real-time quantitative assays enabled identification of the species of lactic acid bacterial strains initially present in commercial fermented milk products and their accurate quantification with a detection threshold of 10(3) cells per ml of product.

  20. Production and Partial Purification of a Neutral Metalloprotease by Fungal Mixed Substrate Fermentation

    Directory of Open Access Journals (Sweden)

    Alagarsamy Sumantha

    2005-01-01

    Full Text Available Five strains of fungi belonging to Aspergillus sp. were evaluated by casein agar plate assay and a wheat bran-based solid-state fermentation for selecting a neutral protease-producing culture. Based on the results, A. oryzae NRRL 2217 was selected for further studies. Sixteen different agro-industrial residues were evaluated for their potential to serve as a substrate for neutral protease production by this fungal strain. Results showed that a combination of coconut oil cake and wheat bran in the mass ratio of 1:3 was the best substrate for enzyme production. Various process parameters influencing protease production including fermentation time, initial moisture content, and fermentation temperature were optimised. The medium was supplemented with different nutrients in the form of organic and inorganic nitrogen and carbon sources. Supplementation of chitin increased the enzyme production significantly. Ammonium nitrate as inorganic nitrogen supplement slightly enhanced enzyme production. No organic nitrogen supplement was effective enhancer of enzyme production. Fermentation was performed under optimised conditions (initial moisture content V/m = 50 %, temperature 30 °C, 48 h. Partial purification of the enzyme resulted in a 3-fold increase in the specific activity of the enzyme. The partially purified enzyme was characterised by various features that govern the enzyme activity such as assay temperature, assay pH and substrate concentration. The effect of various metal ions and known protease inhibitors on the enzyme activity was also studied. The enzyme was found to be stable in pH range 7.0–7.5, and at temperature of 50 °C for 35 min. By the activating effect of divalent cations (Mg2+, Ca2+, Fe2+ and inhibiting effect of certain chelating agents (EGTA, EDTA, the enzyme was found to be a metalloprotease.

  1. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli.

    Science.gov (United States)

    Couto, Márcia R; Rodrigues, Joana L; Rodrigues, Lígia R

    2017-08-01

    Curcumin is a plant secondary metabolite with outstanding therapeutic effects. Therefore, there is a great interest in developing new strategies to produce this high-value compound in a cheaper and environmentally friendly way. Curcumin heterologous production in Escherichia coli using artificial biosynthetic pathways was previously demonstrated using synthetic biology approaches. However, the culturing conditions to produce this compound were not optimized and so far only a two-step fermentation process involving the exchange of culture medium allowed high concentrations of curcumin to be obtained, which limits its production at an industrial scale. In this study, the culturing conditions to produce curcumin were evaluated and optimized. In addition, it was concluded that E. coli BL21 allows higher concentrations of curcumin to be produced than E. coli K-12 strains. Different isopropyl β-d-thiogalactopyranoside concentrations, time of protein expression induction and substrate type and concentration were also evaluated. The highest curcumin production obtained was 959.3 µM (95.93% of per cent yield), which was 3.1-fold higher than the highest concentration previously reported. This concentration was obtained using a two-stage fermentation with lysogeny broth (LB) and M9. Moreover, terrific broth was also demonstrated to be a very interesting alternative medium to produce curcumin because it also led to high concentrations (817.7 µM). The use of this single fermentation medium represents an advantage at industrial scale and, although the final production is lower than that obtained with the LB-M9 combination, it leads to a significantly higher production of curcumin in the first 24 h of fermentation. This study allowed obtaining the highest concentrations of curcumin reported so far in a heterologous organism and is of interest for all of those working with the heterologous production of curcuminoids, other complex polyphenolic compounds or plant secondary

  2. Fermentative production and kinetics of cellulase protein on ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... various carbon sources on the production of cellulase using strains of T. reesei QM 9414, 97.177 and Tm3. Pretreatment of sugarcane ... of cellulose chains; endo-1,4-β-D-glucanses which cleave internal glucosidic bonds ..... production, the Leudeking piret model (Rakshit and Sahai, 1991) was developed.

  3. Fermentation of cacao (Theobroma cacao L.) seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes.

    Science.gov (United States)

    Leal, Gildemberg Amorim; Gomes, Luiz Humberto; Efraim, Priscilla; de Almeida Tavares, Flavio Cesar; Figueira, Antonio

    2008-08-01

    Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage ('sweatings') from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.

  4. Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425.

    Science.gov (United States)

    Rana, Nisha K; Bhat, Tej K

    2005-08-01

    The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.

  5. Novel fermentation processes for manufacturing plant natural products.

    Science.gov (United States)

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus Flour by Fermentation using Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2016-02-01

    Full Text Available Due to the depletion of fossil oil sources, Indonesia attempts to search new source of bioenergy including bioethanol. One of this sources is Iles-iles tubers (Amorphophallus campanulatus, which is abundantly available in Java Indonesia. The carbohydrate content in Iles-Iles tuber flour was 77% and it can be converted to ethanol by three consecutive steps methods consist of liquefaction-saccharification using α and β-amylase, respectively and then followed by fermentation by using Z. mobilis. The objective of this research was to convert the Iles-iles flour to bioethanol by fermentation process with Z.mobilis. The ethanol production process was studied at various starch concentration 15-30% g/L, Z. mobilis concentration (10-40% and pH fermentation of (4-6. The result showed that the yield of bioethanol (10.33% was the highest at 25% starch concentration and 25% of Z.mobilis concentration. The optimum conditions was found at 4.5, 30°C, 10%, 120 h for pH, temperature, Z. mobilis concentration and fermentation time, respectively  at which  ACT tuber flour produced a maximum ethanol of 10.33 % v/v.Article History: Received November 12nd 2015; Received in revised form January 25th 2016; Accepted January 29th 2016; Available online How to Cite This Article: Kusmiyati , Hadiyanto,H  and Kusumadewi, I (2016. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus Flour by Fermentation using Zymomonas mobilis. Int. Journal of Renewable Energy Development, 9(1, 9-14 http://dx.doi.org/10.14710/ijred.5.1.9-14 

  7. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  8. Bioethanol production from date palm fruit waste fermentation using ...

    African Journals Online (AJOL)

    Lenovo

    2016-07-27

    Jul 27, 2016 ... comparison to the theoretical ethanol directly produced from sugar by chemical synthesis .... with the solar water heater, in order to reduce the energy ..... Production of pectinase by Bacillus subtilis EFRL01 in a date syrup.

  9. Optimization of fermentation conditions for trehalose production by a ...

    African Journals Online (AJOL)

    user

    2012-02-16

    Feb 16, 2012 ... The culture conditions for the production of trehalose by Rhodotorula sp. strain were optimized. The optimum ... INTRODUCTION. Trehalose is a ..... Water interplay in trehalose ... In: Prescott DM (Ed.), Methods in Cell Biology.

  10. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  11. Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.

    Science.gov (United States)

    Anaya-Reza, Omar; Lopez-Arenas, Teresa

    2017-07-01

    L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  12. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)

    2010-12-15

    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  13. Supply of nutrients and productive responses in dairy cows given diets based on restrictively fermented silage

    Directory of Open Access Journals (Sweden)

    P. HUHTANEN

    2008-12-01

    Full Text Available The objective of this paper is to review research which has evaluated the feeding of dairy cows with diets containing large proportions of grass silage. In Finland, milk production systems evolved are based on the use of restrictively fermented silages. Higher potential yields, smaller production risks than with cereal grains, short grazing period and high digestibility of grasses grown in northern latitudes have facilitated this development. Factors affecting nutrient supply from these diets are discussed. Digestibility is determined mainly by the stage of maturity at harvesting and it is not markedly affected by the level of energy and protein supplementation. Intake of grass silage is influenced both by digestibility and fermentation characteristics. Efficiency of microbial synthesis is high in animals given diets based on restrictively fermented silage but rumen fermentation pattern is characterised by low molar proportions of propionate. Production responses to additional concentrate are relatively small, especially when the amount of concentrate exceeds 10 kg day-1. High substitution of silage dry matter (DM, negative associative effects on digestion and partitioning of energy towards body tissues account for small production responses. Protein supplementation has consistently increased milk protein yield but responses do not appear to be related to the level of milk production, silage crude protein content, amount of concentrate or stage of lactation. The new protein evaluation system provides an accurate prediction of protein yield with the typical Finnish dairy cow diets. The high slopes (ca. 0.5 between protein supply and milk protein yield within experiments suggest that protein supply is suboptimal and protein supplements are used with a high efficiency.;

  14. Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Janny Coca Armas

    2006-01-01

    Full Text Available Lipase production in Aspergillus niger J-1 was tested using both submerged fermentation (SmF and solid-state fermentation (SSF on a mineral culture medium and wheat bran, respectively. The optimization of the culture medium was carried out for both SmF and SSF. The maximum lipase activity, 1.46 IU/mL, was obtained during the submerged fermentation in a medium containing glucose at 2 % and olive oil at 2 % under conditions of 1 vvm and 450 m–1. However, 9.14 IU/g of dry solid substrate equivalent to 4.8 IU/mL of lipase activity was reached using solid-state fermentation process with a medium containing 0.75 % of ammonium sulphate and 0.34 % of urea. The optimum pH and temperature for enzymatic activity were pH=6 and 40 °C, respectively. The enzyme also exhibited 80 % of its initial activity in neutral and mildly acid media and at temperatures between 20 and 30 °C for a period of 24 hours.

  15. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis

    Directory of Open Access Journals (Sweden)

    Roberta Oliveira Viana

    Full Text Available Abstract The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41 g L-1, reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid. Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains.

  16. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis.

    Science.gov (United States)

    Viana, Roberta Oliveira; Magalhães-Guedes, Karina Teixeira; Braga, Roberto Alves; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41gL -1 , reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid). Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains) providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains. Copyright © 2017. Published by Elsevier Editora Ltda.

  17. Evaluation of sourdoughs for the production of bread using spontaneous fermentation technique

    Directory of Open Access Journals (Sweden)

    Krischina Singer Aplevicz

    2014-07-01

    Full Text Available This study developed three sourdoughs using sugarcane, apple and grape as substrate. The fermentative activity and physicochemical, microbiological and sensory characteristics of the sourdoughs and breads were evaluated. Among the breads that were prepared using different sourdoughs, that which was made from grape sourdough presented high pH (4.30 and less acidity (2.99 mL 0.1N 100 g-1. The grape sourdough was selected for research because it presented the highest fermentation volume and because it was the most preferred in the sensory analysis. The aerobic lactic acid bacteria count at 30°C was 7.52 log CFU g-1 and yeast count was 7.62 log CFU g-1. After one year of cultivation, the aerobic lactic acid bacteria increased by 1.34 logarithmic cycles at a temperature of30°C and the yeasts were reduced by 0.61 logarithmic cycles. The results of this study indicate that the use of different substrates in the preparation of sourdoughs provides breads with different sensory characteristics. Although it is an old process, the application of the spontaneous fermentation technique in bread making is still much used in view of the demand for products with the specific characteristics of this type of fermentation.

  18. Effect of sucrose concentration on the products of Kombucha fermentation on molasses.

    Science.gov (United States)

    Malbaša, R; Lončar, E; Djurić, M; Došenović, I

    2008-06-01

    Fermentation of 1.5g/l of Indian black tea, sweetened with adequate quantities of molasses (containing approx. 70g/l, 50g/l and 35g/l of sucrose), was conducted using domestic Kombucha. Inoculation was performed with 10% of fermentation broth from a previous process. The fermentation in cylindrical vessels containing 2l of liquid phase, was carried out at 22±1°C for 14 days, with periodical sampling, to measure pH, content of acids (total, acetic and l-lactic), content of remaining sucrose, and the yield of biomass at the end of fermentation. A product with 70g/l sucrose from molasses corresponds to an optimal concentration of carbon source, which provided metabolites with high pH, a low content of less desired acetic acid, a high content of highly desired l-lactic acid, an acceptable content of total acids and the highest possible level of utilisation of sucrose. Copyright © 2007 Elsevier Ltd. All rights reserved.

  19. Aureobasidium pullulans Fermented Feruloyl Oligosaccharide: Optimization of Production, Preliminary Characterization, and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Xiaohong Yu

    2013-11-01

    Full Text Available Wheat bran (WB was subjected to processing with Aureobasidium pullulans (A. pullulans under selected conditions to partially break down the xylan into soluble products (mainly feruloyl oligosaccharides, FOs. The objective of this study was to investigate the technology for one-step fermentation of WB by A. pullulans without melanin secretion to produce FOs as well as to determine their structural features and antioxidant activity. Initial pH, inoculation quantity, and fermentation temperature were found to be efficient for releasing FOs according to the Plackett-Burman design (PBD. Based on the D-Optimal design, a yield of 904 nmol of FOs / L of fermentation broth was obtained under optimal conditions of initial pH 6.0, inoculation quantity 4.50%, and fermentation temperature 29 oC. Purification of FOs was performed with alcohol precipitation and Amberlite XAD-2. GC, IR, and ESI-MS demonstrated that FOs consist of feruloyl arabinosyl xylopentose (FAX5, Mw986, feruloyl arabinosyl xylotetraose (FAX4, Mw854, feruloyl arabinosyl xylotriose (FAX3, Mw722, and feruloyl arabinosyl xylobiose (FAX2, Mw590. Increasing the FO dose led to increased activity of SOD and GSH-Px in serum of S180 tumor-bearing mice, while the level of MDA was reduced, thus improving its in vivo antioxidant activity.

  20. Changes in biotin levels during production of natto, Japanese fermented soybean

    Directory of Open Access Journals (Sweden)

    Makoto Muratsugu

    2017-09-01

    Full Text Available The change of biotin level during production of natto (Japanese fermented soybean was investigated in this study.  The total biotin level was measured by an agar plate bioassay using Lactobacillus plantarum ATCC 8014.  The total biotin level decreased during water soaking, but increased after the fermentation of soybeans using Bacillus subtilis var. natto (B. natto and reached a maximum level.  The increase of total biotin was not affected by Asp, Arg, and Ile which promoted the growth of L. plantarum in high concentrations.  The peak level of biotin in the fermented soybeans was significantly higher than that of dry soybeans.  The fermented soybeans at the biotin peak level were adequate for food.  In addition, we detected 9 and 4 biotinylated polypeptides in the soybeans and B. natto used in this study, respectively.  We speculated that the increase of biotin level may depend on the increase of the 4 biotinylated polypeptides and free biotin in B. natto.

  1. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.

    Science.gov (United States)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-01

    The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109 ml g VS 0(-1), respectively, which are 1.5-2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Optimization of ethanol production by Zymomonas mobilis in sugar cane molasses fermentation

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Oliveira

    2005-02-01

    Full Text Available The present study aimed at the optimization of the ethanol production by Zymomonas mobilis CP4, during the fermentation of sugar cane molasses. As for the optimization process, the response surface methodology was applied, using a 33 incomplete factorial design, being the independent variables: total reducing sugar (TRS concentration in the molasses from 10, 55 and 100 g/L (x1; yeast extract concentration from 2, 11 and 20 g/L (x2, and fermentation time from 6, 15 and 24 hours (x3. The dependant variables or answers were the production and productivity of ethanol. By the analysis of the results, a good adjustment of the model to the experimental data was obtained. In the levels studied, the best condition for the production of ethanol was with 100 g/L TRS in the syrup, 2.0 g/L of yeast extract and the fermentation time between 20 and 24 hours, producing 30 g/L of ethanol.

  3. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fed batch fermentation scale up in the production of recombinant streptokinase

    Directory of Open Access Journals (Sweden)

    Salvador Losada-Nerey

    2017-01-01

    Full Text Available Due to the high international demand of the recombinant streptokinase (Skr produced at the National Center for Bioproducts (BioCen, it was necessary to increase the production capacity of the drug, since the current production volume does not cover the demand. A scale up of the process of fermentation of the recombinant streptokinase was made using a fed batch culture, from the bank scale towards a 300L fermenter. The scaling criteria used were: the intensive variables of the process, the relationships of volumes of the fermentation medium and inoculum, the volumetric coefficient of oxygen transfer and air volume to liquid flow relationship which were kept constant. With this scale up procedure it was possible to reproduce the results obtained at the bank scale of and to double the biomass production volume with the same equipment, fulfilling all the quality requirements of the product and to cover the current demand of the market. Techno-economic indicators demonstrated the feasibility of this option.

  5. Lovastatin Production by Aspergillus terreus Using Agro-Biomass as Substrate in Solid State Fermentation

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa

    2012-01-01

    Ability of two strains of Aspergillus terreus (ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained using A. terreus ATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM for A. terreus ATCC 20542 and A. terreus ATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P production (P > 0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM for A. terreus ATCC 20542 and ATCC 74135, respectively, using RS as substrate. PMID:23118499

  6. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  7. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production

    Directory of Open Access Journals (Sweden)

    Wan Abd Al Qadr Imad Wan-Mohtar

    2016-09-01

    Full Text Available The morphology of Ganoderma lucidum BCCM 31549 mycelium in a repeated-batch fermentation (RBF was studied for exopolysaccharide (EPS production. RBF was optimised for time to replace and volume to replace. G. lucidum mycelium showed the ability to self-immobilise and exhibited high stability for repeated use in RBF with engulfed pellets. Furthermore, the ovoid and starburst-like pellet morphology was disposed to EPS production in the shake flask and bioreactor, respectively. Seven RBF could be carried out in 500 mL flasks, and five repeated batches were performed in a 2 L bioreactor. Under RBF conditions, autolysis of pellet core in the shake flask and shaving off of the outer hairy region in the bioreactor were observed at the later stages of RBF (R4 for the shake flask and R6 for the bioreactor. The proposed strategy showed that the morphology of G. lucidum mycelium can withstand extended fermentation cycles.

  9. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    Science.gov (United States)

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  10. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  11. The effect of processing parameters on the structure of fermented milk products with transglutaminase addition

    Directory of Open Access Journals (Sweden)

    Iličić Mirela D.

    2013-01-01

    Full Text Available This study is concerned with the effect of concentration of transglutaminase (TG, content of milk fat and starter culture type (probiotic and kombucha on the structure of fermented milk products. The application of TG significantly improved textural characteristics of the fermented milk products. The firmness of the samples produced from milk with 0.1g100g-1 and 0.9g100g-1 fat content with probiotic starter were by 33% and 17.6% higher, respectively, compared to the control samples. During ten days of storage, the value of the hysteresis loop area of all samples produced from milk with 0.9g100g-1 fat content with TG addition, decreased by 14%. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  12. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  13. In situ prebiotics for weaning piglets: In vitro production and fermentation of potato galactorhamnogalacturonan

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Ravn, Helle Christine; Ingerslev, Hans-Christian

    2015-01-01

    Post weaning diarrhea (PWD) in pigs is a leading cause of economic loss in pork production worldwide. The current practice of using antibiotics and zinc to treat PWD is unsustainable due to the potential of antibiotic resistance and ecological disturbance, and novel methods are required...... product, with a minimal enzyme dose in a simulated upper GI-model extracting 26.9 % of initial dry matter. The fiber was rich in galactose and galacturonic acid and was fermented at 2.5, 5 or 10 g/L in a glucose-free media inoculated with the gut contents of piglet terminal ileum. Fermentations of 5 g....... For animal studies, a dosage corresponding to the 5 g/L treatment is suggested....

  14. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  15. Direct determination of calcium, sodium and potassium in fermented milk products

    Directory of Open Access Journals (Sweden)

    Kravić Snežana Ž.

    2012-01-01

    Full Text Available The aim of this study was the investigation of the possibilities of direct determination of calcium, sodium and potassium in the commercial and kombucha-based fermented milk products by flame photometry. Two procedures were used for sample preparation: simple dilution with water (direct method and extraction with mineral acid. Calcium, sodium and potassium levels determined after mentioned sample preparation methods were compared. The results showed that the differences between the values obtained for the different sample treatment were within the experimental error at the 95% confidence level. Compared to the method based on extraction with mineral acid, the direct method is efficient, faster, simpler, cheaper, and operates according to the principles of Green Chemistry. Consequently, the proposed method for the direct determination of calcium, sodium and potassium could be applied for the rapid routine analysis of the mineral content in the fermented dairy products. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  16. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  17. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    Science.gov (United States)

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  18. Radioprotective action of milk product fermented by strain LBL 4

    International Nuclear Information System (INIS)

    Minkova, M.; G'osheva, L.; Brankova, R.

    1992-01-01

    A food product containing L. Bulgaricus LBL 4 strain and lysozyme was studied for influence upon resistance of experimental animals to nonlethal radiation exposure. The effect was assessed by recording the response of the most radiosensitive body system, that of blood formation. Male Wistar rats were used. The milk product was given by mouth daily for 15 days (3x5 days) prior to 3-Gy gamma irradiation. On day 3 and day 10 in the postradiation period, measurements were made of spleen weight, spleen and bone-marrow cellularity, and peripheral leukocyte counts. The evidence obtained indicated that pretreatment by dietary intake of LBL--4-containing milk product increased the resistance of the blood forming system to nonlethal gamma irradiation, which could be explained by strengthening of the immune activity of the body.

  19. Production and partial characterization of serine and metallo peptidases secreted by Aspergillus fumigatus Fresenius in submerged and solid state fermentation.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues; de Freitas Cabral, Tatiana Pereira; Rodrigues, André; Cabral, Hamilton

    2013-01-01

    Enzyme production varies in different fermentation systems. Enzyme expression in different fermentation systems yields important information for improving our understanding of enzymatic production induction. Comparative studies between solid-state fermentation (SSF) using agro-industrial waste wheat bran and submerged fermentation (SmF) using synthetic media were carried out to determinate the best parameters for peptidase production by the fungus Aspergillus fumigatus Fresen. Variables tested include: the concentration of carbon and protein nitrogen sources, the size of the inoculum, the pH of the media, temperature, and the length of the fermentation process. The best peptidase production during SSF was obtained after 96 hours using wheat bran at 30 °C with an inoculum of 1 × 10(6) spores and yielded 1500 active units (U/mL). The best peptidase production using SmF was obtained after periods of 72 and 96 hours of fermentation in media containing 0.5% and 0.25% of casein, respectively, at a pH of 6.0 and at 30 °C and yielded 40 U/mL. We also found examples of catabolite repression of peptidase production under SmF conditions. Biochemical characterization of the peptidases produced by both fermentative processes showed optimum activity at pH 8.0 and 50 °C, and also showed that their proteolytic activity is modulated by surfactants. The enzymatic inhibition profile using phenylmethylsulfonyl fluoride (PMSF) in SmF and SSF indicated that both fermentative processes produced a serine peptidase. Additionally, the inhibitory effect of the ethylene-diaminetetraacetic acid (EDTA) chelating agent on the peptidase produced by SmF indicated that this fermentative process also produced a metallopeptidase.

  20. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Huss, Hans Henrik; Gram, Lone

    1999-01-01

    associated with fish fillet and minced fish, Lactobacillus paracasei subsp. paracasei with boiled rice and Weisella confusa with garlic mix and banana leaves. In addition, Lactobacillus plantarum, Lactobacillus pentosus and Pediococcus pentosaceus were isolated from raw materials. A succession of aciduric......Lactic acid bacteria (LAB) isolated from raw materials (fish, rice, garlic and banana leaves) and processed som-fak (a Thai low-salt fermented fish product) were characterized by API 50- CH and other phenotypic criteria. Lactococcus lactis subsp. lactis and Leuconostoc citreum were specifically....... paracasei, or garlic fermenting Lb. plantarum and Pd. pentosaceus, or a combination of these strains were inoculated into laboratory prepared som-fak with or without garlic. In som-fak without garlic, pH was above 4.8 after three days, irrespective of addition of mixed LAB cultures. The starch fermenting...

  1. Study of advanced control of ethanol production through continuous fermentation

    Directory of Open Access Journals (Sweden)

    AbdelHamid Ajbar

    2017-01-01

    Full Text Available This paper investigates the control of an experimentally validated model of production of bioethanol. The analysis of the open loop system revealed that the maximum productivity occurred at a periodic point. A robust control was needed to avoid instabilities that may occur when disturbances are injected into the process that may drive it toward or through the unstable points. A nonlinear model predictive controller (NLMPC was used to control the process. Simulation tests were carried out using three controlled variables: the ethanol concentration, the productivity and the inverse of the productivity. In the third configuration, the controller was required to seek the maximum operating point through the optimization capability built in the NLMPC algorithm. Simulation tests presented overall satisfactory closed-loop performance for both nominal servo and regulatory control problems as well as in the presence of modeling errors. The third control configuration managed to steer the process toward the existing maximum productivity even when the process operation or its parameters changed. For comparison purposes, a standard PI controller was also designed for the same control objectives. The PI controller yielded satisfactory performance when the ethanol concentration was chosen as the controlled variable. When, on the other hand, the productivity was chosen as the controlled output, the PI controller did not work properly and needed to be adjusted using gain scheduling. In all cases, it was observed that the closed-loop response suffered from slow dynamics, and any attempt to speed up the feedback response via tuning may result in an unstable behavior.

  2. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  3. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.

    Science.gov (United States)

    Yang, Jian; Chen, Qi; Wang, Weiping; Hu, Jiajun; Hu, Chuan

    2015-05-01

    The influence of oxygen supply on Monascus pigments and citrinin production by Monascus ruber HS.4000 in submerged fermentation was studied. For Monascus cultivation with high pigments and low citrinin production, the initial growth phase, mid-stage phase, and later-stage production phase were separated by shifting oxygen supply. The optimal condition for the fermentation process in shake-flask fermentation was a three-stage rotating rate controlled strategy (0-48 h at 150 rpm, 48-108 h at 250 rpm, 108-120 h at 200 rpm) with medium volume of 100 mL added to 250 mL Erlenmeyer flasks at 30°C for 120 h cultivation. Compared to constant one-stage cultivation (medium volume of 100 mL, rotating rate of 250 rpm), the pigments were reduced by 40.4%, but citrinin was reduced by 64.2%. The most appropriate condition for the fermentation process in a 10 L fermentor is also a three-stage aeration process (0-48 h at 300 L/h, 48-96 h at 500 L/h, 96-120 h at 200 L/h) with agitation of 300 rpm at 30°C for 120 h cultivation, and 237.3 ± 5.7 U/mL pigments were produced in 120 h with 6.05 ± 0.19 mg/L citrinin in a 10 L fermentor. Compared to aeration-constant (500 L/h) cultivation, pigment production was increased by 29.6% and citrinin concentration was reduced by 79.5%. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  5. Secondary products and consumption of sugar during continuous alcoholic fermentation of starchy media

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Yarovenko, V L; Makeev, D M; Belov, E M

    1976-01-01

    Continuous alcohol fermentation in different media containing starch as the carbon source and final analysis of products indicated that 93.3% glucose is converted into ethanol and CO/sub 2/, 2.78% metabolized by the yeast cells, 2.4% converted into glycerol, 0.036% into acetic acid, 0.25% into lactic acid, and a nonsignificant percentage was changed into other organic acids and higher alcohols.

  6. Cross-cultural acceptance of a traditional yoghurt-like product made from fermented cereal

    OpenAIRE

    Akissoé, Noël H.; Sacca, Carole; Declemy, Anne-Laure; Bechoff, Aurelie; Anihouvi, Victor B.; Dalodé, Générose; Pallet, Dominique; Fliedel, Géneviève; Mestres, Christian; Hounhouigan, Joseph D.; Tomlins, Keith I.

    2015-01-01

    BACKGROUND: Akpan is a traditional ready-to-drink fermented yoghurt-like cereal beverage consumed in urban and rural areas in Benin. With the aim of adapting the product to new local and export markets, this work maps African and European consumer preferences for different types of Akpan.\\ud \\ud RESULTS: A sensory profile of Akpan was created and consumer tests were conducted with 103 consumers of African origin and 74 consumers of European origin. Consumer acceptance was significantly correl...

  7. Ethanol production in fermentation of mixed sugars containing xylose

    Science.gov (United States)

    Viitanen, Paul V [West Chester, PA; Mc Cutchen, Carol M [Wilmington, DE; Li,; Xu, [Newark, DE; Emptage, Mark [Wilmington, DE; Caimi, Perry G [Kennett Square, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  8. Production of teicoplanin by Actinoplanes teichomyceticus in continuous fermentation

    DEFF Research Database (Denmark)

    Vara, A.G.; Hochkoepple, A.; Nielsen, Jens

    2002-01-01

    Production of the potent antibiotic teicoplanin by Actinoplanes teichomyceticus was studied in batch and in chemostat cultures. It is found that the producing strain deactivates to a non-producing strain named NP-12. This strain is used to find the growth kinetics of the A. teichomyceticus withou...

  9. Selective short chain carboxylates production by mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.

    2014-01-01

    SUMMARY

    Surfactants are produced and used in the formulation of many different commercial products. After use, these compounds end up in wastewater treatment plants (WWTPs) or in the environment. Although many surfactants can be degraded in aerobic conditions, anaerobic

  10. Optimization of fermentation medium for nisin production from ...

    African Journals Online (AJOL)

    Yomi

    complex system, and it is difficult to develop satisfying models with high ... suitable fitting function and (ii) ANN has universal approximation capability ... ATCC 11454 was purchased from the American Type Culture. Collection. L. lactis ...... metabolic pathway on cell growth and nisin production by lactococcus lactis. Biochem.

  11. Optimization of fermentation conditions for red pigment production ...

    African Journals Online (AJOL)

    An extracellular pigment-producing ascomycetous filamentous fungi belonging to the genera Penicillium was obtained from soil and its optimal culture conditions investigated. The optimal culture conditions for pigment production were as follows; soluble starch 2% (670 units), peptone (880 units), pH 9.0 (900 units); ...

  12. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  13. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  14. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-01-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  15. Improved glycerol production from cane molasses by the sulfite process with vacuum or continuous carbon dioxide sparging during fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.; Lashkari, B.Z.

    1985-01-01

    The conventional sulfite process for glycerol production from molasses using Saccharomyces cerevisiae var. Hansen was modified to obtain product concentrations of up to 230 g/l and productivity of 15 g/l.d by fermenting under vacuum (80 mm) or with continuous sparging of CO2 (0.4 vvm). Under these conditions the requirement of sulfite for optimum production of glycerol was reduced by two thirds (20 g/l), the ethanol concentration in the medium was kept below 30 g/l and the competence of yeast cells to ferment was conserved throughout the fermentation period for up to 20 days. In addition to the above, the rate of incorporation of sulfite had a significant effect on glucose fermentation and glycerol yields. There was an optimal relationship between glycerol yields and the molar ratio of sulfite to glucose consumed, which for cane molasses was 0.67. This ratio was characteristic of the medium composition.

  16. Evaluation of a functional soy product with addition of soy fiber and fermented with probiotic kefir culture

    Directory of Open Access Journals (Sweden)

    Tahis Regina Baú

    2014-06-01

    Full Text Available The objective of this study was to evaluate the chemical, sensory properties and stability of a functional soy product with soy fiber and fermented with probiotic kefir culture. The product was characterized by the chemical composition, color and sensory analysis. The stability of the product was evaluated by pH, acidity, viscosity, firmness, syneresis measurements and cells counts. The functional soy product presented better chemical composition and difference in color compared to the fermented product without fiber. Sensory analysis showed that the functional soy product had good acceptance and had better firmness and reduced syneresis compared to fermented product without fiber. The lactic acid bacteria counts decreased slightly during 28 days at 4°C of the storage and the product showed good microbiological stability. The functional soy product due to high Lactococcus lactis counts could be considered as a probiotic for the entire storage period.

  17. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    Science.gov (United States)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  18. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  19. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Czarnotta, Eik; Dianat, Mariam; Korf, Marcel

    2017-01-01

    from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into S. cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling...... a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg...

  20. Biological fermentative hydrogen production from olive pulp at 35 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Koutrouli, E.C.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering

    2004-07-01

    In response to energy security and environmental concerns, there is renewed interest in the use of hydrogen gas as a renewable energy source. However, many processes for generating hydrogen are extremely energy intensive and costly. This study focused on biological production of hydrogen from wastewater or other biomass. Photosynthetic and fermentation processes were outlined, but the main focus of this paper was on continuous anaerobic fermentation of low cost substrates such as olive pulp at 35 degrees C. This process is linked to the acidogenic stage of anaerobic digestion where carbohydrates are the preferred carbon source. Volatile fatty acids and alcohols are produced simultaneously with the hydrogen gas. An added advantage is that the effluent from the fermentation process can be further used by methanogenesis due to its rich organic acids content. Batch experiments with olive pulp resulted in 2.5 mmole of hydrogen per gram of total carbohydrates. It was noted that more research is required to maximize hydrogen production in a continuous process. It was suggested that hydrogen production could be optimized through hydrolysis of the non-soluble carbohydrates. This could be accomplished through physicochemical or biological pretreatments. 7 refs., 3 tabs., 1 fig.

  1. Production and immobilization of enzymes by solid-state fermentation of agroindustrial waste.

    Science.gov (United States)

    Romo Sánchez, Sheila; Gil Sánchez, Irene; Arévalo-Villena, María; Briones Pérez, Ana

    2015-03-01

    The recovery of by-products from agri-food industry is currently one of the major challenges of biotechnology. Castilla-La Mancha produces around three million tons of waste coming from olive oil and wine industries, both of which have a pivotal role in the economy of this region. For this reason, this study reports on the exploitation of grape skins and olive pomaces for the production of lignocellulosic enzymes, which are able to deconstruct the agroindustrial waste and, therefore, reuse them in future industrial processes. To this end, solid-state fermentation was carried out using two local fungal strains (Aspergillus niger-113 N and Aspergillus fumigatus-3). In some trials, a wheat supplementation with a 1:1 ratio was used to improve the growth conditions, and the particle size of the substrates was altered through milling. Separate fermentations were run and collected after 2, 4, 6, 8, 10 and 15 days to monitor enzymatic activity (xylanase, cellulase, β-glucosidase, pectinase). The highest values were recorded after 10 and 15 days of fermentation. The use of A. niger on unmilled grape skin yielded the best outcomes (47.05 U xylanase/g by-product). The multi-enzymatic extracts obtained were purified, freeze dried, and immobilized on chitosan by adsorption to assess the possible advantages provided by the different techniques.

  2. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  3. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mamta Chauhan

    2013-01-01

    Full Text Available Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R2 value of 96.6% has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production.

  4. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  5. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy.

    Directory of Open Access Journals (Sweden)

    Fei Ren

    Full Text Available In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase.

  6. Strategies to increase cellulase production with submerged fermentation using fungi isolated from the Brazilian biome

    Directory of Open Access Journals (Sweden)

    Genilton da Silva Faheina Junior

    2015-03-01

    Full Text Available Studies on new microbial sources of cellulase and accurate assessment of the steps that increase cellulase production are essential strategies to reduce costs of various processes using such enzymes. This study aimed at the selection of cellulase-producing filamentous fungi, and at the research of parameters involving cellulase production by submerged fermentation. The first test consisted of selecting the best cellulase-producing microorganisms (FPase in Erlenmeyer flasks containing 200 mL of specific growth medium. The next test was designed to further investigate the enzyme production in fermentation with four types of soluble sugars: glucose, lactose, sucrose and xylose. In bioreactor tests, three different inoculation strategies were analyzed. The best FPase activity was presented by the strain Trichoderma sp. CMIAT 041 (49.9 FPU L-1 and CMCase by the fungus Lasiodiplodia theobromae CMIAT 096 (350.0 U L-1. Sucrose proved to be the best option among the soluble sugars tested, with higher rates of FPase activity (49.9 FPU L-1 and CMCase (119.7 U L-1. The best inoculation strategy for the bioreactor was a spore suspension obtained from a semi-solid state fermentation of wheat bran for 72h.

  7. Development of a non-dairy probiotic fermented product based on almond milk and inulin.

    Science.gov (United States)

    Bernat, Neus; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-09-01

    A new fermented almond "milk" that combined the properties of both almonds and probiotics was considered to cover the current versatile health-promoting foods' demand. Almond milk fermentation with probiotic Lactobacillus reuteri and Streptococcus thermophilus was studied by using a Central Composite design with response surface methodology, and different factors (glucose, fructose, inulin and starters) were optimised to assure high probiotic survivals in the final product. The optimal formulation was physicochemically characterised throughout cold storage (28 days) and both probiotic survivals to in vitro digestion and proteolysis were quantified. Results showed that a high probiotic population (>10(7) cfu/mL) was obtained in the previously optimised almond milk throughout storage time, which correspond to the addition of 0.75 g of glucose/100 mL, 0.75 g of fructose/100 mL, 2 g/100 mL inulin and 6 mL/100 mL inoculum. Glucose was used as the main nutrient and the production of mannitol by L. reuteri was detected. The fermentation process increased the viscosity values, forming a weak gel structure, whose physical properties hardly changed. Probiotic bacteria notably survived (51%) to the in vitro digestion, surely related to the inulin presence, which would add value to the developed product by enhancing the potential health benefits of its consumption. © The Author(s) 2014.

  8. [Genetic improvement of technological characteristics of starters for fermented milk products].

    Science.gov (United States)

    Oganesian, G G; Barsegian, A A; Grigorian, N G; Toptsian, A V

    2010-01-01

    Possibility for improvement of technological characteristics of lactobacilli using mutations of resistance to rifampicin (rif(r)) and streptomycin (str(r)) was studied. Using starter model of Narine Lactobacillus acidophilus INMIA-9602 Armenian diet milk product, it was showed that a possibility for selecting strains with increased rate of milk fermentation and acid production is higher in Rif(r) and Str(r) mutants induced by nitrosoguanidine than in cultures sensitive to antibiotics. The milk products obtained using Rif(r) and Str(r) strains had high viscosity, improved texture, increased amount of alive cells and good organoleptic features.

  9. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie

    2009-08-01

    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol-glucose at a rate of 0.25 L H2/L-d with a corn stover lignocellulose feed, and 1.64 mol H2/mol-glucose and 1.65 L H2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70-85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC

  10. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum

    International Nuclear Information System (INIS)

    Ortigueira, Joana; Pinto, Tiago; Gouveia, Luísa; Moura, Patrícia

    2015-01-01

    The biological hydrogen production from Spirogyra sp. biomass was studied in a SBR (sequential batch reactor) equipped with a biogas collecting and storage system. Two acid hydrolysis pre-treatments (1N and 2N H 2 SO 4 ) were applied to the Spirogyra biomass and the subsequent fermentation by Clostridium butyricum DSM 10702 was compared. The 1N and 2N hydrolyzates contained 37.2 and 40.8 g/L of total sugars, respectively, and small amounts of furfural and HMF (hydroxymethylfurfural). These compounds did not inhibit the hydrogen production from crude Spirogyra hydrolyzates. The fermentation was scaled up to a batch operated bioreactor coupled with a collecting system that enabled the subsequent characterization and storage of the biogas produced. The cumulative hydrogen production was similar for both 1N and 2N hydrolyzate, but the hydrogen production rates were 438 and 288 mL/L.h, respectively, suggesting that the 1N hydrolyzate was more suitable for sequential batch fermentation. The SBR with 1N hydrolyzate was operated continuously for 13.5 h in three consecutive batches and the overall hydrogen production rate and yield reached 324 mL/L.h and 2.59 mol/mol, respectively. This corresponds to a potential daily production of 10.4 L H 2 /L Spirogyra hydrolyzate, demonstrating the excellent capability of C. butyricum to produce hydrogen from microalgal biomass. - Highlights: • Production of biohydrogen from crude Spirogyra hydrolyzates. • Set-up of a collecting and storage system for continuous biogas sampling. • The hydrogen production rate is 324 mL/L.h in the SBR (sequential batch reactor). • The SBR produces daily an equivalent to 10.4 L H 2 /L of crude Spirogyra hydrolyzate

  11. The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results

    International Nuclear Information System (INIS)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-01-01

    Highlights: • Co-digestion process finalized to bio-H 2 production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H 2 production from FW. • When SHW ranging between 50% and 70% the H 2 production is improved. • SHW percentages above 70%, led to a depletion in H 2 production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H 2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H 2 production compared to that in FW only, reaching H 2 -production yields of 145 and 109 ml gVS 0 -1 , respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H 2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process

  12. Production of extracellular chitinase Beauveria bassiana under submerged fermentation conditions

    Science.gov (United States)

    Elawati, N. E.; Pujiyanto, S.; Kusdiyantini, E.

    2018-05-01

    Chitinase-producing microbes have attracted attention as one of the potential agents for control of phytopathogenic fungi and insect pests. The fungus that potentially produces chitinase is Beauveria bassiana. This study aims to determine the growth curve and chitinase activities of B. bassiana isolated from Helopeltis antonii insects after application. Method of measuring growth curve was done by dry cell period method, while for measurement of enzyme activity done by measuring absorbance at spectrophotometer. The results showed optimum growth time of B. bassiana with the highest cell count of 0.031 g on day 4 which was log phase, while the highest enzyme activity was 0,585 U / mL on the 4th day for 7 days incubation. Based on these results when correlated growth with enzyme production, chitinase enzyme products are produced in log phase and categorized as primary metabolism.

  13. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    Science.gov (United States)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  14. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2015-07-01

    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.

  15. Conjoint analysis on the purchase intent for traditional fermented soy product (natto) among Japanese housewives.

    Science.gov (United States)

    Kimura, Atsushi; Kuwazawa, Shigetaka; Wada, Yuji; Kyutoku, Yasushi; Okamoto, Masako; Yamaguchi, Yui; Masuda, Tomohiro; Dan, Ippeita

    2011-04-01

    The effect of sensory and extrinsic attributes on consumer intentions to purchase the Japanese traditional fermented soybean product natto was evaluated using conjoint analysis. Six attributes with 2 levels each were chosen and manipulated: price (high compared with low), the country of origin of the soybeans (domestic compared with imported), stickiness (strong compared with moderate), smell (rich compared with moderate), attached seasonings (attached compared with no attached seasonings), and the environmental friendliness of the packaging (high compared with low). A fractional factorial design was applied and 8 hypothetical product labels were produced. A sample of 479 Japanese housewives ranked these product labels based on their purchase intentions. Overall purchase intention was affected by country of origin, attached seasonings, and price; those attributes accounted for 81.0%, while the sensory attributes of the product accounted for 19.0% of purchase intents. In order to estimate market segments for the natto products based on consumer preference, a cluster analysis was performed. It identified 4 segments of consumers: 1 oriented to attached seasonings, another conscious of the price, and the other 2 oriented to origins. The behavioral and demographic characteristics of the respondents had a limited influence on segment membership.   This research was conducted to understand how consumers valuate various sensory and nonsensory product attributes based on their assessment of the overall product in the case of Japanese fermented soy product (natto). The data of this research would be of great importance both in understanding consumer behavior and in designing strategies for product development.

  16. Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production

    Science.gov (United States)

    2013-01-01

    Background Industrial fermentations can generally be described as dynamic biotransformation processes in which microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth quantification of these gene activities, since the low background noise and the absence of an upper limit of quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to productivity improvement. Here we present an overview of the dynamics of gene activity during an industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer. Thereby, valuable insights which help to understand the complex interactions during such processes are provided. Results Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth stages of an industrial-oriented protease production process employing a germination deficient derivative of B. licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein secretion have

  17. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats.

    Science.gov (United States)

    Lu, Qi; Wu, Jian; Wang, Min; Zhou, Chuanshe; Han, Xuefeng; Odongo, Edwin Nicholas; Tan, Zhiliang; Tang, Shaoxun

    2016-01-01

    This study was designed to assess the effectiveness of dietary cellulase (243 U/g, derived from Neocallimastix patriciarum) and a Saccharomyces cerevisiae fermentation product (yeast product) on ruminal fermentation characteristics, enteric methane (CH4) emissions and methanogenic community in growing goats. The experiment was conducted in a 5 × 5 Latin square design using five Xiangdong black wether goats. The treatments included a Control and two levels of cellulase (0.8 g and 1.6 g/kg dry matter intake (DMI), i.e. 194 U/kg and 389 U/kg DMI, respectively) crossed over with two levels (6 g or 12 g/kg DMI) of the yeast product. There were no significant differences regarding feed intake, apparent digestibility of organic matter, neutral detergent fibre and acid detergent fibre among all the treatments. In comparison with the Control, the ruminal ammonia N concentration was decreased (p = 0.001) by cellulase and yeast product addition. The activities of carboxymethylcellulase and xylanase were decreased after cellulase addition. Moreover, dietary cellulase and yeast product addition led to a significant reduction (p cellulase and yeast fermentation product can reduce the production of CH4 energy and mitigate the enteric CH4 emissions to a certain degree.

  18. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.

    Science.gov (United States)

    Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier

    2013-10-01

    Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bio-hydrogen production from waste fermentation. Mixing and static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Cuetos, M.J.; Prieto, J.I.; Moran, A. [Chemical Engineering Dept. IRENA, University of Leon, Avda. de Portugal 41, 24071 Leon (Spain)

    2009-04-15

    One of the main disadvantages of the dark fermentation process is the cost associated with the stages needed for obtaining H{sub 2} producing microorganisms. Using anaerobic microflora in fermentation systems directly is an alternative which is gaining special interest when considering the implementation of large-scale plants and the use of wastes as substrate material. The performance of two H{sub 2} producing microflora obtained from different anaerobic cultures was studied in this paper. Inoculum obtained from a waste sludge digester and from a laboratory digester treating slaughterhouse wastes were used to start up H{sub 2} fermentation systems. Inoculum acclimatized to slaughterhouse wastes gave better performance in terms of stability. However, due to the limited availability of this seed material, further work was performed to study the behaviour of the inoculum obtained from the municipal wastewater treatment plant. The process was evaluated under static and mixing conditions. It was found that application of a low organic loading rate favoured the performance of the fermentation systems, and that agitation of the reacting mass could alleviate unsteady performance. Specific H{sub 2} production obtained was in the range of 19-26 L/kg SV{sub fed} with maximum peak production of 38-67 L/kg SV{sub fed}. Although the performance of the systems was unsteady, recovery could be achieved by suspending the feeding process and controlling the pH in the range of 5.0-5.5. Testing the recovery capacity of the systems under temperature shocks resulted in total stoppage of H{sub 2} production. (author)

  20. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    Science.gov (United States)

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.