WorldWideScience

Sample records for non-stationary scheduling problems

  1. The triangle scheduling problem

    NARCIS (Netherlands)

    Dürr, Christoph; Hanzálek, Zdeněk; Konrad, Christian; Seddik, Yasmina; Sitters, R.A.; Vásquez, Óscar C.; Woeginger, Gerhard

    2017-01-01

    This paper introduces a novel scheduling problem, where jobs occupy a triangular shape on the time line. This problem is motivated by scheduling jobs with different criticality levels. A measure is introduced, namely the binary tree ratio. It is shown that the Greedy algorithm solves the problem to

  2. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  3. Homogenization and two scales convergence of some stationary and non-stationary heat transfer problems, application to gas cooled nuclear rectors

    International Nuclear Information System (INIS)

    Habibi, Z.

    2011-01-01

    We are interested in the homogenization of heat transfer in periodic porous media modelling the geometry of a gas cooled nuclear reactor. This geometry is made of a solid media perforated by several long thin parallel cylinders, the diameter of which is of the same order than the period. The heat is transported by conduction in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the cylinders). A non-local boundary condition models the radiative heat transfer on the cylinder walls. It is a stationary analysis corresponding to a nominal performance of the reactor core, and also non-stationary corresponding to a normal shut-down of the core. To obtain the homogenized problem we first use a formal two-scale asymptotic expansion method. The mathematical justification of our results is based on the notion of two-scale convergence. One feature of this work in dimension 3 is that it combines homogenization with a 3D to 2D asymptotic analysis since the radiative transfer in the limit cell problem is purely two-dimensional. A second feature of this work is the study of this heat transfer when it contains an oscillating thermal source at the microscopic level and a thermal exchange with the perforations. In this context, our numerical analysis shows a non-negligible contribution of the second order corrector which helps us to model the gradients appearing between the source area and the perforations. (author) [fr

  4. Analysis of stress and deformation in non-stationary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.

    1980-12-01

    A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt

  5. Non-stationary Markov chains

    OpenAIRE

    Mallak, Saed

    1996-01-01

    Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...

  6. Routing and scheduling problems

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander

    couple of decades. To deliver competitive service and price, transportation today needs to be cost effective. A company requiring for things to be shipped will aim at having the freight shipped as cheaply as possible while often satisfying certain time constraints. For the transportation company......, the effectiveness of the network is of importance aiming at satisfying as many costumer demands as possible at a low cost. Routing represent a path between locations such as an origin and destination for the object routed. Sometimes routing has a time dimension as well as the physical paths. This may...... set cost making the cost of the individual vehicle routes inter-dependant. Depending on the problem type, the size of the problems and time available for solving, different solution methods can be applicable. In this thesis both heuristic methods and several exact methods are investigated depending...

  7. The Vessel Schedule Recovery Problem

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Plum, Christian Edinger Munk; Vaaben, Bo

    Maritime transportation is the backbone of world trade and is accountable for around 3% of the worlds CO2 emissions. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker cons...... consumption and the impact on the remaining network and the customer service level. The model is applied to 4 real cases from Maersk Line. Solutions are comparable or superior to those chosen by operations managers. Cost savings of up to 58% may be achieved.......Maritime transportation is the backbone of world trade and is accountable for around 3% of the worlds CO2 emissions. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker...

  8. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference

  9. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  10. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  11. On the dynamics of non-stationary binary stellar systems

    International Nuclear Information System (INIS)

    Bekov, A. A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2005-01-01

    The motion of test body in the external gravitational field of the binary stellar system with slowly variable some physical parameters of radiating components is considered on the base of restricted non-stationary photo-gravitational three and two bodies problem. The family of polar and coplanar solutions are obtained. These solutions give the possibility of the dynamical and structure interpretation of the binary young evolving stars and galaxies. (author)

  12. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaël

    2016-03-03

    Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.

  13. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    QED. Another rapidly growing research field (although its origin can be traced to the beginning of the 1980s) is the quantum control of evolution at the microscopic level. These examples show that quantum non-stationary systems continue to be a living and very interesting part of quantum physics, uniting researchers from many different areas. Thus it is no mere chance that several special scientific meetings devoted to these topics have been organized recently. One was the international seminar 'Time-Dependent Phenomena in Quantum Mechanics' organized by Manfred Kleber and Tobias Kramer in 2007 at Blaubeuren, Germany. The proceedings of that event were published in 2008 as volume 99 of Journal of Physics: Conference Series. Another recent meeting was the International Workshop on Quantum Non-Stationary Systems, held on 19-23 October 2009 at the International Center for Condensed Matter Physics (ICCMP) in Brasilia, Brazil. It was organized and directed by Victor Dodonov (Institute of Physics, University of Brasilia, Brazil), Vladimir Man'ko (P N Lebedev Physical Institute, Moscow, Russia) and Salomon Mizrahi (Physics Department, Federal University of Sao Carlos, Brazil). This event was accompanied by a satellite workshop 'Quantum Dynamics in Optics and Matter', organized by Salomon Mizrahi and Victor Dodonov on 25-26 October 2009 at the Physics Department of the Federal University of Sao Carlos, Brazil. These two workshops, supported by the Brazilian federal agencies CAPES and CNPq and the local agencies FAP-DF and FAPESP, were attended by more than 120 participants from 16 countries. Almost 50 invited talks and 20 poster presentations covered a wide area of research in quantum mechanics, quantum optics and quantum information. This special issue of CAMOP/Physica Scripta contains contributions presented by some invited speakers and participants of the workshop in Brasilia. Although they do not cover all of the wide spectrum of problems related to quantum non-stationary

  14. Integrated network design and scheduling problems :

    Energy Technology Data Exchange (ETDEWEB)

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  15. Trend analysis using non-stationary time series clustering based on the finite element method

    OpenAIRE

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-01-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...

  16. Non-stationary compositions of Anosov diffeomorphisms

    International Nuclear Information System (INIS)

    Stenlund, Mikko

    2011-01-01

    Motivated by non-equilibrium phenomena in nature, we study dynamical systems whose time-evolution is determined by non-stationary compositions of chaotic maps. The constituent maps are topologically transitive Anosov diffeomorphisms on a two-dimensional compact Riemannian manifold, which are allowed to change with time—slowly, but in a rather arbitrary fashion. In particular, such systems admit no invariant measure. By constructing a coupling, we prove that any two sufficiently regular distributions of the initial state converge exponentially with time. Thus, a system of this kind loses memory of its statistical history rapidly

  17. Algorithms for classical and modern scheduling problems

    OpenAIRE

    Ott, Sebastian

    2016-01-01

    Subject of this thesis is the design and the analysis of algorithms for scheduling problems. In the first part, we focus on energy-efficient scheduling, where one seeks to minimize the energy needed for processing certain jobs via dynamic adjustments of the processing speed (speed scaling). We consider variations and extensions of the standard model introduced by Yao, Demers, and Shenker in 1995 [79], including the addition of a sleep state, the avoidance of preemption, and variable speed lim...

  18. Problem specific heuristics for group scheduling problems in cellular manufacturing

    OpenAIRE

    Neufeld, Janis Sebastian

    2016-01-01

    The group scheduling problem commonly arises in cellular manufacturing systems, where parts are grouped into part families. It is characterized by a sequencing task on two levels: on the one hand, a sequence of jobs within each part family has to be identified while, on the other hand, a family sequence has to be determined. In order to solve this NP-hard problem usually heuristic solution approaches are used. In this thesis different aspects of group scheduling are discussed and problem spec...

  19. Algorithms for Scheduling and Network Problems

    Science.gov (United States)

    1991-09-01

    time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

  20. Approximating multi-objective scheduling problems

    NARCIS (Netherlands)

    Dabia, S.; Talbi, El-Ghazali; Woensel, van T.; Kok, de A.G.

    2013-01-01

    In many practical situations, decisions are multi-objective by nature. In this paper, we propose a generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine the set of Pareto solutions that represent the interactions between the different objectives. Due to

  1. Flexible job shop scheduling problem in manufacturing

    OpenAIRE

    Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo

    2013-01-01

    This paper addresses a real assembly cell: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France. This system can be viewed as a Flexible Job Shop, leading to the formulation of a Flexible Job Shop Scheduling Problem (FJSSP).

  2. The Home Care Crew Scheduling Problem:

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Justesen, Tor; Dohn, Anders

    In the Home Care Crew Scheduling Problem a staff of caretakers has to be assigned a number of visits to patients' homes, such that the overall service level is maximised. The problem is a generalisation of the vehicle routing problem with time windows. Required travel time between visits and time...... preference constraints. The algorithm is tested both on real-life problem instances and on generated test instances inspired by realistic settings. The use of the specialised branching scheme on real-life problems is novel. The visit clustering decreases run times significantly, and only gives a loss...... windows of the visits must be respected. The challenge when assigning visits to caretakers lies in the existence of soft preference constraints and in temporal dependencies between the start times of visits. We model the problem as a set partitioning problem with side constraints and develop an exact...

  3. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  4. The Home Care Crew Scheduling Problem

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Justesen, Tor

    In the Home Care Crew Scheduling Problem (HCCSP) a staff of caretakers has to be assigned a number of visits, such that the total number of assigned visits is maximised. The visits have different locations and positions in time, and travelling time and time windows must be respected. The challenge...... when assigning visits to caretakers lies in the existence of soft constraints and indeed also in temporal dependencies between the starting times of visits. Most former approaches to solving the HCCSP involve the use of heuristic methods. Here we develop an exact branch-and-price algorithm that uses...... clustering of the visits based on the problem structure. The algorithm is tested on real-life problem instances and we obtain solutions that are better than current practice in all cases....

  5. Staffing a call center with uncertain non-stationary arrival rate and flexibility

    NARCIS (Netherlands)

    Liao, S.; van Delft, C.; Jouini, O.; Koole, G.M.

    2012-01-01

    We consider a multi-period staffing problem in a single-shift call center. The call center handles inbound calls, as well as some alternative back-office jobs. The call arrival process is assumed to follow a doubly non-stationary stochastic process with a random mean arrival rate. The inbound calls

  6. Optimal inventory policies with non-stationary supply disruptions and advance supply information

    NARCIS (Netherlands)

    Atasoy, B.; Güllü, R.; Tan, T.

    2012-01-01

    We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages – and hence supply disruption to (some of) her customers

  7. Optimal inventory policies with non-stationary supply disruptions and advance supply information

    NARCIS (Netherlands)

    Atasoy, B.; Güllü, R.; Tan, T.

    2011-01-01

    We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages -and hence supply disruption to (some of) her customers-

  8. Production planning of a perishable product with lead time and non-stationary demand

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Haijema, R.; Hendrix, E.M.T.; Rossi, R.; Vorst, van der J.G.A.J.

    2012-01-01

    We study a production planning problem for a perishable product with a fixed lifetime, under a service-level constraint. The product has a non-stationary stochastic demand. Food supply chains of fresh products like cheese and several crop products, are characterised by long lead times due to

  9. An MILP approximation for ordering perishable products with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2014-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  10. Inventory control for a perishable product with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2013-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  11. Cooperated Bayesian algorithm for distributed scheduling problem

    Institute of Scientific and Technical Information of China (English)

    QIANG Lei; XIAO Tian-yuan

    2006-01-01

    This paper presents a new distributed Bayesian optimization algorithm (BOA) to overcome the efficiency problem when solving NP scheduling problems.The proposed approach integrates BOA into the co-evolutionary schema,which builds up a concurrent computing environment.A new search strategy is also introduced for local optimization process.It integrates the reinforcement learning(RL) mechanism into the BOA search processes,and then uses the mixed probability information from BOA (post-probability) and RL (pre-probability) to enhance the cooperation between different local controllers,which improves the optimization ability of the algorithm.The experiment shows that the new algorithm does better in both optimization (2.2%) and convergence (11.7%),compared with classic BOA.

  12. Distributing Flexibility to Enhance Robustness in Task Scheduling Problems

    NARCIS (Netherlands)

    Wilmer, D.; Klos, T.B.; Wilson, M.

    2013-01-01

    Temporal scheduling problems occur naturally in many diverse application domains such as manufacturing, transportation, health and education. A scheduling problem arises if we have a set of temporal events (or variables) and some constraints on those events, and we have to find a schedule, which is

  13. Some extensions of the discrete lotsizing and scheduling problem

    NARCIS (Netherlands)

    M. Salomon (Marc); L.G. Kroon (Leo); R. Kuik (Roelof); L.N. van Wassenhove (Luk)

    1991-01-01

    textabstractIn this paper the Discrete Lotsizing and Scheduling Problem (DLSP) is considered. DLSP relates to capacitated lotsizing as well as to job scheduling problems and is concerned with determining a feasible production schedule with minimal total costs in a single-stage manufacturing process.

  14. Teaching geographical hydrology in a non-stationary world

    Science.gov (United States)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    cooperate. Besides fieldwork, a student should also learn to make use of the many available data sets, such as google earth, or as provided by remote sensing, or automatic data loggers. In our opinion the following sequence of activities should be applied for a student to attain a desirable working knowledge level. As mentioned earlier, a student first of all needs to have sufficient classical hydrological knowledge. After this a student should be educated in using simple models, in which field knowledge is incorporated. After this, a student should learn how to build models for solving typical hydrological problems. Modelling is especially worthwhile when the model is applied to a known area, as this certifies integration of fieldwork and modelling activities. To learn how to model, tailored courses with software that provides a set of easily learned functions to match the student's conceptual thought processes are needed. It is not easy to bring theoretical, field, and modelling knowledge together, and a pitfall may be the lack of knowledge of one or more of the above. Also, a student must learn to be able to deal with uncertainties in data and models, and must be trained to deal with unpredictability. Therefore, in our opinion a modern student should strive to become an integrating specialist in all of the above mentioned fields if we are to take geographical hydrology to a higher level and if we want to come to grips with it in a non-stationary world. A student must learn to think and act in an integrative way, and for this combining classical hydrology, field hydrology and modelling at a high education level in our hydrology curricula, in our opinion, is the way to proceed.

  15. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  16. Unit-time scheduling problems with time dependent resources

    NARCIS (Netherlands)

    Tautenhahn, T.; Woeginger, G.

    1997-01-01

    We investigate the computational complexity of scheduling problems, where the operations consume certain amounts of renewable resources which are available in time-dependent quantities. In particular, we consider unit-time open shop problems and unit-time scheduling problems with identical parallel

  17. Solving a chemical batch scheduling problem by local search

    NARCIS (Netherlands)

    Brucker, P.; Hurink, Johann L.

    1999-01-01

    A chemical batch scheduling problem is modelled in two different ways as a discrete optimization problem. Both models are used to solve the batch scheduling problem in a two-phase tabu search procedure. The method is tested on real-world data.

  18. Solving project scheduling problems by minimum cut computations

    NARCIS (Netherlands)

    Möhring, R.H.; Schulz, A.S.; Stork, F.; Uetz, Marc Jochen

    In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in

  19. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  20. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  1. The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems

    Science.gov (United States)

    Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.

    2016-08-01

    In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.

  2. The Liner Shipping Routing and Scheduling Problem Under Environmental Considerations

    DEFF Research Database (Denmark)

    Dithmer, Philip; Reinhardt, Line Blander; Kontovas, Christos

    2017-01-01

    This paper deals with the Liner Shipping Routing and Scheduling Problem (LSRSP), which consists of designing the time schedule for a vessel to visit a fixed set of ports while minimizing costs. We extend the classical problem to include the external cost of ship air emissions and we present some...

  3. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  4. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  5. Cointegration and Econometric Analysis of Non-Stationary Data in ...

    African Journals Online (AJOL)

    This is in conformity with the philosophy underlying the cointegration theory. Therefore, ignoring cointegration in non-stationary time series variables could lead to misspecification of the underlying process in the determination of corporate income tax in Nigeria. Thus, the study conclude that cointegration is greatly enhanced ...

  6. Robust Forecasting of Non-Stationary Time Series

    NARCIS (Netherlands)

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable

  7. Evaluation of the Methods for Response Analysis under Non-Stationary Excitation

    Directory of Open Access Journals (Sweden)

    R.S. Jangid

    1999-01-01

    Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.

  8. Job shop scheduling problem with late work criterion

    Science.gov (United States)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  9. Flow-shop scheduling problem under uncertainties: Review and trends

    OpenAIRE

    Eliana María González-Neira; Jairo R. Montoya-Torres; David Barrera

    2017-01-01

    Among the different tasks in production logistics, job scheduling is one of the most important at the operational decision-making level to enable organizations to achieve competiveness. Scheduling consists in the allocation of limited resources to activities over time in order to achieve one or more optimization objectives. Flow-shop (FS) scheduling problems encompass the sequencing processes in environments in which the activities or operations are performed in a serial flow. This type of co...

  10. Dynamic Scheduling for Cloud Reliability using Transportation Problem

    OpenAIRE

    P. Balasubramanie; S. K. Senthil Kumar

    2012-01-01

    Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...

  11. A DIFFERENTIAL EVOLUTION ALGORITHM DEVELOPED FOR A NURSE SCHEDULING PROBLEM

    Directory of Open Access Journals (Sweden)

    Shahnazari-Shahrezaei, P.

    2012-11-01

    Full Text Available Nurse scheduling is a type of manpower allocation problem that tries to satisfy hospital managers objectives and nurses preferences as much as possible by generating fair shift schedules. This paper presents a nurse scheduling problem based on a real case study, and proposes two meta-heuristics a differential evolution algorithm (DE and a greedy randomised adaptive search procedure (GRASP to solve it. To investigate the efficiency of the proposed algorithms, two problems are solved. Furthermore, some comparison metrics are applied to examine the reliability of the proposed algorithms. The computational results in this paper show that the proposed DE outperforms the GRASP.

  12. An improved sheep flock heredity algorithm for job shop scheduling and flow shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Chandramouli Anandaraman

    2011-10-01

    Full Text Available Job Shop Scheduling Problem (JSSP and Flow Shop Scheduling Problem (FSSP are strong NP-complete combinatorial optimization problems among class of typical production scheduling problems. An improved Sheep Flock Heredity Algorithm (ISFHA is proposed in this paper to find a schedule of operations that can minimize makespan. In ISFHA, the pairwise mutation operation is replaced by a single point mutation process with a probabilistic property which guarantees the feasibility of the solutions in the local search domain. A Robust-Replace (R-R heuristic is introduced in place of chromosomal crossover to enhance the global search and to improve the convergence. The R-R heuristic is found to enhance the exploring potential of the algorithm and enrich the diversity of neighborhoods. Experimental results reveal the effectiveness of the proposed algorithm, whose optimization performance is markedly superior to that of genetic algorithms and is comparable to the best results reported in the literature.

  13. Inferential framework for non-stationary dynamics: theory and applications

    International Nuclear Information System (INIS)

    Duggento, Andrea; Luchinsky, Dmitri G; McClintock, Peter V E; Smelyanskiy, Vadim N

    2009-01-01

    An extended Bayesian inference framework is presented, aiming to infer time-varying parameters in non-stationary nonlinear stochastic dynamical systems. The convergence of the method is discussed. The performance of the technique is studied using, as an example, signal reconstruction for a system of neurons modeled by FitzHugh–Nagumo oscillators: it is applied to reconstruction of the model parameters and elements of the measurement matrix, as well as to inference of the time-varying parameters of the non-stationary system. It is shown that the proposed approach is able to reconstruct unmeasured (hidden) variables of the system, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator and to track the continuous evolution of the control parameters in the adiabatic limit

  14. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  15. Solving University Scheduling Problem Using Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed Shaikh

    2011-10-01

    Full Text Available In universities scheduling curriculum activity is an essential job. Primarily, scheduling is a distribution of limited resources under interrelated constraints. The set of hard constraints demand the highest priority and should not to be violated at any cost, while the maximum soft constraints satisfaction mounts the quality scale of solution. In this research paper, a novel bisected approach is introduced that is comprisesd of GA (Genetic Algorithm as well as Backtracking Recursive Search. The employed technique deals with both hard and soft constraints successively. The first phase decisively is focused over elimination of all the hard constraints bounded violations and eventually produces partial solution for subsequent step. The second phase is supposed to draw the best possible solution on the search space. Promising results are obtained by implementation on the real dataset. The key points of the research approach are to get assurance of hard constraints removal from the dataset and minimizing computational time for GA by initializing pre-processed set of chromosomes.

  16. Robust Forecasting of Non-Stationary Time Series

    OpenAIRE

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estima...

  17. A Generalized Framework for Non-Stationary Extreme Value Analysis

    Science.gov (United States)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  18. Hybrid IP/CP Methods for Solving Sports Scheduling Problems

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus Vinther

    2006-01-01

    The field of sports scheduling comprises a challenging research areawith a great variety of hard combinatorial optimization problems andchallenging practical applications. This dissertation gives acomprehensive survey of the area and a number of new contributionsare presented. First a general sol...

  19. The application of artificial intelligence to astronomical scheduling problems

    Science.gov (United States)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  20. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.; Smołka, M.; Cortes, Adriano Mauricio; Paszyński, M.; Schaefer, R.

    2016-01-01

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme

  1. Flow-shop scheduling problem under uncertainties: Review and trends

    Directory of Open Access Journals (Sweden)

    Eliana María González-Neira

    2017-03-01

    Full Text Available Among the different tasks in production logistics, job scheduling is one of the most important at the operational decision-making level to enable organizations to achieve competiveness. Scheduling consists in the allocation of limited resources to activities over time in order to achieve one or more optimization objectives. Flow-shop (FS scheduling problems encompass the sequencing processes in environments in which the activities or operations are performed in a serial flow. This type of configuration includes assembly lines and the chemical, electronic, food, and metallurgical industries, among others. Scheduling has been mostly investigated for the deterministic cases, in which all parameters are known in advance and do not vary over time. Nevertheless, in real-world situations, events are frequently subject to uncertainties that can affect the decision-making process. Thus, it is important to study scheduling and sequencing activities under uncertainties since they can cause infeasibilities and disturbances. The purpose of this paper is to provide a general overview of the FS scheduling problem under uncertainties and its role in production logistics and to draw up opportunities for further research. To this end, 100 papers about FS and flexible flow-shop scheduling problems published from 2001 to October 2016 were analyzed and classified. Trends in the reviewed literature are presented and finally some research opportunities in the field are proposed.

  2. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2007-04-15

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  3. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    International Nuclear Information System (INIS)

    Sunde, Carl

    2007-01-01

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  4. Reachability problems in scheduling and planning

    NARCIS (Netherlands)

    Eggermont, C.E.J.

    2012-01-01

    Reachability problems are fundamental in the context of many mathematical models and abstractions which describe various computational processes. Intuitively, when many objects move within a shared environment, objects may have to wait for others before moving and so slow down, or objects may even

  5. The Application of Artificial Intelligence to Astronomical Scheduling Problems

    Science.gov (United States)

    Johnston, Mark D.

    1993-01-01

    As artificial intelligence (AI) technology has moved from the research laboratory into more and more widespread use, one of the leading applications in astronomy has been to high-profile observation scheduling. The Spike scheduling system was developed by the Space Telescope Science Institute (STScI) for the purpose of long-range scheduling of Hubble Space Telescope (HST). Spike has been in daily operational use at STScI since well before HST launch in April 1990. The system has also been adapted to schedule other missions: one of these missions (EUVE) is currently operational, while another (ASTRO-D) will be launched in February 1993. Some other future space astronomy missions (XTE, SWAS, and AXAF) are making tentative plans to use Spike. Spike has proven to be a powerful and flexible scheduling framework with applicability to a wide variety of problems.

  6. Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling

    Science.gov (United States)

    Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina

    2018-01-01

    The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.

  7. Autocalibration method for non-stationary CT bias correction.

    Science.gov (United States)

    Vegas-Sánchez-Ferrero, Gonzalo; Ledesma-Carbayo, Maria J; Washko, George R; Estépar, Raúl San José

    2018-02-01

    Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, the deleterious effects of radiation exposure inherent in CT imaging require the development of image reconstruction methods which can reduce exposure levels. The development of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that of CT images acquired with much higher radiation dosages. However, the characterization and calibration of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is limited to select global reference values and does not consider other inherent factors of the acquisition that depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the systematic bias observed in devices from different vendors. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed methods for removing the intra-device and inter-device reconstruction biases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solving cyclical nurse scheduling problem using preemptive goal programming

    Science.gov (United States)

    Sundari, V. E.; Mardiyati, S.

    2017-07-01

    Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.

  9. The Simultaneous Vehicle Scheduling and Passenger Service Problem

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Larsen, Allan; Madsen, Oli B.G.

    modifications of the timetable during the vehicle scheduling phase. This planning approach is referred to as the Simultaneous Vehicle Scheduling and Passenger Service Problem (SVSPSP). The SVSPSP is solved using a large neighbourhood search metaheuristic. The proposed framework is tested on data inspired......Passengers using public transport systems often experience waiting times when transferring between two scheduled services. We propose a planning approach which seeks to obtain a favorable trade-off between the conflicting objectives passenger service and operating cost, by allowing some moderate...

  10. Solving a manpower scheduling problem for airline catering using metaheuristics

    DEFF Research Database (Denmark)

    Ho, Sin C.; Leung, Janny M. Y.

    2010-01-01

    We study a manpower scheduling problem with job time-windows and job-skills compatibility constraints. This problem is motivated by airline catering operations, whereby airline meals and other supplies are delivered to aircrafts on the tarmac just before the flights take-off.  Jobs (flights) must...

  11. Optimization of the solution of the problem of scheduling theory ...

    African Journals Online (AJOL)

    This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...

  12. Flexible ship loading problem with transfer vehicle assignment and scheduling

    DEFF Research Database (Denmark)

    Iris, Çağatay; Christensen, Jonas; Pacino, Dario

    2018-01-01

    This paper presents the flexible containership loading problem for seaport container terminals. The integrated management of loading operations, planning of the transport vehicles to use and their scheduling is what we define as the Flexible Ship Loading Problem (FSLP). The flexibility comes from...

  13. Local polynomial Whittle estimation covering non-stationary fractional processes

    DEFF Research Database (Denmark)

    Nielsen, Frank

    to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....

  14. Detrending of non-stationary noise data by spline techniques

    International Nuclear Information System (INIS)

    Behringer, K.

    1989-11-01

    An off-line method for detrending non-stationary noise data has been investigated. It uses a least squares spline approximation of the noise data with equally spaced breakpoints. Subtraction of the spline approximation from the noise signal at each data point gives a residual noise signal. The method acts as a high-pass filter with very sharp frequency cutoff. The cutoff frequency is determined by the breakpoint distance. The steepness of the cutoff is controlled by the spline order. (author) 12 figs., 1 tab., 5 refs

  15. Identification of the structure parameters using short-time non-stationary stochastic excitation

    Science.gov (United States)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  16. Non-stationary ionization in the low ionosphere by gravitational wave action

    International Nuclear Information System (INIS)

    Nikitin, M.A.; Kashchenko, N.M.

    1977-01-01

    Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium

  17. The Simultaneous Vehicle Scheduling and Passenger Service Problem

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Larsen, Allan; Madsen, Oli B.G.

    2013-01-01

    , by modifying the timetable. The planning approach is referred to as the simultaneous vehicle scheduling and passenger service problem (SVSPSP). The SVSPSP is modelled as an integer programming problem and solved using a large neighborhood search metaheuristic. The proposed framework is tested on data inspired......Passengers using public transport systems often experience waiting times when transferring between two scheduled services. In this paper we propose a planning approach that seeks to obtain a favourable trade-off between the two contrasting objectives, passenger service and operating cost...

  18. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Solving Large Scale Crew Scheduling Problems in Practice

    NARCIS (Netherlands)

    E.J.W. Abbink (Erwin); L. Albino; T.A.B. Dollevoet (Twan); D. Huisman (Dennis); J. Roussado; R.L. Saldanha

    2010-01-01

    textabstractThis paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base

  20. On the Integrated Job Scheduling and Constrained Network Routing Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    This paper examines the NP-hard problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job demands a number of resources, which must be sent to the executing machine via constrained paths. Furthermore, two resource demand...

  1. Classification of Ship Routing and Scheduling Problems in Liner Shipping

    DEFF Research Database (Denmark)

    Kjeldsen, Karina Hjortshøj

    2011-01-01

    This article provides a classification scheme for ship routing and scheduling problems in liner shipping in line with the current and future operational conditions of the liner shipping industry. Based on the classification, the literature is divided into groups whose main characteristics...

  2. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    Science.gov (United States)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  3. AUTOMATIC CONTROL OF PARAMETERS OF A NON-STATIONARY OBJECT WITH CROSS LINKS

    Directory of Open Access Journals (Sweden)

    A. Pavlov

    2018-04-01

    Full Text Available Many objects automatic control unsteady. This is manifested in the change of their parameters. Therefore, periodically adjust the required parameters of the controller. This work is usually carried out rarely. For a long time, regulators are working with is not the optimal settings. The consequence of this is the low quality of many industrial control systems. The solution problem is the use of robust controllers. ACS with traditional PI and PID controllers have a very limited range of normal operation modes due to the appearance of parametric disturbances due to changes in the characteristics of the automated unit and changes in the load on it. The situation is different when using in the architecture of artificial neural network controllers. It is known that when training a neural network, the adaptation procedure is often used. This makes it possible to greatly expand the area of normal operating modes of ACS with neural automatic regulators in comparison with traditional linear regulators. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional object, provided that when designing the ACS at the stage of its simulation in the model of the regulatory object model, an adequate simulation model of the executive device. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional regulatory object model, an adequate simulation model of the executive device. Especially actual implementation of all these requirements in the application of electric actuators. This article fully complies with these requirements. This is what makes it possible to provide a guaranteed quality of control in non-stationary ACS with multidimensional objects and cross-links between control channels. The possibility of using a known hybrid automatic regulator to stabilize the parameters of a two-channel non-stationary object with two cross-linked. A

  4. Enhancement of Non-Stationary Speech using Harmonic Chirp Filters

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, the issue of single channel speech enhancement of non-stationary voiced speech is addressed. The non-stationarity of speech is well known, but state of the art speech enhancement methods assume stationarity within frames of 20–30 ms. We derive optimal distortionless filters that take...... the non-stationarity nature of voiced speech into account via linear constraints. This is facilitated by imposing a harmonic chirp model on the speech signal. As an implicit part of the filter design, the noise statistics are also estimated based on the observed signal and parameters of the harmonic chirp...... model. Simulations on real speech show that the chirp based filters perform better than their harmonic counterparts. Further, it is seen that the gain of using the chirp model increases when the estimated chirp parameter is big corresponding to periods in the signal where the instantaneous fundamental...

  5. Non-stationary vibrations of a thin viscoelastic orthotropic beam

    Czech Academy of Sciences Publication Activity Database

    Adámek, V.; Valeš, František; Tikal, B.

    2009-01-01

    Roč. 71, č. 12 (2009), e2569-e2576 ISSN 0362-546X R&D Projects: GA ČR(CZ) GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin beam * non-stationary vibration * analytical solution Subject RIV: BI - Acoustics Impact factor: 1.487, year: 2009 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0Y-4WB3N8S-4&_user=640952&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1156243286&_rerunOrigin= google &_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=ce096901a3382058455e822a20645820

  6. Generalized Predictive Control for Non-Stationary Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1994-01-01

    This paper shows how the generalized predictive control (GPC) can be extended to non-stationary (time-varying) systems. If the time-variation is slow, then the classical GPC can be used in context with an adaptive estimation procedure of a time-invariant ARIMAX model. However, in this paper prior...... knowledge concerning the nature of the parameter variations is assumed available. The GPC is based on the assumption that the prediction of the system output can be expressed as a linear combination of present and future controls. Since the Diophantine equation cannot be used due to the time......-variation of the parameters, the optimal prediction is found as the general conditional expectation of the system output. The underlying model is of an ARMAX-type instead of an ARIMAX-type as in the original version of the GPC (Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987). Automatica, 23, 137-148) and almost all later...

  7. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  8. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  9. Extended precedence preservative crossover for job shop scheduling problems

    Science.gov (United States)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  10. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  11. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    International Nuclear Information System (INIS)

    Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.

    2013-01-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods

  12. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    Science.gov (United States)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  13. Trend analysis using non-stationary time series clustering based on the finite element method

    Science.gov (United States)

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-05-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.

  14. Around and about an application of the GAMLSS package to non-stationary flood frequency analysis

    Science.gov (United States)

    Debele, S. E.; Bogdanowicz, E.; Strupczewski, W. G.

    2017-08-01

    The non-stationarity of hydrologic processes due to climate change or human activities is challenging for the researchers and practitioners. However, the practical requirements for taking into account non-stationarity as a support in decision-making procedures exceed the up-to-date development of the theory and the of software. Currently, the most popular and freely available software package that allows for non-stationary statistical analysis is the GAMLSS (generalized additive models for location, scale and shape) package. GAMLSS has been used in a variety of fields. There are also several papers recommending GAMLSS in hydrological problems; however, there are still important issues which have not previously been discussed concerning mainly GAMLSS applicability not only for research and academic purposes, but also in a design practice. In this paper, we present a summary of our experiences in the implementation of GAMLSS to non-stationary flood frequency analysis, highlighting its advantages and pointing out weaknesses with regard to methodological and practical topics.

  15. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  16. The operational flight and multi-crew scheduling problem

    Directory of Open Access Journals (Sweden)

    Stojković Mirela

    2005-01-01

    Full Text Available This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem.

  17. A canned food scheduling problem with batch due date

    Science.gov (United States)

    Chung, Tsui-Ping; Liao, Ching-Jong; Smith, Milton

    2014-09-01

    This article considers a canned food scheduling problem where jobs are grouped into several batches. Jobs can be sent to the next operation only when all the jobs in the same batch have finished their processing, i.e. jobs in a batch, have a common due date. This batch due date problem is quite common in canned food factories, but there is no efficient heuristic to solve the problem. The problem can be formulated as an identical parallel machine problem with batch due date to minimize the total tardiness. Since the problem is NP hard, two heuristics are proposed to find the near-optimal solution. Computational results comparing the effectiveness and efficiency of the two proposed heuristics with an existing heuristic are reported and discussed.

  18. Optimizing the Steel Plate Storage Yard Crane Scheduling Problem Using a Two Stage Planning/Scheduling Approach

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    This paper presents the Steel Plate Storage Yard Crane Scheduling Problem. The task is to generate a schedule for two gantry cranes sharing tracks. The schedule must comply with a number of constraints and at the same time be cost efficient. We propose some ideas for a two stage planning...

  19. Real-time reservoir operation considering non-stationary inflow prediction

    Science.gov (United States)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  20. Optimizing a Military Supply Chain in the Presence of Random, Non-Stationary Demands

    National Research Council Canada - National Science Library

    Yew

    2003-01-01

    ... logistics supply chain that satisfies uncertain, non-stationary demands, while taking into account the volatility and singularity of military operations This research focuses on the development...

  1. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    Science.gov (United States)

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  2. On the non-stationary generalized Langevin equation

    Science.gov (United States)

    Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja

    2017-12-01

    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

  3. Artificial immune algorithm for multi-depot vehicle scheduling problems

    Science.gov (United States)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  4. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, I. [IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France); Ferré, G., E-mail: gregoire.ferre@ponts.org [CERMICS – Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2 (France); Poirion, F. [Department of Structural Dynamics and Aeroelasticity, ONERA, BP 72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France); Benoit, M. [Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13 (France)

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights).

  5. Integrated Production-Distribution Scheduling Problem with Multiple Independent Manufacturers

    Directory of Open Access Journals (Sweden)

    Jianhong Hao

    2015-01-01

    Full Text Available We consider the nonstandard parts supply chain with a public service platform for machinery integration in China. The platform assigns orders placed by a machinery enterprise to multiple independent manufacturers who produce nonstandard parts and makes production schedule and batch delivery schedule for each manufacturer in a coordinate manner. Each manufacturer has only one plant with parallel machines and is located at a location far away from other manufacturers. Orders are first processed at the plants and then directly shipped from the plants to the enterprise in order to be finished before a given deadline. We study the above integrated production-distribution scheduling problem with multiple manufacturers to maximize a weight sum of the profit of each manufacturer under the constraints that all orders are finished before the deadline and the profit of each manufacturer is not negative. According to the optimal condition analysis, we formulate the problem as a mixed integer programming model and use CPLEX to solve it.

  6. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  7. Heuristics for no-wait flow shop scheduling problem

    Directory of Open Access Journals (Sweden)

    Kewal Krishan Nailwal

    2016-09-01

    Full Text Available No-wait flow shop scheduling refers to continuous flow of jobs through different machines. The job once started should have the continuous processing through the machines without wait. This situation occurs when there is a lack of an intermediate storage between the processing of jobs on two consecutive machines. The problem of no-wait with the objective of minimizing makespan in flow shop scheduling is NP-hard; therefore the heuristic algorithms are the key to solve the problem with optimal solution or to approach nearer to optimal solution in simple manner. The paper describes two heuristics, one constructive and an improvement heuristic algorithm obtained by modifying the constructive one for sequencing n-jobs through m-machines in a flow shop under no-wait constraint with the objective of minimizing makespan. The efficiency of the proposed heuristic algorithms is tested on 120 Taillard’s benchmark problems found in the literature against the NEH under no-wait and the MNEH heuristic for no-wait flow shop problem. The improvement heuristic outperforms all heuristics on the Taillard’s instances by improving the results of NEH by 27.85%, MNEH by 22.56% and that of the proposed constructive heuristic algorithm by 24.68%. To explain the computational process of the proposed algorithm, numerical illustrations are also given in the paper. Statistical tests of significance are done in order to draw the conclusions.

  8. Gaussian variable neighborhood search for the file transfer scheduling problem

    Directory of Open Access Journals (Sweden)

    Dražić Zorica

    2016-01-01

    Full Text Available This paper presents new modifications of Variable Neighborhood Search approach for solving the file transfer scheduling problem. To obtain better solutions in a small neighborhood of a current solution, we implement two new local search procedures. As Gaussian Variable Neighborhood Search showed promising results when solving continuous optimization problems, its implementation in solving the discrete file transfer scheduling problem is also presented. In order to apply this continuous optimization method to solve the discrete problem, mapping of uncountable set of feasible solutions into a finite set is performed. Both local search modifications gave better results for the large size instances, as well as better average performance for medium and large size instances. One local search modification achieved significant acceleration of the algorithm. The numerical experiments showed that the results obtained by Gaussian modifications are comparable with the results obtained by standard VNS based algorithms, developed for combinatorial optimization. In some cases Gaussian modifications gave even better results. [Projekat Ministarstava nauke Republike Srbije, br. 174010

  9. Heuristic Method for Decision-Making in Common Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Edyta Kucharska

    2017-10-01

    Full Text Available The aim of the paper is to present a heuristic method for decision-making regarding an NP-hard scheduling problem with limitations related to tasks and the resources dependent on the current state of the process. The presented approach is based on the algebraic-logical meta-model (ALMM, which enables making collective decisions in successive process stages, not separately for individual objects or executors. Moreover, taking into account the limitations of the problem, it involves constructing only an acceptable solution and significantly reduces the amount of calculations. A general algorithm based on the presented method is composed of the following elements: preliminary analysis of the problem, techniques for the choice of decision at a given state, the pruning non-perspective trajectory, selection technique of the initial state for the trajectory final part, and the trajectory generation parameters modification. The paper includes applications of the presented approach to scheduling problems on unrelated parallel machines with a deadline and machine setup time dependent on the process state, where the relationship between tasks is defined by the graph. The article also presents the results of computational experiments.

  10. Enhancement and Noise Statistics Estimation for Non-Stationary Voiced Speech

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, single channel speech enhancement in the time domain is considered. We address the problem of modelling non-stationary speech by describing the voiced speech parts by a harmonic linear chirp model instead of using the traditional harmonic model. This means that the speech signal...... through simulations on synthetic and speech signals, that the chirp versions of the filters perform better than their harmonic counterparts in terms of output signal-to-noise ratio (SNR) and signal reduction factor. For synthetic signals, the output SNR for the harmonic chirp APES based filter...... is increased 3 dB compared to the harmonic APES based filter at an input SNR of 10 dB, and at the same time the signal reduction factor is decreased. For speech signals, the increase is 1.5 dB along with a decrease in the signal reduction factor of 0.7. As an implicit part of the APES filter, a noise...

  11. Assessing the extent of non-stationary biases in GCMs

    Science.gov (United States)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-06-01

    General circulation models (GCMs) are the main tools for estimating changes in the climate for the future. The imperfect representation of climate models introduces biases in the simulations that need to be corrected prior to their use for impact assessments. Bias correction methods generally assume that the bias calculated over the historical period does not change and can be applied to the future. This study investigates this assumption by considering the extent and nature of bias non-stationarity using 20th century precipitation and temperature simulations from six CMIP5 GCMs across Australia. Four statistics (mean, standard deviation, 10th and 90th quantiles) in monthly and seasonal biases are obtained for three different time window lengths (10, 25 and 33 years) to examine the properties of bias over time. This approach is repeated for two different phases of the Interdecadal Pacific Oscillation (IPO), which is known to have strong influences on the Australian climate. It is found that bias non-stationarity at decadal timescales is indeed an issue over some of Australia for some GCMs. When considering interdecadal variability there are significant difference in the bias between positive and negative phases of the IPO. Regional analyses confirmed these findings with the largest differences seen on the east coast of Australia, where IPO impacts tend to be the strongest. The nature of the bias non-stationarity found in this study suggests that it will be difficult to modify existing bias correction approaches to account for non-stationary biases. A more practical approach for impact assessments that use bias correction maybe to use a selection of GCMs where the assumption of bias non-stationarity holds.

  12. H2 emission from non-stationary magnetized bow shocks

    Science.gov (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  13. Identification of QRS complex in non-stationary electrocardiogram of sick infants.

    Science.gov (United States)

    Kota, S; Swisher, C B; Al-Shargabi, T; Andescavage, N; du Plessis, A; Govindan, R B

    2017-08-01

    Due to the high-frequency of routine interventions in an intensive care setting, electrocardiogram (ECG) recordings from sick infants are highly non-stationary, with recurrent changes in the baseline, alterations in the morphology of the waveform, and attenuations of the signal strength. Current methods lack reliability in identifying QRS complexes (a marker of individual cardiac cycles) in the non-stationary ECG. In the current study we address this problem by proposing a novel approach to QRS complex identification. Our approach employs lowpass filtering, half-wave rectification, and the use of instantaneous Hilbert phase to identify QRS complexes in the ECG. We demonstrate the application of this method using ECG recordings from eight preterm infants undergoing intensive care, as well as from 18 normal adult volunteers available via a public database. We compared our approach to the commonly used approaches including Pan and Tompkins (PT), gqrs, wavedet, and wqrs for identifying QRS complexes and then compared each with manually identified QRS complexes. For preterm infants, a comparison between the QRS complexes identified by our approach and those identified through manual annotations yielded sensitivity and positive predictive values of 99% and 99.91%, respectively. The comparison metrics for each method are as follows: PT (sensitivity: 84.49%, positive predictive value: 99.88%), gqrs (85.25%, 99.49%), wavedet (95.24%, 99.86%), and wqrs (96.99%, 96.55%). Thus, the sensitivity values of the four methods previously described, are lower than the sensitivity of the method we propose; however, the positive predictive values of these other approaches is comparable to those of our method, with the exception of the wqrs approach, which yielded a slightly lower value. For adult ECG, our approach yielded a sensitivity of 99.78%, whereas PT yielded 99.79%. The positive predictive value was 99.42% for both our approach as well as for PT. We propose a novel method for

  14. JIT single machine scheduling problem with periodic preventive maintenance

    Science.gov (United States)

    Shahriari, Mohammadreza; Shoja, Naghi; Zade, Amir Ebrahimi; Barak, Sasan; Sharifi, Mani

    2016-09-01

    This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, multi-objective particle swarm optimization (MOPSO) algorithm is implemented. Also, as well as MOPSO, two other optimization algorithms are used for comparing the results. Eventually, Taguchi method with metrics analysis is presented to tune the algorithms' parameters and a multiple criterion decision making technique based on the technique for order of preference by similarity to ideal solution is applied to choose the best algorithm. Comparison results confirmed the supremacy of MOPSO to the other algorithms.

  15. Nuclear Power Plant Preventive Maintenance Scheduling Problem with Fuzziness

    International Nuclear Information System (INIS)

    Abass, S.A.; Abdallah, A.S.

    2013-01-01

    Maintenance activity is regarded as the most important key factor for the safety, reliability and economy of a nuclear power plant. Preventive maintenance refers to set of planned activities which include nondestructive testing and periodic inspection as well as maintenance. In this paper, we address the problem of nuclear power plant preventive maintenance scheduling with uncertainty. The uncertainty will be represented by fuzzy parameters. The problem is how to determine the period for which generating units of an electric system should be taken off line for planned preventive maintenance over specific time horizon. Preventive maintenance activity of a nuclear power plant is an important issue as it designed to extend the plant life . It is more required to review the maintenance not only from the view point of safety and reliability but also economy. Preventive maintenance program exists to ensure that nuclear safety significant equipment will function when it is supposed to. Also this problem is extremely important because a failure in a power plant may cause a general breakdown in an electric network. In this paper a mixed integer programming model is used to express this problem. In proposed model power demand is taken as fuzzy parameters. A case study is provided to demonstrate the efficiency of the proposed model.

  16. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  17. Modelling and prediction of non-stationary optical turbulence behaviour

    NARCIS (Netherlands)

    Doelman, N.J.; Osborn, J.

    2016-01-01

    There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument

  18. A RELATIONAL DATABASE APPROACH TO THE JOB SHOP SCHEDULING PROBLEM

    Directory of Open Access Journals (Sweden)

    P. Lindeque

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper will attempt to illuminate the advantages of an approach to the job shop scheduling problem using priority based search algorithms and database technology. It will use as basis a system developed for and implemented at a large manufacturing plant. The paper will also attempt to make some predictions as to future developments in these techniques and look at the possibility of including new technologies such as expert systems.

    AFRIKAANSE OPSOMMING: Die voordele en toepaslikheid van prioriteits-gebaseerde soek-algoritmes en databasisstelsels op die taakwerkswinkelprobleem sal in hierdie artikel uitgelig word. 'n Stelsel wat by 'n groot vervaardigingsonderneming geimplementeer is, sal as uitgangspunt gebruik word. Toekomstige ontwikkelings in bogenoemde tegnieke en die moontlike insluiting van ekspertstelsels sal ook ondersoek word.

  19. Genetic algorithm to solve the problems of lectures and practicums scheduling

    Science.gov (United States)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  20. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang; Wang, Wei

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non

  1. Can we identify non-stationary dynamics of trial-to-trial variability?

    Directory of Open Access Journals (Sweden)

    Emili Balaguer-Ballester

    Full Text Available Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation. This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies

  2. Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter.

    Science.gov (United States)

    Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi

    2016-11-01

    Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes.

  3. Dynamic Memory Model for Non-Stationary Optimization

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nørgaard; Krink, Thiemo

    2002-01-01

    Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memory-based GA for...

  4. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    Science.gov (United States)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  5. A unique Fock quantization for fields in non-stationary spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.

    2010-01-01

    In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology

  6. Non-stationary covariance function modelling in 2D least-squares collocation

    Science.gov (United States)

    Darbeheshti, N.; Featherstone, W. E.

    2009-06-01

    Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.

  7. A meta-heuristic method for solving scheduling problem: crow search algorithm

    Science.gov (United States)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  8. Probabilistic blind deconvolution of non-stationary sources

    DEFF Research Database (Denmark)

    Olsson, Rasmus Kongsgaard; Hansen, Lars Kai

    2004-01-01

    We solve a class of blind signal separation problems using a constrained linear Gaussian model. The observed signal is modelled by a convolutive mixture of colored noise signals with additive white noise. We derive a time-domain EM algorithm `KaBSS' which estimates the source signals...

  9. A review of scheduling problem and resolution methods in flexible flow shop

    Directory of Open Access Journals (Sweden)

    Tian-Soon Lee

    2019-01-01

    Full Text Available The Flexible flow shop (FFS is defined as a multi-stage flow shops with multiple parallel machines. FFS scheduling problem is a complex combinatorial problem which has been intensively studied in many real world industries. This review paper gives a comprehensive exploration review on the FFS scheduling problem and guides the reader by considering and understanding different environmental assumptions, system constraints and objective functions for future research works. The published papers are classified into two categories. First is the FFS system characteristics and constraints including the problem differences and limitation defined by different studies. Second, the scheduling performances evaluation are elaborated and categorized into time, job and multi related objectives. In addition, the resolution approaches that have been used to solve FFS scheduling problems are discussed. This paper gives a comprehensive guide for the reader with respect to future research work on the FFS scheduling problem.

  10. Heuristic algorithm for single resource constrained project scheduling problem based on the dynamic programming

    Directory of Open Access Journals (Sweden)

    Stanimirović Ivan

    2009-01-01

    Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.

  11. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  12. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  13. SOLVING FLOWSHOP SCHEDULING PROBLEMS USING A DISCRETE AFRICAN WILD DOG ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. K. Marichelvam

    2013-04-01

    Full Text Available The problem of m-machine permutation flowshop scheduling is considered in this paper. The objective is to minimize the makespan. The flowshop scheduling problem is a typical combinatorial optimization problem and has been proved to be strongly NP-hard. Hence, several heuristics and meta-heuristics were addressed by the researchers. In this paper, a discrete African wild dog algorithm is applied for solving the flowshop scheduling problems. Computational results using benchmark problems show that the proposed algorithm outperforms many other algorithms addressed in the literature.

  14. Resource-constrained project scheduling: computing lower bounds by solving minimum cut problems

    NARCIS (Netherlands)

    Möhring, R.H.; Nesetril, J.; Schulz, A.S.; Stork, F.; Uetz, Marc Jochen

    1999-01-01

    We present a novel approach to compute Lagrangian lower bounds on the objective function value of a wide class of resource-constrained project scheduling problems. The basis is a polynomial-time algorithm to solve the following scheduling problem: Given a set of activities with start-time dependent

  15. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Jordi-Roger Riba [EUETII, Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya, Placa del Rei 15, 08700 Igualada, Barcelona (Spain); Garcia Espinosa, Antonio [Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain); Romeral, Luis; Cusido, Jordi [Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain)

    2010-10-15

    Permanent magnet synchronous motors (PMSMs) are applied in high performance positioning and variable speed applications because of their enhanced features with respect to other AC motor types. Fault detection and diagnosis of electrical motors for critical applications is an active field of research. However, much research remains to be done in the field of PMSM demagnetization faults, especially when running under non-stationary conditions. This paper presents a time-frequency method specifically focused to detect and diagnose demagnetization faults in PMSMs running under non-stationary speed conditions, based on the Hilbert Huang transform. The effectiveness of the proposed method is proven by means of experimental results. (author)

  16. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  17. Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems

    OpenAIRE

    Amjad, Muhammad Kamal; Butt, Shahid Ikramullah; Kousar, Rubeena; Ahmad, Riaz; Agha, Mujtaba Hassan; Faping, Zhang; Anjum, Naveed; Asgher, Umer

    2018-01-01

    Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical Job Shop Scheduling Problem (JSSP). The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA) have gained the most popularity. Keeping in...

  18. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    Science.gov (United States)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  19. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-11-01

    A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

  20. A survey of techniques applied to non-stationary waveforms in electrical power systems

    NARCIS (Netherlands)

    Rodrigues, R.P.; Silveira, P.M.; Ribeiro, P.F.

    2010-01-01

    The well-known and ever-present time-varying and non-stationary nature of waveforms in power systems requires a comprehensive and precise analytical basis that needs to be incorporated in the system studies and analyses. This time-varying behavior is due to continuous changes in system

  1. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert

    Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  2. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert

    Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  3. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    Science.gov (United States)

    Onozuka, Daisuke

    2014-06-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Infectious gastroenteritis cases were non-stationary and significantly associated with the IOD and ENSO (Multivariate ENSO Index [MEI], Niño 1 + 2, Niño 3, Niño 4, and Niño 3.4) for a period of approximately 1 to 2 years. This association was non-stationary and appeared to have a major influence on the synchrony of infectious gastroenteritis transmission. Our results suggest that non-stationary patterns of association between global climate factors and incidence of infectious gastroenteritis should be considered when developing early warning systems for epidemics of infectious gastroenteritis.

  4. Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-09-01

    Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.

  5. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site

    Directory of Open Access Journals (Sweden)

    Xuhui He

    2017-09-01

    Full Text Available The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  6. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site.

    Science.gov (United States)

    He, Xuhui; Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo; Wang, Hao

    2017-09-22

    The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  7. Multi-objective Mobile Robot Scheduling Problem with Dynamic Time Windows

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2012-01-01

    This paper deals with the problem of scheduling feeding tasks of a single mobile robot which has capability of supplying parts to feeders on pro-duction lines. The performance criterion is to minimize the total traveling time of the robot and the total tardiness of the feeding tasks being scheduled...

  8. On non-permutation solutions to some two machine flow shop scheduling problems

    NARCIS (Netherlands)

    V. Strusevich (Vitaly); P.J. Zwaneveld (Peter)

    1994-01-01

    textabstractIn this paper, we study two versions of the two machine flow shop scheduling problem, where schedule length is to be minimized. First, we consider the two machine flow shop with setup, processing, and removal times separated. It is shown that an optimal solution need not be a permutation

  9. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.

    2016-06-02

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.

  10. Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Noor Hasnah Moin

    2015-01-01

    Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.

  11. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    Science.gov (United States)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  12. Constraint optimization model of a scheduling problem for a robotic arm in automatic systems

    DEFF Research Database (Denmark)

    Kristiansen, Ewa; Smith, Stephen F.; Kristiansen, Morten

    2014-01-01

    are characteristics of the painting process application itself. Unlike spot-welding, painting tasks require movement of the entire robot arm. In addition to minimizing intertask duration, the scheduler must strive to maximize painting quality and the problem is formulated as a multi-objective optimization problem....... The scheduling model is implemented as a stand-alone module using constraint programming, and integrated with a larger automatic system. The results of a number of simulation experiments with simple parts are reported, both to characterize the functionality of the scheduler and to illustrate the operation...... of the entire software system for automatic generation of robot programs for painting....

  13. Solving Flexible Job-Shop Scheduling Problem Using Gravitational Search Algorithm and Colored Petri Net

    Directory of Open Access Journals (Sweden)

    Behnam Barzegar

    2012-01-01

    Full Text Available Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing or even eliminating idol machines, and effort to better benefitting from machines for on time responding customer orders and supplying requested materials in suitable time. In flexible job-shop scheduling production systems, we could reduce time and costs by transferring and delivering operations on existing machines, that is, among NP-hard problems. The scheduling objective minimizes the maximal completion time of all the operations, which is denoted by Makespan. Different methods and algorithms have been presented for solving this problem. Having a reasonable scheduled production system has significant influence on improving effectiveness and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-shop scheduling problem systems (FJSSP-GSPN that is based on gravitational search algorithm (GSA. In the proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The experimental results showed that the proposed method has reasonable performance in comparison with other algorithms.

  14. Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    2010-01-01

    In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...

  15. A Column Generation Approach for Solving the Patient Admission Scheduling Problem

    DEFF Research Database (Denmark)

    Range, Troels Martin; Lusby, Richard Martin; Larsen, Jesper

    This paper addresses the Patient Admission Scheduling (PAS) problem. The PAS problem deals with assigning elective patients to beds, satisfying a number of soft and hard constraints. The problem can be seen as part of the functions of hospital management at an operational level. There exists a sm...... to produce new best solutions for ve out of six instances from a publicly available repository....

  16. Detection of Unusual Events and Trends in Complex Non-Stationary Data Streams

    International Nuclear Information System (INIS)

    Perez, Rafael B.; Protopopescu, Vladimir A.; Worley, Brian Addison; Perez, Cristina

    2006-01-01

    The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for a host of different applications, ranging from nuclear power plant and electric grid operation to internet traffic and implementation of non-proliferation protocols. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden intermittent events inside non-stationary signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method

  17. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 (India); Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics (SINP), Sector 1, Block-AF, Bidhannagar, Kolkata 700064 (India)

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.

  18. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  19. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

    Science.gov (United States)

    Kashiwabara, Takahito

    Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

  20. Optimal infrastructure maintenance scheduling problem under budget uncertainty.

    Science.gov (United States)

    2010-05-01

    This research addresses a general class of infrastructure asset management problems. Infrastructure : agencies usually face budget uncertainties that will eventually lead to suboptimal planning if : maintenance decisions are made without taking the u...

  1. Exact methods for time constrained routing and related scheduling problems

    DEFF Research Database (Denmark)

    Kohl, Niklas

    1995-01-01

    of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...

  2. Advantages of the non-stationary approach: test on eddy current signals

    International Nuclear Information System (INIS)

    Brunel, P.

    1993-12-01

    Conventional signal processing is often unsuitable for the interpretation of intrinsically non-stationary signals, such as surveillance or non destructive testing signals. In these cases, ''advanced'' methods are required. This report presents two applications of non-stationary signal processing methods to the complex signals obtained in eddy current non destructive testing of steam generator tubes. The first application consists in segmenting the absolute channel, which can be likened to a piecewise constant signal. The Page-Hinkley cumulative sum algorithm is used, enabling detection of unknown mean amplitude jumps in a piecewise constant signal disturbed by a white noise. Results are comparable to those obtained with the empirical method currently in use. As easy to implement as the latter, the Page-Hinkley algorithm has the added advantage of being well formalized and of identifying whether the jumps in mean are positive or negative. The second application concerns assistance in detecting characteristic fault transients in the differential channels, using the continuous wavelet transform. The useful signal and noise spectra are fairly close, but not strictly identical. With the continuous wavelet transform, these frequency differences can be turned to account. The method was tested on synthetic signals obtained by summing noise and real defect signals. Using the continuous wavelet transform reduces the minimum signal-to-noise ratio by 5 dB for detection of a transient as compared with direct detection on the original signal. Finally, a summary of non-stationary methods using our data is presented. The two investigations described confirm that non-stationary methods may be considered as interesting signal and image analysis tools, as an efficient complement to conventional methods. (author). 24 figs., 13 refs

  3. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    OpenAIRE

    Onozuka, Daisuke

    2014-01-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Sou...

  4. A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation

    Science.gov (United States)

    Byun, K.; Hamlet, A. F.

    2017-12-01

    There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.

  5. Internal and external moisture transport resistance during non-stationary adsorption of moisture into wood

    OpenAIRE

    Bučar, Bojan

    2007-01-01

    The assumption that non-stationary sorption processes associated with wood canbe evaluated by analysis of their transient system response to the disturbance developed is undoubtedly correct. In general it is, in fact, possible to obtain by time analysis of the transient phenomenon - involving the transition into an arbitrary new state of equilibrium - all data required for a credible evaluation of the observed system. Evaluation of moisture movement during drying or moistening requires determ...

  6. Non-stationary Condition Monitoring of large diesel engines with the AEWATT toolbox

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan; Sigurdsson, Sigurdur

    2005-01-01

    We are developing a specialized toolbox for non-stationary condition monitoring of large 2-stroke diesel engines based on acoustic emission measurements. The main contribution of this toolbox has so far been the utilization of adaptive linear models such as Principal and Independent Component Ana......, the inversion of those angular timing changes called “event alignment”, has allowed for condition monitoring across operation load settings, successfully enabling a single model to be used with realistic data under varying operational conditions-...

  7. A Multiagent Evolutionary Algorithm for the Resource-Constrained Project Portfolio Selection and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yongyi Shou

    2014-01-01

    Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.

  8. Variable Neighborhood Search for Parallel Machines Scheduling Problem with Step Deteriorating Jobs

    Directory of Open Access Journals (Sweden)

    Wenming Cheng

    2012-01-01

    Full Text Available In many real scheduling environments, a job processed later needs longer time than the same job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to many industrial applications. In this paper, we study a scheduling problem of minimizing the total completion time on identical parallel machines where the processing time of a job is a step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a mixed integer programming model is presented for the problem. And then, a modified weight-combination search algorithm and a variable neighborhood search are employed to yield optimal or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational experiments are performed on randomly generated test instances. Finally, computational results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time even for large-sized problems.

  9. A branch-and-price algorithm for the long-term home care scheduling problem

    DEFF Research Database (Denmark)

    Gamst, Mette; Jensen, Thomas Sejr

    2012-01-01

    In several countries, home care is provided for certain citizens living at home. The long-term home care scheduling problem is to generate work plans such that a high quality of service is maintained, the work hours of the employees are respected, and the overall cost is kept as low as possible. We...... propose a branchand-price algorithm for the long-term home care scheduling problem. The pricing problem generates a one-day plan for an employee, and the master problem merges the plans with respect to regularity constraints. The method is capable of generating plans with up to 44 visits during one week....

  10. Self-organising mixture autoregressive model for non-stationary time series modelling.

    Science.gov (United States)

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  11. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    Directory of Open Access Journals (Sweden)

    Yin Yanshu

    2017-12-01

    Full Text Available In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  12. A comparison of three approaches to non-stationary flood frequency analysis

    Science.gov (United States)

    Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.

    2017-08-01

    Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".

  13. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    Science.gov (United States)

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  14. Ship Block Transportation Scheduling Problem Based on Greedy Algorithm

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2016-05-01

    Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.

  15. A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem

    International Nuclear Information System (INIS)

    Haroon, S.; Malik, T.N.; Zafar, S.

    2014-01-01

    Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)

  16. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    Science.gov (United States)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  17. Cyclic flow shop scheduling problem with two-machine cells

    Directory of Open Access Journals (Sweden)

    Bożejko Wojciech

    2017-06-01

    Full Text Available In the paper a variant of cyclic production with setups and two-machine cell is considered. One of the stages of the problem solving consists of assigning each operation to the machine on which it will be carried out. The total number of such assignments is exponential. We propose a polynomial time algorithm finding the optimal operations to machines assignment.

  18. Time and multiple objectives in scheduling and routing problems

    NARCIS (Netherlands)

    Dabia, S.

    2012-01-01

    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost

  19. A Study on the Enhanced Best Performance Algorithm for the Just-in-Time Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Sivashan Chetty

    2015-01-01

    Full Text Available The Just-In-Time (JIT scheduling problem is an important subject of study. It essentially constitutes the problem of scheduling critical business resources in an attempt to optimize given business objectives. This problem is NP-Hard in nature, hence requiring efficient solution techniques. To solve the JIT scheduling problem presented in this study, a new local search metaheuristic algorithm, namely, the enhanced Best Performance Algorithm (eBPA, is introduced. This is part of the initial study of the algorithm for scheduling problems. The current problem setting is the allocation of a large number of jobs required to be scheduled on multiple and identical machines which run in parallel. The due date of a job is characterized by a window frame of time, rather than a specific point in time. The performance of the eBPA is compared against Tabu Search (TS and Simulated Annealing (SA. SA and TS are well-known local search metaheuristic algorithms. The results show the potential of the eBPA as a metaheuristic algorithm.

  20. An Improved Genetic Algorithm for Single-Machine Inverse Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Jianhui Mou

    2014-01-01

    Full Text Available The goal of the scheduling is to arrange operations on suitable machines with optimal sequence for corresponding objectives. In order to meet market requirements, scheduling systems must own enough flexibility against uncertain events. These events can change production status or processing parameters, even causing the original schedule to no longer be optimal or even to be infeasible. Traditional scheduling strategies, however, cannot cope with these cases. Therefore, a new idea of scheduling called inverse scheduling has been proposed. In this paper, the inverse scheduling with weighted completion time (SMISP is considered in a single-machine shop environment. In this paper, an improved genetic algorithm (IGA with a local searching strategy is proposed. To improve the performance of IGA, efficient encoding scheme, fitness evaluation mechanism, feasible initialization methods, and a local search procedure have been employed in the paper. Because of the local improving method, the proposed IGA can balance its exploration ability and exploitation ability. We adopt 27 instances to verify the effectiveness of the proposed algorithm. The experimental results illustrated that the proposed algorithm can generate satisfactory solutions. This approach also has been applied to solve the scheduling problem in the real Chinese shipyard and can bring some benefits.

  1. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    Science.gov (United States)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  2. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    Science.gov (United States)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  3. Solving a manpower scheduling problem for airline catering using tabu search

    DEFF Research Database (Denmark)

    Ho, Sin C.; Leung, Janny M. Y.

    We study a manpower scheduling problem with job time-windows and job-skills compatibility constraints. This problem is motivated by airline catering operations, whereby airline meals and other supplies are delivered to aircrafts on the tarmac just before the flights take off. Jobs (flights) must...

  4. A priority-based heuristic algorithm (PBHA for optimizing integrated process planning and scheduling problem

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Ausaf

    2015-12-01

    Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.

  5. Decomposition principles applied to the dynamic production and work-force scheduling problem

    NARCIS (Netherlands)

    Aardal, K.I.; Ari, A.

    1987-01-01

    One of the most important problems in the production and inventory planning field, is the scheduling of production and work force in a dynamic environment. Although this problem can be formulated as a linear program, it is often quite difficult to solve directly, due to its large scale. Instead, it

  6. A duty-period-based formulation of the airline crew scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, K.

    1994-12-31

    We present a new formulation of the airline crew scheduling problem that explicitly considers the duty periods. We suggest an algorithm for solving the formulation by a column generation approach with branch-and-bound. Computational results are reported for a number of test problems.

  7. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time Windows and scheduled lines

    NARCIS (Netherlands)

    Ghilas, V.; Demir, E.; van Woensel, T.

    2016-01-01

    The Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL) concerns scheduling a set of vehicles to serve freight requests such that a part of the journey can be carried out on a scheduled public transportation line. Due to the complexity of the problem, which is NP-hard, we

  8. Mathematical models for a batch scheduling problem to minimize earliness and tardiness

    Directory of Open Access Journals (Sweden)

    Basar Ogun

    2018-05-01

    Full Text Available Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem is addressed to provide on-time completion of customer orders in the environment of lean manufacturing. The problem is to optimize partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components. Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid from inventory of final products. The first model is a non-linear integer programming model while the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented. Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times comparing to the other two models. It was also showed that the alternative model can solve moderate sized real-world problems. Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature since it includes new circumstances which may arise in real-world applications. This research, also, contributes the literature of batch scheduling problem by presenting new optimization models.

  9. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    Science.gov (United States)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  10. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  11. Comparative study of heuristics algorithms in solving flexible job shop scheduling problem with condition based maintenance

    Directory of Open Access Journals (Sweden)

    Yahong Zheng

    2014-05-01

    Full Text Available Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP, to discuss the method to deal with uncertainty in a manufacturing system.Design/methodology/approach: In this paper, condition based maintenance (CBM, a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA used in the previous article (Neale & Cameron,1979, an inserting algorithm (IA is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme.Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed.Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.

  12. Heuristics methods for the flow shop scheduling problem with separated setup times

    Directory of Open Access Journals (Sweden)

    Marcelo Seido Nagano

    2012-06-01

    Full Text Available This paper deals with the permutation flow shop scheduling problem with separated machine setup times. As a result of an investigation on the problem characteristics, four heuristics methods are proposed with procedures of the construction sequencing solution by an analogy with the asymmetric traveling salesman problem with the objective of minimizing makespan. Experimental results show that one of the new heuristics methods proposed provide high quality solutions in comparisons with the evaluated methods considered in the literature.

  13. Reduction of Non-stationary Noise using a Non-negative Latent Variable Decomposition

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Larsen, Jan

    2008-01-01

    We present a method for suppression of non-stationary noise in single channel recordings of speech. The method is based on a non-negative latent variable decomposition model for the speech and noise signals, learned directly from a noisy mixture. In non-speech regions an over complete basis...... is learned for the noise that is then used to jointly estimate the speech and the noise from the mixture. We compare the method to the classical spectral subtraction approach, where the noise spectrum is estimated as the average over non-speech frames. The proposed method significantly outperforms...

  14. Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

    Energy Technology Data Exchange (ETDEWEB)

    Lan, X.G. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); China West Normal University, Institute of Theoretical Physics, Nanchong (China); Jiang, Q.Q. [China West Normal University, Institute of Theoretical Physics, Nanchong (China); Wei, L.F. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China)

    2012-04-15

    We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future. (orig.)

  15. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  16. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  17. Detection of unusual events and trends in complex non-stationary data streams

    International Nuclear Information System (INIS)

    Charlton-Perez, C.; Perez, R.B.; Protopopescu, V.; Worley, B.A.

    2011-01-01

    The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for diverse applications, ranging from power plant operation to homeland security. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden events inside intermittent signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method.

  18. The approximate thermal-model-testing method for non-stationary temperature fields in central zones of fast reactor assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Matukhin, N.M.

    2000-01-01

    The approach to generalization of the non-stationary heat exchange data for the central zones of the nuclear reactor fuel assemblies and the approximate thermal-model-testing criteria are proposed. The fuel assemblies of fast and water-cooled reactors with different fuel compositions have been investigated. The reason of the non-stationary heat exchange is the fuel-energy-release time dependence. (author)

  19. Flowshop Scheduling Problems with a Position-Dependent Exponential Learning Effect

    Directory of Open Access Journals (Sweden)

    Mingbao Cheng

    2013-01-01

    Full Text Available We consider a permutation flowshop scheduling problem with a position-dependent exponential learning effect. The objective is to minimize the performance criteria of makespan and the total flow time. For the two-machine flow shop scheduling case, we show that Johnson’s rule is not an optimal algorithm for minimizing the makespan given the exponential learning effect. Furthermore, by using the shortest total processing times first (STPT rule, we construct the worst-case performance ratios for both criteria. Finally, a polynomial-time algorithm is proposed for special cases of the studied problem.

  20. A new genetic algorithm for flexible job-shop scheduling problems

    International Nuclear Information System (INIS)

    Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia

    2015-01-01

    Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.

  1. A new genetic algorithm for flexible job-shop scheduling problems

    Energy Technology Data Exchange (ETDEWEB)

    Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia [University of Batna, Batna (Algeria)

    2015-03-15

    Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.

  2. Resource-constrained project scheduling problem: review of past and recent developments

    Directory of Open Access Journals (Sweden)

    Farhad Habibi

    2018-01-01

    Full Text Available The project scheduling problem is both practically and theoretically of paramount importance. From the practical perspective, improvement of project scheduling as a critical part of project management process can lead to successful project completion and significantly decrease of the relevant costs. From the theoretical perspective, project scheduling is regarded as one of the in-teresting optimization issues, which has attracted the attention of many researchers in the area of operations research. Therefore, the project scheduling issue has been significantly evaluated over time and has been developed from various aspects. In this research, the topics related to Re-source-Constrained Project Scheduling Problem (RCPSP are reviewed, recent developments in this field are evaluated, and the results are presented for future studies. In this regard, first, the standard problem of RCPSP is expressed and related developments are presented from four as-pects of resources, characteristics of activities, type of objective functions, and availability level of information. Following that, details about 216 articles conducted on RCPSP during 1980-2017 are expressed. At the end, in line with the statistics obtained from the evaluation of previ-ous articles, suggestions are made for the future studies in order to help the development of new issues in this area.

  3. Exact and heuristic solution approaches for the Integrated Job Scheduling and Constrained Network Routing Problem

    DEFF Research Database (Denmark)

    Gamst, M.

    2014-01-01

    problem. The methods are computationally evaluated on test instances arising from telecommunications with up to 500 jobs and 500 machines. Results show that solving the integrated job scheduling and constrained network routing problem to optimality is very difficult. The exact solution approach performs......This paper examines the problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job has a certain demand, which must be sent to the executing machine via constrained paths. A job cannot start before all its demands have...... arrived at the machine. Furthermore, two resource demand transmissions cannot use the same edge in the same time period. The problem has application in grid computing, where a number of geographically distributed machines work together for solving large problems. The machines are connected through...

  4. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    Science.gov (United States)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  5. Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling problem

    Directory of Open Access Journals (Sweden)

    S.M.T. Fatemi Ghomi

    2012-10-01

    Full Text Available This paper addresses the problem of lot sizing and scheduling problem for n-products and m-machines in flow shop environment where setups among machines are sequence-dependent and can be carried over. Many products must be produced under capacity constraints and allowing backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much attention has been given to heuristics and metaheuristics methods. This paper presents two metaheuristics algorithms namely, Genetic Algorithm (GA and Imperialist Competitive Algorithm (ICA. Moreover, Taguchi robust design methodology is employed to calibrate the parameters of the algorithms for different size problems. In addition, the parameter-tuned algorithms are compared against a presented lower bound on randomly generated problems. At the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the proposed algorithms. The results showed that the performance of both GA and ICA are very promising and ICA outperforms GA statistically.

  6. A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2011-01-01

    Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.

  7. Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal Amjad

    2018-01-01

    Full Text Available Flexible Job Shop Scheduling Problem (FJSSP is an extension of the classical Job Shop Scheduling Problem (JSSP. The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA have gained the most popularity. Keeping in view this aspect, this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the inclusion of the hybrid GA (hGA techniques used in the solution of the problem. This review will give readers an insight into use of certain parameters in their future research along with future research directions.

  8. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    Science.gov (United States)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  9. Comparison of heuristics for an economic lot scheduling problem with deliberated coproduction

    Directory of Open Access Journals (Sweden)

    Pilar I. Vidal-Carreras

    2009-12-01

    Full Text Available We built on the Economic Lot Scheduling Problem Scheduling (ELSP literature by making some modifications in order to introduce new constraints which had not been thoroughly studied with a view to simulating specific real situations. Specifically, our aim is to propose and simulate different scheduling policies for a new ELSP variant: Deliberated Coproduction. This problem comprises a product system in an ELSP environment in which we may choose if more than one product can be produced on the machine at a given time. We expressly consider the option of coproducing two products whose demand is not substitutable. In order to draw conclusions, a simulation model and its results were developed in the article by employing modified Bomberger data which include two items that could be produced simultaneously.

  10. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    Science.gov (United States)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  11. Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method

    Directory of Open Access Journals (Sweden)

    P. Ribereau

    2008-12-01

    Full Text Available Since the pioneering work of Landwehr et al. (1979, Hosking et al. (1985 and their collaborators, the Probability Weighted Moments (PWM method has been very popular, simple and efficient to estimate the parameters of the Generalized Extreme Value (GEV distribution when modeling the distribution of maxima (e.g., annual maxima of precipitations in the Identically and Independently Distributed (IID context. When the IID assumption is not satisfied, a flexible alternative, the Maximum Likelihood Estimation (MLE approach offers an elegant way to handle non-stationarities by letting the GEV parameters to be time dependent. Despite its qualities, the MLE applied to the GEV distribution does not always provide accurate return level estimates, especially for small sample sizes or heavy tails. These drawbacks are particularly true in some non-stationary situations. To reduce these negative effects, we propose to extend the PWM method to a more general framework that enables us to model temporal covariates and provide accurate GEV-based return levels. Theoretical properties of our estimators are discussed. Small and moderate sample sizes simulations in a non-stationary context are analyzed and two brief applications to annual maxima of CO2 and seasonal maxima of cumulated daily precipitations are presented.

  12. Identification of Non-Stationary Magnetic Field Sources Using the Matching Pursuit Method

    Directory of Open Access Journals (Sweden)

    Beata Palczynska

    2017-05-01

    Full Text Available The measurements of electromagnetic field emissions, performed on board a vessel have showed that, in this specific environment, a high level of non-stationary magnetic fields (MFs is observed. The adaptive time-frequency method can be used successfully to analyze this type of measured signal. It allows one to specify the time interval in which the individual frequency components of the signal occur. In this paper, the method of identification of non-stationary MF sources based on the matching pursuit (MP algorithm is presented. It consists of the decomposition of an examined time-waveform into the linear expansion of chirplet atoms and the analysis of the matrix of their parameters. The main feature of the proposed method is the modification of the chirplet’s matrix in a way that atoms, whose normalized energies are lower than a certain threshold, will be rejected. On the time-frequency planes of the spectrograms, obtained separately for each remaining chirlpet, it can clearly identify the time-frequency structures appearing in the examined signal. The choice of a threshold defines the computing speed and precision of the performed analysis. The method was implemented in the virtual application and used for processing real data, obtained from measurements of time-vary MF emissions onboard a ship.

  13. A review on prognostic techniques for non-stationary and non-linear rotating systems

    Science.gov (United States)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  14. Probing Gamma-ray Emission of Geminga & Vela with Non-stationary Models

    Directory of Open Access Journals (Sweden)

    Yating Chai

    2016-06-01

    Full Text Available It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

  15. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches. © 2010 Springer-Verlag.

  16. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  17. Solving scheduling problems by untimed model checking. The clinical chemical analyser case study

    NARCIS (Netherlands)

    Margaria, T.; Wijs, Anton J.; Massink, M.; van de Pol, Jan Cornelis; Bortnik, Elena M.

    2009-01-01

    In this article, we show how scheduling problems can be modelled in untimed process algebra, by using special tick actions. A minimal-cost trace leading to a particular action, is one that minimises the number of tick steps. As a result, we can use any (timed or untimed) model checking tool to find

  18. A basic period approach to the economic lot scheduling problem with shelf life considerations

    NARCIS (Netherlands)

    Soman, C.A.; van Donk, D.P.; Gaalman, G.J.C.

    2004-01-01

    Almost all the research on the economic lot scheduling problem (ELSP) considering limited shelf life of products has assumed a common cycle approach and an unrealistic assumption of possibility of deliberately reducing the production rate. In many cases, like in food processing industry where

  19. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    Science.gov (United States)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  20. An Improved Multiobjective PSO for the Scheduling Problem of Panel Block Construction

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2016-01-01

    Full Text Available Uncertainty is common in ship construction. However, few studies have focused on scheduling problems under uncertainty in shipbuilding. This paper formulates the scheduling problem of panel block construction as a multiobjective fuzzy flow shop scheduling problem (FSSP with a fuzzy processing time, a fuzzy due date, and the just-in-time (JIT concept. An improved multiobjective particle swarm optimization called MOPSO-M is developed to solve the scheduling problem. MOPSO-M utilizes a ranked-order-value rule to convert the continuous position of particles into the discrete permutations of jobs, and an available mapping is employed to obtain the precedence-based permutation of the jobs. In addition, to improve the performance of MOPSO-M, archive maintenance is combined with global best position selection, and mutation and a velocity constriction mechanism are introduced into the algorithm. The feasibility and effectiveness of MOPSO-M are assessed in comparison with general MOPSO and nondominated sorting genetic algorithm-II (NSGA-II.

  1. A Distributed Particle Swarm Optimization Zlgorithmfor Flexible Job-hop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    LIU Sheng--hui

    2017-06-01

    Full Text Available According to the characteristics of the Flexible job shop scheduling problem the minimum makespan as measures we proposed a distributed particle swarm optimization algorithm aiming to solve flexible job shop scheduling problem. The algorithm adopts the method of distributed ideas to solve problems and we are established for two multi agent particle swarm optimization model in this algorithm it can solve the traditional particle swarm optimization algorithm when making decisions in real time according to the emergencies. Finally some benthmark problems were experimented and the results are compared with the traditional algorithm. Experimental results proved that the developed distributed PSO is enough effective and efficient to solve the FJSP and it also verified the reasonableness of the multi}gent particle swarm optimization model.

  2. An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem

    Science.gov (United States)

    Afshar Nadjafi, Behrouz; Shadrokh, Shahram

    This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.

  3. A non-stationary cost-benefit analysis approach for extreme flood estimation to explore the nexus of 'Risk, Cost and Non-stationarity'

    Science.gov (United States)

    Qi, Wei

    2017-11-01

    Cost-benefit analysis is commonly used for engineering planning and design problems in practice. However, previous cost-benefit based design flood estimation is based on stationary assumption. This study develops a non-stationary cost-benefit based design flood estimation approach. This approach integrates a non-stationary probability distribution function into cost-benefit analysis, and influence of non-stationarity on expected total cost (including flood damage and construction costs) and design flood estimation can be quantified. To facilitate design flood selections, a 'Risk-Cost' analysis approach is developed, which reveals the nexus of extreme flood risk, expected total cost and design life periods. Two basins, with 54-year and 104-year flood data respectively, are utilized to illustrate the application. It is found that the developed approach can effectively reveal changes of expected total cost and extreme floods in different design life periods. In addition, trade-offs are found between extreme flood risk and expected total cost, which reflect increases in cost to mitigate risk. Comparing with stationary approaches which generate only one expected total cost curve and therefore only one design flood estimation, the proposed new approach generate design flood estimation intervals and the 'Risk-Cost' approach selects a design flood value from the intervals based on the trade-offs between extreme flood risk and expected total cost. This study provides a new approach towards a better understanding of the influence of non-stationarity on expected total cost and design floods, and could be beneficial to cost-benefit based non-stationary design flood estimation across the world.

  4. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  5. The Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times

    DEFF Research Database (Denmark)

    Fonseca, Joao Filipe Paiva; Larsen, Allan; van der Hurk, Evelien

    In this talk, we deal with a generalization of the well-known Vehicle Scheduling Problem(VSP) that we call Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times (SVSPSP-FDT). The SVSPSP-FDT generalizes the VSP because the original timetables of the trips can...... be changed (i.e., shifted and stretched) in order to minimize a new objective function that aims at minimizing the operational costs plus the waiting times of the passengers at transfer points. Contrary to most generalizations of the VSP, the SVSPSP-FDT establishes the possibility of changing trips' dwell...... times at important transfer points based on expected passenger ows. We introduce a compact mixed integer linear formulation of the SVSPSP-FDT able to address small instances. We also present a meta-heuristic approach to solve medium/large instances of the problem. The e ectiveness of the proposed...

  6. Efficient bounding schemes for the two-center hybrid flow shop scheduling problem with removal times.

    Science.gov (United States)

    Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.

  7. MULTICRITERIA HYBRID FLOW SHOP SCHEDULING PROBLEM: LITERATURE REVIEW, ANALYSIS, AND FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcia de Fatima Morais

    2014-12-01

    Full Text Available This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future research on this topic, including the following: (i use uniform and dedicated parallel machines, (ii use exact and metaheuristics approaches, (iv develop lower and uppers bounds, relations of dominance and different search strategies to improve the computational time of the exact methods,  (v develop  other types of metaheuristic, (vi work with anticipatory setups, and (vii add constraints faced by the production systems itself.

  8. A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2011-08-01

    Full Text Available Distributed Permutation Flowshop Scheduling Problem (DPFSP is a newly proposed scheduling problem, which is a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the proposed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard instances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences of the results are also statistically significant. It is also seen that best-known solutions for most instances are updated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic algorithms with the existing local search methods.

  9. The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Justesen, Tor Fog; Dohn, Anders Høeg

    2012-01-01

    In the Home Care Crew Scheduling Problem a staff of home carers has to be assigned a number of visits to patients’ homes, such that the overall service level is maximised. The problem is a generalisation of the vehicle routing problem with time windows. Required travel time between visits and time...... preference constraints. The algorithm is tested both on real-life problem instances and on generated test instances inspired by realistic settings. The use of the specialised branching scheme on real-life problems is novel. The visit clustering decreases run times significantly, and only gives a loss...... windows of the visits must be respected. The challenge when assigning visits to home carers lies in the existence of soft preference constraints and in temporal dependencies between the start times of visits.We model the problem as a set partitioning problem with side constraints and develop an exact...

  10. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  11. 3rd International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Rubini, Riccardo; D'Elia, Gianluca; Cocconcelli, Marco; Chaari, Fakher; Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2014-01-01

    This book presents the processings of the third edition of the Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO13) which was held in Ferrara, Italy. This yearly event merges an international community of researchers who met – in 2011 in Wroclaw (Poland) and in 2012 in Hammamet (Tunisia) – to discuss issues of diagnostics of rotating machines operating in complex motion and/or load conditions. The growing interest of the industrial world on the topics covered by the CMMNO13 involves the fields of packaging, automotive, agricultural, mining, processing and wind machines in addition to that of the systems for data acquisition.The participation of speakers and visitors from industry makes the event an opportunity for immediate assessment of the potential applications of advanced methodologies for the signal analysis. Signals acquired from machines often contain contributions from several different components as well as noise. Therefore, the major challenge of condition monitoring is to po...

  12. Unveiling non-stationary coupling between Amazon and ocean during recent extreme events

    Science.gov (United States)

    Ramos, Antônio M. de T.; Zou, Yong; de Oliveira, Gilvan Sampaio; Kurths, Jürgen; Macau, Elbert E. N.

    2018-02-01

    The interplay between extreme events in the Amazon's precipitation and the anomaly in the temperature of the surrounding oceans is not fully understood, especially its causal relations. In this paper, we investigate the climatic interaction between these regions from 1999 until 2012 using modern tools of complex system science. We identify the time scale of the coupling quantitatively and unveil the non-stationary influence of the ocean's temperature. The findings show consistently the distinctions between the coupling in the recent major extreme events in Amazonia, such as the two droughts that happened in 2005 and 2010 and the three floods during 1999, 2009 and 2012. Interestingly, the results also reveal the influence over the anomalous precipitation of Southwest Amazon has become increasingly lagged. The analysis can shed light on the underlying dynamics of the climate network system and consequently can improve predictions of extreme rainfall events.

  13. Fluctuations and pseudo long range dependence in network flows: A non-stationary Poisson process model

    International Nuclear Information System (INIS)

    Yu-Dong, Chen; Li, Li; Yi, Zhang; Jian-Ming, Hu

    2009-01-01

    In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain power-law between the mean flux (activity) (F i ) of the i-th node and its variance σ i as σ i α (F i ) α . Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaling phenomenon. (general)

  14. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  15. Is the Labour Force Participation Rate Non-Stationary in Romania?

    Directory of Open Access Journals (Sweden)

    Tiwari Aviral Kumar

    2015-01-01

    Full Text Available The purpose of this paper is to test hysteresis of the Romanian labour force participation rate, by using time series data, with quarterly frequency, covering the period 1999Q1-2013Q4. The main results reveal that the Romanian labour force participation rate is a nonlinear process and has a partial unit root (i.e. it is stationary in the first regime and non-stationary in the second one, the main breaking point being registered around year 2005. In this context, the value of using unemployment rate as an indicator for capturing joblessness in this country is debatable. Starting from 2005, the participation rate has not followed long-term changes in unemployment rate, the disturbances having permanent effects on labour force participation rate.

  16. 4th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2016-01-01

    The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining, or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book no...

  17. Mathematical modeling of non-stationary gas flow in gas pipeline

    Science.gov (United States)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  18. A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Directory of Open Access Journals (Sweden)

    Ameni Azzouz

    2017-01-01

    Full Text Available Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA and variable neighbourhood search (VNS to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.

  19. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model

    Science.gov (United States)

    Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.

    2017-09-01

    The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.

  20. Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali.

    Science.gov (United States)

    Medina, Daniel C; Findley, Sally E; Guindo, Boubacar; Doumbia, Seydou

    2007-11-21

    Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions

  1. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    Science.gov (United States)

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and

  2. Evaluation of stationary and non-stationary geostatistical models for inferring hydraulic conductivity values at Aespoe

    International Nuclear Information System (INIS)

    La Pointe, P.R.

    1994-11-01

    This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs

  3. Multi-objective problem of the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints

    Science.gov (United States)

    Amallynda, I.; Santosa, B.

    2017-11-01

    This paper proposes a new generalization of the distributed parallel machine and assembly scheduling problem (DPMASP) with eligibility constraints referred to as the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints. Within this generalization, we assume that there are a set non-identical factories or production lines, each one with a set unrelated parallel machine with different speeds in processing them disposed to a single assembly machine in series. A set of different products that are manufactured through an assembly program of a set of components (jobs) according to the requested demand. Each product requires several kinds of jobs with different sizes. Beside that we also consider to the multi-objective problem (MOP) of minimizing mean flow time and the number of tardy products simultaneously. This is known to be NP-Hard problem, is important to practice, as the former criterions to reflect the customer's demand and manufacturer's perspective. This is a realistic and complex problem with wide range of possible solutions, we propose four simple heuristics and two metaheuristics to solve it. Various parameters of the proposed metaheuristic algorithms are discussed and calibrated by means of Taguchi technique. All proposed algorithms are tested by Matlab software. Our computational experiments indicate that the proposed problem and fourth proposed algorithms are able to be implemented and can be used to solve moderately-sized instances, and giving efficient solutions, which are close to optimum in most cases.

  4. A Bee Colony Optimization Approach for Mixed Blocking Constraints Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Mostafa Khorramizadeh

    2015-01-01

    Full Text Available The flow shop scheduling problems with mixed blocking constraints with minimization of makespan are investigated. The Taguchi orthogonal arrays and path relinking along with some efficient local search methods are used to develop a metaheuristic algorithm based on bee colony optimization. In order to compare the performance of the proposed algorithm, two well-known test problems are considered. Computational results show that the presented algorithm has comparative performance with well-known algorithms of the literature, especially for the large sized problems.

  5. A Local Search Algorithm for the Flow Shop Scheduling Problem with Release Dates

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2015-01-01

    Full Text Available This paper discusses the flow shop scheduling problem to minimize the makespan with release dates. By resequencing the jobs, a modified heuristic algorithm is obtained for handling large-sized problems. Moreover, based on some properties, a local search scheme is provided to improve the heuristic to gain high-quality solution for moderate-sized problems. A sequence-independent lower bound is presented to evaluate the performance of the algorithms. A series of simulation results demonstrate the effectiveness of the proposed algorithms.

  6. Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan

    2007-01-01

    exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads......This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... to a significant decrease in makespan compared to the strategy currently implemented....

  7. Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan

    2007-01-01

    This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads...

  8. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  9. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    Science.gov (United States)

    Tabrizi, Babak H.; Ghaderi, Seyed Farid

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  10. An Artificial Bee Colony Algorithm for the Job Shop Scheduling Problem with Random Processing Times

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2011-09-01

    Full Text Available Due to the influence of unpredictable random events, the processing time of each operation should be treated as random variables if we aim at a robust production schedule. However, compared with the extensive research on the deterministic model, the stochastic job shop scheduling problem (SJSSP has not received sufficient attention. In this paper, we propose an artificial bee colony (ABC algorithm for SJSSP with the objective of minimizing the maximum lateness (which is an index of service quality. First, we propose a performance estimate for preliminary screening of the candidate solutions. Then, the K-armed bandit model is utilized for reducing the computational burden in the exact evaluation (through Monte Carlo simulation process. Finally, the computational results on different-scale test problems validate the effectiveness and efficiency of the proposed approach.

  11. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    Science.gov (United States)

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in

  12. The Green Ship Routing and Scheduling Problem (GSRSP): A conceptual approach

    DEFF Research Database (Denmark)

    Kontovas, Christos A.

    2014-01-01

    Recent reviews of the literature on ship routing and scheduling note the increased attention to environmental issues. This is an area of paramount importance for international shipping and will be even more so in the future. This short communication is motivated by the increasing attention......) based on existing formulations and highlights all the important parameters of the problem. (C) 2014 Elsevier Ltd. All rights reserved....

  13. Greedy and metaheuristics for the offline scheduling problem in grid computing

    DEFF Research Database (Denmark)

    Gamst, Mette

    In grid computing a number of geographically distributed resources connected through a wide area network, are utilized as one computations unit. The NP-hard offline scheduling problem in grid computing consists of assigning jobs to resources in advance. In this paper, five greedy heuristics and two....... All heuristics solve instances with up to 2000 jobs and 1000 resources, thus the results are useful both with respect to running times and to solution values....

  14. Solving and Interpreting Large-scale Harvest Scheduling Problems by Duality and Decomposition

    OpenAIRE

    Berck, Peter; Bible, Thomas

    1982-01-01

    This paper presents a solution to the forest planning problem that takes advantage of both the duality of linear programming formulations currently being used for harvest scheduling and the characteristics of decomposition inherent in the forest land class-relationship. The subproblems of decomposition, defined as the dual, can be solved in a simple, recursive fashion. In effect, such a technique reduces the computational burden in terms of time and computer storage as compared to the traditi...

  15. Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model

    Science.gov (United States)

    Narayanan, S.; Raju, G. V.

    1990-09-01

    An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.

  16. Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Non-Stationary Covariates

    DEFF Research Database (Denmark)

    Han, Heejoon; Kristensen, Dennis

    as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE'’s of the regression coefficients entering the volatility equation are consistent and normally distributed in large samples independently of the degree of persistence....... This implies that standard inferential tools, such as t-statistics, do not have to be adjusted to the level of persistence. On the other hand, the intercept in the volatility equation is not identifi…ed when the covariate is non-stationary which is akin to the results of Jensen and Rahbek (2004, Econometric...

  17. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    Science.gov (United States)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  18. Technical Report: Optimizing the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage Approach

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    2008-01-01

    In this paper, we present The Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...... considered here, is concerned with the generation of schedules for these. The problem is decomposed and modeled in two parts, namely a planning problem and a scheduling problem. In the planning problem a set of crane operations is created to take the yard from its current state to a desired goal state...... schedule for the cranes is generated, where each operation is assigned to a crane and is given a specific time of initiation. For both models, a thorough description of the modeling details is given along with a specification of objective criteria. Variants of the models are presented as well. Preliminary...

  19. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. Molla-Alizadeh-Zavardehi

    2014-01-01

    Full Text Available This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA, variable neighborhood search (VNS, and simulated annealing (SA frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  20. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    Directory of Open Access Journals (Sweden)

    Chun-Cheng Lin

    2014-01-01

    Full Text Available This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems.

  1. Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines

    Directory of Open Access Journals (Sweden)

    Eliana Marcela Peña Tibaduiza

    2017-01-01

    Full Text Available Context: The flow shop hybrid problem with unrelated parallel machines has been less studied in the academia compared to the flow shop hybrid with identical processors. For this reason, there are few reports about the kind of application of this problem in industries. Method: A literature review of the state of the art on flow-shop scheduling problem was conducted by collecting and analyzing academic papers on several scientific databases. For this aim, a search query was constructed using keywords defining the problem and checking the inclusion of unrelated parallel machines in such definition; as a result, 50 papers were finally selected for this study. Results: A classification of the problem according to the characteristics of the production system was performed, also solution methods, constraints and objective functions commonly used are presented. Conclusions: An increasing trend is observed in studies of flow shop with multiple stages, but few are based on industry case-studies.

  2. Heuristic and Exact Algorithms for the Two-Machine Just in Time Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Salem

    2016-01-01

    Full Text Available The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD for a set of jobs when their weights equal 1 (unweighted problem. This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much harder problem, a heuristic algorithm is proposed to find approximate solutions. Through computational experiments, the heuristic algorithms’ performance is evaluated with problems up to 500 jobs.

  3. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  4. Study on multi-objective flexible job-shop scheduling problem considering energy consumption

    Directory of Open Access Journals (Sweden)

    Zengqiang Jiang

    2014-06-01

    Full Text Available Purpose: Build a multi-objective Flexible Job-shop Scheduling Problem(FJSP optimization model, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered, then Design a Modified Non-dominated Sorting Genetic Algorithm (NSGA-II based on blood variation for above scheduling model.Design/methodology/approach: A multi-objective optimization theory based on Pareto optimal method is used in carrying out the optimization model. NSGA-II is used to solve the model.Findings: By analyzing the research status and insufficiency of multi-objective FJSP, Find that the difference in scheduling will also have an effect on energy consumption in machining process and environmental emissions. Therefore, job-shop scheduling requires not only guaranteeing the processing quality, time and cost, but also optimizing operation plan of machines and minimizing energy consumption.Originality/value: A multi-objective FJSP optimization model is put forward, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered. According to above model, Blood-Variation-based NSGA-II (BVNSGA-II is designed. In which, the chromosome mutation rate is determined after calculating the blood relationship between two cross chromosomes, crossover and mutation strategy of NSGA-II is optimized and the prematurity of population is overcome. Finally, the performance of the proposed model and algorithm is evaluated through a case study, and the results proved the efficiency and feasibility of the proposed model and algorithm.

  5. A matheuristic approach for solving the Integrated Timetabling and Vehicle Scheduling Problem

    DEFF Research Database (Denmark)

    Fonseca, Joao Filipe Paiva; Larsen, Allan; van der Hurk, Evelien

    between different trips. We consider transfers between bus trips scheduled by the model, but also transfers to other fixed lines that intersect the lines considered in the IT-VSP. We present a MIP formulation of the IT-VSP able to solve small instances of the problem, and a matheuristic approach that uses...... the compact MIP to solve larger instances of the problem. The idea is to iteratively solve restricted versions of the MIP selecting at each step a subset of trips where modifications are allowed, while all other trips remain fixed. The performance of the proposed matheuristic is shown on a case study...

  6. A novel modeling approach for job shop scheduling problem under uncertainty

    Directory of Open Access Journals (Sweden)

    Behnam Beheshti Pur

    2013-11-01

    Full Text Available When aiming on improving efficiency and reducing cost in manufacturing environments, production scheduling can play an important role. Although a common workshop is full of uncertainties, when using mathematical programs researchers have mainly focused on deterministic problems. After briefly reviewing and discussing popular modeling approaches in the field of stochastic programming, this paper proposes a new approach based on utility theory for a certain range of problems and under some practical assumptions. Expected utility programming, as the proposed approach, will be compared with the other well-known methods and its meaningfulness and usefulness will be illustrated via a numerical examples and a real case.

  7. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    Science.gov (United States)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  8. A tabu-search heuristic for solving the multi-depot vehicle scheduling problem

    Directory of Open Access Journals (Sweden)

    Gilmar D'Agostini Oliveira Casalinho

    2014-08-01

    Full Text Available Currently the logistical problems are relying quite significantly on Operational Research in order to achieve greater efficiency in their operations. Among the problems related to the vehicles scheduling in a logistics system, the Multiple Depot Vehicle Scheduling Problem (MDVSP has been addressed in several studies. The MDVSP presupposes the existence of depots that affect the planning of sequences to which travel must be performed. Often, exact methods cannot solve large instances encountered in practice and in order to take them into account, several heuristic approaches are being developed. The aim of this study was thus to solve the MDVSP using a meta-heuristic based on tabu-search method. The main motivation for this work came from the indication that only recently the use of meta-heuristics is being applied to MDVSP context (Pepin et al. 2008 and, also, the limitations listed by Rohde (2008 in his study, which used the branch-and-bound in one of the steps of the heuristic presented to solve the problem, which has increased the time resolution. The research method for solving this problem was based on adaptations of traditional techniques of Operational Research, and provided resolutions presenting very competitive results for the MDVSP such as the cost of the objective function, number of vehicles used and computational time.

  9. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    Science.gov (United States)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  10. Comparing Mixed & Integer Programming vs. Constraint Programming by solving Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Renata Melo e Silva de Oliveira

    2015-03-01

    Full Text Available Scheduling is a key factor for operations management as well as for business success. From industrial Job-shop Scheduling problems (JSSP, many optimization challenges have emerged since de 1960s when improvements have been continuously required such as bottlenecks allocation, lead-time reductions and reducing response time to requests.  With this in perspective, this work aims to discuss 3 different optimization models for minimizing Makespan. Those 3 models were applied on 17 classical problems of examples JSSP and produced different outputs.  The first model resorts on Mixed and Integer Programming (MIP and it resulted on optimizing 60% of the studied problems. The other models were based on Constraint Programming (CP and approached the problem in two different ways: a model CP1 is a standard IBM algorithm whereof restrictions have an interval structure that fail to solve 53% of the proposed instances, b Model CP-2 approaches the problem with disjunctive constraints and optimized 88% of the instances. In this work, each model is individually analyzed and then compared considering: i Optimization success performance, ii Computational processing time, iii Greatest Resource Utilization and, iv Minimum Work-in-process Inventory. Results demonstrated that CP-2 presented best results on criteria i and ii, but MIP was superior on criteria iii and iv and those findings are discussed at the final section of this work.

  11. Modeling fire spatial non-stationary in Portugal using GWR and GAMLSS

    Science.gov (United States)

    Sá, Ana C. L.; Amaral Turkman, Maria A.; Bistinas, Ioannis; Pereira, José M. C.

    2014-05-01

    Portuguese wildfires are responsible for large environmental, ecological and socio-economic impacts and, in the last decade, vegetation fires consumed on average 140.000ha/year. Portugal has a unique fires-atlas of burnt scar perimeters covering the 1975-2009 period, which allows the assessment of the fire most affected areas. It's crucial to understand the influence of the main drivers of forest fires and its spatial distribution in order to set new management strategies to reduce its impacts. Thus, this study aims at evaluating the spatial stationarity of the fire-environment relationship using two statistical approaches: Geographically Weighted Regression (GWR) and Generalized Additive Models for Location, Scale and Shape (GAMLSS). Analysis was performed using a regular 2kmx2km cell size grid, a total of 21293 observations overlaying the mainland of Portugal. Fire incidence was determined as the number of times each grid cell burned in the 35 years period. For the GWR analysis the group of environmental variables selected as predictors are: ignition source (population density (PD)); vegetation (proportion of forest and shrubland (FORSHR)); and weather (total precipitation of the coldest quarter (PCQ). Results showed that the fire-environment relationship is non-stationary, thus the coefficient estimates of all the predictors vary spatially, both in magnitude and sign. The most statistically significant predictor is FORSHR, followed by the PCQ. Despite the relationship between fire incidence and PD is non-stationary, only 9% of the observations are statistically significant at a 95% level of confidence. When compared with the Ordinary Least Squares (OLS) global model, 53% of the R2 statistic is above the 26% global estimated value, meaning a better explanation of the fire incidence variance with the local model approach. Using the same environmental variables, fire incidence was also modeled using GAMLSS to characterize nonstationarities in fire incidence. It is

  12. A multilevel variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem

    DEFF Research Database (Denmark)

    Wen, Min; Krapper, Emil; Larsen, Jesper

    2011-01-01

    in their fresh meat supply logistics system. The problem consists of a 1‐week planning horizon, heterogeneous vehicles, and drivers with predefined work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, and a break rule......The world's second largest producer of pork, Danish Crown, also provides a fresh meat supply logistics system within Denmark. This is used by the majority of supermarkets in Denmark. This article addresses an integrated vehicle routing and driver scheduling problem arising at Danish Crown....... The objective is to minimize the total delivery cost that is a weighted sum of two kinds of delivery costs. A multilevel variable neighborhood search heuristic is proposed for the problem. In a preprocessing step, the problem size is reduced through an aggregation procedure. Thereafter, the aggregated weekly...

  13. A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem

    DEFF Research Database (Denmark)

    Rahmati, Seyed Habib A.; Ahmadi, Abbas; Govindan, Kannan

    2018-01-01

    the level of the system optimization. By means of this equipment, managers can benefit from a condition-based maintenance (CBM) for monitoring and managing their system. The chief aim of the paper is to develop a stochastic maintenance problem based on CBM activities engaged with a complex applied......Integrated consideration of production planning and maintenance processes is a real world assumption. Specifically, by improving the monitoring equipment such as various sensors or product-embedded information devices in recent years, joint assessment of these processes is inevitable for enhancing...... production problem called flexible job shop scheduling problem (FJSP). This integrated problem considers two maintenance scenarios in terms of corrective maintenance (CM) and preventive maintenance (PM). The activation of scenario is done by monitoring the degradation condition of the system and comparing...

  14. New Mathematical Model and Algorithm for Economic Lot Scheduling Problem in Flexible Flow Shop

    Directory of Open Access Journals (Sweden)

    H. Zohali

    2018-03-01

    Full Text Available This paper addresses the lot sizing and scheduling problem for a number of products in flexible flow shop with identical parallel machines. The production stages are in series, while separated by finite intermediate buffers. The objective is to minimize the sum of setup and inventory holding costs per unit of time. The available mathematical model of this problem in the literature suffers from huge complexity in terms of size and computation. In this paper, a new mixed integer linear program is developed for delay with the huge dimentions of the problem. Also, a new meta heuristic algorithm is developed for the problem. The results of the numerical experiments represent a significant advantage of the proposed model and algorithm compared with the available models and algorithms in the literature.

  15. The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Dirksen, Jakob; Pisinger, David

    2013-01-01

    or even omitting one. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker consumption and the impact on cargo in the remaining network and the customer service level. It is proven...... due to adverse weather conditions, port contingencies, and many other issues. A common scenario for recovering a schedule is to either increase the speed at the cost of a significant increase in the fuel consumption or delaying cargo. Advanced recovery options might exist by swapping two port calls...... that the VSRP is NP-hard. The model is applied to four real life cases from Maersk Line and results are achieved in less than 5seconds with solutions comparable or superior to those chosen by operations managers in real life. Cost savings of up to 58% may be achieved by the suggested solutions compared...

  16. The Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Denis Pinha

    2016-11-01

    Full Text Available This paper presents the formulation and solution of the Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem. The focus of the proposed method is not on finding a single optimal solution, instead on presenting multiple feasible solutions, with cost and duration information to the project manager. The motivation for developing such an approach is due in part to practical situations where the definition of optimal changes on a regular basis. The proposed approach empowers the project manager to determine what is optimal, on a given day, under the current constraints, such as, change of priorities, lack of skilled worker. The proposed method utilizes a simulation approach to determine feasible solutions, under the current constraints. Resources can be non-consumable, consumable, or doubly constrained. The paper also presents a real-life case study dealing with scheduling of ship repair activities.

  17. Application of Operational Research Techniques in Operating Room Scheduling Problems: Literature Overview

    Directory of Open Access Journals (Sweden)

    Şeyda Gür

    2018-01-01

    Full Text Available Increased healthcare costs are pushing hospitals to reduce costs and increase the quality of care. Operating rooms are the most important source of income and expense for hospitals. Therefore, the hospital management focuses on the effectiveness of schedules and plans. This study includes analyses of recent research on operating room scheduling and planning. Most studies in the literature, from 2000 to the present day, were evaluated according to patient characteristics, performance measures, solution techniques used in the research, the uncertainty of the problem, applicability of the research, and the planning strategy to be dealt within the solution. One hundred seventy studies were examined in detail, after scanning the Emerald, Science Direct, JSTOR, Springer, Taylor and Francis, and Google Scholar databases. To facilitate the identification of these studies, they are grouped according to the different criteria of concern and then, a detailed overview is presented.

  18. A fast method for the unit scheduling problem with significant renewable power generation

    International Nuclear Information System (INIS)

    Osório, G.J.; Lujano-Rojas, J.M.; Matias, J.C.O.; Catalão, J.P.S.

    2015-01-01

    Highlights: • A model to the scheduling of power systems with significant renewable power generation is provided. • A new methodology that takes information from the analysis of each scenario separately is proposed. • Based on a probabilistic analysis, unit scheduling and corresponding economic dispatch are estimated. • A comparison with others methodologies is in favour of the proposed approach. - Abstract: Optimal operation of power systems with high integration of renewable power sources has become difficult as a consequence of the random nature of some sources like wind energy and photovoltaic energy. Nowadays, this problem is solved using Monte Carlo Simulation (MCS) approach, which allows considering important statistical characteristics of wind and solar power production such as the correlation between consecutive observations, the diurnal profile of the forecasted power production, and the forecasting error. However, MCS method requires the analysis of a representative amount of trials, which is an intensive calculation task that increases considerably with the number of scenarios considered. In this paper, a model to the scheduling of power systems with significant renewable power generation based on scenario generation/reduction method, which establishes a proportional relationship between the number of scenarios and the computational time required to analyse them, is proposed. The methodology takes information from the analysis of each scenario separately to determine the probabilistic behaviour of each generator at each hour in the scheduling problem. Then, considering a determined significance level, the units to be committed are selected and the load dispatch is determined. The proposed technique was illustrated through a case study and the comparison with stochastic programming approach was carried out, concluding that the proposed methodology can provide an acceptable solution in a reduced computational time

  19. Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence-Dependent Setup Time

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    2016-01-01

    Full Text Available A parallel machine scheduling problem in plastic production is studied in this paper. In this problem, the processing time and arrival time are uncertain but lie in their respective intervals. In addition, each job must be processed together with a mold while jobs which belong to one family can share the same mold. Therefore, time changing mold is required for two consecutive jobs that belong to different families, which is known as sequence-dependent setup time. This paper aims to identify a robust schedule by min–max regret criterion. It is proved that the scenario incurring maximal regret for each feasible solution lies in finite extreme scenarios. A mixed integer linear programming formulation and an exact algorithm are proposed to solve the problem. Moreover, a modified artificial bee colony algorithm is developed to solve large-scale problems. The performance of the presented algorithm is evaluated through extensive computational experiments and the results show that the proposed algorithm surpasses the exact method in terms of objective value and computational time.

  20. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    Science.gov (United States)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  1. Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available As an extension of the classical job shop scheduling problem, the flexible job shop scheduling problem (FJSP plays an important role in real production systems. In FJSP, an operation is allowed to be processed on more than one alternative machine. It has been proven to be a strongly NP-hard problem. Ant colony optimization (ACO has been proven to be an efficient approach for dealing with FJSP. However, the basic ACO has two main disadvantages including low computational efficiency and local optimum. In order to overcome these two disadvantages, an improved ant colony optimization (IACO is proposed to optimize the makespan for FJSP. The following aspects are done on our improved ant colony optimization algorithm: select machine rule problems, initialize uniform distributed mechanism for ants, change pheromone’s guiding mechanism, select node method, and update pheromone’s mechanism. An actual production instance and two sets of well-known benchmark instances are tested and comparisons with some other approaches verify the effectiveness of the proposed IACO. The results reveal that our proposed IACO can provide better solution in a reasonable computational time.

  2. A Pareto archive floating search procedure for solving multi-objective flexible job shop scheduling problem

    Directory of Open Access Journals (Sweden)

    J. S. Sadaghiani

    2014-04-01

    Full Text Available Flexible job shop scheduling problem is a key factor of using efficiently in production systems. This paper attempts to simultaneously optimize three objectives including minimization of the make span, total workload and maximum workload of jobs. Since the multi objective flexible job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been used to solve it. The proposed approach was based on a floating search procedure that has used some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it makes the considered problem into two sections including assigning and sequencing sub problem. First of all search is done upon assignment space achieving an acceptable solution and then search would continue on sequencing space based on a heuristic algorithm. This paper has used a multi-objective approach for producing Pareto solution. Thus proposed approach was adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of the proposed algorithms were adjusted upon preliminary experiments. Finally, computational results were used to analyze efficiency of the proposed algorithm and this results showed that the proposed algorithm capable to produce efficient solutions.

  3. Variable Neighbourhood Search and Mathematical Programming for Just-in-Time Job-Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Sunxin Wang

    2014-01-01

    Full Text Available This paper presents a combination of variable neighbourhood search and mathematical programming to minimize the sum of earliness and tardiness penalty costs of all operations for just-in-time job-shop scheduling problem (JITJSSP. Unlike classical E/T scheduling problem with each job having its earliness or tardiness penalty cost, each operation in this paper has its earliness and tardiness penalties, which are paid if the operation is completed before or after its due date. Our hybrid algorithm combines (i a variable neighbourhood search procedure to explore the huge feasible solution spaces efficiently by alternating the swap and insertion neighbourhood structures and (ii a mathematical programming model to optimize the completion times of the operations for a given solution in each iteration procedure. Additionally, a threshold accepting mechanism is proposed to diversify the local search of variable neighbourhood search. Computational results on the 72 benchmark instances show that our algorithm can obtain the best known solution for 40 problems, and the best known solutions for 33 problems are updated.

  4. Non-stationary hydrologic frequency analysis using B-spline quantile regression

    Science.gov (United States)

    Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

    2017-11-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

  5. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    International Nuclear Information System (INIS)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-01-01

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2

  6. Optimized waveform relaxation domain decomposition method for discrete finite volume non stationary convection diffusion equation

    International Nuclear Information System (INIS)

    Berthe, P.M.

    2013-01-01

    In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr

  7. Some strange numerical solutions of the non-stationary Navier-Stokes equations in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rummler, B.

    2001-07-01

    A general class of boundary-pressure-driven flows of incompressible Newtonian fluids in three-dimensional pipes with known steady laminar realizations is investigated. Considering the laminar velocity as a 3D-vector-function of the cross-section-circle arguments, we fix the scale for the velocity by the L{sub 2}-norm of the laminar velocity. The usual new variables are introduced to get dimension-free Navier-Stokes equations. The characteristic physical and geometrical quantities are subsumed in the energetic Reynolds number Re and a parameter {psi}, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form u=u{sub L}+u, where u{sub L} is the scaled laminar velocity and periodical conditions in center-line-direction are prescribed for u. An autonomous system (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction is got by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u. The finite-dimensional approximations u{sub N({lambda}}{sub )} of u are defined in the usual way. (orig.)

  8. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  9. Estimation of reproduction number and non stationary spectral analysis of dengue epidemic.

    Science.gov (United States)

    Enduri, Murali Krishna; Jolad, Shivakumar

    2017-06-01

    In this work we analyze the post monsoon Dengue outbreaks by analyzing the transient and long term dynamics of Dengue incidences and its environmental correlates in Ahmedabad city in western India from 2005 to 2012. We calculate the reproduction number R p using the growth rate of post monsoon Dengue outbreaks and biological parameters like host and vector incubation periods and vector mortality rate, and its uncertainties are estimated through Monte-Carlo simulations by sampling parameters from their respective probability distributions. Reduction in Female Aedes mosquito density required for an effective prevention of Dengue outbreaks is also calculated. The non stationary pattern of Dengue incidences and its climatic correlates like rainfall temperature is analyzed through Wavelet based methods. We find that the mean time lag between peak of monsoon and Dengue is 9 weeks. Monsoon and Dengue cases are phase locked from 2008 to 2012 in the 16 to maintain consistency make it "16 to 32" 32 weeks band. The duration of post monsoon outbreak has been increasing every year, especially post 2008, even though the intensity and duration of monsoon has been decreasing. Temperature and Dengue incidences show correlations in the same band, but phase lock is not stationary. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    International Nuclear Information System (INIS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J

    2017-01-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold–Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis. (paper)

  12. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    Science.gov (United States)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  13. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Directory of Open Access Journals (Sweden)

    Belén Rodríguez-Fonseca

    2016-06-01

    Full Text Available The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years and modeling projects (e.g., CMIP permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

  14. Scheduling by positional completion times: analysis of a two-stage flow shop problem with a batching machine

    NARCIS (Netherlands)

    Hoogeveen, J.A.; Velde, van de S.L.

    1998-01-01

    We consider a scheduling problem introduced by Ahmadi et al., Batching and scheduling jobs on batch and discrete processors, Operation Research 40 (1992) 750–763, in which each job has to be prepared before it can be processed. The preparation is performed by a batching machine; it can prepare at

  15. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    Science.gov (United States)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  16. A Generalized Ant Colony Algorithm for Job一shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    ZHANG Hong-Guo

    2017-02-01

    Full Text Available Aiming at the problem of ant colony algorithm for solving Job一shop scheduling problem. Considering the complexity of the algorithm that uses disjunctive graph to describe the relationship between workpiece processing. To solve the problem of optimal solution,a generalized ant colony algorithm is proposed. Under the premise of considering constrained relationship between equipment and process,the pheromone update mechanism is applied to solve Job-shop scheduling problem,so as to improve the quality of the solution. In order to improve the search efficiency,according to the state transition rules of ant colony algorithm,this paper makes a detailed study on the selection and improvement of the parameters in the algorithm,and designs the pheromone update strategy. Experimental results show that a generalized ant colony algorithm is more feasible and more effective. Compared with other algorithms in the literature,the results prove that the algorithm improves in computing the optimal solution and convergence speed.

  17. Shuffled Frog Leaping Algorithm for Preemptive Project Scheduling Problems with Resource Vacations Based on Patterson Set

    Directory of Open Access Journals (Sweden)

    Yi Han

    2013-01-01

    Full Text Available This paper presents a shuffled frog leaping algorithm (SFLA for the single-mode resource-constrained project scheduling problem where activities can be divided into equant units and interrupted during processing. Each activity consumes 0–3 types of resources which are renewable and temporarily not available due to resource vacations in each period. The presence of scarce resources and precedence relations between activities makes project scheduling a difficult and important task in project management. A recent popular metaheuristic shuffled frog leaping algorithm, which is enlightened by the predatory habit of frog group in a small pond, is adopted to investigate the project makespan improvement on Patterson benchmark sets which is composed of different small and medium size projects. Computational results demonstrate the effectiveness and efficiency of SFLA in reducing project makespan and minimizing activity splitting number within an average CPU runtime, 0.521 second. This paper exposes all the scheduling sequences for each project and shows that of the 23 best known solutions have been improved.

  18. A Variable Interval Rescheduling Strategy for Dynamic Flexible Job Shop Scheduling Problem by Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available In real-world manufacturing systems, production scheduling systems are often implemented under random or dynamic events like machine failure, unexpected processing times, stochastic arrival of the urgent orders, cancellation of the orders, and so on. These dynamic events will lead the initial scheduling scheme to be nonoptimal and/or infeasible. Hence, appropriate dynamic rescheduling approaches are needed to overcome the dynamic events. In this paper, we propose a dynamic rescheduling method based on variable interval rescheduling strategy (VIRS to deal with the dynamic flexible job shop scheduling problem considering machine failure, urgent job arrival, and job damage as disruptions. On the other hand, an improved genetic algorithm (GA is proposed for minimizing makespan. In our improved GA, a mix of random initialization population by combining initialization machine and initialization operation with random initialization is designed for generating high-quality initial population. In addition, the elitist strategy (ES and improved population diversity strategy (IPDS are used to avoid falling into the local optimal solution. Experimental results for static and several dynamic events in the FJSP show that our method is feasible and effective.

  19. A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bocewicz, Grzegorz

    2012-01-01

    This present study deals with the problem of sequencing feeding tasks of a single mobile robot with manipulation arm which is able to provide parts or components for feeders of machines in a manufacturing cell. The mobile robot has to be scheduled in order to keep machines within the cell producing...... products without any shortage of parts. A method based on the characteristics of feeders and inspired by the (s, Q) inventory system, is thus applied to define time windows for feeding tasks of the robot. The performance criterion is to minimize total traveling time of the robot in a given planning horizon...

  20. Skipping Strategy (SS) for Initial Population of Job-Shop Scheduling Problem

    Science.gov (United States)

    Abdolrazzagh-Nezhad, M.; Nababan, E. B.; Sarim, H. M.

    2018-03-01

    Initial population in job-shop scheduling problem (JSSP) is an essential step to obtain near optimal solution. Techniques used to solve JSSP are computationally demanding. Skipping strategy (SS) is employed to acquire initial population after sequence of job on machine and sequence of operations (expressed in Plates-jobs and mPlates-jobs) are determined. The proposed technique is applied to benchmark datasets and the results are compared to that of other initialization techniques. It is shown that the initial population obtained from the SS approach could generate optimal solution.

  1. An Adaptive Large Neighborhood Search Algorithm for the Resource-constrained Project Scheduling Problem

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    2009-01-01

    We present an application of an Adaptive Large Neighborhood Search (ALNS) algorithm to the Resource-constrained Project Scheduling Problem (RCPSP). The ALNS framework was first proposed by Pisinger and Røpke [19] and can be described as a large neighborhood search algorithm with an adaptive layer......, where a set of destroy/repair neighborhoods compete to modify the current solution in each iteration of the algorithm. Experiments are performed on the wellknown J30, J60 and J120 benchmark instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS framework...

  2. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  3. Modeling Nurse Scheduling Problem Using 0-1 Goal Programming A Case Study Of Tafo Government Hospital Kumasi-Ghana

    Directory of Open Access Journals (Sweden)

    Wallace Agyei

    2015-03-01

    Full Text Available Abstract The problem of scheduling nurses at the Out-Patient Department OPD at Tafo Government Hospital Kumasi Ghana is presented. Currently the schedules are prepared by head nurse who performs this difficult and time consuming task by hand. Due to the existence of many constraints the resulting schedule usually does not guarantee the fairness of distribution of work. The problem was formulated as 0-1goal programming model with the of objective of evenly balancing the workload among nurses and satisfying their preferences as much as possible while complying with the legal and working regulations.. The developed model was then solved using LINGO14.0 software. The resulting schedules based on 0-1goal programming model balanced the workload in terms of the distribution of shift duties fairness in terms of the number of consecutive night duties and satisfied the preferences of the nurses. This is an improvement over the schedules done manually.

  4. Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem

    Science.gov (United States)

    Luo, Yabo; Waden, Yongo P.

    2017-06-01

    Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.

  5. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Caminade, Cyril; Telfer, Sandra; Rajerison, Minoarison; Rahalison, Lila; Morse, Andy; Baylis, Matthew

    2014-10-01

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO). The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD). It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar. We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation. This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  6. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    Science.gov (United States)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  7. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series

    Directory of Open Access Journals (Sweden)

    Jorge E. Pinzon

    2014-07-01

    Full Text Available The NDVI3g time series is an improved 8-km normalized difference vegetation index (NDVI data set produced from Advanced Very High Resolution Radiometer (AVHRR instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of ± 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  8. A Non-Stationary 1981-2012 AVHRR NDVI(sub 3g) Time Series

    Science.gov (United States)

    Pinzon, Jorge E.; Tucker, Compton J.

    2014-01-01

    The NDVI(sub 3g) time series is an improved 8-km normalized difference vegetation index (NDVI) data set produced from Advanced Very High Resolution Radiometer (AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of plus or minus 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  9. Statistical downscaling of rainfall: a non-stationary and multi-resolution approach

    Science.gov (United States)

    Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir

    2016-05-01

    A novel downscaling technique is proposed in this study whereby the original rainfall and reanalysis variables are first decomposed by wavelet transforms and rainfall is modelled using the semi-parametric additive model formulation of Generalized Additive Model in Location, Scale and Shape (GAMLSS). The flexibility of the GAMLSS model makes it feasible as a framework for non-stationary modelling. Decomposition of a rainfall series into different components is useful to separate the scale-dependent properties of the rainfall as this varies both temporally and spatially. The study was conducted at the Onkaparinga river catchment in South Australia. The model was calibrated over the period 1960 to 1990 and validated over the period 1991 to 2010. The model reproduced the monthly variability and statistics of the observed rainfall well with Nash-Sutcliffe efficiency (NSE) values of 0.66 and 0.65 for the calibration and validation periods, respectively. It also reproduced well the seasonal rainfall over the calibration (NSE = 0.37) and validation (NSE = 0.69) periods for all seasons. The proposed model was better than the tradition modelling approach (application of GAMLSS to the original rainfall series without decomposition) at reproducing the time-frequency properties of the observed rainfall, and yet it still preserved the statistics produced by the traditional modelling approach. When downscaling models were developed with general circulation model (GCM) historical output datasets, the proposed wavelet-based downscaling model outperformed the traditional downscaling model in terms of reproducing monthly rainfall for both the calibration and validation periods.

  10. Modelling non-stationary annual maximum flood heights in the lower Limpopo River basin of Mozambique

    Directory of Open Access Journals (Sweden)

    Daniel Maposa

    2016-05-01

    Full Text Available In this article we fit a time-dependent generalised extreme value (GEV distribution to annual maximum flood heights at three sites: Chokwe, Sicacate and Combomune in the lower Limpopo River basin of Mozambique. A GEV distribution is fitted to six annual maximum time series models at each site, namely: annual daily maximum (AM1, annual 2-day maximum (AM2, annual 5-day maximum (AM5, annual 7-day maximum (AM7, annual 10-day maximum (AM10 and annual 30-day maximum (AM30. Non-stationary time-dependent GEV models with a linear trend in location and scale parameters are considered in this study. The results show lack of sufficient evidence to indicate a linear trend in the location parameter at all three sites. On the other hand, the findings in this study reveal strong evidence of the existence of a linear trend in the scale parameter at Combomune and Sicacate, whilst the scale parameter had no significant linear trend at Chokwe. Further investigation in this study also reveals that the location parameter at Sicacate can be modelled by a nonlinear quadratic trend; however, the complexity of the overall model is not worthwhile in fit over a time-homogeneous model. This study shows the importance of extending the time-homogeneous GEV model to incorporate climate change factors such as trend in the lower Limpopo River basin, particularly in this era of global warming and a changing climate. Keywords: nonstationary extremes; annual maxima; lower Limpopo River; generalised extreme value

  11. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar.

    Directory of Open Access Journals (Sweden)

    Katharina S Kreppel

    2014-10-01

    Full Text Available Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO. The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD. It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar.We use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation.This work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.

  12. Hydrothermal self-scheduling problem in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Bisanovic, Smajo; Dlakic, Muris; Hajro, Mensur

    2008-01-01

    This paper addresses the self-scheduling problem of determining the unit commitment status for power generation companies before submitting the hourly bids in a day-ahead market. The hydrothermal model is formulated as a deterministic optimization problem where expected profit is maximized using the 0/1 mixed-integer linear programming technique. This approach allows precise modelling of non-convex variable cost functions and non-linear start-up cost functions of thermal units, non-concave power-discharge characteristics of hydro units, ramp rate limits of thermal units and minimum up and down time constraints for both hydro and thermal units. Model incorporates long-term bilateral contracts with contracted power and price patterns, as well as forecasted market hourly prices for day-ahead auction. Solution is achieved using the homogeneous interior point method for linear programming as state of the art technique, with a branch and bound optimizer for integer programming. The effectiveness of the proposed model in optimizing the generation schedule is demonstrated through the case studies and their analysis. (author)

  13. A hybrid flow shop model for an ice cream production scheduling problem

    Directory of Open Access Journals (Sweden)

    Imma Ribas Vila

    2009-07-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Taula normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} In this paper we address the scheduling problem that comes from an ice cream manufacturing company. This production system can be modelled as a three stage nowait hybrid flow shop with batch dependent setup costs. To contribute reducing the gap between theory and practice we have considered the real constraints and the criteria used by planners. The problem considered has been formulated as a mixed integer programming. Further, two competitive heuristic procedures have been developed and one of them will be proposed to schedule in the ice cream factory.

  14. Modelling and Metaheuristic for Gantry Crane Scheduling and Storage Space Allocation Problem in Railway Container Terminals

    Directory of Open Access Journals (Sweden)

    Ming Zeng

    2017-01-01

    Full Text Available The gantry crane scheduling and storage space allocation problem in the main containers yard of railway container terminal is studied. A mixed integer programming model which comprehensively considers the handling procedures, noncrossing constraints, the safety margin and traveling time of gantry cranes, and the storage modes in the main area is formulated. A metaheuristic named backtracking search algorithm (BSA is then improved to solve this intractable problem. A series of computational experiments are carried out to evaluate the performance of the proposed algorithm under some randomly generated cases based on the practical operation conditions. The results show that the proposed algorithm can gain the near-optimal solutions within a reasonable computation time.

  15. Mathematical Model and Algorithm for the Reefer Mechanic Scheduling Problem at Seaports

    Directory of Open Access Journals (Sweden)

    Jiantong Zhang

    2017-01-01

    Full Text Available With the development of seaborne logistics, the international trade of goods transported in refrigerated containers is growing fast. Refrigerated containers, also known as reefers, are used in transportation of temperature sensitive cargo, such as perishable fruits. This trend brings new challenges to terminal managers, that is, how to efficiently arrange mechanics to plug and unplug power for the reefers (i.e., tasks at yards. This work investigates the reefer mechanics scheduling problem at container ports. To minimize the sum of the total tardiness of all tasks and the total working distance of all mechanics, we formulate a mathematical model. For the resolution of this problem, we propose a DE algorithm which is combined with efficient heuristics, local search strategies, and parameter adaption scheme. The proposed algorithm is tested and validated through numerical experiments. Computational results demonstrate the effectiveness and efficiency of the proposed algorithm.

  16. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm

    Science.gov (United States)

    Wang, Chun; Ji, Zhicheng; Wang, Yan

    2017-07-01

    In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.

  17. Scheduling stochastic two-machine flow shop problems to minimize expected makespan

    Directory of Open Access Journals (Sweden)

    Mehdi Heydari

    2013-07-01

    Full Text Available During the past few years, despite tremendous contribution on deterministic flow shop problem, there are only limited number of works dedicated on stochastic cases. This paper examines stochastic scheduling problems in two-machine flow shop environment for expected makespan minimization where processing times of jobs are normally distributed. Since jobs have stochastic processing times, to minimize the expected makespan, the expected sum of the second machine’s free times is minimized. In other words, by minimization waiting times for the second machine, it is possible to reach the minimum of the objective function. A mathematical method is proposed which utilizes the properties of the normal distributions. Furthermore, this method can be used as a heuristic method for other distributions, as long as the means and variances are available. The performance of the proposed method is explored using some numerical examples.

  18. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  19. A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2012-01-01

    Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.

  20. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Jun-qing Li

    2014-01-01

    Full Text Available A hybrid algorithm which combines particle swarm optimization (PSO and iterated local search (ILS is proposed for solving the hybrid flowshop scheduling (HFS problem with preventive maintenance (PM activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron’s benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  1. Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.

    Science.gov (United States)

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

  2. Terminal Appointment System Design by Non-stationary M(t)/Ek/c(t) Queueing Model and Genetic Algorithm

    DEFF Research Database (Denmark)

    Chen, Gang; Govindan, Kannan; Yang, Zhong-Zhen

    2013-01-01

    Long truck queue is a common problem at big marine container terminals, where the resources and equipment are usually scheduled to serve ships prior to trucks. To reduce truck queues, some container terminals adopt terminal appointment system (TAS) to manage truck arrivals. This paper addresses two...

  3. Evaluating the performance of constructive heuristics for the blocking flow shop scheduling problem with setup times

    Directory of Open Access Journals (Sweden)

    Mauricio Iwama Takano

    2019-01-01

    Full Text Available This paper addresses the minimization of makespan for the permutation flow shop scheduling problem with blocking and sequence and machine dependent setup times, a problem not yet studied in previous studies. The 14 best known heuristics for the permutation flow shop problem with blocking and no setup times are pre-sented and then adapted to the problem in two different ways; resulting in 28 different heuristics. The heuristics are then compared using the Taillard database. As there is no other work that addresses the problem with blocking and sequence and ma-chine dependent setup times, a database for the setup times was created. The setup time value was uniformly distributed between 1% and 10%, 50%, 100% and 125% of the processing time value. Computational tests are then presented for each of the 28 heuristics, comparing the mean relative deviation of the makespan, the computational time and the percentage of successes of each method. Results show that the heuristics were capable of providing interesting results.

  4. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  5. Meta-heuristic algorithms for parallel identical machines scheduling problem with weighted late work criterion and common due date.

    Science.gov (United States)

    Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie

    2015-01-01

    To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA.

  6. A Mathematical Model for the Non-Stationary Process of Compression Molding of Plates from Granulate of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Vladimir N. Vodyakov

    2017-12-01

    Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature

  7. A Priority Rule-Based Heuristic for Resource Investment Project Scheduling Problem with Discounted Cash Flows and Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Amir Abbas Najafi

    2009-01-01

    Full Text Available Resource investment problem with discounted cash flows (RIPDCFs is a class of project scheduling problem. In RIPDCF, the availability levels of the resources are considered decision variables, and the goal is to find a schedule such that the net present value of the project cash flows optimizes. In this paper, we consider a new RIPDCF in which tardiness of project is permitted with defined penalty. We mathematically formulated the problem and developed a heuristic method to solve it. The results of the performance analysis of the proposed method show an effective solution approach to the problem.

  8. Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform

    International Nuclear Information System (INIS)

    Liu, Yangqing; Tan, Yi; Xie, Huiqiao; Wang, Wenhao; Gao, Zhe

    2014-01-01

    An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas

  9. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  10. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    OpenAIRE

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...

  11. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Science.gov (United States)

    López, J.; Francés, F.

    2013-08-01

    Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS). Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation) and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  12. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Directory of Open Access Journals (Sweden)

    J. López

    2013-08-01

    Full Text Available Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS. Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  13. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  14. Introduction and application of non-stationary standardized precipitation index considering probability distribution function and return period

    Science.gov (United States)

    Park, Junehyeong; Sung, Jang Hyun; Lim, Yoon-Jin; Kang, Hyun-Suk

    2018-05-01

    The widely used meteorological drought index, the Standardized Precipitation Index (SPI), basically assumes stationarity, but recent changes in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process was proposed. The results were evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered that the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite that these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the probability distribution wider than before. This implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.

  15. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems.

    Science.gov (United States)

    Park, Jeryang; Rao, P Suresh C

    2014-11-15

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Chang, C C; Hsiao, T C; Kao, S C; Hsu, H Y

    2014-01-01

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  17. Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach.

    Science.gov (United States)

    Pieciak, Tomasz; Aja-Fernandez, Santiago; Vegas-Sanchez-Ferrero, Gonzalo

    2017-10-01

    Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs.

  18. Frequency Analysis of Extreme Sub-Daily Precipitation under Stationary and Non-Stationary Conditions across Two Contrasting Hydroclimatic Environments

    Science.gov (United States)

    Demaria, E. M.; Goodrich, D. C.; Keefer, T.

    2017-12-01

    Observed sub-daily precipitation intensities from contrasting hydroclimatic environments in the USA are used to evaluate temporal trends and to develop Intensity-Duration Frequency (IDF) curves under stationary and nonstationary climatic conditions. Analyses are based on observations from two United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) experimental watersheds located in a semi-arid and a temperate environment. We use an Annual Maximum Series (AMS) and a Partial Duration Series (PDS) approach to identify temporal trends in maximum intensities for durations ranging from 5- to 1440-minutes. A Bayesian approach with Monte Carlo techniques is used to incorporate the effect of non-stationary climatic assumptions in the IDF curves. The results show increasing trends in observed AMS sub-daily intensities in both watersheds whereas trends in the PDS observations are mostly positive in the semi-arid site and a mix of positive and negative in the temperate site. Stationary climate assumptions lead to much lower estimated sub-daily intensities than those under non-stationary assumptions with larger absolute differences found for shorter durations and smaller return periods. The risk of failure (R) of a hydraulic structure is increased for non-stationary effects over those of stationary effects, with absolute differences of 25% for a 100-year return period (T) and a project life (n) of 100 years. The study highlights the importance of considering non-stationarity, due to natural variability or to climate change, in storm design.

  19. A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP

    Directory of Open Access Journals (Sweden)

    Juan Carlos Rivera

    Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.

  20. Maximizing Total Profit in Two-agent Problem of Order Acceptance and Scheduling

    Directory of Open Access Journals (Sweden)

    Mohammad Reisi-Nafchi

    2017-03-01

    Full Text Available In competitive markets, attracting potential customers and keeping current customers is a survival condition for each company. So, paying attention to the requests of customers is important and vital. In this paper, the problem of order acceptance and scheduling has been studied, in which two types of customers or agents compete in a single machine environment. The objective is maximizing sum of the total profit of first agent's accepted orders and the total revenue of second agent. Therefore, only the first agent has penalty and its penalty function is lateness and the second agent's orders have a common due date and this agent does not accept any tardy order. To solve the problem, a mathematical programming, a heuristic algorithm and a pseudo-polynomial dynamic programming algorithm are proposed. Computational results confirm the ability of solving all problem instances up to 70 orders size optimally and also 93.12% of problem instances up to 150 orders size by dynamic programming.

  1. Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem

    Directory of Open Access Journals (Sweden)

    Naoufal Rouky

    2019-01-01

    Full Text Available This work is devoted to the study of the Uncertain Quay Crane Scheduling Problem (QCSP, where the loading /unloading times of containers and travel time of quay cranes are considered uncertain. The problem is solved with a Simulation Optimization approach which takes advantage of the great possibilities offered by the simulation to model the real details of the problem and the capacity of the optimization to find solutions with good quality. An Ant Colony Optimization (ACO meta-heuristic hybridized with a Variable Neighborhood Descent (VND local search is proposed to determine the assignments of tasks to quay cranes and the sequences of executions of tasks on each crane. Simulation is used inside the optimization algorithm to generate scenarios in agreement with the probabilities of the distributions of the uncertain parameters, thus, we carry out stochastic evaluations of the solutions found by each ant. The proposed optimization algorithm is tested first for the deterministic case on several well-known benchmark instances. Then, in the stochastic case, since no other work studied exactly the same problem with the same assumptions, the Simulation Optimization approach is compared with the deterministic version. The experimental results show that the optimization algorithm is competitive as compared to the existing methods and that the solutions found by the Simulation Optimization approach are more robust than those found by the optimization algorithm.

  2. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty

    Science.gov (United States)

    Ušćumlić, Marija; Blankertz, Benjamin

    2016-02-01

    Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and

  3. Numerical Estimation Method for the NonStationary Thrust of Pulsejet Ejector Nozzle

    Directory of Open Access Journals (Sweden)

    A. Yu. Mikushkin

    2016-01-01

    Full Text Available The article considers a calculation method for the non-stationary thrust of pulsejet ejector nozzle that is based on detonation combustion of gaseous fuel.To determine initial distributions of the thermodynamic parameters inside the detonation tube was carried out a rapid analysis based on x-t-diagrams of motion of glowing combustion products. For this purpose, the section with transparent walls was connected to the outlet of the tube to register the movement of products of combustion.Based on obtained images and gas-dynamic and thermodynamic equations the velocity distribution of the combustion products, its density, pressure and temperature required for numerical analysis were calculated. The world literature presents data on distribution of parameters, however they are given only for direct initiation of detonation at the closed end and for chemically "frozen" gas composition. The article presents the interpolation methods of parameters measured at the temperatures of 2500-2800K.Estimation of the thermodynamic parameters is based on the Chapman-Jouguet theory that the speed of the combustion products directly behind the detonation wave front with respect to the wave front is equal to the speed of sound of these products at a given point. The method of minimizing enthalpy of the final thermodynamic state was used to calculate the equilibrium parameters. Thus, a software package «IVTANTHERMO», which is a database of thermodynamic properties of many individual substances in a wide temperature range, was used.An integral thrust was numerically calculated according to the ejector nozzle surface. We solved the Navier-Stokes equations using the finite-difference Roe scheme of the second order. The combustion products were considered both as an inert mixture with "frozen" composition and as a mixture in chemical equilibrium with the changing temperature. The comparison with experimental results was made.The above method can be used for rapid

  4. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    Science.gov (United States)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all

  5. A Literature Survey for Earliness/Tardiness Scheduling Problems with Learning Effect

    Directory of Open Access Journals (Sweden)

    Mesut Cemil İŞLER

    2009-02-01

    Full Text Available When a task or work is done continuously, there will be an experience so following times needs of required resources (manpower, materials, etc. will be reduced. This learning curve described first by Wright. Wright determined how workmanship costs decreased while proceed plain increasing. This investigations correctness found consistent by plain producers. Learning effect is an effect that, works can be done in shorter time in the rate of repeat of work with repeating same or similar works in production process. Nowadays classical production systems adapted more acceptable systems with new approaches. Just in time production system (JIT philosophy is one of the most important production system philosophies. JIT which is known production without stock stands on using all product resources optimum. Minimization problem of Earliness/Tardiness finishing penalty, which we can describe Just in time scheduling, appeared by inspired from JIT philosophy. In this study, there is literature survey which directed to earliness/tardiness performance criteria and learning effect processing in scheduling and as a result of this it is obtained some establishing for literature.

  6. An Agent-Based Solution Framework for Inter-Block Yard Crane Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Omor Sharif

    2012-06-01

    Full Text Available The efficiency of yard operations is critical to the overall productivity of a container terminal because the yard serves as the interface between the landside and waterside operations. Most container terminals use yard cranes to transfer containers between the yard and trucks (both external and internal. To facilitate vessel operations, an efficient work schedule for the yard cranes is necessary given varying work volumes among yard blocks with different planning periods. This paper investigated an agent-based approach to assign and relocate yard cranes among yard blocks based on the forecasted work volumes. The goal of our study is to reduce the work volume that remains incomplete at the end of a planning period. We offered several preference functions for yard cranes and blocks which are modeled as agents. These preference functions are designed to find effective schedules for yard cranes. In addition, we examined various rules for the initial assignment of yard cranes to blocks. Our analysis demonstrated that our model can effectively and efficiently reduce the percentage of incomplete work volume for any real-world sized problem.

  7. Using Improved Ant Colony Algorithm to Investigate EMU Circulation Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available High-speed railway is one of the most important ways to solve the long-standing travel difficulty problem in China. However, due to the high acquisition and maintenance cost, it is impossible for decision-making departments to purchase enough EMUs to satisfy the explosive travel demand. Therefore, there is an urgent need to study how to utilize EMU more efficiently and reduce costs in the case of completing a given task in train diagram. In this paper, an EMU circulation scheduling model is built based on train diagram constraints, maintenance constraints, and so forth; in the model solving process, an improved ACA algorithm has been designed. A case study is conducted to verify the feasibility of the model. Moreover, contrast tests have been carried out to compare the efficiency between the improved ACA and the traditional approaches. The results reveal that improved ACA method can solve the model with less time and the quality of each representative index is much better, which means that efficiency of the improved ACA method is higher and better scheduling scheme can be obtained.

  8. A branch and cut approach to the multiproduct pipeline scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito Marques de; Bahiense, Laura; Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2009-07-01

    Pipelines are known as the most reliable and economical mode of transportation for petroleum and its derivatives, especially when large amounts of products have to be pumped for large distances. We address the short-term schedule of a pipeline system comprising the distribution of several petroleum derivatives from a single oil refinery to several depots, connected to local consumer markets, through a single multi-product pipeline. The major difficulties faced in these operations are related to the satisfaction of product demands by the various consumer markets, and operational constraints such as the maximum sizes of contiguous pumping packs, and the immiscible products. Several researchers have developed models and techniques for this short-term pipeline scheduling problem. Two different methodologies have been proposed in the literature: heuristic search techniques and exact methods. In this paper, we use a branch-and cut algorithm, performed in Xpress-MP{sup T}M, and compare the solutions obtained with that ones obtained before using the Variable Neighborhood Search metaheuristic. The computational results showed a significant improvement of performance in relation to previous algorithm. (author)

  9. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.

    Science.gov (United States)

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Bai, Ou; Li, Yongqiang

    2016-12-01

    In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects

  10. On Several Fundamental Problems of Optimization, Estimation, and Scheduling in Wireless Communications

    Science.gov (United States)

    Gao, Qian

    For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is

  11. A non-permutation flowshop scheduling problem with lot streaming: A Mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Rossit

    2016-06-01

    Full Text Available In this paper we investigate the use of lot streaming in non-permutation flowshop scheduling problems. The objective is to minimize the makespan subject to the standard flowshop constraints, but where it is now permitted to reorder jobs between machines. In addition, the jobs can be divided into manageable sublots, a strategy known as lot streaming. Computational experiments show that lot streaming reduces the makespan up to 43% for a wide range of instances when compared to the case in which no job splitting is applied. The benefits grow as the number of stages in the production process increases but reach a limit. Beyond a certain point, the division of jobs into additional sublots does not improve the solution.

  12. An imperialist competitive algorithm for solving the production scheduling problem in open pit mine

    Directory of Open Access Journals (Sweden)

    Mojtaba Mokhtarian Asl

    2016-06-01

    Full Text Available Production scheduling (planning of an open-pit mine is the procedure during which the rock blocks are assigned to different production periods in a way that the highest net present value of the project achieved subject to operational constraints. The paper introduces a new and computationally less expensive meta-heuristic technique known as imperialist competitive algorithm (ICA for long-term production planning of open pit mines. The proposed algorithm modifies the original rules of the assimilation process. The ICA performance for different levels of the control factors has been studied and the results are presented. The result showed that ICA could be efficiently applied on mine production planning problem.

  13. Three hybridization models based on local search scheme for job shop scheduling problem

    Science.gov (United States)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  14. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    Science.gov (United States)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  15. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    Science.gov (United States)

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  16. Integer programming formulation and variable neighborhood search metaheuristic for the multiproduct pipeline scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Leonardo [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Pipeline are known as the most reliable and economical mode of transportation for petroleum and its derivatives, especially when large amounts of products have to be pumped for large distances. In this work we address the short-term schedule of a pipeline system comprising the distribution of several petroleum derivatives from a single oil refinery to several depots, connected to local consumer markets, through a single multi-product pipeline. We propose an integer linear programming formulation and a variable neighborhood search meta-heuristic in order to compare the performances of the exact and heuristic approaches to the problem. Computational tests in C language and MOSEL/XPRESS-MP language are performed over a real Brazilian pipeline system. (author)

  17. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    Science.gov (United States)

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the

  18. Using Coevolution Genetic Algorithm with Pareto Principles to Solve Project Scheduling Problem under Duration and Cost Constraints

    Directory of Open Access Journals (Sweden)

    Alexandr Victorovich Budylskiy

    2014-06-01

    Full Text Available This article considers the multicriteria optimization approach using the modified genetic algorithm to solve the project-scheduling problem under duration and cost constraints. The work contains the list of choices for solving this problem. The multicriteria optimization approach is justified here. The study describes the Pareto principles, which are used in the modified genetic algorithm. We identify the mathematical model of the project-scheduling problem. We introduced the modified genetic algorithm, the ranking strategies, the elitism approaches. The article includes the example.

  19. Multiobjective Joint Optimization of Production Scheduling and Maintenance Planning in the Flexible Job-Shop Problem

    Directory of Open Access Journals (Sweden)

    Jianfei Ye

    2015-01-01

    Full Text Available In order to solve the joint optimization of production scheduling and maintenance planning problem in the flexible job-shop, a multiobjective joint optimization model considering the maximum completion time and maintenance costs per unit time is established based on the concept of flexible job-shop and preventive maintenance. A weighted sum method is adopted to eliminate the index dimension. In addition, a double-coded genetic algorithm is designed according to the problem characteristics. The best result under the circumstances of joint decision-making is obtained through multiple simulation experiments, which proves the validity of the algorithm. We can prove the superiority of joint optimization model by comparing the result of joint decision-making project with the result of independent decision-making project under fixed preventive maintenance period. This study will enrich and expand the theoretical framework and analytical methods of this problem; it provides a scientific decision analysis method for enterprise to make production plan and maintenance plan.

  20. Chaotic Multiobjective Evolutionary Algorithm Based on Decomposition for Test Task Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2014-01-01

    Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.

  1. Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem

    Directory of Open Access Journals (Sweden)

    Biao Yuan

    2017-11-01

    Full Text Available The aggravating trend of the aging population, the miniaturization of the family structure, and the increase of families with empty nesters greatly affect the sustainable development of the national economy and social old-age security system of China. The emergence of home health care or home care (HHC/HC service mode provides an alternative for elderly care. How to develop and apply this new mobile service mode is crucial for the government. Therefore, the pertinent optimization problems regarding HHC/HC have constantly attracted the attention of researchers. Unexpected events, such as new requests of customers, cancellations of customers’ services, and changes of customers’ time windows, may occur during the process of executing an a priori visiting plan. These events may sometimes make the original plan non-optimal or even infeasible. To cope with this situation, we introduce disruption management to the real-time home caregiver scheduling and routing problem. The deviation measurements on customers, caregivers, and companies are first defined. A mathematical model that minimizes the weighted sum of deviation measurements is then constructed. Next, a tabu search (TS heuristic is developed to efficiently solve the problem, and a cost recorded mechanism is used to strengthen the performance. Finally, by performing computational experiments on three real-life instances, the effectiveness of the TS heuristic is tested, and the advantages of disruption management are analyzed.

  2. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    Science.gov (United States)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  3. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    Science.gov (United States)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  4. Climate change and flood hazard: Evaluation of the SCHADEX methodology in a non-stationary context

    International Nuclear Information System (INIS)

    Brigode, Pierre

    2013-01-01

    Since 2006, Electricite de France (EDF) applies a new hydro-climatological approach of extreme rainfall and flood predetermination - the SCHADEX method - for the design of dam spillways. In a context of potential increase of extreme event intensity and frequency due to climate change, the use of the SCHADEX method in non-stationary conditions is a main interest topic for EDF hydrologists. Thus, the scientific goal of this Ph.D. thesis work has been to evaluate the ability of the SCHADEX method to take into account future climate simulations for the estimation of future extreme floods. The recognized inabilities of climate models and down-scaling methods to simulate (extreme) rainfall distribution at the catchment-scale have been avoided, by developing and testing new methodological approaches. Moreover, the decomposition of the flood-producing factors proposed by the SCHADEX method has been used for considering different simulated climatic evolutions and for quantifying the relative impact of these factors on the extreme flood estimation. First, the SCHADEX method has been applied in present time over different climatic contexts (France, Austria, Canada and Norway), thanks to several colorations with academic and industrial partners. A sensitivity analysis allowed to quantify the extreme flood estimation sensitivity to rainfall hazard, catchment saturation hazard and rainfall-runoff transformation, independently. The results showed a large sensitivity of SCHADEX flood estimations to the rainfall hazard and to the rainfall-runoff transformation. Using the sensitivity analysis results, tests have been done in order to estimate the future evolution of 'key' variables previously identified. New climate model outputs (done within the CMIP5 project) have been analyzed and used for determining future frequency of rainfall events and future catchment saturation conditions. Considering these simulated evolutions within the SCHADEX method lead to a significant decrease of

  5. Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing

    Directory of Open Access Journals (Sweden)

    H Kazemipoor

    2012-04-01

    Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.

  6. A Novel Memetic Algorithm Based on Decomposition for Multiobjective Flexible Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2017-01-01

    Full Text Available A novel multiobjective memetic algorithm based on decomposition (MOMAD is proposed to solve multiobjective flexible job shop scheduling problem (MOFJSP, which simultaneously minimizes makespan, total workload, and critical workload. Firstly, a population is initialized by employing an integration of different machine assignment and operation sequencing strategies. Secondly, multiobjective memetic algorithm based on decomposition is presented by introducing a local search to MOEA/D. The Tchebycheff approach of MOEA/D converts the three-objective optimization problem to several single-objective optimization subproblems, and the weight vectors are grouped by K-means clustering. Some good individuals corresponding to different weight vectors are selected by the tournament mechanism of a local search. In the experiments, the influence of three different aggregation functions is first studied. Moreover, the effect of the proposed local search is investigated. Finally, MOMAD is compared with eight state-of-the-art algorithms on a series of well-known benchmark instances and the experimental results show that the proposed algorithm outperforms or at least has comparative performance to the other algorithms.

  7. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    Science.gov (United States)

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  8. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    Directory of Open Access Journals (Sweden)

    Qianqian Duan

    2014-01-01

    Full Text Available This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  9. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    Science.gov (United States)

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  10. Refinery scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcus V.; Fraga, Eder T. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Shah, Nilay [Imperial College, London (United Kingdom)

    2004-07-01

    This work addresses the refinery scheduling problem using mathematical programming techniques. The solution adopted was to decompose the entire refinery model into a crude oil scheduling and a product scheduling problem. The envelope for the crude oil scheduling problem is composed of a terminal, a pipeline and the crude area of a refinery, including the crude distillation units. The solution method adopted includes a decomposition technique based on the topology of the system. The envelope for the product scheduling comprises all tanks, process units and products found in a refinery. Once crude scheduling decisions are Also available the product scheduling is solved using a rolling horizon algorithm. All models were tested with real data from PETROBRAS' REFAP refinery, located in Canoas, Southern Brazil. (author)

  11. A hybrid electromagnetism-like algorithm for a multi-mode resource-constrained project scheduling problem

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Sadeghi

    2013-08-01

    Full Text Available In this paper, two different sub-problems are considered to solve a resource constrained project scheduling problem (RCPSP, namely i assignment of modes to tasks and ii scheduling of these tasks in order to minimize the makespan of the project. The modified electromagnetism-like algorithm deals with the first problem to create an assignment of modes to activities. This list is used to generate a project schedule. When a new assignment is made, it is necessary to fix all mode dependent requirements of the project activities and to generate a random schedule with the serial SGS method. A local search will optimize the sequence of the activities. Also in this paper, a new penalty function has been proposed for solutions which are infeasible with respect to non-renewable resources. Performance of the proposed algorithm has been compared with the best algorithms published so far on the basis of CPU time and number of generated schedules stopping criteria. Reported results indicate excellent performance of the algorithm.

  12. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    Science.gov (United States)

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  13. Non-Stationary Single-Channel Queuing System Features Research in Context of Number of Served Queries

    Directory of Open Access Journals (Sweden)

    Porshnev Sergey

    2017-01-01

    Full Text Available This work devoted to researching of mathematical model of non-stationary queuing system (NQS. Arrival rate in studied NQS λ(t is similar to rate which observed in practice in a real access control system of objects of mass events. Dependence of number of serviced requests from time was calculated. It is proven that the ratio value of served requests at the beginning of event to all served requests described by a deterministic function, depending on the average service rate μ¯$\\bar \\mu $ and the maximum value of the arrival rate function λ(t.

  14. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    Science.gov (United States)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  15. A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Yingni Zhai

    2014-10-01

    Full Text Available Purpose: A decomposition heuristics based on multi-bottleneck machines for large-scale job shop scheduling problems (JSP is proposed.Design/methodology/approach: In the algorithm, a number of sub-problems are constructed by iteratively decomposing the large-scale JSP according to the process route of each job. And then the solution of the large-scale JSP can be obtained by iteratively solving the sub-problems. In order to improve the sub-problems' solving efficiency and the solution quality, a detection method for multi-bottleneck machines based on critical path is proposed. Therewith the unscheduled operations can be decomposed into bottleneck operations and non-bottleneck operations. According to the principle of “Bottleneck leads the performance of the whole manufacturing system” in TOC (Theory Of Constraints, the bottleneck operations are scheduled by genetic algorithm for high solution quality, and the non-bottleneck operations are scheduled by dispatching rules for the improvement of the solving efficiency.Findings: In the process of the sub-problems' construction, partial operations in the previous scheduled sub-problem are divided into the successive sub-problem for re-optimization. This strategy can improve the solution quality of the algorithm. In the process of solving the sub-problems, the strategy that evaluating the chromosome's fitness by predicting the global scheduling objective value can improve the solution quality.Research limitations/implications: In this research, there are some assumptions which reduce the complexity of the large-scale scheduling problem. They are as follows: The processing route of each job is predetermined, and the processing time of each operation is fixed. There is no machine breakdown, and no preemption of the operations is allowed. The assumptions should be considered if the algorithm is used in the actual job shop.Originality/value: The research provides an efficient scheduling method for the

  16. Scheduling and control strategies for the departure problem in air traffic control

    Science.gov (United States)

    Bolender, Michael Alan

    Two problems relating to the departure problem in air traffic control automation are examined. The first problem that is addressed is the scheduling of aircraft for departure. The departure operations at a major US hub airport are analyzed, and a discrete event simulation of the departure operations is constructed. Specifically, the case where there is a single departure runway is considered. The runway is fed by two queues of aircraft. Each queue, in turn, is fed by a single taxiway. Two salient areas regarding scheduling are addressed. The first is the construction of optimal departure sequences for the aircraft that are queued. Several greedy search algorithms are designed to minimize the total time to depart a set of queued aircraft. Each algorithm has a different set of heuristic rules to resolve situations within the search space whenever two branches of the search tree with equal edge costs are encountered. These algorithms are then compared and contrasted with a genetic search algorithm in order to assess the performance of the heuristics. This is done in the context of a static departure problem where the length of the departure queue is fixed. A greedy algorithm which deepens the search whenever two branches of the search tree with non-unique costs are encountered is shown to outperform the other heuristic algorithms. This search strategy is then implemented in the discrete event simulation. A baseline performance level is established, and a sensitivity analysis is performed by implementing changes in traffic mix, routing, and miles-in-trail restrictions for comparison. It is concluded that to minimize the average time spent in the queue for different traffic conditions, a queue assignment algorithm is needed to maintain an even balance of aircraft in the queues. A necessary consideration is to base queue assignment upon traffic management restrictions such as miles-in-trail constraints. The second problem addresses the technical challenges associated

  17. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  18. Expanding the experience of using non-stationary waterflooding technology with changing direction of the filtration flow in the example of the Northern Buzachi field

    Directory of Open Access Journals (Sweden)

    E.M. Almukhametova

    2018-06-01

    Full Text Available Abstract. The last few years, work has been carried out to study the effectiveness of non-stationary exposure in the highly viscous oil field Northern Buzachi (Republic of Kazakhstan. It has been proved that this technology is quite effective in the development of highly viscous oil reservoirs, however, in order to constantly maintain high technological effect, a constant modification of this technology is required, since it has a characteristic feature of rapid «aging». Further search for the conditions of effective application of non-stationary exposure on highly-viscous oil deposits can be carried out in two directions: the implementation of non-stationary exposure in new areas with other reservoir parameters and the change in the parameters of non-stationary exposure technology (including combining with other technologies in areas where this technology is already in use. Both approaches are used on the Northern Buzachi field. Thus, the positive experience of using non-stationary waterflooding in combination with changing direction of the filtration flow in the section of the seventh block of the Northern Buzachi field allowed us to recommend new sites for the implementation of this technology. With the participation of the author of this work, a non-stationary waterflooding program was developed and implemented on the site of the sixth block (south of the first operational facility.

  19. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

    Science.gov (United States)

    Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370

  20. Estimation of distribution algorithm with path relinking for the blocking flow-shop scheduling problem

    Science.gov (United States)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2018-05-01

    This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.

  1. Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem

    Directory of Open Access Journals (Sweden)

    K. Belkadi

    2006-01-01

    Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.

  2. Variable sleep schedules and outcomes in children with psychopathological problems: preliminary observations

    Directory of Open Access Journals (Sweden)

    Spruyt K

    2012-02-01

    Full Text Available Karen Spruyt1, Danielle L Raubuck2, Katie Grogan2, David Gozal1, Mark A Stein21Department of Pediatrics and Comer Children’s Hospital, Pritzker School of Medicine, University of Chicago, Chicago, IL; 2Institute for Juvenile Research, Hyperactivity and Learning Problems Clinic, University of Illinois at Chicago, Chicago, ILBackground: Night-to-night variability in sleep of children with attention deficit hyperactivity disorder (ADHD may be a mediator of behavioral phenotype. We examined the potential association between alertness, sleep, and eating behaviors in children with ADHD and comorbid problems.Methods: Sleep was monitored by actigraphy for 7 days. Questionnaires were used to assess sleep complaints, habits and food patterns by parental report, and sleep complaints and sleepiness by child report.Results: The group comprised 18 children, including 15 boys, aged 9.4 ± 1.7 years, 88.9% Caucasian, who took one or multiple medications. Children slept on average for 6 hours and 58 minutes with a variability of 1 hour 3 minutes relative to the mean, and their sleepiness scores were highly variable from day to day. Most children had a normal body mass index (BMI. Sleepiness and BMI were associated with sleep schedules and food patterns, such that they accounted for 76% of variance, predominantly by the association of BMI with mean wake after sleep onset and by bedtime sleepiness, with wake after sleep onset variability. Similarly, 97% of variance was shared with eating behaviors, such as desserts and snacks, and fast food meals were associated with morning sleepiness.Conclusion: Disrupted sleep and sleepiness appears to favor unhealthy food patterns and may place children with ADHD at increased risk for obesity.Keywords: sleep, child, attention deficit hyperactivity disorder, actigraphy

  3. A Hybrid Genetic Algorithm with a Knowledge-Based Operator for Solving the Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Hamed Piroozfard

    2016-01-01

    Full Text Available Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling problems are deemed important, because they are characterized as highly complex and NP-hard problems. This paper describes the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore, a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic algorithm demonstrate its effectiveness.

  4. A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop Sequence Dependent Group Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2014-07-01

    Full Text Available Production processes in Cellular Manufacturing Systems (CMS often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs and Biased Random Sampling (BRS search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation.

  5. Influence of stationary and non-stationary conditions on drying time and mechanical properties of a porcelain slab

    Science.gov (United States)

    Hammouda, Imen; Mihoubi, Daoued

    2017-12-01

    This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.

  6. Modified fluctuation-dissipation theorem for general non-stationary states and application to the Glauber–Ising chain

    International Nuclear Information System (INIS)

    Verley, Gatien; Lacoste, David; Chétrite, Raphaël

    2011-01-01

    In this paper, we present a general derivation of a modified fluctuation-dissipation theorem (MFDT) valid near an arbitrary non-stationary state for a system obeying Markovian dynamics. We show that the method for deriving modified fluctuation-dissipation theorems near non-equilibrium stationary states used by Prost et al (2009 Phys. Rev. Lett. 103 090601) is generalizable to non-stationary states. This result follows from both standard linear response theory and from a transient fluctuation theorem, analogous to the Hatano–Sasa relation. We show that this modified fluctuation-dissipation theorem can be interpreted at the trajectory level using the notion of stochastic trajectory entropy, in a way which is similar to what has been done recently in the case of the MFDT near non-equilibrium steady states (NESS). We illustrate this framework with two solvable examples: the first example corresponds to a Brownian particle in a harmonic trap subjected to a quench of temperature and to a time-dependent stiffness; the second example is a classic model of coarsening systems, namely the 1D Ising model with Glauber dynamics

  7. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  8. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    Science.gov (United States)

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A New Method for Non-linear and Non-stationary Time Series Analysis:
    The Hilbert Spectral Analysis

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...

  10. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices

    Directory of Open Access Journals (Sweden)

    Charles Onyutha

    2017-10-01

    Full Text Available Some of the problems in drought assessments are that: analyses tend to focus on coarse temporal scales, many of the methods yield skewed indices, a few terminologies are ambiguously used, and analyses comprise an implicit assumption that the observations come from a stationary process. To solve these problems, this paper introduces non-stationary frequency analyses of quantiles. How to use non-parametric rescaling to obtain robust indices that are not (or minimally skewed is also introduced. To avoid ambiguity, some concepts on, e.g., incidence, extremity, etc., were revisited through shift from monthly to daily time scale. Demonstrations on the introduced methods were made using daily flow and precipitation insufficiency (precipitation minus potential evapotranspiration from the Blue Nile basin in Africa. Results show that, when a significant trend exists in extreme events, stationarity-based quantiles can be far different from those when non-stationarity is considered. The introduced non-parametric indices were found to closely agree with the well-known standardized precipitation evapotranspiration indices in many aspects but skewness. Apart from revisiting some concepts, the advantages of the use of fine instead of coarse time scales in drought assessment were given. The links for obtaining freely downloadable tools on how to implement the introduced methods were provided.

  11. Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem

    Directory of Open Access Journals (Sweden)

    Julien Maheut

    2013-07-01

    Full Text Available Purpose: The purpose of this paper is to present an algorithm that solves the supply network configuration and operations scheduling problem in a mass customization company that faces alternative operations for one specific tool machine order in a multiplant context. Design/methodology/approach: To achieve this objective, the supply chain network configuration and operations scheduling problem is presented. A model based on stroke graphs allows the design of an algorithm that enumerates all the feasible solutions. The algorithm considers the arrival of a new customized order proposal which has to be inserted into a scheduled program. A selection function is then used to choose the solutions to be simulated in a specific simulation tool implemented in a Decision Support System. Findings and Originality/value: The algorithm itself proves efficient to find all feasible solutions when alternative operations must be considered. The stroke structure is successfully used to schedule operations when considering more than one manufacturing and supply option in each step. Research limitations/implications: This paper includes only the algorithm structure for a one-by-one, sequenced introduction of new products into the list of units to be manufactured. Therefore, the lotsizing process is done on a lot-per-lot basis. Moreover, the validation analysis is done through a case study and no generalization can be done without risk. Practical implications: The result of this research would help stakeholders to determine all the feasible and practical solutions for their problem. It would also allow to assessing the total costs and delivery times of each solution. Moreover, the Decision Support System proves useful to assess alternative solutions. Originality/value: This research offers a simple algorithm that helps solve the supply network configuration problem and, simultaneously, the scheduling problem by considering alternative operations. The proposed system

  12. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  13. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Laxmi A. Bewoor

    2017-10-01

    Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.

  14. Solution Approaches for the Parallel Identical Machine Scheduling Problem with Sequence Dependent Setups

    National Research Council Canada - National Science Library

    Anderson, Bradley

    2002-01-01

    ... delivery is an important scheduling objective in the just-in-time (JIT) environment. Items produced too early incur holding costs, while items produced too late incur costs in the form of dissatisfied customers...

  15. The nurse scheduling problem: a goal programming and nonlinear optimization approaches

    Science.gov (United States)

    Hakim, L.; Bakhtiar, T.; Jaharuddin

    2017-01-01

    Nurses scheduling is an activity of allocating nurses to conduct a set of tasks at certain room at a hospital or health centre within a certain period. One of obstacles in the nurse scheduling is the lack of resources in order to fulfil the needs of the hospital. Nurse scheduling which is undertaken manually will be at risk of not fulfilling some nursing rules set by the hospital. Therefore, this study aimed to perform scheduling models that satisfy all the specific rules set by the management of Bogor State Hospital. We have developed three models to overcome the scheduling needs. Model 1 is designed to schedule nurses who are solely assigned to a certain inpatient unit and Model 2 is constructed to manage nurses who are assigned to an inpatient room as well as at Polyclinic room as conjunct nurses. As the assignment of nurses on each shift is uneven, then we propose Model 3 to minimize the variance of the workload in order to achieve equitable assignment on every shift. The first two models are formulated in goal programming framework, while the last model is in nonlinear optimization form.

  16. Non-stationary signal analysis based on general parameterized time-frequency transform and its application in the feature extraction of a rotary machine

    Science.gov (United States)

    Zhou, Peng; Peng, Zhike; Chen, Shiqian; Yang, Yang; Zhang, Wenming

    2018-06-01

    With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time-frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.

  17. Minimizing total weighted tardiness for the single machine scheduling problem with dependent setup time and precedence constraints

    Directory of Open Access Journals (Sweden)

    Hamidreza Haddad

    2012-04-01

    Full Text Available This paper tackles the single machine scheduling problem with dependent setup time and precedence constraints. The primary objective of this paper is minimization of total weighted tardiness. Since the complexity of the resulted problem is NP-hard we use metaheuristics method to solve the resulted model. The proposed model of this paper uses genetic algorithm to solve the problem in reasonable amount of time. Because of high sensitivity of GA to its initial values of parameters, a Taguchi approach is presented to calibrate its parameters. Computational experiments validate the effectiveness and capability of proposed method.

  18. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    Science.gov (United States)

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  19. A hybrid Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem

    DEFF Research Database (Denmark)

    Pour, Shahrzad M.; Drake, John H.; Ejlertsen, Lena Secher

    2017-01-01

    A railway signaling system is a complex and interdependent system which should ensure the safe operation of trains. We introduce and address a mixed integer optimisation model for the preventive signal maintenance crew scheduling problem in the Danish railway system. The problem contains many...... to feed as ‘warm start’ solutions to a Mixed Integer Programming (MIP) solver for further optimisation. We apply the CP/MIP framework to a section of the Danish rail network and benchmark our results against both direct application of a MIP solver and modelling the problem as a Constraint Optimisation...

  20. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2014-01-01

    Full Text Available We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  1. An optimal control strategy for collision avoidance of mobile robots in non-stationary environments

    Science.gov (United States)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy.

  2. Solving a More Flexible Home Health Care Scheduling and Routing Problem with Joint Patient and Nursing Staff Selection

    Directory of Open Access Journals (Sweden)

    Jamal Abdul Nasir

    2018-01-01

    Full Text Available Development of an efficient and effective home health care (HHC service system is a quite recent and challenging task for the HHC firms. This paper aims to develop an HHC service system in the perspective of long-term economic sustainability as well as operational efficiency. A more flexible mixed-integer linear programming (MILP model is formulated by incorporating the dynamic arrival and departure of patients along with the selection of new patients and nursing staff. An integrated model is proposed that jointly addresses: (i patient selection; (ii nurse hiring; (iii nurse to patient assignment; and (iv scheduling and routing decisions in a daily HHC planning problem. The proposed model extends the HHC problem from conventional scheduling and routing issues to demand and capacity management aspects. It enables an HHC firm to solve the daily scheduling and routing problem considering existing patients and nursing staff in combination with the simultaneous selection of new patients and nurses, and optimizing the existing routes by including new patients and nurses. The model considers planning issues related to compatibility, time restrictions, contract durations, idle time and workload balance. Two heuristic methods are proposed to solve the model by exploiting the variable neighborhood search (VNS approach. Results obtained from the heuristic methods are compared with a CPLEX based solution. Numerical experiments performed on different data sets, show the efficiency and effectiveness of the solution methods to handle the considered problem.

  3. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    Science.gov (United States)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  4. Modeling the Hybrid Flow Shop Scheduling Problem Followed by an Assembly Stage Considering Aging Effects and Preventive Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Hassan Hosseini

    2016-05-01

    Full Text Available Scheduling problem for the hybrid flow shop scheduling problem (HFSP followed by an assembly stage considering aging effects additional preventive and maintenance activities is studied in this paper. In this production system, a number of products of different kinds are produced. Each product is assembled with a set of several parts. The first stage is a hybrid flow shop to produce parts. All machines can process all kinds of parts in this stage but each machine can process only one part at the same time. The second stage is a single assembly machine or a single assembly team of workers. The aim is to schedule the parts on the machines and assembly sequence and also determine when the preventive maintenance activities get done in order to minimize the completion time of all products (makespan. A mathematical modeling is presented and its validation is shown by solving an example in small scale. Since this problem has been proved strongly NP-hard, in order to solve the problem in medium and large scale, four heuristic algorithms is proposed based on the Johnson’s algorithm. The numerical experiments are used to run the mathematical model and evaluate the performance of the proposed algorithms.

  5. Condition Monitoring of Machinery in Non-Stationary Operations : Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationnary Operations"

    CERN Document Server

    Bartelmus, Walter; Chaari, Fakher; Zimroz, Radoslaw; Haddar, Mohamed

    2012-01-01

    Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers...

  6. Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Alcoba, A.G.; Haijema, R.

    2016-01-01

    We study the practical decision problem of fresh food production with a long production lead time to decide every period (e.g. week) how many items to produce. When a batch is ready for use, its items have a fixed shelf life, after which the items become waste in the sense that they cannot be sold

  7. Supervised and unsupervised condition monitoring of non-stationary acoustic emission signals

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Pontoppidan, Niels Henrik; Larsen, Jan

    2005-01-01

    condition changes across load changes. In this paper we approach this load interpolation problem with supervised and unsupervised learning, i.e. model with normal and fault examples and normal examples only, respectively. We apply non-linear methods for the learning of engine condition changes. Both...

  8. A bayesian approach for learning and tracking switching, non-stationary opponents

    CSIR Research Space (South Africa)

    Hernandez-Leal, P

    2016-02-01

    Full Text Available of interactions. We propose using a Bayesian framework to address this problem. Bayesian policy reuse (BPR) has been empirically shown to be efficient at correctly detecting the best policy to use from a library in sequential decision tasks. In this paper we...

  9. Accumulated damage evaluation for a piping system by the response factor on non-stationary random process, 2

    International Nuclear Information System (INIS)

    Shintani, Masanori

    1988-01-01

    This paper shows that the average and variance of the accumulated damage caused by earthquakes on the piping system attached to a building are related to the seismic response factor λ. The earthquakes refered to in this paper are of a non-stationary random process kind. The average is proportional to λ 2 and the variance to λ 4 . The analytical values of the average and variance for a single-degree-of-freedom system are compared with those obtained from computer simulations. Here the model of the building is a single-degree-of-freedom system. Both average of accumulated damage are approximately equal. The variance obtained from the analysis does not coincide with that from simulations. The reason is considered to be the forced vibraiton by sinusoidal waves, and the sinusoidal waves included random waves. Taking account of amplitude magnification factor, the values of the variance approach those obtained from simulations. (author)

  10. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    Science.gov (United States)

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  11. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Friis Hansen, P.; Garrè, Luca

    2014-01-01

    Urban flooding introduces significant risk to society. Non-stationarity leads to increased uncertainty and this is challenging to include in actual decision-making. The primary objective of this study was to develop a risk assessment and decision support framework for pluvial urban flood risk under...... non-stationary conditions using an influence diagram (ID) which is a Bayesian network (BN) extended with decision and utility nodes. Non-stationarity is considered to be the influence of climate change where extreme precipitation patterns change over time. The overall risk is quantified in monetary...... terms expressed as expected annual damage. The network is dynamic in as much as it assesses risk at different points in time. The framework provides means for decision-makers to assess how different decisions on flood adaptation affect the risk now and in the future. The result from the ID was extended...

  12. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    Science.gov (United States)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  13. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions

    International Nuclear Information System (INIS)

    Gil, E; Orini, M; Bailón, R; Laguna, P; Vergara, J M; Mainardi, L

    2010-01-01

    In this paper we assessed the possibility of using the pulse rate variability (PRV) extracted from the photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on analysis of the changes observed during a tilt table test in the heart rate modulation of 17 young subjects. First, the classical indices of HRV analysis were compared to the indices from PRV in intervals where stationarity was assumed. Second, the time-varying spectral properties of both signals were compared by time-frequency (TF) and TF coherence analysis. Third, the effect of replacing PRV with HRV in the assessment of the changes of the autonomic modulation of the heart rate was considered. Time-invariant HRV and PRV indices showed no statistically significant differences (p > 0.05) and high correlation (>0.97). Time-frequency analysis revealed that the TF spectra of both signals were highly correlated (0.99 ± 0.01); the difference between the instantaneous power, in the LF and HF bands, obtained from HRV and PRV was small (<10 −3 s −2 ) and their temporal patterns were highly correlated (0.98 ± 0.04 and 0.95 ± 0.06 in the LF and HF bands, respectively) and TF coherence in the LF and HF bands was high (0.97 ± 0.04 and 0.89 ± 0.08, respectively). Finally, the instantaneous power in the LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that although some differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as a surrogate of HRV during non-stationary conditions, at least during the tilt table test

  14. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  15. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  16. Testing for co-integration in vector autoregressions with non-stationary volatility

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.

    2010-01-01

    cases. We show that the conventional rank statistics computed as in (Johansen, 1988) and (Johansen, 1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size...... and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, or to assume...

  17. Impact of oscillations of shafts on machining accuracy using non-stationary machines

    Science.gov (United States)

    Fedorenko, M. A.; Bondarenko, J. A.; Pogonin, A. A.

    2018-03-01

    The solution of the problem of restoring parts and units of equipment of the large mass and size is possible on the basis of the development of the research base, including the development of models and theoretical relations, revealing complex reasons for causes of damage and equipment failure. This allows one to develop new effective technologies of maintenance and repair, implementation of which ensures the efficiency and durability of the machines. The development of new forms of technical maintenance and repair of equipment, based on a systematic evaluation of its technical condition with the help of modern diagnostic tools can significantly reduce the duration of the downtime.

  18. A compressed shift schedule: dealing with some of the problems of shift work

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J B [Victoria University, Victoria, BC (Canada). School of Public Administration

    1989-07-01

    This study examines some of the psychological and behavioural effects of a 12-hour compressed shift schedule on coal miners in two organisations in Western Canada. It suggests that young, married compressed shift workers are more satisfied with their family relationship. They spend less of their leisure time with spouses when working shifts, and do not spend any more time with them on their days off. They have less time available for many leisure activities on their workdays. The extra time on days off is not reallocated to the leisure activities they were unable to do on their workdays. Some extra leisure time on days off may be spent on personal hobbies. There is no suggestion that the compressed shift schedule has any negative effect on the individual's health. 38 refs., 3 tabs.

  19. Simplifying Multiproject Scheduling Problem Based on Design Structure Matrix and Its Solution by an Improved aiNet Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhua Ju

    2012-01-01

    Full Text Available Managing multiple project is a complex task involving the unrelenting pressures of time and cost. Many studies have proposed various tools and techniques for single-project scheduling; however, the literature further considering multimode or multiproject issues occurring in the real world is rather scarce. In this paper, design structure matrix (DSM and an improved artificial immune network algorithm (aiNet are developed to solve a multi-mode resource-constrained scheduling problem. Firstly, the DSM is used to simplify the mathematic model of multi-project scheduling problem. Subsequently, aiNet algorithm comprised of clonal selection, negative selection, and network suppression is adopted to realize the local searching and global searching, which will assure that it has a powerful searching ability and also avoids the possible combinatorial explosion. Finally, the approach is tested on a set of randomly cases generated from ProGen. The computational results validate the effectiveness of the proposed algorithm comparing with other famous metaheuristic algorithms such as genetic algorithm (GA, simulated annealing algorithm (SA, and ant colony optimization (ACO.

  20. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    Science.gov (United States)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  1. A Three-Stage Optimization Algorithm for the Stochastic Parallel Machine Scheduling Problem with Adjustable Production Rates

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-01-01

    Full Text Available We consider a parallel machine scheduling problem with random processing/setup times and adjustable production rates. The objective functions to be minimized consist of two parts; the first part is related with the due date performance (i.e., the tardiness of the jobs, while the second part is related with the setting of machine speeds. Therefore, the decision variables include both the production schedule (sequences of jobs and the production rate of each machine. The optimization process, however, is significantly complicated by the stochastic factors in the manufacturing system. To address the difficulty, a simulation-based three-stage optimization framework is presented in this paper for high-quality robust solutions to the integrated scheduling problem. The first stage (crude optimization is featured by the ordinal optimization theory, the second stage (finer optimization is implemented with a metaheuristic called differential evolution, and the third stage (fine-tuning is characterized by a perturbation-based local search. Finally, computational experiments are conducted to verify the effectiveness of the proposed approach. Sensitivity analysis and practical implications are also discussed.

  2. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    OpenAIRE

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand unc...

  3. Common Sleep, Psychiatric, and Somatic Problems According to Work Schedule: an Internet Survey in an Eastern European Country.

    Science.gov (United States)

    Voinescu, Bogdan I

    2018-03-19

    A wide range of health problems was investigated, aiming to identify the presence and severity of a set of self-reported and common sleep, psychiatric, and somatic health problems among working professionals in four different shift schedules (morning, evening, rotating, and day) in several cities in Romania. A heterogeneous sample of 488 workers of different professions completed online a battery of tests, namely the Basic Nordic Sleep Questionnaire, the Parasomnia Questionnaire, the Epworth Sleepiness Scale, and the Patient Health Questionnaire, designed to identity symptoms of insomnia, sleepiness, snoring, parasomnia, as well as of depression, anxiety, eating, somatoform, and alcohol use disorders, respectively. The timing and the duration of the sleep, along with the presence of high blood pressure and type 2 diabetes mellitus were also inquired. The prevalence of the different health problems in relation to the type of shift schedule was evaluated with the Pearson Chi-square test. ANOVA was used to calculate the significance of the difference between the means, while associations with different health problems were estimated by binary logistic regression. The most common mental health problems were depression (26%), insomnia (20%), alcohol misuse (18%), and anxiety (17%). No significant differences based on the type of shift in terms of health problems were found, except for high blood pressure and symptoms of panic disorder that were more frequently reported by the workers in early morning shifts. Together with the workers in rotating shifts, they also reported increased sleepiness, poorer sleep quality, and shorter sleep duration. In contrast, the workers in evening shifts reported less severe health problems and longer sleep duration. Working in early morning shifts was found to be associated with poorer health outcomes, while working in rotating and early morning shifts with more severe sleep-related problems.

  4. Optimal Scheduling of Material Handling Devices in a PCB Production Line: Problem Formulation and a Polynomial Algorithm

    Directory of Open Access Journals (Sweden)

    Ada Che

    2008-01-01

    Full Text Available Modern automated production lines usually use one or multiple computer-controlled robots or hoists for material handling between workstations. A typical application of such lines is an automated electroplating line for processing printed circuit boards (PCBs. In these systems, cyclic production policy is widely used due to large lot size and simplicity of implementation. This paper addresses cyclic scheduling of a multihoist electroplating line with constant processing times. The objective is to minimize the cycle time, or equivalently to maximize the production throughput, for a given number of hoists. We propose a mathematical model and a polynomial algorithm for this scheduling problem. Computational results on randomly generated instances are reported.

  5. New Non-Stationary Gradient Model of Heat-Mass-Electric Charge Transfer in Thin Porous Media

    Directory of Open Access Journals (Sweden)

    V. Rogankov

    2017-10-01

    Full Text Available The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f medium needs the new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs. It should be supplemented by the respective coupled thermal and caloric equations of state (EOS developed specially for PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions adopted by the linear (or quasi-linear non-equilibrium thermodynamics are based on the empirical gradient-caused correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The most questionable but typical modeling suppositions of the stationary gradient (SG theory are: 1 the assumption of incompressibility accepted, as a rule, for f-flows; 2 the ignorance of distinctions between the hydrophilic and hydrophobic influence of a porous matrix on the properties; 3 the omission of effects arising due to the concomitant phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4 the use of exclusively Gibbsian (i.e. homogeneous and everywhere differentiable description of any f-phase in PM; 5 the very restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as well as of the heat velocity field in the balance equation of internal energy; 6 the neglect of the new specific peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size macroscopic (N,V-system of discrete particles. This work is an attempt to develop the alternative non-stationary gradient (NSG model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1-6 to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM. We will suppose that it is composed by two

  6. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i

  7. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field, one of the most prominent phenomena occurs around air cavities: the electron return effect (ERE). For stationary, spherical air cavities which are centrally located in the phantom, the ERE can be compensated by using opposing beams configurations in combination with IMRT. In this paper we investigate the effects of non-stationary spherical air cavities, centrally located within the target in a phantom containing no organs at risk, on IMRT dose delivery in 0.35 T and 1.5 T transverse magnetic fields by using Monte Carlo simulations. We show that IMRT can be used for compensating ERE around those air cavities, except for intrafraction appearing or disappearing air cavities. For these cases, gating or plan re-optimization should be used. We also analyzed the option of using IMRT plans optimized at 0 T to be delivered in the presence of 0.35 T and 1.5 T magnetic field. When delivering dose at 0.35 T, IMRT plans optimized at 0 T and 0.35 T perform equally well regarding ERE compensation. Within a 1.5 T environment, the 1.5 T optimized plans perform slightly better for the static and random intra- and interfraction air cavity movement cases than the 0 T optimized plans. For non-stationary spherical air cavities with a baseline shift (intra- and interfraction) the 0 T optimized plans perform better. These observations show the intrinsic ERE compensation by equidistant and opposing beam configurations for spherical air cavities within the target area. IMRT gives some additional compensation, but only in case of correct positioning of the air cavity according to the IMRT compensation. For intrafraction appearing or disappearing air cavities this correct

  8. Calculation of control rod oscillations in a hexagonal flow channel by means of the non-stationary pressure distribution around the rods

    International Nuclear Information System (INIS)

    Grunwald, G.; Mueller, E.

    1983-08-01

    For the computation of control rod oscillations in a flow channel we set up the differential equations for the non-stationary pressure distribution around the control elements which are coupled with the motion equations of the rods. The equation system is solved by means of a finite difference method. An example shows the efficiency of the numerical calculation procedure. (author)

  9. Evaluation of a weather generator-based method for statistically downscaling non-stationary climate scenarios for impact assessment at a point scale

    Science.gov (United States)

    The non-stationarity is a major concern for statistically downscaling climate change scenarios for impact assessment. This study is to evaluate whether a statistical downscaling method is fully applicable to generate daily precipitation under non-stationary conditions in a wide range of climatic zo...

  10. Thermal Unit Commitment Scheduling Problem in Utility System by Tabu Search Embedded Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    C. Christober Asir Rajan

    2008-06-01

    Full Text Available The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal unit commitment in the power system for the next H hours. A 66-bus utility power system in India demonstrates the effectiveness of the proposed approach; extensive studies have also been performed for different IEEE test systems consist of 24, 57 and 175 buses. Numerical results are shown comparing the cost solutions and computation time obtained by different intelligence and conventional methods.

  11. Using the method of ideal point to solve dual-objective problem for production scheduling

    Directory of Open Access Journals (Sweden)

    Mariia Marko

    2016-07-01

    Full Text Available In practice, there are often problems, which must simultaneously optimize several criterias. This so-called multi-objective optimization problem. In the article we consider the use of the method ideal point to solve the two-objective optimization problem of production planning. The process of finding solution to the problem consists of a series of steps where using simplex method, we find the ideal point. After that for solving a scalar problems, we use the method of Lagrange multipliers

  12. TAGUCHI METHOD FOR THREE-STAGE ASSEMBLY FLOW SHOP SCHEDULING PROBLEM WITH BLOCKING AND SEQUENCE-DEPENDENT SET UP TIMES

    Directory of Open Access Journals (Sweden)

    AREF MALEKI-DARONKOLAEI

    2013-10-01

    Full Text Available This article considers a three-stage assembly flowshop scheduling problem minimizing the weighted sum of mean completion time and makespan with sequence-dependent setup times at the first stage and blocking times between each stage. To tackle such an NP-hard, two meta-heuristic algorithms are presented. The novelty of our approach is to develop a variable neighborhood search algorithm (VNS and a well-known simulated annealing (SA for the problem. Furthermore, to enhance the performance of the (SA, its parameters are optimized by the use of Taguchi method, but to setting parameters of VNS just one parameter has been used without Taguchi. The computational results show that the proposed VNS is better in mean and standard deviation for all sizes of the problem than SA, but on the contrary about CPU Time SA outperforms VNS.

  13. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Nader Ghaffari-Nasab

    2010-07-01

    Full Text Available During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-heuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems.

  14. Recovery and deformation substructures of zircaloy-4 in high temperature plasticity under stationary or non-stationary stress

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, I.

    1982-01-01

    It was the aim of the present investigation to examine how the recovery rate in creep is influenced by a non-stationary stress. For purposes of phenomenological analysis it is postulated that, irrespective of whether the applied stress is stationary or not, for large strains the mean internal stress sigmasub(i) approaches a stationary value sigmasub(i,s). The stationary recovery rate Rsub(s) for constant load creep turns out be governed by the applied stress indicating that the recovery mechanism is dynamic in nature. For sigma-ramp loading, Rsub(s) is dependent on the stress rate sigma. In tensional stress cycling, Rsub(s) is governed by the maximum stress sigmasub(M) and is also dependent on the ratio of sigmasub(M) to the minimum stress sigma 0 . TEM examination of Zircaloy-4 specimens crept at 800 0 C at constant and cycling load respectively could not reveal any differences in the deformation substructure for the two loading types. Subgrain formation did not appear, individual dislocations were observed only rarely. However, typical networks were formed as well as pileups which perhaps are responsible for the back stress in high temperature plasticity (HTP). (orig.)

  15. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  16. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  17. The dynamic behaviour of a non-stationary elevator compensating rope system under harmonic and stochastic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, S [School of Applied Sciences, University of Northampton, St. George' s Avenue, Northampton NN2 6JD (United Kingdom); Iwankiewicz, R [Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Eissendorfer Strasse 42 D-21073, Hamburg (Germany); Terumichi, Y, E-mail: stefan.kaczmarczyk@northampton.ac.u [Faculty of Science and Technology, Sophia University, 7-1 KIOI-CHO, CHIYODAKU, Tokyo, 102-8554 Japan (Japan)

    2009-08-01

    Moving slender elastic elements such as ropes, cables and belts are pivotal components of vertical transportation systems such as traction elevators. Their lengths vary within the host building structure during the elevator operation which results in the change of the mass and stiffness characteristics of the system. The structure of modern high-rise buildings is flexible and when subjected to loads due to strong winds and earthquakes it vibrates at low frequencies. The inertial load induced by the building motion excites the flexible components of the elevator system. The compensating ropes due to their lower tension are particularly affected and undergo large dynamic deformations. The paper focuses on the presentation of the non-stationary model of a building-compensating rope system and on the analysis to predict its dynamic response. The excitation mechanism is represented by a harmonic process and the results of computer simulations to predict transient resonance response are presented. The analysis of the simulation results leads to recommendations concerning the selection of the weight of the compensation assembly to minimize the effects of an adverse dynamic response of the system. The scenario when the excitation is represented as a narrow-band stochastic process with the state vector governed by stochastic equations is then discussed and the stochastic differential equations governing the second-order statistical moments of the state vector are developed.

  18. Noise/spike detection in phonocardiogram signal as a cyclic random process with non-stationary period interval.

    Science.gov (United States)

    Naseri, H; Homaeinezhad, M R; Pourkhajeh, H

    2013-09-01

    The major aim of this study is to describe a unified procedure for detecting noisy segments and spikes in transduced signals with a cyclic but non-stationary periodic nature. According to this procedure, the cycles of the signal (onset and offset locations) are detected. Then, the cycles are clustered into a finite number of groups based on appropriate geometrical- and frequency-based time series. Next, the median template of each time series of each cluster is calculated. Afterwards, a correlation-based technique is devised for making a comparison between a test cycle feature and the associated time series of each cluster. Finally, by applying a suitably chosen threshold for the calculated correlation values, a segment is prescribed to be either clean or noisy. As a key merit of this research, the procedure can introduce a decision support for choosing accurately orthogonal-expansion-based filtering or to remove noisy segments. In this paper, the application procedure of the proposed method is comprehensively described by applying it to phonocardiogram (PCG) signals for finding noisy cycles. The database consists of 126 records from several patients of a domestic research station acquired by a 3M Littmann(®) 3200, 4KHz sampling frequency electronic stethoscope. By implementing the noisy segments detection algorithm with this database, a sensitivity of Se=91.41% and a positive predictive value, PPV=92.86% were obtained based on physicians assessments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  20. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Azadeh, A; Seraj, O [Department of Industrial Engineering and Research Institute of Energy Management and Planning, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563 (Iran); Saberi, M [Department of Industrial Engineering, University of Tafresh (Iran); Institute for Digital Ecosystems and Business Intelligence, Curtin University of Technology, Perth (Australia)

    2010-06-15

    This study presents an integrated fuzzy regression and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy regression (FR) or time series and the integrated algorithm could be an ideal substitute for such cases. At First, preferred Time series model is selected from linear or nonlinear models. For this, after selecting preferred Auto Regression Moving Average (ARMA) model, Mcleod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, the preferred nonlinear model is selected and defined as preferred time series model. At last, the preferred model from fuzzy regression and time series model is selected by the Granger-Newbold. Also, the impact of data preprocessing on the fuzzy regression performance is considered. Monthly electricity consumption of Iran from March 1994 to January 2005 is considered as the case of this study. The superiority of the proposed algorithm is shown by comparing its results with other intelligent tools such as Genetic Algorithm (GA) and Artificial Neural Network (ANN). (author)

  1. Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time-frequency analysis.

    Science.gov (United States)

    Melkonian, D; Korner, A; Meares, R; Bahramali, H

    2012-10-01

    A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Non-stationary random vibration analysis of a 3D train-bridge system using the probability density evolution method

    Science.gov (United States)

    Yu, Zhi-wu; Mao, Jian-feng; Guo, Feng-qi; Guo, Wei

    2016-03-01

    Rail irregularity is one of the main sources causing train-bridge random vibration. A new random vibration theory for the coupled train-bridge systems is proposed in this paper. First, number theory method (NTM) with 2N-dimensional vectors for the stochastic harmonic function (SHF) of rail irregularity power spectrum density was adopted to determine the representative points of spatial frequencies and phases to generate the random rail irregularity samples, and the non-stationary rail irregularity samples were modulated with the slowly varying function. Second, the probability density evolution method (PDEM) was employed to calculate the random dynamic vibration of the three-dimensional (3D) train-bridge system by a program compiled on the MATLAB® software platform. Eventually, the Newmark-β integration method and double edge difference method of total variation diminishing (TVD) format were adopted to obtain the mean value curve, the standard deviation curve and the time-history probability density information of responses. A case study was presented in which the ICE-3 train travels on a three-span simply-supported high-speed railway bridge with excitation of random rail irregularity. The results showed that compared to the Monte Carlo simulation, the PDEM has higher computational efficiency for the same accuracy, i.e., an improvement by 1-2 orders of magnitude. Additionally, the influences of rail irregularity and train speed on the random vibration of the coupled train-bridge system were discussed.

  3. The Methodology for Integral Assessment of the Impact of Renewable Energy on the Environment under Non-Stationary Economy

    Directory of Open Access Journals (Sweden)

    Petrakov Iaroslav V.

    2017-12-01

    Full Text Available The need to reduce anthropogenic load, eliminate threats to environmental safety and provide ecologically oriented development are one of the main global challenges of our time. At the same time, the replacement of traditional energy sources with alternatives ones requires a quantitative assessment of direct and indirect environmental impacts. The article analyzes the dynamics and structure of pollution in Ukraine in terms of its sources and forms as well as their impact on the carbon productivity of the GDP. It is proposed to assess the impact of alternative energy on the environment under non-stationary economy using an integral indicator that takes into account a number of factors, in particular the change in the share of RES in the total primary energy supply, share of renewable energy production, the index of greenhouse gases by the energy sector, change in the quality of atmospheric air in the urban populated area, amount of investment in reducing CO2 emissions, carbon intensity of energy production, share of thermal generation capacity that meets the ecological requirements of the EU.

  4. Operating room scheduling and surgeon assignment problem under surgery durations uncertainty.

    Science.gov (United States)

    Liu, Hongwei; Zhang, Tianyi; Luo, Shuai; Xu, Dan

    2017-12-29

    Scientific management methods are urgently needed to balance the demand and supply of heath care services in Chinese hospitals. Operating theatre is the bottleneck and costliest department. Therefore, the surgery scheduling is crucial to hospital management. To increase the utilization and reduce the cost of operating theatre, and to improve surgeons' satisfaction in the meantime, a practical surgery scheduling which could assign the operating room (OR) and surgeon for the surgery and sequence surgeries in each OR was provided for hospital managers. Surgery durations were predicted by fitting the distributions. A two-step mixed integer programming model considering surgery duration uncertainty was proposed, and sample average approximation (SAA) method was applied to solve the model. Durations of various surgeries were log-normal distributed respectively. Numerical experiments showed the model and method could get good solutions with different sample sizes. Real-life constraints and duration uncertainty were considered in the study, and the model was also very applicable in practice. Average overtime of each OR was reducing and tending to be stable with the number of surgeons increasing, which is a discipline for OR management.

  5. A Flexible Job Shop Scheduling Problem with Controllable Processing Times to Optimize Total Cost of Delay and Processing

    Directory of Open Access Journals (Sweden)

    Hadi Mokhtari

    2015-11-01

    Full Text Available In this paper, the flexible job shop scheduling problem with machine flexibility and controllable process times is studied. The main idea is that the processing times of operations may be controlled by consumptions of additional resources. The purpose of this paper to find the best trade-off between processing cost and delay cost in order to minimize the total costs. The proposed model, flexible job shop scheduling with controllable processing times (FJCPT, is formulated as an integer non-linear programming (INLP model and then it is converted into an integer linear programming (ILP model. Due to NP-hardness of FJCPT, conventional analytic optimization methods are not efficient. Hence, in order to solve the problem, a Scatter Search (SS, as an efficient metaheuristic method, is developed. To show the effectiveness of the proposed method, numerical experiments are conducted. The efficiency of the proposed algorithm is compared with that of a genetic algorithm (GA available in the literature for solving FJSP problem. The results showed that the proposed SS provide better solutions than the existing GA.

  6. Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure

    Directory of Open Access Journals (Sweden)

    Adrián A. Toncovich

    2019-01-01

    Full Text Available The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA. We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources.

  7. A Combined Adaptive Tabu Search and Set Partitioning Approach for the Crew Scheduling Problem with an Air Tanker Crew Application

    Science.gov (United States)

    2002-08-15

    Agency Name(s) and Address(es) Maj Juan Vasquez AFOSR/NM 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977 Sponsor/Monitor’s Acronym(s) Sponsor... Gelman , E., Patty, B., and R. Tanga. 1991. Recent Advances in Crew-Pairing Optimization at American Airlines, Interfaces, 21(1):62-74. Baker, E.K...Operations Research, 25(11):887-894. Chu, H.D., Gelman , E., and E.L. Johnson. 1997. Solving Large Scale Crew Scheduling Problems, European

  8. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Johan Soewanda

    2007-01-01

    Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm

  9. Solving Multi-Resource Constrained Project Scheduling Problem using Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Hsiang-Hsi Huang

    2015-01-01

    Full Text Available This paper applied Ant Colony Optimization (ACO to develop a resource constraints scheduling model to achieve the resource allocation optimization and the shortest completion time of a project under resource constraints and the activities precedence requirement for projects. Resource leveling is also discussed and has to be achieved under the resource allocation optimization in this research. Testing cases and examples adopted from the international test bank were studied for verifying the effectiveness of the proposed model. The results showed that the solutions of different cases all have a better performance within a reasonable time. These can be obtained through ACO algorithm under the same constrained conditions. A program was written for the proposed model that is able to automatically produce the project resource requirement figure after the project duration is solved.

  10. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  11. Task-specific shell for scheduling problems, ARES[sub TM]/SCH. Scheduling mondai muke task tokka shell ARES[sub TM]/SCH

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, S; Narimatsu, K [Toshiba Corp., Tokyo (Japan)

    1994-08-01

    An Expert System (ES) Shell (developed by Toshiba Corp.) which applies to the scheduling of production plan and operation plan is introduced. It describes that this tool is equipped with flowchart editor and constraint condition editor which mention the knowledge related to scheduling method, and that the former expresses scheduling procedure knowledge in the form of flowchart by combining basic tasks prepared beforehand, and the latter expresses constraint conditions which should be satisfied by the schedule, and knowledge related to the priority order which should be considered in-between in the form of IF-THEN Rule which is very close to Japanese. In addition, the knowledge is equipped with knowledge debugging system which conducts debugging while executing the knowledge. It adds that by using this tool, the manhour required for the development and maintenance of ES can be reduced considerably. 2 refs., 3 figs.

  12. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    Science.gov (United States)

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An Improved Version of Discrete Particle Swarm Optimization for Flexible Job Shop Scheduling Problem with Fuzzy Processing Time

    Directory of Open Access Journals (Sweden)

    Song Huang

    2016-01-01

    Full Text Available The fuzzy processing time occasionally exists in job shop scheduling problem of flexible manufacturing system. To deal with fuzzy processing time, fuzzy flexible job shop model was established in several papers and has attracted numerous researchers’ attention recently. In our research, an improved version of discrete particle swarm optimization (IDPSO is designed to solve flexible job shop scheduling problem with fuzzy processing time (FJSPF. In IDPSO, heuristic initial methods based on triangular fuzzy number are developed, and a combination of six initial methods is applied to initialize machine assignment and random method is used to initialize operation sequence. Then, some simple and effective discrete operators are employed to update particle’s position and generate new particles. In order to guide the particles effectively, we extend global best position to a set with several global best positions. Finally, experiments are designed to investigate the impact of four parameters in IDPSO by Taguchi method, and IDPSO is tested on five instances and compared with some state-of-the-art algorithms. The experimental results show that the proposed algorithm can obtain better solutions for FJSPF and is more competitive than the compared algorithms.

  14. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    Science.gov (United States)

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  15. Non-stationary temporal characterization of the temperature profile of a soil exposed to frost in south-eastern Canada

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2008-05-01

    Full Text Available The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.

  16. Detecting the Spatially Non-Stationary Relationships between Housing Price and Its Determinants in China: Guide for Housing Market Sustainability

    Directory of Open Access Journals (Sweden)

    Yanchuan Mou

    2017-10-01

    Full Text Available Given the rapidly developing processes in the housing market of China, the significant regional difference in housing prices has become a serious issue that requires a further understanding of the underlying mechanisms. Most of the extant regression models are standard global modeling techniques that do not take spatial non-stationarity into consideration, thereby making them unable to reflect the spatial nature of the data and introducing significant bias into the prediction results. In this study, the geographically weighted regression model (GWR was applied to examine the local association between housing price and its potential determinants, which were selected in view of the housing supply and demand in 338 cities across mainland China. Non-stationary relationships were obtained, and such observation could be summarized as follows: (1 the associations between land price and housing price are all significant and positive yet having different magnitudes; (2 the relationship between supplied amount of residential land and housing price is not statistically significant for 272 of the 338 cities, thereby indicating that the adjustment of supplied land has a slight effect on housing price for most cities; and (3 the significance, direction, and magnitude of the relationships between the other three factors (i.e., urbanization rate, average wage of urban employees, proportion of renters and housing price vary across the 338 cities. Based on these findings, this paper discusses some key issues relating to the spatial variations, combined with local economic conditions and suggests housing regulation policies that could facilitate the sustainable development of the Chinese housing market.

  17. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  18. A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Directory of Open Access Journals (Sweden)

    Ahmad Zeraatkar Moghaddam

    2012-01-01

    Full Text Available This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model.

  19. Crane scheduling for a plate storage in a shipyard: Modelling the problem

    DEFF Research Database (Denmark)

    Hansen, Jesper; Kristensen, Torben F.H.

    2003-01-01

    . These blocks are again welded together in the dock to produce a ship. Two gantry cranes move the plates into, around and out of the storage when needed in production. Different principles for organizing the storage and also different approaches for solving the problem are compared. Our results indicate...

  20. Crane scheduling for a plate storage in a shipyard: Solving the problem

    DEFF Research Database (Denmark)

    Hansen, Jesper; Kristensen, Torben F.H.

    2003-01-01

    . These blocks are again welded together in the dock to produce a ship. Two gantry cranes move the plates into, around and out of the storage when needed in production. Different principles for organizing the storage and also different approaches for solving the problem are compared. Our results indicate...

  1. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction

    Science.gov (United States)

    Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime

    2018-03-01

    Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.

  2. A column generation approach for solving the patient admission scheduling problem

    DEFF Research Database (Denmark)

    Range, Troels Martin; Lusby, Richard Martin; Larsen, Jesper

    2014-01-01

    , different variants of this problem. In this paper we consider one such variant and propose an optimization-based heuristic building on branch-and-bound, column generation, and dynamic constraint aggregation to solve it. We achieve tighter lower bounds than previously reported in the literature and......, in addition, we are able to produce new best known solutions for five out of twelve instances from a publicly available repository. © 2013 Elsevier B.V. All rights reserved....

  3. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  4. A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms

    Directory of Open Access Journals (Sweden)

    Shangchia Liu

    2015-01-01

    Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.

  5. An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time

    Directory of Open Access Journals (Sweden)

    Farahmand-Mehr Mohammad

    2014-01-01

    Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.

  6. Response-rate differences in variable-interval and variable-ratio schedules: An old problem revisited

    OpenAIRE

    Cole, Mark R.

    1994-01-01

    In Experiment 1, a variable-ratio 10 schedule became, successively, a variable-interval schedule with only the minimum interreinforcement intervals yoked to the variable ratio, or a variable-interval schedule with both interreinforcement intervals and reinforced interresponse times yoked to the variable ratio. Response rates in the variable-interval schedule with both interreinforcement interval and reinforced interresponse time yoking fell between the higher rates maintained by the variable-...

  7. Analysis of the status and problems of mechanical module manufacturing schedule of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Shuyu; Lu Qinwu; Li Yi

    2014-01-01

    An important feature of the 3rd generation nuclear power projects of AP1000 is the scale application of the modular design and construction technology. The world's first AP1000 project has been started in 2008 in our country, some problems existing in project construction process, such as the mechanical module manufacturing progress can't well meet the needs of the practical engineering. In this article, through investigating and analyzing the main cause of affecting plant mechanical module manufacturing progress, according to our country's actual situation in design, procurement and construction, explore the measures to improve module building progress in the process of AP1000 modular construction project at this stage, provide suggestions for project smooth implementation. (authors)

  8. Improved Harmony Search Algorithm for Truck Scheduling Problem in Multiple-Door Cross-Docking Systems

    Directory of Open Access Journals (Sweden)

    Zhanzhong Wang

    2018-01-01

    Full Text Available The key of realizing the cross docking is to design the joint of inbound trucks and outbound trucks, so a proper sequence of trucks will make the cross-docking system much more efficient and need less makespan. A cross-docking system is proposed with multiple receiving and shipping dock doors. The objective is to find the best door assignments and the sequences of trucks in the principle of products distribution to minimize the total makespan of cross docking. To solve the problem that is regarded as a mixed integer linear programming (MILP model, three metaheuristics, namely, harmony search (HS, improved harmony search (IHS, and genetic algorithm (GA, are proposed. Furthermore, the fixed parameters are optimized by Taguchi experiments to improve the accuracy of solutions further. Finally, several numerical examples are put forward to evaluate the performances of proposed algorithms.

  9. SU-F-I-80: Correction for Bias in a Channelized Hotelling Model Observer Caused by Temporally Variable Non-Stationary Noise

    International Nuclear Information System (INIS)

    Favazza, C; Fetterly, K

    2016-01-01

    Purpose: Application of a channelized Hotelling model observer (CHO) over a wide range of x-ray angiography detector target dose (DTD) levels demonstrated substantial bias for conditions yielding low detectability indices (d’), including low DTD and small test objects. The purpose of this work was to develop theory and methods to correct this bias. Methods: A hypothesis was developed wherein the measured detectability index (d’b) for a known test object is positively biased by temporally variable non-stationary noise in the images. Hotelling’s T2 test statistic provided the foundation for a mathematical theory which accounts for independent contributions to the measured d’b value from both the test object (d’o) and non-stationary noise (d’ns). Experimental methods were developed to directly estimate d’o by determining d’ns and subtracting it from d’b, in accordance with the theory. Specifically, d’ns was determined from two sets of images from which the traditional test object was withheld. This method was applied to angiography images with DTD levels in the range 0 to 240 nGy and for disk-shaped iodine-based contrast targets with diameters 0.5 to 4.0 mm. Results: Bias in d’ was evidenced by d’b values which exceeded values expected from a quantum limited imaging system and decreasing object size and DTD. d’ns increased with decreasing DTD, reaching a maximum of 2.6 for DTD = 0. Bias-corrected d’o estimates demonstrated sub-quantum limited performance of the x-ray angiography for low DTD. Findings demonstrated that the source of non-stationary noise was detector electronic readout noise. Conclusion: Theory and methods to estimate and correct bias in CHO measurements from temporally variable non-stationary noise were presented. The temporal non-stationary noise was shown to be due to electronic readout noise. This method facilitates accurate estimates of d’ values over a large range of object size and detector target dose.

  10. SU-F-I-80: Correction for Bias in a Channelized Hotelling Model Observer Caused by Temporally Variable Non-Stationary Noise

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, C; Fetterly, K [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: Application of a channelized Hotelling model observer (CHO) over a wide range of x-ray angiography detector target dose (DTD) levels demonstrated substantial bias for conditions yielding low detectability indices (d’), including low DTD and small test objects. The purpose of this work was to develop theory and methods to correct this bias. Methods: A hypothesis was developed wherein the measured detectability index (d’b) for a known test object is positively biased by temporally variable non-stationary noise in the images. Hotelling’s T2 test statistic provided the foundation for a mathematical theory which accounts for independent contributions to the measured d’b value from both the test object (d’o) and non-stationary noise (d’ns). Experimental methods were developed to directly estimate d’o by determining d’ns and subtracting it from d’b, in accordance with the theory. Specifically, d’ns was determined from two sets of images from which the traditional test object was withheld. This method was applied to angiography images with DTD levels in the range 0 to 240 nGy and for disk-shaped iodine-based contrast targets with diameters 0.5 to 4.0 mm. Results: Bias in d’ was evidenced by d’b values which exceeded values expected from a quantum limited imaging system and decreasing object size and DTD. d’ns increased with decreasing DTD, reaching a maximum of 2.6 for DTD = 0. Bias-corrected d’o estimates demonstrated sub-quantum limited performance of the x-ray angiography for low DTD. Findings demonstrated that the source of non-stationary noise was detector electronic readout noise. Conclusion: Theory and methods to estimate and correct bias in CHO measurements from temporally variable non-stationary noise were presented. The temporal non-stationary noise was shown to be due to electronic readout noise. This method facilitates accurate estimates of d’ values over a large range of object size and detector target dose.

  11. Scheduling with Time Lags

    NARCIS (Netherlands)

    X. Zhang (Xiandong)

    2010-01-01

    textabstractScheduling is essential when activities need to be allocated to scarce resources over time. Motivated by the problem of scheduling barges along container terminals in the Port of Rotterdam, this thesis designs and analyzes algorithms for various on-line and off-line scheduling problems

  12. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    Science.gov (United States)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial

  13. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2017-05-01

    In recent years, because the frequency and severity of floods have increased across Canada, it is important to understand the characteristics of Canadian heavy precipitation. Long-term precipitation data of 463 gauging stations of Canada were analyzed using non-stationary generalized extreme value distribution (GEV), Poisson distribution and generalized Pareto (GP) distribution. Time-varying covariates that represent large-scale climate patterns such as El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation (PDO) and North Pacific Oscillation (NP) were incorporated to parameters of GEV, Poisson and GP distributions. Results show that GEV distributions tend to under-estimate annual maximum daily precipitation (AMP) of western and eastern coastal regions of Canada, compared to GP distributions. Poisson regressions show that temporal clusters of heavy precipitation events in Canada are related to large-scale climate patterns. By modeling AMP time series with non-stationary GEV and heavy precipitation with non-stationary GP distributions, it is evident that AMP and heavy precipitation of Canada show strong non-stationarities (abrupt and slowly varying changes) likely because of the influence of large-scale climate patterns. AMP in southwestern coastal regions, southern Canadian Prairies and the Great Lakes tend to be higher in El Niño than in La Niña years, while AMP of other regions of Canada tends to be lower in El Niño than in La Niña years. The influence of ENSO on heavy precipitation was spatially consistent but stronger than on AMP. The effect of PDO, NAO and NP on extreme precipitation is also statistically significant at some stations across Canada.

  14. Genetic Algorithm Combined with Gradient Information for Flexible Job-shop Scheduling Problem with Different Varieties and Small Batches

    Directory of Open Access Journals (Sweden)

    Chen Ming

    2017-01-01

    Full Text Available To solve the Flexible Job-shop Scheduling Problem (FJSP with different varieties and small batches, a modified meta-heuristic algorithm based on Genetic Algorithm (GA is proposed in which gene encoding is divided into process encoding and machine encoding, and according to the encoding mode, the machine gene fragment is connected with the process gene fragment and can be changed with the alteration of process genes. In order to get the global optimal solutions, the crossover and mutation operation of the process gene fragment and machine gene fragment are carried out respectively. In the initialization operation, the machines with shorter manufacturing time are more likely to be chosen to accelerate the convergence speed and then the tournament selection strategy is applied due to the minimum optimization objective. Meanwhile, a judgment condition of the crossover point quantity is introduced to speed up the population evolution and as an important interaction bridge between the current machine and alternative machines in the incidence matrix, a novel mutation operation of machine genes is proposed to achieve the replacement of manufacturing machines. The benchmark test shows the correctness of proposed algorithm and the case simulation proves the proposed algorithm has better performance compared with existing algorithms.

  15. An economic lot and delivery scheduling problem with the fuzzy shelf life in a flexible job shop with unrelated parallel machines

    Directory of Open Access Journals (Sweden)

    S. Dousthaghi

    2012-08-01

    Full Text Available This paper considers an economic lot and delivery scheduling problem (ELDSP in a fuzzy environment with the fuzzy shelf life for each product. This problem is formulated in a flexible job shop with unrelated parallel machines, when the planning horizon is finite and it determines lot sizing, scheduling and sequencing, simultaneously. The proposed model of this paper is based on the basic period (BP approach. In this paper, a mixed-integer nonlinear programming (MINLP model is presented and then it is changed into two models in the fuzzy shelf life. The main model is dependent to the multiple basic periods and it is difficult to solve the resulted proposed model for large-scale problems in reasonable amount of time; thus, an efficient heuristic method is proposed to solve the problem. The performance of the proposed model is demonstrated using some numerical examples.

  16. Constraint-based job shop scheduling with ILOG SCHEDULER

    NARCIS (Netherlands)

    Nuijten, W.P.M.; Le Pape, C.

    1998-01-01

    We introduce constraint-based scheduling and discuss its main principles. An approximation algorithm based on tree search is developed for the job shop scheduling problem using ILOG SCHEDULER. A new way of calculating lower bounds on the makespan of the job shop scheduling problem is presented and

  17. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, H.; Skutella, M.; Woeginger, Gerhard

    2003-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  18. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, J.A.; Skutella, M.; Woeginger, G.J.; Paterson, M.

    2000-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  19. A new approach for solving capacitated lot sizing and scheduling problem with sequence and period-dependent setup costs

    Directory of Open Access Journals (Sweden)

    Imen Chaieb Memmi

    2013-09-01

    Full Text Available Purpose: We aim to examine the capacitated multi-item lot sizing problem which is a typical example of a large bucket model, where many different items can be produced on the same machine in one time period. We propose a new approach to determine the production sequence and lot sizes that minimize the sum of start up and setup costs, inventory and production costs over all periods.Design/methodology/approach: The approach is composed of three steps. First, we compute a lower bound on total cost. Then we propose a three sub-steps iteration procedure. We solve optimally the lot sizing problem without considering products sequencing and their cost. Then, we determine products quantities to produce each period while minimizing the storage and variable production costs. Given the products to manufacture each period, we determine its correspondent optimal products sequencing, by using a Branch and Bound algorithm. Given the sequences of products within each period, we evaluate the total start up and setup cost. We compare then the total cost obtained to the lower bound of the total cost. If this value riches a prefixed value, we stop. Otherwise, we modify the results of lot sizing problem.Findings and Originality/value: We show using an illustrative example, that the difference between the total cost and its lower bound is only 10%. This gap depends on the significance of the inventory and production costs and the machine’s capacity. Comparing the approach we develop with a traditional one, we show that we manage to reduce the total cost by 30%.Research limitations/implications: Our model fits better to real-world situations where production systems run continuously. This model is applied for limited number of part types and periods.Practical implications: Our approach determines the products to manufacture each time period, their economic amounts, and their scheduling within each period. This outcome should help decision makers bearing expensive

  20. A solution approach based on Benders decomposition for the preventive maintenance scheduling problem of a stochastic large-scale energy system

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Muller, Laurent Flindt; Petersen, Bjørn

    2013-01-01

    This paper describes a Benders decomposition-based framework for solving the large scale energy management problem that was posed for the ROADEF 2010 challenge. The problem was taken from the power industry and entailed scheduling the outage dates for a set of nuclear power plants, which need...... to be regularly taken down for refueling and maintenance, in such away that the expected cost of meeting the power demand in a number of potential scenarios is minimized. We show that the problem structure naturally lends itself to Benders decomposition; however, not all constraints can be included in the mixed...

  1. Proposta de classificação hierarquizada dos modelos de solução para o problema de job shop scheduling A proposition of hierarchical classification for solution models in the job shop scheduling problem

    Directory of Open Access Journals (Sweden)

    Ricardo Ferrari Pacheco

    1999-04-01

    Full Text Available Este artigo propõe uma classificação hierarquizada dos modelos utilizados na solução do problema de programação da produção intermitente do tipo job shop, incluindo tanto os que fornecem solução ótima, quanto os modelos heurísticos mais recentes baseados em métodos de busca estendida. Por meio dessa classificação obteve-se um painel amplo dos modelos existentes, evidenciando as diferentes abordagens do problema e suas soluções, com o objetivo de proporcionar uma orientação preliminar na escolha do modelo de job shop scheduling mais adequado.This paper proposes a hierarchical model classification used in the job shop scheduling problem, including those that provide an optimal solution and the more recent ones based on heuristics, called extended search methods. A panel with the existing models is obtained by this classification, and solutions and approach differences are highlighted with the aim of a preliminary orientation on the choice of a more adequate job shop scheduling model.

  2. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  3. Erratum to ''Johnson's algorithm : A key to solve optimally or approximately flowshop scheduling problems with unavailability periods'' [International Journal of Production Economics 121 (2009) 81-87

    OpenAIRE

    Rapine , Christophe

    2013-01-01

    International audience; In Allaoui H., Artiba A, ''Johnson's algorithm : A key to solve optimally or approximately flowshop scheduling problems with unavailability periods'' [International Journal of Production Economics 121 (2009)] the authors propose optimality conditions for the Johnson sequence in presence of one unavailability period on the first machine and pretend for a performance guarantee of 2 when several unavailability periods may occur. We establish in this note that these condit...

  4. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  5. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment

    Institute of Scientific and Technical Information of China (English)

    Rui ZHAO; Gui-he QIN; Jia-qiao LIU

    2016-01-01

    As FlexRay communication protocol is extensively used in distributed real-time applications on vehicles, signal scheduling in FlexRay network becomes a critical issue to ensure the safe and efficient operation of time-critical applications. In this study, we propose a rectangle bin packing optimization approach to schedule communication signals with timing constraints into the FlexRay static segment at minimum bandwidth cost. The proposed approach, which is based on integer linear program-ming (ILP), supports both the slot assignment mechanisms provided by the latest version of the FlexRay specification, namely, the single sender slot multiplexing, and multiple sender slot multiplexing mechanisms. Extensive experiments on a synthetic and an automotive X-by-wire system case study demonstrate that the proposed approach has a well optimized performance.

  6. Neural networks prediction and fault diagnosis applied to stationary and non stationary ARMA (Autoregressive moving average) modeled time series

    International Nuclear Information System (INIS)

    Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.

    1992-01-01

    The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)

  7. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    Science.gov (United States)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  8. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  9. Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time

    Directory of Open Access Journals (Sweden)

    Rinto Yusriski

    2015-09-01

    Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.

  10. A Pareto-Based Adaptive Variable Neighborhood Search for Biobjective Hybrid Flow Shop Scheduling Problem with Sequence-Dependent Setup Time

    Directory of Open Access Journals (Sweden)

    Huixin Tian

    2016-01-01

    Full Text Available Different from most researches focused on the single objective hybrid flowshop scheduling (HFS problem, this paper investigates a biobjective HFS problem with sequence dependent setup time. The two objectives are the minimization of total weighted tardiness and the total setup time. To efficiently solve this problem, a Pareto-based adaptive biobjective variable neighborhood search (PABOVNS is developed. In the proposed PABOVNS, a solution is denoted as a sequence of all jobs and a decoding procedure is presented to obtain the corresponding complete schedule. In addition, the proposed PABOVNS has three major features that can guarantee a good balance of exploration and exploitation. First, an adaptive selection strategy of neighborhoods is proposed to automatically select the most promising neighborhood instead of the sequential selection strategy of canonical VNS. Second, a two phase multiobjective local search based on neighborhood search and path relinking is designed for each selected neighborhood. Third, an external archive with diversity maintenance is adopted to store the nondominated solutions and at the same time provide initial solutions for the local search. Computational results based on randomly generated instances show that the PABOVNS is efficient and even superior to some other powerful multiobjective algorithms in the literature.

  11. A multi-level variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem

    DEFF Research Database (Denmark)

    Wen, Min; Krapper, Emil; Larsen, Jesper

    things, predefined workdays, fixed starting time, maximum weekly working duration, break rule. The objective is to minimize the total delivery cost. The real-life case study is fi rst introduced and modelled as a mixed integer linear program. A multilevel variable neighborhood search heuristic...... is then proposed for the problem. At the first level, the problem size is reduced through an aggregation procedure. At the second level, the aggregated weekly planning problem is decomposed into daily planning problems, each of which is solved by a variable neighborhood search. At the last level, the solution...

  12. Effect of non-stationary accretion on spectral state transitions: An example of a persistent neutron star LMXB 4U1636–536

    Science.gov (United States)

    Zhang, Hui; Yu, Wen-Fei

    2018-03-01

    Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.

  13. Analyzing the non-stationary space relationship of a city's degree of vegetation and social economic conditions in Shanghai, China using OLS and GWR models

    Science.gov (United States)

    Wang, Kejing; Zhang, Yuan; An, Youzhi; Jing, Zhuoxin; Wang, Chao

    2013-09-01

    With the fast urbanization process, how does the vegetation environment change in one of the most economically developed metropolis, Shanghai in East China? To answer this question, there is a pressing demand to explore the non-stationary relationship between socio-economic conditions and vegetation across Shanghai. In this study, environmental data on vegetation cover, the Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery in 2003 were integrated with socio-economic data to reflect the city's vegetative conditions at the census block group level. To explore regional variations in the relationship of vegetation and socio-economic conditions, Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models were applied to characterize mean NDVI against three independent socio-economic variables, an urban land use ratio, Gross Domestic Product (GDP) and population density. The study results show that a considerable distinctive spatial variation exists in the relationship for each model. The GWR model has superior effects and higher precision than the OLS model at the census block group scale. So, it is more suitable to account for local effects and geographical variations. This study also indicates that unreasonable excessive urbanization, together with non-sustainable economic development, has a negative influence of vegetation vigor for some neighborhoods in Shanghai.

  14. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    C.A. Suarez-Mendez

    2016-12-01

    Full Text Available 13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h−1 are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids, which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold and higher fluxes relative to the glucose uptake rate (up to 16%. Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by 13C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations. Keywords: Non-stationary 13C labeling, Flux estimation, Trehalose, Glycogen, Amino acids

  15. Exploring the Non-Stationary Effects of Forests and Developed Land within Watersheds on Biological Indicators of Streams Using Geographically-Weighted Regression

    Directory of Open Access Journals (Sweden)

    Kyoung-Jin An

    2016-03-01

    Full Text Available This study examined the non-stationary relationship between the ecological condition of streams and the proportions of forest and developed land in watersheds using geographically-weighted regression (GWR. Most previous studies have adopted the ordinary least squares (OLS method, which assumes stationarity of the relationship between land use and biological indicators. However, these conventional OLS models cannot provide any insight into local variations in the land use effects within watersheds. Here, we compared the performance of the OLS and GWR statistical models applied to benthic diatom, macroinvertebrate, and fish communities in sub-watershed management areas. We extracted land use datasets from the Ministry of Environment LULC map and data on biological indicators in Nakdong river systems from the National Aquatic Ecological Monitoring Program in Korea. We found that the GWR model had superior performance compared with the OLS model, as assessed based on R2, Akaike’s Information Criterion, and Moran’s I values. Furthermore, GWR models revealed specific localized effects of land use on biological indicators, which we investigated further. The results of this study can be used to inform more effective policies on watershed management and to enhance ecological integrity by prioritizing sub-watershed management areas

  16. Throughput of oil and demand for oil of non-stationary loaded sliding bearings in internal combustion engines. Oeldurchsatz und Oelbedarf instationaer belasteter Gleitlager am Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Esch, H.J.

    1981-12-17

    The throughput of oil and the demand for oil of the non-stationary loaded sliding bearings was determined in a high speed petrol engine. The crankshaft bearing and connecting rod bearing were examined. The bearing temperature of the connecting rod bearing was measured by thermocouples built into this bearing; transmission of the signal from the rotating to the fixed part of the system was by means of a rotating transmitter. The temperature measurement in the crankshaft bearing was done by thermocouples in the bearing shell. Using a separate oil supply for the test bearing, the demand for oil was determined by reducing the oil pressure. Comparative oil throughput calculations were carried out to clear up the relationships discovered in the equipment. The results of the investigation are collected in 15 points, which are explained in detail. These include: negligible effect on the oil throughput of the ignition timing, air ratio and coolant temperature at constant speed and constant mean pressure, the considerable rise of the oil throughput through the connecting rod and crankshaft bearing with increasing speed, and the dominating effect of play in the bearing on the maximum bearing temperature.

  17. Segmentation algorithm for non-stationary compound Poisson processes. With an application to inventory time series of market members in a financial market

    Science.gov (United States)

    Tóth, B.; Lillo, F.; Farmer, J. D.

    2010-11-01

    We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.

  18. Comparison between Hilbert-Huang transform and scalogram methods on non-stationary biomedical signals: application to laser Doppler flowmetry recordings

    International Nuclear Information System (INIS)

    Roulier, Remy; Humeau, Anne; Flatley, Thomas P; Abraham, Pierre

    2005-01-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application on healthy subjects. This reflex may be impaired in diabetic patients. The work presents a comparison between two signal processing methods that provide a clarification of this phenomenon. Analyses by the scalogram and the Hilbert-Huang transform (HHT) of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied at different time intervals in order to take into account the dynamics of the phenomenon. The results show that both the scalogram and the HHT methods lead to the same conclusions concerning the comparisons of the myogenic, neurogenic and endothelial related metabolic activities-during the progressive pressure and at rest-in healthy and diabetic subjects. However, the HHT shows more details that may be obscured by the scalogram. Indeed, the non-locally adaptative limitations of the scalogram can remove some definition from the data. These results may improve knowledge on the above-mentioned reflex as well as on non-stationary biomedical signal processing methods

  19. A hybrid algorithm for solving the economic lot and delivery scheduling problem in the common cycle case

    DEFF Research Database (Denmark)

    Clausen, Jens; Ju, S.

    2006-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different types to a consumer in batches. The task is to determine the cycle time, i.e., the time between deliveries, which minimizes the total cost per time unit. This includes the d...

  20. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...