WorldWideScience

Sample records for non-stationary detector blurring

  1. A blur-invariant local feature for motion blurred image matching

    Science.gov (United States)

    Tong, Qiang; Aoki, Terumasa

    2017-07-01

    Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching

  2. Restoration of non-uniform exposure motion blurred image

    Science.gov (United States)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  3. Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds

    International Nuclear Information System (INIS)

    Pineda, Angel R.; Barrett, Harrison H.

    2004-01-01

    The current paradigm for evaluating detectors in digital radiography relies on Fourier methods. Fourier methods rely on a shift-invariant and statistically stationary description of the imaging system. The theoretical justification for the use of Fourier methods is based on a uniform background fluence and an infinite detector. In practice, the background fluence is not uniform and detector size is finite. We study the effect of stochastic blurring and structured backgrounds on the correlation between Fourier-based figures of merit and Hotelling detectability. A stochastic model of the blurring leads to behavior similar to what is observed by adding electronic noise to the deterministic blurring model. Background structure does away with the shift invariance. Anatomical variation makes the covariance matrix of the data less amenable to Fourier methods by introducing long-range correlations. It is desirable to have figures of merit that can account for all the sources of variation, some of which are not stationary. For such cases, we show that the commonly used figures of merit based on the discrete Fourier transform can provide an inaccurate estimate of Hotelling detectability

  4. Fourier correction for spatially variant collimator blurring in SPECT

    International Nuclear Information System (INIS)

    Xia, W.; Lewitt, R.M.; Edholm, P.R.

    1995-01-01

    In single-photon emission computed tomography (SPECT), projection data are acquired by rotating the photon detector around a patient, either in a circular orbit or in a noncircular orbit. The projection data of the desired spatial distribution of emission activity is blurred by the point-response function of the collimator that is used to define the range of directions of gamma-ray photons reaching the detector. The point-response function of the collimator is not spatially stationary, but depends on the distance from the collimator to the point. Conventional methods for deblurring collimator projection data are based on approximating the actual distance-dependent point-response function by a spatially invariant blurring function, so that deconvolution methods can be applied independently to the data at each angle of view. A method is described in this paper for distance-dependent preprocessing of SPECT projection data prior to image reconstruction. Based on the special distance-dependent characteristics of the Fourier coefficients of the sinogram, a spatially variant inverse filter can be developed to process the projection data in all views simultaneously. The algorithm is first derived from fourier analysis of the projection data from the circular orbit geometry. For circular orbit projection data, experimental results from both simulated data and real phantom data indicate the potential of this method. It is shown that the spatial filtering method can be extended to the projection data from the noncircular orbit geometry. Experiments on simulated projection data from an elliptical orbit demonstrate correction of the spatially variant blurring and distortion in the reconstructed image caused by the noncircular orbit geometry

  5. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    Science.gov (United States)

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  6. Blurring of emotional and non-emotional memories by taxing working memory during recall.

    Science.gov (United States)

    van den Hout, Marcel A; Eidhof, Marloes B; Verboom, Jesse; Littel, Marianne; Engelhard, Iris M

    2014-01-01

    Memories that are recalled while working memory (WM) is taxed, e.g., by making eye movements (EM), become blurred during the recall + EM and later recall, without EM. This may help to explain the effects of Eye Movement and Desensitisation and Reprocessing (EMDR) in the treatment of post-traumatic stress disorder (PTSD) in which patients make EM during trauma recall. Earlier experimental studies on recall + EM have focused on emotional memories. WM theory suggests that recall + EM is superior to recall only but is silent about effects of memory emotionality. Based on the emotion and memory literature, we examined whether recall + EM has superior effects in blurring emotional memories relative to neutral memories. Healthy volunteers recalled negative or neutral memories, matched for vividness, while visually tracking a dot that moved horizontally ("recall + EM") or remained stationary ("recall only"). Compared to a pre-test, a post-test (without concentrating on the dot) replicated earlier findings: negative memories are rated as less vivid after "recall + EM" but not after "recall only". This was not found for neutral memories. Emotional memories are more taxing than neutral memories, which may explain the findings. Alternatively, transient arousal induced by recall of aversive memories may promote reconsolidation of the blurred memory image that is provoked by EM.

  7. Traffic State Estimation Using Connected Vehicles and Stationary Detectors

    Directory of Open Access Journals (Sweden)

    Ellen F. Grumert

    2018-01-01

    Full Text Available Real-time traffic state estimation is of importance for efficient traffic management. This is especially the case for traffic management systems that require fast detection of changes in the traffic conditions in order to apply an effective control measure. In this paper, we propose a method for estimating the traffic state and speed and density, by using connected vehicles combined with stationary detectors. The aim is to allow fast and accurate estimation of changes in the traffic conditions. The proposed method does only require information about the speed and the position of connected vehicles and can make use of sparsely located stationary detectors to limit the dependence on the infrastructure equipment. An evaluation of the proposed method is carried out by microscopic traffic simulation. The traffic state estimated using the proposed method is compared to the true simulated traffic state. Further, the density estimates are compared to density estimates from one detector-based method, one combined method, and one connected-vehicle-based method. The results of the study show that the proposed method is a promising alternative for estimating the traffic state in traffic management applications.

  8. Sensor performance as a function of sampling (d) and optical blur (Fλ)

    NARCIS (Netherlands)

    Bijl, P.; Hogervorst, M.A.

    2009-01-01

    Detector sampling and optical blur are two major factors affecting Target Acquisition (TA) performance with modern EO and IR systems. In order to quantify their relative significance, we simulated five realistic LWIR and MWIR sensors from very under-sampled (detector pitch d >> diffraction blur Fλ)

  9. Analyzing Non Stationary Processes in Radiometers

    Science.gov (United States)

    Racette, Paul

    2010-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory for many scientific and engineering applications. Non linear effects of the observation methodology is one of the most perplexing aspects to modeling non stationary processes. This perplexing problem was encountered when modeling the effect of non stationary receiver fluctuations on the performance of radiometer calibration architectures. Existing modeling approaches were found not applicable; particularly problematic is modeling processes across scales over which they begin to exhibit non stationary behavior within the time interval of the calibration algorithm. Alternatively, the radiometer output is modeled as samples from a sequence random variables; the random variables are treated using a conditional probability distribution function conditioned on the use of the variable in the calibration algorithm. This approach of treating a process as a sequence of random variables with non stationary stochastic moments produce sensible predictions of temporal effects of calibration algorithms. To test these model predictions, an experiment using the Millimeter wave Imaging Radiometer (MIR) was conducted. The MIR with its two black body calibration references was configured in a laboratory setting to observe a third ultra-stable reference (CryoTarget). The MIR was programmed to sequentially sample each of the three references in approximately a 1 second cycle. Data were collected over a six-hour interval. The sequence of reference measurements form an ensemble sample set comprised of a series of three reference measurements. Two references are required to estimate the receiver response. A third reference is used to estimate the uncertainty in the estimate. Typically, calibration algorithms are designed to suppress the non stationary effects of receiver fluctuations. By treating the data sequence as an ensemble

  10. A stationary computed tomography system with cylindrically distributed sources and detectors.

    Science.gov (United States)

    Chen, Yi; Xi, Yan; Zhao, Jun

    2014-01-01

    The temporal resolution of current computed tomography (CT) systems is limited by the rotation speed of their gantries. A helical interlaced source detector array (HISDA) CT, which is a stationary CT system with distributed X-ray sources and detectors, is presented in this paper to overcome the aforementioned limitation and achieve high temporal resolution. Projection data can be obtained from different angles in a short time and do not require source, detector, or object motion. Axial coverage speed is increased further by employing a parallel scan scheme. Interpolation is employed to approximate the missing data in the gaps, and then a Katsevich-type reconstruction algorithm is applied to enable an approximate reconstruction. The proposed algorithm suppressed the cone beam and gap-induced artifacts in HISDA CT. The results also suggest that gap-induced artifacts can be reduced by employing a large helical pitch for a fixed gap height. HISDA CT is a promising 3D dynamic imaging architecture given its good temporal resolution and stationary advantage.

  11. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  12. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2007-04-15

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  13. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    International Nuclear Information System (INIS)

    Sunde, Carl

    2007-01-01

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  14. Enhancement of blurred image portions

    NARCIS (Netherlands)

    2008-01-01

    This invention relates to a method for image enhancement, comprising a first step ( 41 ) of distinguishing blurred and non-blurred image portions of an input image, and a second step ( 42 ) of enhancing at least one of said blurred image portions of said input image to produce an output image. Said

  15. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    International Nuclear Information System (INIS)

    Smith, Mark F; Raylman, Raymond R; Majewski, Stan; Weisenberger, Andrew G

    2004-01-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artefacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumour models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation

  16. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    Science.gov (United States)

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the

  17. SU-F-I-80: Correction for Bias in a Channelized Hotelling Model Observer Caused by Temporally Variable Non-Stationary Noise

    International Nuclear Information System (INIS)

    Favazza, C; Fetterly, K

    2016-01-01

    Purpose: Application of a channelized Hotelling model observer (CHO) over a wide range of x-ray angiography detector target dose (DTD) levels demonstrated substantial bias for conditions yielding low detectability indices (d’), including low DTD and small test objects. The purpose of this work was to develop theory and methods to correct this bias. Methods: A hypothesis was developed wherein the measured detectability index (d’b) for a known test object is positively biased by temporally variable non-stationary noise in the images. Hotelling’s T2 test statistic provided the foundation for a mathematical theory which accounts for independent contributions to the measured d’b value from both the test object (d’o) and non-stationary noise (d’ns). Experimental methods were developed to directly estimate d’o by determining d’ns and subtracting it from d’b, in accordance with the theory. Specifically, d’ns was determined from two sets of images from which the traditional test object was withheld. This method was applied to angiography images with DTD levels in the range 0 to 240 nGy and for disk-shaped iodine-based contrast targets with diameters 0.5 to 4.0 mm. Results: Bias in d’ was evidenced by d’b values which exceeded values expected from a quantum limited imaging system and decreasing object size and DTD. d’ns increased with decreasing DTD, reaching a maximum of 2.6 for DTD = 0. Bias-corrected d’o estimates demonstrated sub-quantum limited performance of the x-ray angiography for low DTD. Findings demonstrated that the source of non-stationary noise was detector electronic readout noise. Conclusion: Theory and methods to estimate and correct bias in CHO measurements from temporally variable non-stationary noise were presented. The temporal non-stationary noise was shown to be due to electronic readout noise. This method facilitates accurate estimates of d’ values over a large range of object size and detector target dose.

  18. SU-F-I-80: Correction for Bias in a Channelized Hotelling Model Observer Caused by Temporally Variable Non-Stationary Noise

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, C; Fetterly, K [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: Application of a channelized Hotelling model observer (CHO) over a wide range of x-ray angiography detector target dose (DTD) levels demonstrated substantial bias for conditions yielding low detectability indices (d’), including low DTD and small test objects. The purpose of this work was to develop theory and methods to correct this bias. Methods: A hypothesis was developed wherein the measured detectability index (d’b) for a known test object is positively biased by temporally variable non-stationary noise in the images. Hotelling’s T2 test statistic provided the foundation for a mathematical theory which accounts for independent contributions to the measured d’b value from both the test object (d’o) and non-stationary noise (d’ns). Experimental methods were developed to directly estimate d’o by determining d’ns and subtracting it from d’b, in accordance with the theory. Specifically, d’ns was determined from two sets of images from which the traditional test object was withheld. This method was applied to angiography images with DTD levels in the range 0 to 240 nGy and for disk-shaped iodine-based contrast targets with diameters 0.5 to 4.0 mm. Results: Bias in d’ was evidenced by d’b values which exceeded values expected from a quantum limited imaging system and decreasing object size and DTD. d’ns increased with decreasing DTD, reaching a maximum of 2.6 for DTD = 0. Bias-corrected d’o estimates demonstrated sub-quantum limited performance of the x-ray angiography for low DTD. Findings demonstrated that the source of non-stationary noise was detector electronic readout noise. Conclusion: Theory and methods to estimate and correct bias in CHO measurements from temporally variable non-stationary noise were presented. The temporal non-stationary noise was shown to be due to electronic readout noise. This method facilitates accurate estimates of d’ values over a large range of object size and detector target dose.

  19. Partial Deconvolution with Inaccurate Blur Kernel.

    Science.gov (United States)

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning

  20. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  1. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  2. Comparison of morphological and conventional edge detectors in medical imaging applications

    Science.gov (United States)

    Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.

    1991-06-01

    Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.

  3. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  4. Noninvasive xenon-133 measurements of cerebral blood flow using stationary detectors compared with dynamic emission tomography

    DEFF Research Database (Denmark)

    Schroeder, T; Vorstrup, S; Lassen, N A

    1986-01-01

    the stationary detectors yielded somewhat lower CBF values than did emission tomography. Considering the side-to-side asymmetry, an excellent correlation was obtained. Using the initial slope index, the stationary detectors revealed quantitatively 83% of the interhemispheric asymmetry and 63% of the asymmetry...... in the middle cerebral artery territory shown with the tomograph. As illustrated by a case history, the nontomographic CBF unit used in this study may provide reliable and useful information in patients with occlusive cerebrovascular disease by performing repeated CBF studies and challenging the cerebral...

  5. Non-stationary covariance function modelling in 2D least-squares collocation

    Science.gov (United States)

    Darbeheshti, N.; Featherstone, W. E.

    2009-06-01

    Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.

  6. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaël

    2016-03-03

    Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.

  7. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  8. Theory of reflectivity blurring in seismic depth imaging

    Science.gov (United States)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar

  9. Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Non-Stationary Covariates

    DEFF Research Database (Denmark)

    Han, Heejoon; Kristensen, Dennis

    as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE'’s of the regression coefficients entering the volatility equation are consistent and normally distributed in large samples independently of the degree of persistence....... This implies that standard inferential tools, such as t-statistics, do not have to be adjusted to the level of persistence. On the other hand, the intercept in the volatility equation is not identifi…ed when the covariate is non-stationary which is akin to the results of Jensen and Rahbek (2004, Econometric...

  10. Analysis of stress and deformation in non-stationary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.

    1980-12-01

    A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt

  11. Blur Clarified: A review and Synthesis of Blur Discrimination

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J.

    2011-01-01

    Blur is an important attribute of human spatial vision, and sensitivity to blur has been the subject of considerable experimental research and theoretical modeling. Often these models have invoked specialized concepts or mechanisms, such as intrinsic blur, multiple channels, or blur estimation units. In this paper we review the several experimental studies of blur discrimination and find they are in broad empirical agreement. But contrary to previous modeling efforts, we find that the essential features of blur discrimination are fully accounted for by a visible contrast energy model (ViCE), in which two spatial patterns are distinguished when the integrated difference between their masked local contrast energy responses reaches a threshold value.

  12. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  13. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  14. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference

  15. A Generalized Framework for Non-Stationary Extreme Value Analysis

    Science.gov (United States)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  16. Non-stationary Markov chains

    OpenAIRE

    Mallak, Saed

    1996-01-01

    Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...

  17. Robust Forecasting of Non-Stationary Time Series

    NARCIS (Netherlands)

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable

  18. Frequency Analysis of Extreme Sub-Daily Precipitation under Stationary and Non-Stationary Conditions across Two Contrasting Hydroclimatic Environments

    Science.gov (United States)

    Demaria, E. M.; Goodrich, D. C.; Keefer, T.

    2017-12-01

    Observed sub-daily precipitation intensities from contrasting hydroclimatic environments in the USA are used to evaluate temporal trends and to develop Intensity-Duration Frequency (IDF) curves under stationary and nonstationary climatic conditions. Analyses are based on observations from two United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) experimental watersheds located in a semi-arid and a temperate environment. We use an Annual Maximum Series (AMS) and a Partial Duration Series (PDS) approach to identify temporal trends in maximum intensities for durations ranging from 5- to 1440-minutes. A Bayesian approach with Monte Carlo techniques is used to incorporate the effect of non-stationary climatic assumptions in the IDF curves. The results show increasing trends in observed AMS sub-daily intensities in both watersheds whereas trends in the PDS observations are mostly positive in the semi-arid site and a mix of positive and negative in the temperate site. Stationary climate assumptions lead to much lower estimated sub-daily intensities than those under non-stationary assumptions with larger absolute differences found for shorter durations and smaller return periods. The risk of failure (R) of a hydraulic structure is increased for non-stationary effects over those of stationary effects, with absolute differences of 25% for a 100-year return period (T) and a project life (n) of 100 years. The study highlights the importance of considering non-stationarity, due to natural variability or to climate change, in storm design.

  19. Evaluation of the Methods for Response Analysis under Non-Stationary Excitation

    Directory of Open Access Journals (Sweden)

    R.S. Jangid

    1999-01-01

    Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.

  20. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  1. On the non-stationary generalized Langevin equation

    Science.gov (United States)

    Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja

    2017-12-01

    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

  2. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  3. Robust Forecasting of Non-Stationary Time Series

    OpenAIRE

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estima...

  4. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    Science.gov (United States)

    Onozuka, Daisuke

    2014-06-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Infectious gastroenteritis cases were non-stationary and significantly associated with the IOD and ENSO (Multivariate ENSO Index [MEI], Niño 1 + 2, Niño 3, Niño 4, and Niño 3.4) for a period of approximately 1 to 2 years. This association was non-stationary and appeared to have a major influence on the synchrony of infectious gastroenteritis transmission. Our results suggest that non-stationary patterns of association between global climate factors and incidence of infectious gastroenteritis should be considered when developing early warning systems for epidemics of infectious gastroenteritis.

  5. DETECTING AND CORRECTING MOTION BLUR FROM IMAGES SHOT WITH CHANNEL-DEPENDENT EXPOSURE TIME

    Directory of Open Access Journals (Sweden)

    L. Lelégard

    2012-07-01

    Full Text Available This article describes a pipeline developed to automatically detect and correct motion blur due to the airplane motion in aerial images provided by a digital camera system with channel-dependent exposure times. Blurred images show anisotropy in their Fourier Transform coefficients that can be detected and estimated to recover the characteristics of the motion blur. To disambiguate the anisotropy produced by a motion blur from the possible spectral anisotropy produced by some periodic patterns present in a sharp image, we consider the phase difference of the Fourier Transform of two channel shot with different exposure times (i.e. with different blur extensions. This is possible because of the deep correlation between the three visible channels ensures phase coherence of the Fourier Transform coefficients in sharp images. In this context, considering the phase difference constitutes both a good detector and estimator of the motion blur parameters. In order to improve on this estimation, the phase difference is performed on local windows in the image where the channels are more correlated. The main lobe of the phase difference, where the phase difference between two channels is close to zero actually imitates an ellipse which axis ratio discriminates blur and which orientation and minor axis give respectively the orientation and the blur kernel extension of the long exposure-time channels. However, this approach is not robust to the presence in the phase difference of minor lobes due to phase sign inversions in the Fourier transform of the motion blur. They are removed by considering the polar representation of the phase difference. Based on the blur detection step, blur correction is eventually performed using two different approaches depending on the blur extension size: using either a simple frequency-based fusion for small blur or a semi blind iterative method for larger blur. The higher computing costs of the latter method make it only

  6. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Campuzano, Cuauhtemoc; GarcIa, Alberto

    2007-01-01

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1

  7. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Ayon-Beato, Eloy [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Campuzano, Cuauhtemoc [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); GarcIa, Alberto [Department of Physics, University of California, Davis, CA 95616 (United States)

    2007-11-15

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1].

  8. Edge dependent motion blur reduction

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a method and a circuit arrangement to reduce motion blur of images shown in non-stroboscopic display devices, in particular Liquid Crystal Display Panels (LCDs). Thin Film Transistor Displays (TFTs), Color Sequential Displays. Plasma Display Panels (PDPs), Digital Micro

  9. Evaluation of stationary and non-stationary geostatistical models for inferring hydraulic conductivity values at Aespoe

    International Nuclear Information System (INIS)

    La Pointe, P.R.

    1994-11-01

    This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs

  10. Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-09-01

    Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.

  11. Non-stationary compositions of Anosov diffeomorphisms

    International Nuclear Information System (INIS)

    Stenlund, Mikko

    2011-01-01

    Motivated by non-equilibrium phenomena in nature, we study dynamical systems whose time-evolution is determined by non-stationary compositions of chaotic maps. The constituent maps are topologically transitive Anosov diffeomorphisms on a two-dimensional compact Riemannian manifold, which are allowed to change with time—slowly, but in a rather arbitrary fashion. In particular, such systems admit no invariant measure. By constructing a coupling, we prove that any two sufficiently regular distributions of the initial state converge exponentially with time. Thus, a system of this kind loses memory of its statistical history rapidly

  12. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    International Nuclear Information System (INIS)

    Lee, Kisung; Kinahan, Paul E; Fessler, Jeffrey A; Miyaoka, Robert S; Janes, Marie; Lewellen, Tom K

    2004-01-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated

  13. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  14. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  15. A method for correcting the depth-of-interaction blurring in PET cameras

    International Nuclear Information System (INIS)

    Rogers, J.G.

    1993-11-01

    A method is presented for the purpose of correcting PET images for the blurring caused by variations in the depth-of-interaction in position-sensitive gamma ray detectors. In the case of a fine-cut 50x50x30 mm BGO block detector, the method is shown to improve the detector resolution by about 25%, measured in the geometry corresponding to detection at the edge of the field-of-view. Strengths and weaknesses of the method are discussed and its potential usefulness for improving the images of future PET cameras is assessed. (author). 8 refs., 3 figs

  16. A review on prognostic techniques for non-stationary and non-linear rotating systems

    Science.gov (United States)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  17. Inferential framework for non-stationary dynamics: theory and applications

    International Nuclear Information System (INIS)

    Duggento, Andrea; Luchinsky, Dmitri G; McClintock, Peter V E; Smelyanskiy, Vadim N

    2009-01-01

    An extended Bayesian inference framework is presented, aiming to infer time-varying parameters in non-stationary nonlinear stochastic dynamical systems. The convergence of the method is discussed. The performance of the technique is studied using, as an example, signal reconstruction for a system of neurons modeled by FitzHugh–Nagumo oscillators: it is applied to reconstruction of the model parameters and elements of the measurement matrix, as well as to inference of the time-varying parameters of the non-stationary system. It is shown that the proposed approach is able to reconstruct unmeasured (hidden) variables of the system, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator and to track the continuous evolution of the control parameters in the adiabatic limit

  18. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site

    Directory of Open Access Journals (Sweden)

    Xuhui He

    2017-09-01

    Full Text Available The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  19. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site.

    Science.gov (United States)

    He, Xuhui; Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo; Wang, Hao

    2017-09-22

    The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.

  20. Advantages of the non-stationary approach: test on eddy current signals

    International Nuclear Information System (INIS)

    Brunel, P.

    1993-12-01

    Conventional signal processing is often unsuitable for the interpretation of intrinsically non-stationary signals, such as surveillance or non destructive testing signals. In these cases, ''advanced'' methods are required. This report presents two applications of non-stationary signal processing methods to the complex signals obtained in eddy current non destructive testing of steam generator tubes. The first application consists in segmenting the absolute channel, which can be likened to a piecewise constant signal. The Page-Hinkley cumulative sum algorithm is used, enabling detection of unknown mean amplitude jumps in a piecewise constant signal disturbed by a white noise. Results are comparable to those obtained with the empirical method currently in use. As easy to implement as the latter, the Page-Hinkley algorithm has the added advantage of being well formalized and of identifying whether the jumps in mean are positive or negative. The second application concerns assistance in detecting characteristic fault transients in the differential channels, using the continuous wavelet transform. The useful signal and noise spectra are fairly close, but not strictly identical. With the continuous wavelet transform, these frequency differences can be turned to account. The method was tested on synthetic signals obtained by summing noise and real defect signals. Using the continuous wavelet transform reduces the minimum signal-to-noise ratio by 5 dB for detection of a transient as compared with direct detection on the original signal. Finally, a summary of non-stationary methods using our data is presented. The two investigations described confirm that non-stationary methods may be considered as interesting signal and image analysis tools, as an efficient complement to conventional methods. (author). 24 figs., 13 refs

  1. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  2. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, I. [IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France); Ferré, G., E-mail: gregoire.ferre@ponts.org [CERMICS – Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2 (France); Poirion, F. [Department of Structural Dynamics and Aeroelasticity, ONERA, BP 72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France); Benoit, M. [Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13 (France)

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights).

  3. Autocalibration method for non-stationary CT bias correction.

    Science.gov (United States)

    Vegas-Sánchez-Ferrero, Gonzalo; Ledesma-Carbayo, Maria J; Washko, George R; Estépar, Raúl San José

    2018-02-01

    Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, the deleterious effects of radiation exposure inherent in CT imaging require the development of image reconstruction methods which can reduce exposure levels. The development of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that of CT images acquired with much higher radiation dosages. However, the characterization and calibration of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is limited to select global reference values and does not consider other inherent factors of the acquisition that depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the systematic bias observed in devices from different vendors. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed methods for removing the intra-device and inter-device reconstruction biases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Condition Monitoring of Machinery in Non-Stationary Operations : Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationnary Operations"

    CERN Document Server

    Bartelmus, Walter; Chaari, Fakher; Zimroz, Radoslaw; Haddar, Mohamed

    2012-01-01

    Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers...

  5. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    Science.gov (United States)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  6. Self-organising mixture autoregressive model for non-stationary time series modelling.

    Science.gov (United States)

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  7. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 (India); Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics (SINP), Sector 1, Block-AF, Bidhannagar, Kolkata 700064 (India)

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.

  8. Blur Detection is Unaffected by Cognitive Load.

    Science.gov (United States)

    Loschky, Lester C; Ringer, Ryan V; Johnson, Aaron P; Larson, Adam M; Neider, Mark; Kramer, Arthur F

    2014-03-01

    Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N -back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N -back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N -back level on N -back performance, scene recognition memory, and gaze dispersion, but no effect of N -back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by

  9. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang; Wang, Wei

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non

  10. Reduction of Non-stationary Noise using a Non-negative Latent Variable Decomposition

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Larsen, Jan

    2008-01-01

    We present a method for suppression of non-stationary noise in single channel recordings of speech. The method is based on a non-negative latent variable decomposition model for the speech and noise signals, learned directly from a noisy mixture. In non-speech regions an over complete basis...... is learned for the noise that is then used to jointly estimate the speech and the noise from the mixture. We compare the method to the classical spectral subtraction approach, where the noise spectrum is estimated as the average over non-speech frames. The proposed method significantly outperforms...

  11. A comparison of three approaches to non-stationary flood frequency analysis

    Science.gov (United States)

    Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.

    2017-08-01

    Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".

  12. Influence of stationary and non-stationary conditions on drying time and mechanical properties of a porcelain slab

    Science.gov (United States)

    Hammouda, Imen; Mihoubi, Daoued

    2017-12-01

    This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.

  13. Recovery and deformation substructures of zircaloy-4 in high temperature plasticity under stationary or non-stationary stress

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, I.

    1982-01-01

    It was the aim of the present investigation to examine how the recovery rate in creep is influenced by a non-stationary stress. For purposes of phenomenological analysis it is postulated that, irrespective of whether the applied stress is stationary or not, for large strains the mean internal stress sigmasub(i) approaches a stationary value sigmasub(i,s). The stationary recovery rate Rsub(s) for constant load creep turns out be governed by the applied stress indicating that the recovery mechanism is dynamic in nature. For sigma-ramp loading, Rsub(s) is dependent on the stress rate sigma. In tensional stress cycling, Rsub(s) is governed by the maximum stress sigmasub(M) and is also dependent on the ratio of sigmasub(M) to the minimum stress sigma 0 . TEM examination of Zircaloy-4 specimens crept at 800 0 C at constant and cycling load respectively could not reveal any differences in the deformation substructure for the two loading types. Subgrain formation did not appear, individual dislocations were observed only rarely. However, typical networks were formed as well as pileups which perhaps are responsible for the back stress in high temperature plasticity (HTP). (orig.)

  14. Cointegration and Econometric Analysis of Non-Stationary Data in ...

    African Journals Online (AJOL)

    This is in conformity with the philosophy underlying the cointegration theory. Therefore, ignoring cointegration in non-stationary time series variables could lead to misspecification of the underlying process in the determination of corporate income tax in Nigeria. Thus, the study conclude that cointegration is greatly enhanced ...

  15. Detection of Unusual Events and Trends in Complex Non-Stationary Data Streams

    International Nuclear Information System (INIS)

    Perez, Rafael B.; Protopopescu, Vladimir A.; Worley, Brian Addison; Perez, Cristina

    2006-01-01

    The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for a host of different applications, ranging from nuclear power plant and electric grid operation to internet traffic and implementation of non-proliferation protocols. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden intermittent events inside non-stationary signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method

  16. Introduction and application of non-stationary standardized precipitation index considering probability distribution function and return period

    Science.gov (United States)

    Park, Junehyeong; Sung, Jang Hyun; Lim, Yoon-Jin; Kang, Hyun-Suk

    2018-05-01

    The widely used meteorological drought index, the Standardized Precipitation Index (SPI), basically assumes stationarity, but recent changes in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process was proposed. The results were evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered that the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite that these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the probability distribution wider than before. This implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.

  17. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  18. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  19. A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation

    Science.gov (United States)

    Byun, K.; Hamlet, A. F.

    2017-12-01

    There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.

  20. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Jordi-Roger Riba [EUETII, Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya, Placa del Rei 15, 08700 Igualada, Barcelona (Spain); Garcia Espinosa, Antonio [Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain); Romeral, Luis; Cusido, Jordi [Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain)

    2010-10-15

    Permanent magnet synchronous motors (PMSMs) are applied in high performance positioning and variable speed applications because of their enhanced features with respect to other AC motor types. Fault detection and diagnosis of electrical motors for critical applications is an active field of research. However, much research remains to be done in the field of PMSM demagnetization faults, especially when running under non-stationary conditions. This paper presents a time-frequency method specifically focused to detect and diagnose demagnetization faults in PMSMs running under non-stationary speed conditions, based on the Hilbert Huang transform. The effectiveness of the proposed method is proven by means of experimental results. (author)

  1. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens

    2011-04-01

    We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  2. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  3. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  4. Probing Gamma-ray Emission of Geminga & Vela with Non-stationary Models

    Directory of Open Access Journals (Sweden)

    Yating Chai

    2016-06-01

    Full Text Available It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

  5. Trend analysis using non-stationary time series clustering based on the finite element method

    OpenAIRE

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-01-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...

  6. A New Method for Non-linear and Non-stationary Time Series Analysis:
    The Hilbert Spectral Analysis

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...

  7. A non-stationary cost-benefit analysis approach for extreme flood estimation to explore the nexus of 'Risk, Cost and Non-stationarity'

    Science.gov (United States)

    Qi, Wei

    2017-11-01

    Cost-benefit analysis is commonly used for engineering planning and design problems in practice. However, previous cost-benefit based design flood estimation is based on stationary assumption. This study develops a non-stationary cost-benefit based design flood estimation approach. This approach integrates a non-stationary probability distribution function into cost-benefit analysis, and influence of non-stationarity on expected total cost (including flood damage and construction costs) and design flood estimation can be quantified. To facilitate design flood selections, a 'Risk-Cost' analysis approach is developed, which reveals the nexus of extreme flood risk, expected total cost and design life periods. Two basins, with 54-year and 104-year flood data respectively, are utilized to illustrate the application. It is found that the developed approach can effectively reveal changes of expected total cost and extreme floods in different design life periods. In addition, trade-offs are found between extreme flood risk and expected total cost, which reflect increases in cost to mitigate risk. Comparing with stationary approaches which generate only one expected total cost curve and therefore only one design flood estimation, the proposed new approach generate design flood estimation intervals and the 'Risk-Cost' approach selects a design flood value from the intervals based on the trade-offs between extreme flood risk and expected total cost. This study provides a new approach towards a better understanding of the influence of non-stationarity on expected total cost and design floods, and could be beneficial to cost-benefit based non-stationary design flood estimation across the world.

  8. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems.

    Science.gov (United States)

    Park, Jeryang; Rao, P Suresh C

    2014-11-15

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Non-stationary hydrologic frequency analysis using B-spline quantile regression

    Science.gov (United States)

    Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

    2017-11-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

  10. The Fourier decomposition method for nonlinear and non-stationary time series analysis.

    Science.gov (United States)

    Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik

    2017-03-01

    for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

  11. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks

    DEFF Research Database (Denmark)

    Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj

    2015-01-01

    We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potent...

  12. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert

    Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  13. IDENTIFIKASI DISTORSI BLUR PADA GAMBAR DIGITAL

    Directory of Open Access Journals (Sweden)

    Irwan Prasetya Gunawan

    2012-05-01

    Full Text Available Salah satu masalah yang sering muncul dalam dunia fotografi adalah efek blur yang dapat diakibatkan baik oleh objek yang bergerak maupun gerakan kamera yang berhubungan dengan kecepatan rana (shutter speed ketika gambar akan diambil. Paper ini menyajikan sebuah metode baru yang sederhana untuk mendeteksi kemunculan distorsi blur yang tidak diinginkan pada gambar digital. Metode yang diusulkan menggunakan transformasi discrete cosine transform (DCT pada gambar yang telah mengalami distorsi dengan ukuran blok DCT yang bervariasi. Hasil dari pendeteksian ini kemudian digunakan untuk meningkatkan kualitas gambar melalui metode debluring berdasarkan korelasi pixel yang diterapkan pada area tertentu pada gambar yang mengandung distorsi blur ini. Hasil eksperimen menunjukkan bahwa kualitas gambar yang disempurnakan dihasilkan oleh metode debluring secara selektif menggunakan deteksi distorsi blur lokal akan lebih baik daripada yang tidak melalui proses seleksi. Dari berbagai ukuran blok yang digunakan dalam percobaan, blok berukuran 32×32 piksel menghasilkan kualitas gambar yang secara umum lebih baik. One of the problems that often arise in photography is a blurring effect that can be caused either by a moving object or camera movements that associated with the shutter speed when the picture is taken. This paper presents a simple new method for detecting the appearance of unwanted blur distortion in digital images. The proposed method uses the transformation of Discrete Cosine Transform (DCT on the image that has been distorted with varying DCT block size. The results of the detection used to improve image quality through debluring method based on pixel correlation that applied to certain areas of the image that contains this blur distortion. The experimental results show that the enhanced picture quality produced by the method of selectively debluring using a local blur distortion detection is better than not through the selection process

  14. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert

    Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  15. Is the Labour Force Participation Rate Non-Stationary in Romania?

    Directory of Open Access Journals (Sweden)

    Tiwari Aviral Kumar

    2015-01-01

    Full Text Available The purpose of this paper is to test hysteresis of the Romanian labour force participation rate, by using time series data, with quarterly frequency, covering the period 1999Q1-2013Q4. The main results reveal that the Romanian labour force participation rate is a nonlinear process and has a partial unit root (i.e. it is stationary in the first regime and non-stationary in the second one, the main breaking point being registered around year 2005. In this context, the value of using unemployment rate as an indicator for capturing joblessness in this country is debatable. Starting from 2005, the participation rate has not followed long-term changes in unemployment rate, the disturbances having permanent effects on labour force participation rate.

  16. On the dynamics of non-stationary binary stellar systems

    International Nuclear Information System (INIS)

    Bekov, A. A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2005-01-01

    The motion of test body in the external gravitational field of the binary stellar system with slowly variable some physical parameters of radiating components is considered on the base of restricted non-stationary photo-gravitational three and two bodies problem. The family of polar and coplanar solutions are obtained. These solutions give the possibility of the dynamical and structure interpretation of the binary young evolving stars and galaxies. (author)

  17. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    Directory of Open Access Journals (Sweden)

    Yin Yanshu

    2017-12-01

    Full Text Available In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  18. AUTOMATIC CONTROL OF PARAMETERS OF A NON-STATIONARY OBJECT WITH CROSS LINKS

    Directory of Open Access Journals (Sweden)

    A. Pavlov

    2018-04-01

    Full Text Available Many objects automatic control unsteady. This is manifested in the change of their parameters. Therefore, periodically adjust the required parameters of the controller. This work is usually carried out rarely. For a long time, regulators are working with is not the optimal settings. The consequence of this is the low quality of many industrial control systems. The solution problem is the use of robust controllers. ACS with traditional PI and PID controllers have a very limited range of normal operation modes due to the appearance of parametric disturbances due to changes in the characteristics of the automated unit and changes in the load on it. The situation is different when using in the architecture of artificial neural network controllers. It is known that when training a neural network, the adaptation procedure is often used. This makes it possible to greatly expand the area of normal operating modes of ACS with neural automatic regulators in comparison with traditional linear regulators. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional object, provided that when designing the ACS at the stage of its simulation in the model of the regulatory object model, an adequate simulation model of the executive device. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional regulatory object model, an adequate simulation model of the executive device. Especially actual implementation of all these requirements in the application of electric actuators. This article fully complies with these requirements. This is what makes it possible to provide a guaranteed quality of control in non-stationary ACS with multidimensional objects and cross-links between control channels. The possibility of using a known hybrid automatic regulator to stabilize the parameters of a two-channel non-stationary object with two cross-linked. A

  19. Optimizing a Military Supply Chain in the Presence of Random, Non-Stationary Demands

    National Research Council Canada - National Science Library

    Yew

    2003-01-01

    ... logistics supply chain that satisfies uncertain, non-stationary demands, while taking into account the volatility and singularity of military operations This research focuses on the development...

  20. Recognition of Images Degraded by Gaussian Blur

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Farokhi, Sajad; Höschl, Cyril; Suk, Tomáš; Zitová, Barbara; Pedone, M.

    2016-01-01

    Roč. 25, č. 2 (2016), s. 790-806 ISSN 1057-7149 R&D Projects: GA ČR(CZ) GA15-16928S Institutional support: RVO:67985556 Keywords : Blurred image * object recognition * blur invariant comparison * Gaussian blur * projection operators * image moments * moment invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.828, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0454335.pdf

  1. Chromatic blur perception in the presence of luminance contrast.

    Science.gov (United States)

    Jennings, Ben J; Kingdom, Frederick A A

    2017-06-01

    Hel-Or showed that blurring the chromatic but not the luminance layer of an image of a natural scene failed to elicit any impression of blur. Subsequent studies have suggested that this effect is due either to chromatic blur being masked by spatially contiguous luminance edges in the scene (Journal of Vision 13 (2013) 14), or to a relatively compressed transducer function for chromatic blur (Journal of Vision 15 (2015) 6). To test between the two explanations we conducted experiments using as stimuli both images of natural scenes as well as simple edges. First, we found that in color-and-luminance images of natural scenes more chromatic blur was needed to perceptually match a given level of blur in an isoluminant, i.e. colour-only scene. However, when the luminance layer in the scene was rotated relative to the chromatic layer, thus removing the colour-luminance edge correlations, the matched blur levels were near equal. Both results are consistent with Sharman et al.'s explanation. Second, when observers matched the blurs of luminance-only with isoluminant scenes, the matched blurs were equal, against Kingdom et al.'s prediction. Third, we measured the perceived blur in a square-wave as a function of (i) contrast (ii) number of luminance edges and (iii) the relative spatial phase between the colour and luminance edges. We found that the perceived chromatic blur was dependent on both relative phase and the number of luminance edges, or dependent on the luminance contrast if only a single edge is present. We conclude that this Hel-Or effect is largely due to masking of chromatic blur by spatially contiguous luminance edges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  3. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system

    Science.gov (United States)

    Tucker, Andrew W.; Lu, Jianping; Zhou, Otto

    2013-01-01

    Purpose: In principle, a stationary digital breast tomosynthesis (s-DBT) system has better image quality when compared to continuous motion DBT systems due to zero motion blur of the source. The authors have developed a s-DBT system by using a linear carbon nanotube x-ray source array. The purpose of the current study was to quantitatively evaluate the performance of the s-DBT system; and investigate the dependence of imaging quality on the system configuration parameters. Methods: Physical phantoms were used to assess the image quality of each configuration including inplane resolution as measured by the modulation transfer function (MTF), inplane contrast as measured by the signal difference to noise ratio (SdNR), and depth resolution as measured by the z-axis artifact spread function. Five parameters were varied to create five groups of configurations: (1) total angular span; (2) total number of projection images; (3) distribution of exposure (mAs) across the projection images; (4) entrance dose; (5) detector pixel size. Results: It was found that the z-axis depth resolution increased with the total angular span but was insensitive to the number of projection images, mAs distribution, entrance dose, and detector pixel size. The SdNR was not affected by the angular span or the number of projection images. A decrease in SdNR was observed when the mAs was not evenly distributed across the projection images. As expected, the SdNR increased with entrance dose and when larger pixel sizes were used. For a given detector pixel size, the inplane resolution was found to be insensitive to the total angular span, number of projection images, mAs distribution, and entrance dose. A 25% increase in the MTF was observed when the detector was operating in full resolution mode (70 μm pixel size) compared to 2 × 2 binned mode (140 μm pixel size). Conclusions: The results suggest that the optimal imaging configuration for a s-DBT system is a large angular span, an intermittent

  4. Restoration of motion blurred images

    Science.gov (United States)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  5. Identification of QRS complex in non-stationary electrocardiogram of sick infants.

    Science.gov (United States)

    Kota, S; Swisher, C B; Al-Shargabi, T; Andescavage, N; du Plessis, A; Govindan, R B

    2017-08-01

    Due to the high-frequency of routine interventions in an intensive care setting, electrocardiogram (ECG) recordings from sick infants are highly non-stationary, with recurrent changes in the baseline, alterations in the morphology of the waveform, and attenuations of the signal strength. Current methods lack reliability in identifying QRS complexes (a marker of individual cardiac cycles) in the non-stationary ECG. In the current study we address this problem by proposing a novel approach to QRS complex identification. Our approach employs lowpass filtering, half-wave rectification, and the use of instantaneous Hilbert phase to identify QRS complexes in the ECG. We demonstrate the application of this method using ECG recordings from eight preterm infants undergoing intensive care, as well as from 18 normal adult volunteers available via a public database. We compared our approach to the commonly used approaches including Pan and Tompkins (PT), gqrs, wavedet, and wqrs for identifying QRS complexes and then compared each with manually identified QRS complexes. For preterm infants, a comparison between the QRS complexes identified by our approach and those identified through manual annotations yielded sensitivity and positive predictive values of 99% and 99.91%, respectively. The comparison metrics for each method are as follows: PT (sensitivity: 84.49%, positive predictive value: 99.88%), gqrs (85.25%, 99.49%), wavedet (95.24%, 99.86%), and wqrs (96.99%, 96.55%). Thus, the sensitivity values of the four methods previously described, are lower than the sensitivity of the method we propose; however, the positive predictive values of these other approaches is comparable to those of our method, with the exception of the wqrs approach, which yielded a slightly lower value. For adult ECG, our approach yielded a sensitivity of 99.78%, whereas PT yielded 99.79%. The positive predictive value was 99.42% for both our approach as well as for PT. We propose a novel method for

  6. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Science.gov (United States)

    López, J.; Francés, F.

    2013-08-01

    Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS). Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation) and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  7. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates

    Directory of Open Access Journals (Sweden)

    J. López

    2013-08-01

    Full Text Available Recent evidences of the impact of persistent modes of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, a framework for flood frequency analysis is developed on the basis of a tool that enables us to address the modelling of non-stationary time series, namely, the "generalized additive models for location, scale and shape" (GAMLSS. Two approaches to non-stationary modelling in GAMLSS were applied to the annual maximum flood records of 20 continental Spanish rivers. The results of the first approach, in which the parameters of the selected distributions were modelled as a function of time only, show the presence of clear non-stationarities in the flood regime. In a second approach, the parameters of the flood distributions are modelled as functions of climate indices (Arctic Oscillation, North Atlantic Oscillation, Mediterranean Oscillation and the Western Mediterranean Oscillation and a reservoir index that is proposed in this paper. The results when incorporating external covariates in the study highlight the important role of interannual variability in low-frequency climate forcings when modelling the flood regime in continental Spanish rivers. Also, with this approach it is possible to properly introduce the impact on the flood regime of intensified reservoir regulation strategies. The inclusion of external covariates permits the use of these models as predictive tools. Finally, the application of non-stationary analysis shows that the differences between the non-stationary quantiles and their stationary equivalents may be important over long periods of time.

  8. Modified fluctuation-dissipation theorem for general non-stationary states and application to the Glauber–Ising chain

    International Nuclear Information System (INIS)

    Verley, Gatien; Lacoste, David; Chétrite, Raphaël

    2011-01-01

    In this paper, we present a general derivation of a modified fluctuation-dissipation theorem (MFDT) valid near an arbitrary non-stationary state for a system obeying Markovian dynamics. We show that the method for deriving modified fluctuation-dissipation theorems near non-equilibrium stationary states used by Prost et al (2009 Phys. Rev. Lett. 103 090601) is generalizable to non-stationary states. This result follows from both standard linear response theory and from a transient fluctuation theorem, analogous to the Hatano–Sasa relation. We show that this modified fluctuation-dissipation theorem can be interpreted at the trajectory level using the notion of stochastic trajectory entropy, in a way which is similar to what has been done recently in the case of the MFDT near non-equilibrium steady states (NESS). We illustrate this framework with two solvable examples: the first example corresponds to a Brownian particle in a harmonic trap subjected to a quench of temperature and to a time-dependent stiffness; the second example is a classic model of coarsening systems, namely the 1D Ising model with Glauber dynamics

  9. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...... that the opaque image blur can also be used to add motion blur effects to images in real time....

  10. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-09-01

    This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. The gate Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant

  11. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Yu, Zhicong [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Zeng, Gengsheng L. [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Engineering, Weber State University, Ogden, Utah 84408 (United States)

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac

  12. Blurring Boundaries: From the Danish Welfare State to the European Social Model?

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    Abstract: This paper builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the inte......Abstract: This paper builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context...... and on the integration of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services, 2) Fundamental rights and non-discrimination law...... aspects, and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...

  13. Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model

    Science.gov (United States)

    Narayanan, S.; Raju, G. V.

    1990-09-01

    An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.

  14. Optimal inventory policies with non-stationary supply disruptions and advance supply information

    NARCIS (Netherlands)

    Atasoy, B.; Güllü, R.; Tan, T.

    2012-01-01

    We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages – and hence supply disruption to (some of) her customers

  15. Optimal inventory policies with non-stationary supply disruptions and advance supply information

    NARCIS (Netherlands)

    Atasoy, B.; Güllü, R.; Tan, T.

    2011-01-01

    We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages -and hence supply disruption to (some of) her customers-

  16. Blurring of emotional and non-emotional memories by taxing working memory during recall

    NARCIS (Netherlands)

    van den Hout, Marcel A.; Eidhof, Marloes B.; Verboom, Jesse; Littel, Marianne; Engelhard, Iris M.

    2014-01-01

    Memories that are recalled while working memory (WM) is taxed, e.g., by making eye movements (EM), become blurred during the recall + EM and later recall, without EM. This may help to explain the effects of Eye Movement and Desensitisation and Reprocessing (EMDR) in the treatment of post-traumatic

  17. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model

    Science.gov (United States)

    Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.

    2017-09-01

    The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.

  18. The approximate thermal-model-testing method for non-stationary temperature fields in central zones of fast reactor assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Matukhin, N.M.

    2000-01-01

    The approach to generalization of the non-stationary heat exchange data for the central zones of the nuclear reactor fuel assemblies and the approximate thermal-model-testing criteria are proposed. The fuel assemblies of fast and water-cooled reactors with different fuel compositions have been investigated. The reason of the non-stationary heat exchange is the fuel-energy-release time dependence. (author)

  19. Detrending of non-stationary noise data by spline techniques

    International Nuclear Information System (INIS)

    Behringer, K.

    1989-11-01

    An off-line method for detrending non-stationary noise data has been investigated. It uses a least squares spline approximation of the noise data with equally spaced breakpoints. Subtraction of the spline approximation from the noise signal at each data point gives a residual noise signal. The method acts as a high-pass filter with very sharp frequency cutoff. The cutoff frequency is determined by the breakpoint distance. The steepness of the cutoff is controlled by the spline order. (author) 12 figs., 1 tab., 5 refs

  20. Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter.

    Science.gov (United States)

    Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi

    2016-11-01

    Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes.

  1. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.

    Science.gov (United States)

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-01

    The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  3. Occlusion edge blur: A cue to relative visual depth

    OpenAIRE

    Marshall, J.A.; Burbeck, C.A.; Ariely, D.; Rolland, J.P.; Martin, K.E.

    1996-01-01

    We studied whether the blur/sharpness of an occlusion boundary between a sharply focused surface and a blurred surface is used as a relative depth cue. Observers judged relative depth in pairs of images that differed only in the blurriness of the common boundary between two adjoining texture regions, one blurred and one sharply focused. Two experiments were conducted; in both, observers consistently used the blur of the boundary as a cue to relative depth. However, the strength of the cue, re...

  4. Feasibility study of segmented-parallel-hole collimator for stationary cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR); Utah Univ., Salt Lake City, UT (United States). Dept. of Bioengineering; Zeng, Gengsheng L. [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR)

    2011-07-01

    The goal of this research is to propose a stationary cardiac SPECT system using the segmented parallel-beam collimator and to perform some computer simulations to test the feasibility. A stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A 2-detector, multi-segment collimator system with 14 view-angles over 180 in the transaxial direction and 3 view-angles in the axial directions was designed, where the two detectors are configured 90 apart in an L-shape. We applied the parallel-beam imaging geometry and used segmented parallel-hole collimator to acquire SPECT data. To improve the system condition due to data truncation, we measured more rays within the field-of-view (FOV) of the detector by using a relatively small detector bin-size. In image reconstruction, we used the maximum-likelihood expectation-maximization (ML-EM) algorithm. The criterion for evaluating the system is the summed pixel-to-pixel distance that measures the discrepancy between the 3D gold-standard image and the reconstructed 3D region of interest (ROI) with truncated data. Effects of limited number of view-angles, data truncation, varying body habitus, attenuation, and noise were considered in the system design. As a result, our segmented-parallel-beam stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging and has a high sensitivity gain. (orig.)

  5. Local polynomial Whittle estimation covering non-stationary fractional processes

    DEFF Research Database (Denmark)

    Nielsen, Frank

    to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....

  6. Efficient Image Blur in Web-Based Applications

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Scripting languages require the use of high-level library functions to implement efficient image processing; thus, real-time image blur in web-based applications is a challenging task unless specific library functions are available for this purpose. We present a pyramid blur algorithm, which can ...

  7. Enhancement of Non-Stationary Speech using Harmonic Chirp Filters

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, the issue of single channel speech enhancement of non-stationary voiced speech is addressed. The non-stationarity of speech is well known, but state of the art speech enhancement methods assume stationarity within frames of 20–30 ms. We derive optimal distortionless filters that take...... the non-stationarity nature of voiced speech into account via linear constraints. This is facilitated by imposing a harmonic chirp model on the speech signal. As an implicit part of the filter design, the noise statistics are also estimated based on the observed signal and parameters of the harmonic chirp...... model. Simulations on real speech show that the chirp based filters perform better than their harmonic counterparts. Further, it is seen that the gain of using the chirp model increases when the estimated chirp parameter is big corresponding to periods in the signal where the instantaneous fundamental...

  8. Staffing a call center with uncertain non-stationary arrival rate and flexibility

    NARCIS (Netherlands)

    Liao, S.; van Delft, C.; Jouini, O.; Koole, G.M.

    2012-01-01

    We consider a multi-period staffing problem in a single-shift call center. The call center handles inbound calls, as well as some alternative back-office jobs. The call arrival process is assumed to follow a doubly non-stationary stochastic process with a random mean arrival rate. The inbound calls

  9. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  10. Blind estimation of blur in hyperspectral images

    Science.gov (United States)

    Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir

    2017-10-01

    Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial

  11. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    Science.gov (United States)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  12. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Chang, C C; Hsiao, T C; Kao, S C; Hsu, H Y

    2014-01-01

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  13. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    Science.gov (United States)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  14. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  15. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  16. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    Science.gov (United States)

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  18. A Monte Carlo simulation model for stationary non-Gaussian processes

    DEFF Research Database (Denmark)

    Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.

    2003-01-01

    includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...

  19. Around and about an application of the GAMLSS package to non-stationary flood frequency analysis

    Science.gov (United States)

    Debele, S. E.; Bogdanowicz, E.; Strupczewski, W. G.

    2017-08-01

    The non-stationarity of hydrologic processes due to climate change or human activities is challenging for the researchers and practitioners. However, the practical requirements for taking into account non-stationarity as a support in decision-making procedures exceed the up-to-date development of the theory and the of software. Currently, the most popular and freely available software package that allows for non-stationary statistical analysis is the GAMLSS (generalized additive models for location, scale and shape) package. GAMLSS has been used in a variety of fields. There are also several papers recommending GAMLSS in hydrological problems; however, there are still important issues which have not previously been discussed concerning mainly GAMLSS applicability not only for research and academic purposes, but also in a design practice. In this paper, we present a summary of our experiences in the implementation of GAMLSS to non-stationary flood frequency analysis, highlighting its advantages and pointing out weaknesses with regard to methodological and practical topics.

  20. Production planning of a perishable product with lead time and non-stationary demand

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Haijema, R.; Hendrix, E.M.T.; Rossi, R.; Vorst, van der J.G.A.J.

    2012-01-01

    We study a production planning problem for a perishable product with a fixed lifetime, under a service-level constraint. The product has a non-stationary stochastic demand. Food supply chains of fresh products like cheese and several crop products, are characterised by long lead times due to

  1. A survey of techniques applied to non-stationary waveforms in electrical power systems

    NARCIS (Netherlands)

    Rodrigues, R.P.; Silveira, P.M.; Ribeiro, P.F.

    2010-01-01

    The well-known and ever-present time-varying and non-stationary nature of waveforms in power systems requires a comprehensive and precise analytical basis that needs to be incorporated in the system studies and analyses. This time-varying behavior is due to continuous changes in system

  2. Automatic detection of blurred images in UAV image sets

    Science.gov (United States)

    Sieberth, Till; Wackrow, Rene; Chandler, Jim H.

    2016-12-01

    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of

  3. Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data

    Science.gov (United States)

    2017-03-01

    of low-cost autonomous drones. The on-station time will no longer be dictated by human factors, but instead by the platforms’ capabilities. A...Imagine the task of detecting only moving cars but ignoring stationary cars . An object detector could probably do very well by looking for clues in a...single frame of video: cars in parking spots are usually stationary, moving cars may have a motion blur, and if it had an infrared sensor it could even

  4. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    Science.gov (United States)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  6. Dynamics in stationary, non-globally hyperbolic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Seggev, Itai [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States)

    2004-06-07

    Classically, the dynamics of a scalar field in a non-globally hyperbolic spacetime is ill-posed. Previously, a prescription was given for defining dynamics in static spacetimes in terms of a second-order operator acting on a Hilbert space defined on static slices. The present work extends this result by giving a similar prescription for defining dynamics in stationary spacetimes obeying certain mild assumptions. The prescription is defined in terms of a first-order operator acting on a different Hilbert space from that used in the static prescription. It preserves the important properties of the earlier prescription: the formal solution agrees with the Cauchy evolution within the domain of dependence, and smooth data of compact support always give rise to smooth solutions. In the static case, the first-order formalism agrees with the second-order formalism (using specifically the Friedrichs extension). Applications to field quantization are also discussed.

  7. Homogenization and two scales convergence of some stationary and non-stationary heat transfer problems, application to gas cooled nuclear rectors

    International Nuclear Information System (INIS)

    Habibi, Z.

    2011-01-01

    We are interested in the homogenization of heat transfer in periodic porous media modelling the geometry of a gas cooled nuclear reactor. This geometry is made of a solid media perforated by several long thin parallel cylinders, the diameter of which is of the same order than the period. The heat is transported by conduction in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the cylinders). A non-local boundary condition models the radiative heat transfer on the cylinder walls. It is a stationary analysis corresponding to a nominal performance of the reactor core, and also non-stationary corresponding to a normal shut-down of the core. To obtain the homogenized problem we first use a formal two-scale asymptotic expansion method. The mathematical justification of our results is based on the notion of two-scale convergence. One feature of this work in dimension 3 is that it combines homogenization with a 3D to 2D asymptotic analysis since the radiative transfer in the limit cell problem is purely two-dimensional. A second feature of this work is the study of this heat transfer when it contains an oscillating thermal source at the microscopic level and a thermal exchange with the perforations. In this context, our numerical analysis shows a non-negligible contribution of the second order corrector which helps us to model the gradients appearing between the source area and the perforations. (author) [fr

  8. Effect of non-stationary climate on infectious gastroenteritis transmission in Japan

    OpenAIRE

    Onozuka, Daisuke

    2014-01-01

    Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Sou...

  9. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    International Nuclear Information System (INIS)

    Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.

    2013-01-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods

  10. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    Science.gov (United States)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  11. Teaching geographical hydrology in a non-stationary world

    Science.gov (United States)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and

  12. [A design of refractometer based on blur circle].

    Science.gov (United States)

    Zhang, Yikui; Huang, Shenghai; Ye, Huifang; Zou, Ruitao; Tong, Gengmin; Zhuo, Ran

    2011-03-01

    Design a convenient and stable eye refractometer based on the theory of blur circle. Analyze the retinal blur circle in both Emsly reduced eye model and Liou & Brennan 1997 eye model by ZEMAX. Design the coefficients including PD (pupil diameter) and NO' (length between node point and fovea) with the purpose of improving the accuracy. At last, compare the clinical optometry data from this refractor with the data obtained from optometry hospital in Wenzhou. The blur circle diameters are nearly the same in both reduced eye model and the Liou & Brennan 1997 eye model. With the PD = 4 mm and NO' = 20 mm, the refractor shows a fine accuracy in optometry. The paired t test shows that the myopia group and the astigmatism axial direction group have no statistical difference between the data from the blur circle refractor and the hospital (P > 0.05), while the astigmatism degree group has the result of P = 0.41 which may be caused by the poor cooperation of pediatric patients. 80% of the astigmatism degree data differ from the data from the hospital in less than 0.75D. The blur circle refractor, with the features of convenience and fine accuracy, is promised to be a new style of refractometer in the future.

  13. Non-stationary vibrations of a thin viscoelastic orthotropic beam

    Czech Academy of Sciences Publication Activity Database

    Adámek, V.; Valeš, František; Tikal, B.

    2009-01-01

    Roč. 71, č. 12 (2009), e2569-e2576 ISSN 0362-546X R&D Projects: GA ČR(CZ) GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin beam * non-stationary vibration * analytical solution Subject RIV: BI - Acoustics Impact factor: 1.487, year: 2009 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0Y-4WB3N8S-4&_user=640952&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1156243286&_rerunOrigin= google &_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=ce096901a3382058455e822a20645820

  14. INTEGRATION OF IMAGE-DERIVED AND POS-DERIVED FEATURES FOR IMAGE BLUR DETECTION

    Directory of Open Access Journals (Sweden)

    T.-A. Teo

    2016-06-01

    Full Text Available The image quality plays an important role for Unmanned Aerial Vehicle (UAV’s applications. The small fixed wings UAV is suffering from the image blur due to the crosswind and the turbulence. Position and Orientation System (POS, which provides the position and orientation information, is installed onto an UAV to enable acquisition of UAV trajectory. It can be used to calculate the positional and angular velocities when the camera shutter is open. This study proposes a POS-assisted method to detect the blur image. The major steps include feature extraction, blur image detection and verification. In feature extraction, this study extracts different features from images and POS. The image-derived features include mean and standard deviation of image gradient. For POS-derived features, we modify the traditional degree-of-linear-blur (blinear method to degree-of-motion-blur (bmotion based on the collinear condition equations and POS parameters. Besides, POS parameters such as positional and angular velocities are also adopted as POS-derived features. In blur detection, this study uses Support Vector Machines (SVM classifier and extracted features (i.e. image information, POS data, blinear and bmotion to separate blur and sharp UAV images. The experiment utilizes SenseFly eBee UAV system. The number of image is 129. In blur image detection, we use the proposed degree-of-motion-blur and other image features to classify the blur image and sharp images. The classification result shows that the overall accuracy using image features is only 56%. The integration of image-derived and POS-derived features have improved the overall accuracy from 56% to 76% in blur detection. Besides, this study indicates that the performance of the proposed degree-of-motion-blur is better than the traditional degree-of-linear-blur.

  15. New Non-Stationary Gradient Model of Heat-Mass-Electric Charge Transfer in Thin Porous Media

    Directory of Open Access Journals (Sweden)

    V. Rogankov

    2017-10-01

    Full Text Available The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f medium needs the new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs. It should be supplemented by the respective coupled thermal and caloric equations of state (EOS developed specially for PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions adopted by the linear (or quasi-linear non-equilibrium thermodynamics are based on the empirical gradient-caused correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The most questionable but typical modeling suppositions of the stationary gradient (SG theory are: 1 the assumption of incompressibility accepted, as a rule, for f-flows; 2 the ignorance of distinctions between the hydrophilic and hydrophobic influence of a porous matrix on the properties; 3 the omission of effects arising due to the concomitant phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4 the use of exclusively Gibbsian (i.e. homogeneous and everywhere differentiable description of any f-phase in PM; 5 the very restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as well as of the heat velocity field in the balance equation of internal energy; 6 the neglect of the new specific peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size macroscopic (N,V-system of discrete particles. This work is an attempt to develop the alternative non-stationary gradient (NSG model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1-6 to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM. We will suppose that it is composed by two

  16. Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform

    International Nuclear Information System (INIS)

    Liu, Yangqing; Tan, Yi; Xie, Huiqiao; Wang, Wenhao; Gao, Zhe

    2014-01-01

    An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas

  17. Expanding the experience of using non-stationary waterflooding technology with changing direction of the filtration flow in the example of the Northern Buzachi field

    Directory of Open Access Journals (Sweden)

    E.M. Almukhametova

    2018-06-01

    Full Text Available Abstract. The last few years, work has been carried out to study the effectiveness of non-stationary exposure in the highly viscous oil field Northern Buzachi (Republic of Kazakhstan. It has been proved that this technology is quite effective in the development of highly viscous oil reservoirs, however, in order to constantly maintain high technological effect, a constant modification of this technology is required, since it has a characteristic feature of rapid «aging». Further search for the conditions of effective application of non-stationary exposure on highly-viscous oil deposits can be carried out in two directions: the implementation of non-stationary exposure in new areas with other reservoir parameters and the change in the parameters of non-stationary exposure technology (including combining with other technologies in areas where this technology is already in use. Both approaches are used on the Northern Buzachi field. Thus, the positive experience of using non-stationary waterflooding in combination with changing direction of the filtration flow in the section of the seventh block of the Northern Buzachi field allowed us to recommend new sites for the implementation of this technology. With the participation of the author of this work, a non-stationary waterflooding program was developed and implemented on the site of the sixth block (south of the first operational facility.

  18. Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach.

    Science.gov (United States)

    Pieciak, Tomasz; Aja-Fernandez, Santiago; Vegas-Sanchez-Ferrero, Gonzalo

    2017-10-01

    Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs.

  19. Generalized Predictive Control for Non-Stationary Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1994-01-01

    This paper shows how the generalized predictive control (GPC) can be extended to non-stationary (time-varying) systems. If the time-variation is slow, then the classical GPC can be used in context with an adaptive estimation procedure of a time-invariant ARIMAX model. However, in this paper prior...... knowledge concerning the nature of the parameter variations is assumed available. The GPC is based on the assumption that the prediction of the system output can be expressed as a linear combination of present and future controls. Since the Diophantine equation cannot be used due to the time......-variation of the parameters, the optimal prediction is found as the general conditional expectation of the system output. The underlying model is of an ARMAX-type instead of an ARIMAX-type as in the original version of the GPC (Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987). Automatica, 23, 137-148) and almost all later...

  20. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  1. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  2. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches. © 2010 Springer-Verlag.

  3. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue-Houng, E-mail: yuehoung.hu@gmail.com; Zhao, Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  4. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.; Smołka, M.; Cortes, Adriano Mauricio; Paszyński, M.; Schaefer, R.

    2016-01-01

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme

  5. Radio-Oxidation in Polyolefins: Non-Stationary Kinetic Conditions

    International Nuclear Information System (INIS)

    Dely, N.

    2006-01-01

    In the last fifty years, many authors have been interested in the radio-oxidation processes occurring in polymers. The polymer degradation under ionising radiations in presence of dioxygen is well described by a radical chemistry. The radio-oxidation process occurs in three steps: the first one is the production of radicals P degree by interaction between the polymer and the ionising radiations; then radicals P degree react spontaneously with O 2 solved in the polymer giving a peroxy radical POO degree which attacks the polymer forming a hydroperoxide POOH and a new radical P degree (propagation). The third step corresponds to the termination step, that is bimolecular reactions between radicals. It is generally assumed that the stationary state is rapidly reached and consequently that the oxidation induced during the built-up period of the radical concentration can be neglected. However, to our best knowledge, the temporal evolution of radical concentrations before reaching the steady state regime has never been studied in details. We recently performed a complete study of oxygen consumption under electron irradiation for an EPDM elastomer. An analysis, as function of dose rate and oxygen pressure, and assuming steady state conditions, allowed extracting all the kinetic constants. Starting for these experimental data, we calculated the build-up of the radical concentration by solving numerically the differential equations with help of the Minichem code. We conclude that, in fact, the oxidation induced during the built-up period is negligible. In this paper we show that [P degree] could present a quasi-stationary plateau before reaching its stationary level. Consequently, the full radical time evolution is essentially determined by two characteristic times for reaching the quasi and stationary levels and three concentrations: [P degree] and [POO degree] at the stationary level and [P degree] at the quasi-stationary plateau. We show that realistic approximations can

  6. Identification of Non-Stationary Magnetic Field Sources Using the Matching Pursuit Method

    Directory of Open Access Journals (Sweden)

    Beata Palczynska

    2017-05-01

    Full Text Available The measurements of electromagnetic field emissions, performed on board a vessel have showed that, in this specific environment, a high level of non-stationary magnetic fields (MFs is observed. The adaptive time-frequency method can be used successfully to analyze this type of measured signal. It allows one to specify the time interval in which the individual frequency components of the signal occur. In this paper, the method of identification of non-stationary MF sources based on the matching pursuit (MP algorithm is presented. It consists of the decomposition of an examined time-waveform into the linear expansion of chirplet atoms and the analysis of the matrix of their parameters. The main feature of the proposed method is the modification of the chirplet’s matrix in a way that atoms, whose normalized energies are lower than a certain threshold, will be rejected. On the time-frequency planes of the spectrograms, obtained separately for each remaining chirlpet, it can clearly identify the time-frequency structures appearing in the examined signal. The choice of a threshold defines the computing speed and precision of the performed analysis. The method was implemented in the virtual application and used for processing real data, obtained from measurements of time-vary MF emissions onboard a ship.

  7. Quantum field theory in stationary coordinate systems

    International Nuclear Information System (INIS)

    Pfautsch, J.D.

    1981-01-01

    Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge

  8. Non-stationary ionization in the low ionosphere by gravitational wave action

    International Nuclear Information System (INIS)

    Nikitin, M.A.; Kashchenko, N.M.

    1977-01-01

    Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium

  9. Inventory control for a perishable product with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2013-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  10. Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    International Nuclear Information System (INIS)

    Powell, Jade; Heng, Ik Siong; Torres-Forné, Alejandro; Font, José A; Lynch, Ryan; Trifirò, Daniele; Cuoco, Elena; Cavaglià, Marco

    2017-01-01

    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers. (paper)

  11. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    Directory of Open Access Journals (Sweden)

    Michiaki Inoue

    2017-10-01

    Full Text Available This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time.

  12. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  13. A Single Image Deblurring Algorithm for Nonuniform Motion Blur Using Uniform Defocus Map Estimation

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2017-01-01

    Full Text Available One of the most common artifacts in digital photography is motion blur. When capturing an image under dim light by using a handheld camera, the tendency of the photographer’s hand to shake causes the image to blur. In response to this problem, image deblurring has become an active topic in computational photography and image processing in recent years. From the view of signal processing, image deblurring can be reduced to a deconvolution problem if the kernel function of the motion blur is assumed to be shift invariant. However, the kernel function is not always shift invariant in real cases; for example, in-plane rotation of a camera or a moving object can blur different parts of an image according to different kernel functions. An image that is degraded by multiple blur kernels is called a nonuniform blur image. In this paper, we propose a novel single image deblurring algorithm for nonuniform motion blur images that is blurred by moving object. First, a proposed uniform defocus map method is presented for measurement of the amounts and directions of motion blur. These blurred regions are then used to estimate point spread functions simultaneously. Finally, a fast deconvolution algorithm is used to restore the nonuniform blur image. We expect that the proposed method can achieve satisfactory deblurring of a single nonuniform blur image.

  14. Improved vessel morphology measurements in contrast-enhanced multi-detector computed tomography coronary angiography with non-linear post-processing

    International Nuclear Information System (INIS)

    Ferencik, Maros; Lisauskas, Jennifer B.; Cury, Ricardo C.; Hoffmann, Udo; Abbara, Suhny; Achenbach, Stephan; Karl, W. Clem; Brady, Thomas J.; Chan, Raymond C.

    2006-01-01

    Multi-detector computed tomography (MDCT) permits detection of coronary plaque. However, noise and blurring impair accuracy and precision of plaque measurements. The aim of the study was to evaluate MDCT post-processing based on non-linear image deblurring and edge-preserving noise suppression for measurements of plaque size. Contrast-enhanced MDCT coronary angiography was performed in four subjects (mean age 55 ± 5 years, mean heart rate 54 ± 5 bpm) using a 16-slice scanner (Siemens Sensation 16, collimation 16 x 0.75 mm, gantry rotation 420 ms, tube voltage 120 kV, tube current 550 mAs, 80 mL of contrast). Intravascular ultrasound (IVUS; 40 MHz probe) was performed in one vessel in each patient and served as a reference standard. MDCT vessel cross-sectional images (1 mm thickness) were created perpendicular to centerline and aligned with corresponding IVUS images. MDCT images were processed using a deblurring and edge-preserving noise suppression algorithm. Then, three independent blinded observers segmented lumen and outer vessel boundaries in each modality to obtain vessel cross-sectional area and wall area in the unprocessed MDCT cross-sections, post-processed MDCT cross-sections and corresponding IVUS. The wall area measurement difference for unprocessed and post-processed MDCT images relative to IVUS was 0.4 ± 3.8 mm 2 and -0.2 ± 2.2 mm 2 (p 2 , respectively. In conclusion, MDCT permitted accurate in vivo measurement of wall area and vessel cross-sectional area as compared to IVUS. Post-processing to reduce blurring and noise reduced variability of wall area measurements and reduced measurement bias for both wall area and vessel cross-sectional area

  15. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  16. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  17. Blurred digital mammography images: an analysis of technical recall and observer detection performance.

    Science.gov (United States)

    Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-03-01

    Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.

  18. Can we identify non-stationary dynamics of trial-to-trial variability?

    Directory of Open Access Journals (Sweden)

    Emili Balaguer-Ballester

    Full Text Available Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation. This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies

  19. Real-time reservoir operation considering non-stationary inflow prediction

    Science.gov (United States)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  20. Non-stationary Condition Monitoring of large diesel engines with the AEWATT toolbox

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan; Sigurdsson, Sigurdur

    2005-01-01

    We are developing a specialized toolbox for non-stationary condition monitoring of large 2-stroke diesel engines based on acoustic emission measurements. The main contribution of this toolbox has so far been the utilization of adaptive linear models such as Principal and Independent Component Ana......, the inversion of those angular timing changes called “event alignment”, has allowed for condition monitoring across operation load settings, successfully enabling a single model to be used with realistic data under varying operational conditions-...

  1. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    International Nuclear Information System (INIS)

    Tohme, Michel S; Qi Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a 22 Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  2. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    Science.gov (United States)

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and

  3. Projection Operators and Moment Invariants to Image Blurring

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Suk, Tomáš; Boldyš, Jiří; Zitová, Barbara

    2015-01-01

    Roč. 37, č. 4 (2015), s. 786-802 ISSN 0162-8828 R&D Projects: GA ČR GA13-29225S; GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Blurred image * N-fold rotation symmetry * projection operators * image moments * moment invariants * blur invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 6.077, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0434521.pdf

  4. Regression of non-linear coupling of noise in LIGO detectors

    Science.gov (United States)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  5. An MILP approximation for ordering perishable products with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2014-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  6. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-11-01

    A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

  7. Comparison of postoperative surgical site infection after preoperative marking done with non-sterile stationary grade markers versus sterile surgical markers

    International Nuclear Information System (INIS)

    Mir, Z.A.

    2015-01-01

    Objectives: To compare the frequencies of post- operative surgical site infection after preoperative marking done with non-sterile stationary. grade markers versus sterile surgical markers in the same patient. Design: Randomized control trial. Place and Duration of Study: The department of Plastic surgery, Mayo hospital, Lahore from August 2013 to August 2014. Methods: This study was conducted after taking approval from the departmental ethical committee. Forty consecutive patients were included. A sterile surgical marker was used to mark one incision site while an alcohol based stationary grade marker was used to mark another incision site on the same patient. A standard preoperative, intraoperative and postoperative protocol was followed. Cultures were performed on swabs taken from the incision sites and surgical site infection was assessed for 30 days. Results: The study included 40 patients; 17 males and 23 females. The mean age of subjects was 25.32 ± 19.69 years with the minimum age being 2 years and the maximum being 63 years. No growth was seen in cultures taken from all the incision sites after skin preparation in the non sterile stationary grade marker group as well as the sterile surgical grade marker group. Also no surgical site infection appeared during the 30 day postoperative observation period in the non sterile stationary grade marker group as well as the sterile surgical grade marker group. (author)

  8. Calculation of current-voltage characteristics of electron-capture detectors

    International Nuclear Information System (INIS)

    Hinneburg, D.; Grosse, H.J.; Leonhardt, J.; Popp, P.

    1983-01-01

    Starting from the law of conservation of charge a stationary one-dimensional non-linear differential equation system is derived, which is applied to the direct-current mode of an electron-capture detector with parallel electrode plates. The theory takes into account space-charge, recombination, and inhomogeneous ionization and it deals with three kinds of charge carriers with different mobilities (positive and negative ions, electrons). Terms due to diffusion and gas-flow losses are excluded. The equations so constructed were programmed to get a means of calculating the charge and field distributions and the current-voltage characteristics as functions of various parameters of the detectors, the attaching gas and the ionization. For two cases the results are given. (author)

  9. Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method

    Directory of Open Access Journals (Sweden)

    P. Ribereau

    2008-12-01

    Full Text Available Since the pioneering work of Landwehr et al. (1979, Hosking et al. (1985 and their collaborators, the Probability Weighted Moments (PWM method has been very popular, simple and efficient to estimate the parameters of the Generalized Extreme Value (GEV distribution when modeling the distribution of maxima (e.g., annual maxima of precipitations in the Identically and Independently Distributed (IID context. When the IID assumption is not satisfied, a flexible alternative, the Maximum Likelihood Estimation (MLE approach offers an elegant way to handle non-stationarities by letting the GEV parameters to be time dependent. Despite its qualities, the MLE applied to the GEV distribution does not always provide accurate return level estimates, especially for small sample sizes or heavy tails. These drawbacks are particularly true in some non-stationary situations. To reduce these negative effects, we propose to extend the PWM method to a more general framework that enables us to model temporal covariates and provide accurate GEV-based return levels. Theoretical properties of our estimators are discussed. Small and moderate sample sizes simulations in a non-stationary context are analyzed and two brief applications to annual maxima of CO2 and seasonal maxima of cumulated daily precipitations are presented.

  10. Assessing the extent of non-stationary biases in GCMs

    Science.gov (United States)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-06-01

    General circulation models (GCMs) are the main tools for estimating changes in the climate for the future. The imperfect representation of climate models introduces biases in the simulations that need to be corrected prior to their use for impact assessments. Bias correction methods generally assume that the bias calculated over the historical period does not change and can be applied to the future. This study investigates this assumption by considering the extent and nature of bias non-stationarity using 20th century precipitation and temperature simulations from six CMIP5 GCMs across Australia. Four statistics (mean, standard deviation, 10th and 90th quantiles) in monthly and seasonal biases are obtained for three different time window lengths (10, 25 and 33 years) to examine the properties of bias over time. This approach is repeated for two different phases of the Interdecadal Pacific Oscillation (IPO), which is known to have strong influences on the Australian climate. It is found that bias non-stationarity at decadal timescales is indeed an issue over some of Australia for some GCMs. When considering interdecadal variability there are significant difference in the bias between positive and negative phases of the IPO. Regional analyses confirmed these findings with the largest differences seen on the east coast of Australia, where IPO impacts tend to be the strongest. The nature of the bias non-stationarity found in this study suggests that it will be difficult to modify existing bias correction approaches to account for non-stationary biases. A more practical approach for impact assessments that use bias correction maybe to use a selection of GCMs where the assumption of bias non-stationarity holds.

  11. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  12. DE-BLURRING SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGES USING WAVELET DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi

    2016-02-01

    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  13. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    Science.gov (United States)

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  14. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  15. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    Science.gov (United States)

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  16. Trend analysis using non-stationary time series clustering based on the finite element method

    Science.gov (United States)

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-05-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.

  17. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices

    Directory of Open Access Journals (Sweden)

    Charles Onyutha

    2017-10-01

    Full Text Available Some of the problems in drought assessments are that: analyses tend to focus on coarse temporal scales, many of the methods yield skewed indices, a few terminologies are ambiguously used, and analyses comprise an implicit assumption that the observations come from a stationary process. To solve these problems, this paper introduces non-stationary frequency analyses of quantiles. How to use non-parametric rescaling to obtain robust indices that are not (or minimally skewed is also introduced. To avoid ambiguity, some concepts on, e.g., incidence, extremity, etc., were revisited through shift from monthly to daily time scale. Demonstrations on the introduced methods were made using daily flow and precipitation insufficiency (precipitation minus potential evapotranspiration from the Blue Nile basin in Africa. Results show that, when a significant trend exists in extreme events, stationarity-based quantiles can be far different from those when non-stationarity is considered. The introduced non-parametric indices were found to closely agree with the well-known standardized precipitation evapotranspiration indices in many aspects but skewness. Apart from revisiting some concepts, the advantages of the use of fine instead of coarse time scales in drought assessment were given. The links for obtaining freely downloadable tools on how to implement the introduced methods were provided.

  18. Identification of the structure parameters using short-time non-stationary stochastic excitation

    Science.gov (United States)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  19. Detection of unusual events and trends in complex non-stationary data streams

    International Nuclear Information System (INIS)

    Charlton-Perez, C.; Perez, R.B.; Protopopescu, V.; Worley, B.A.

    2011-01-01

    The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for diverse applications, ranging from power plant operation to homeland security. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden events inside intermittent signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method.

  20. Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation

    International Nuclear Information System (INIS)

    Caraballo, Tomas; Kloeden, Peter E.; Schmalfuss, Bjoern

    2004-01-01

    We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of anon-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities

  1. Internal and external moisture transport resistance during non-stationary adsorption of moisture into wood

    OpenAIRE

    Bučar, Bojan

    2007-01-01

    The assumption that non-stationary sorption processes associated with wood canbe evaluated by analysis of their transient system response to the disturbance developed is undoubtedly correct. In general it is, in fact, possible to obtain by time analysis of the transient phenomenon - involving the transition into an arbitrary new state of equilibrium - all data required for a credible evaluation of the observed system. Evaluation of moisture movement during drying or moistening requires determ...

  2. Luminance cues constrain chromatic blur discrimination in natural scene stimuli.

    Science.gov (United States)

    Sharman, Rebecca J; McGraw, Paul V; Peirce, Jonathan W

    2013-03-22

    Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties.

  3. Planned studies of charge collection in non-uniformly irradiated Si and GaAs detectors

    International Nuclear Information System (INIS)

    Rosenfeld, A.; Reinhard, M.; Carolan, M.; Kaplan, G.; Lerch, M.; Alexiev, D.

    1995-01-01

    The aim of this project is to study the time and amplitude characteristics of silicon ion-implanted detectors non-uniformly irradiated with fast neutrons in order to predict their radiation behaviour in the LHC and space. It is expected in such detectors increases of the charge deficit due to trapping by large scale traps and transient time increases due to the reduction of the mobility. The theoretical model will be modified to describe the charge kinetics in the electrical field of the detector created by a non uniform space charge distribution. Experimental confirmation techniques are needed to develop non uniform predictable damage of silicon detectors using fast neutron sources (accelerators, reactors) and to study peculiarities of the charge transport in different parts of the detector. In parallel to experimental research will be started the theoretical development of the charge transport model for non-uniform distribution of space charge in the depletion layer (Neff). The model will include the linear distribution of Neff(y) along the detector as well as the change of sign of Neff (conversion from n to p type of silicon) inside the detector

  4. Framework for Processing Videos in the Presence of Spatially Varying Motion Blur

    Science.gov (United States)

    2016-02-10

    32 bits, a warped image requires 5000 × 5000 × 32 bits, that is 95.3 megabytes. If all three colour channels are used , this value will triple. Storing...sub-image sizes S. The blur kernels are displayed as binary images with non-zero values shown in white colour . point, any further increase in S...INSTITUTE OF TECHNOLOGY MADRAS Final Report 02/10/2016 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA

  5. Local Directional Probability Optimization for Quantification of Blurred Gray/White Matter Junction in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Xiaoxia Qu

    2017-09-01

    Full Text Available The blurred gray/white matter junction is an important feature of focal cortical dysplasia (FCD lesions. FCD is the main cause of epilepsy and can be detected through magnetic resonance (MR imaging. Several earlier studies have focused on computing the gradient magnitude of the MR image and used the resulting map to model the blurred gray/white matter junction. However, gradient magnitude cannot quantify the blurred gray/white matter junction. Therefore, we proposed a novel algorithm called local directional probability optimization (LDPO for detecting and quantifying the width of the gray/white matter boundary (GWB within the lesional areas. The proposed LDPO method mainly consists of the following three stages: (1 introduction of a hidden Markov random field-expectation-maximization algorithm to compute the probability images of brain tissues in order to obtain the GWB region; (2 generation of local directions from gray matter (GM to white matter (WM passing through the GWB, considering the GWB to be an electric potential field; (3 determination of the optimal local directions for any given voxel of GWB, based on iterative searching of the neighborhood. This was then used to measure the width of the GWB. The proposed LDPO method was tested on real MR images of patients with FCD lesions. The results indicated that the LDPO method could quantify the GWB width. On the GWB width map, the width of the blurred GWB in the lesional region was observed to be greater than that in the non-lesional regions. The proposed GWB width map produced higher F-scores in terms of detecting the blurred GWB within the FCD lesional region as compared to that of FCD feature maps, indicating better trade-off between precision and recall.

  6. Real-time deblurring of handshake blurred images on smartphones

    Science.gov (United States)

    Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser

    2015-02-01

    This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.

  7. Estimation of reproduction number and non stationary spectral analysis of dengue epidemic.

    Science.gov (United States)

    Enduri, Murali Krishna; Jolad, Shivakumar

    2017-06-01

    In this work we analyze the post monsoon Dengue outbreaks by analyzing the transient and long term dynamics of Dengue incidences and its environmental correlates in Ahmedabad city in western India from 2005 to 2012. We calculate the reproduction number R p using the growth rate of post monsoon Dengue outbreaks and biological parameters like host and vector incubation periods and vector mortality rate, and its uncertainties are estimated through Monte-Carlo simulations by sampling parameters from their respective probability distributions. Reduction in Female Aedes mosquito density required for an effective prevention of Dengue outbreaks is also calculated. The non stationary pattern of Dengue incidences and its climatic correlates like rainfall temperature is analyzed through Wavelet based methods. We find that the mean time lag between peak of monsoon and Dengue is 9 weeks. Monsoon and Dengue cases are phase locked from 2008 to 2012 in the 16 to maintain consistency make it "16 to 32" 32 weeks band. The duration of post monsoon outbreak has been increasing every year, especially post 2008, even though the intensity and duration of monsoon has been decreasing. Temperature and Dengue incidences show correlations in the same band, but phase lock is not stationary. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  9. Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali.

    Science.gov (United States)

    Medina, Daniel C; Findley, Sally E; Guindo, Boubacar; Doumbia, Seydou

    2007-11-21

    Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions

  10. Image quality in the anteroposterior cervical spine radiograph: Comparison between moving, stationary and non-grid techniques in a lamb neck

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Michelle [School of Health and Social Care, Faculty of Health and Life Sciences, University of the West of England, Stapleton, Bristol BS16 1DD (United Kingdom); Grange, Stuart, E-mail: Stuart2.Grange@uwe.ac.u [School of Health and Social Care, Faculty of Health and Life Sciences, University of the West of England, Stapleton, Bristol BS16 1DD (United Kingdom)

    2011-05-15

    Background: Cervical spine radiography is a commonly employed examination for degenerative disease and trauma in the cervical spine. Traditionally, the anteroposterior projection is undertaken with the use of an anti-scatter grid. Some practitioners appear to have rejected this practice in favour of a non-grid technique, possibly because of the dose saving it affords. It is necessary to determine if image quality in the cervical spine is significantly degraded and whether the omission of the grid is justified. Method: Using a slaughtered lamb neck as a model of the human neck triplicate radiographs were obtained using a non-grid, a stationary grid and a moving grid technique. Entrance surface dose and dose area product was measured for these techniques. Image quality in terms of contrast, sharpness and overall acceptability was evaluated by 9 independent and blinded observers. Results: A significant reduction in measured dose was observed when the non-grid technique was compared to stationary or moving grid techniques. A statistically significant reduction in image contrast, sharpness and acceptability was also seen in the non-grid compared to grid techniques. Conclusion: These results show evidence of significantly greater image quality in the presence of either a moving or stationary grid in the lamb model. As such they support the continued use of scatter rejection methods such as the anti-scatter grid in AP radiography of the human cervical spine, to optimise radiographic image quality in this critical structure.

  11. Image quality in the anteroposterior cervical spine radiograph: Comparison between moving, stationary and non-grid techniques in a lamb neck

    International Nuclear Information System (INIS)

    Keating, Michelle; Grange, Stuart

    2011-01-01

    Background: Cervical spine radiography is a commonly employed examination for degenerative disease and trauma in the cervical spine. Traditionally, the anteroposterior projection is undertaken with the use of an anti-scatter grid. Some practitioners appear to have rejected this practice in favour of a non-grid technique, possibly because of the dose saving it affords. It is necessary to determine if image quality in the cervical spine is significantly degraded and whether the omission of the grid is justified. Method: Using a slaughtered lamb neck as a model of the human neck triplicate radiographs were obtained using a non-grid, a stationary grid and a moving grid technique. Entrance surface dose and dose area product was measured for these techniques. Image quality in terms of contrast, sharpness and overall acceptability was evaluated by 9 independent and blinded observers. Results: A significant reduction in measured dose was observed when the non-grid technique was compared to stationary or moving grid techniques. A statistically significant reduction in image contrast, sharpness and acceptability was also seen in the non-grid compared to grid techniques. Conclusion: These results show evidence of significantly greater image quality in the presence of either a moving or stationary grid in the lamb model. As such they support the continued use of scatter rejection methods such as the anti-scatter grid in AP radiography of the human cervical spine, to optimise radiographic image quality in this critical structure.

  12. Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions

    Science.gov (United States)

    Gavish, Nir

    2018-04-01

    We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.

  13. Evaluation of a weather generator-based method for statistically downscaling non-stationary climate scenarios for impact assessment at a point scale

    Science.gov (United States)

    The non-stationarity is a major concern for statistically downscaling climate change scenarios for impact assessment. This study is to evaluate whether a statistical downscaling method is fully applicable to generate daily precipitation under non-stationary conditions in a wide range of climatic zo...

  14. Accurate estimation of motion blur parameters in noisy remote sensing image

    Science.gov (United States)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  15. An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch

    Science.gov (United States)

    Schuster, Norbert

    2015-09-01

    Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.

  16. Mathematical modeling of non-stationary gas flow in gas pipeline

    Science.gov (United States)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  17. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  18. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  19. New portable 1200 W X-ray detectors

    International Nuclear Information System (INIS)

    Liebram, A.; Niemann, W.; Nielsen, J.

    2005-01-01

    The contribution presents new detectors of up to 1200 W. The new detectors by YXLON have several of the following advantages, depending on the application: a) Reduced exposure time; b) Higher contrast; c) deeper penetration. The high efficiency, the duty cycle achieved, and the low price make the instruments interesting also for stationary applications in radiography and radioscopy [de

  20. Photon number projection using non-number-resolving detectors

    International Nuclear Information System (INIS)

    Rohde, Peter P; Webb, James G; Huntington, Elanor H; Ralph, Timothy C

    2007-01-01

    Number-resolving photo-detection is necessary for many quantum optics experiments, especially in the application of entangled state preparation. Several schemes have been proposed for approximating number-resolving photo-detection using non-number-resolving detectors. Such techniques include multi-port detection and time-division multiplexing. We provide a detailed analysis and comparison of different number-resolving detection schemes, with a view to creating a useful reference for experimentalists. We show that the ideal architecture for projective measurements is a function of the detector's dark count and efficiency parameters. We also describe a process for selecting an appropriate topology given actual experimental component parameters

  1. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    CERN Document Server

    Ortolan, A; Cerdonio, M; Prodi, G A; Vedovato, G; Vitale, S

    2002-01-01

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio chi sup 2 ...

  2. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  3. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  4. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    Science.gov (United States)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  5. Enhancement and Noise Statistics Estimation for Non-Stationary Voiced Speech

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, single channel speech enhancement in the time domain is considered. We address the problem of modelling non-stationary speech by describing the voiced speech parts by a harmonic linear chirp model instead of using the traditional harmonic model. This means that the speech signal...... through simulations on synthetic and speech signals, that the chirp versions of the filters perform better than their harmonic counterparts in terms of output signal-to-noise ratio (SNR) and signal reduction factor. For synthetic signals, the output SNR for the harmonic chirp APES based filter...... is increased 3 dB compared to the harmonic APES based filter at an input SNR of 10 dB, and at the same time the signal reduction factor is decreased. For speech signals, the increase is 1.5 dB along with a decrease in the signal reduction factor of 0.7. As an implicit part of the APES filter, a noise...

  6. Fluctuation relations in non-equilibrium stationary states of Ising models

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy); Pelizzola, A [Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, and CNISM, Politecnico di Torino, c. Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-01-15

    Fluctuation relations for the entropy production in non-equilibrium stationary states of Ising models are investigated by means of Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, considering different kinetic rules and couplings with the baths, the behaviors of the probability distributions of the heat exchanged in time {tau} with the thermostats, both in the disordered phase and in the low temperature phase, are discussed. The fluctuation relation is always followed in the large {tau} limit and deviations from linear response theory are observed. Finite {tau} corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath, but work is done by shearing it. Also for this system, using the statistics collected for the mechanical work we show the validity of the fluctuation relation and the preasymptotic corrections behave analogously to those for the case with two baths.

  7. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    OpenAIRE

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...

  8. Blurring of the public/private divide: the Canadian chapter.

    Science.gov (United States)

    Flood, Colleen M; Thomas, Bryan

    2010-06-01

    Blurring of public/private divide is occurring in different ways around the world, with differential effects in terms of access and equity. In Canada, one pathway towards privatization has received particular attention: duplicative private insurance, allowing those with the financial means to bypass queues in the public system. We assess recent legal and policy developments on this front, but also describe other trends towards the blurring of public and private in Canada: the reliance on mandated private insurance for pharmaceutical coverage; provincial governments' reliance on public-private partnerships to finance hospitals; and the incorporation of for-profit clinics within the public health care system.

  9. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    Science.gov (United States)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  10. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    CERN Document Server

    Dewar, R

    2003-01-01

    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...

  11. Diagnostics of detector tube impacting with wavelet techniques

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [KFKI-AEKI Applied Reactor Physics, Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Reactor Physics

    1997-12-08

    A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source code written in MATLAB are available at a public ftp site. The necessary information to reproduce the simulation results is also reported. (author).

  12. Diagnostics of detector tube impacting with wavelet techniques

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Pazsit, I

    1998-04-01

    A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source codes written in MATLAB[reg] are available at a public ftp site. The necessary information to reproduce the simulation results is also reported.

  13. The application of unattended ground sensors to stationary targets

    International Nuclear Information System (INIS)

    Sleefe, G.E.; Peglow, S.; Hamrick, R.

    1997-01-01

    The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary target will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures

  14. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  15. Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

    Energy Technology Data Exchange (ETDEWEB)

    Lan, X.G. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); China West Normal University, Institute of Theoretical Physics, Nanchong (China); Jiang, Q.Q. [China West Normal University, Institute of Theoretical Physics, Nanchong (China); Wei, L.F. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China)

    2012-04-15

    We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future. (orig.)

  16. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    Science.gov (United States)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  17. Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN

    Directory of Open Access Journals (Sweden)

    Jeon Seong Kang

    2018-04-01

    Full Text Available Recently, real-time human age estimation based on facial images has been applied in various areas. Underneath this phenomenon lies an awareness that age estimation plays an important role in applying big data to target marketing for age groups, product demand surveys, consumer trend analysis, etc. However, in a real-world environment, various optical and motion blurring effects can occur. Such effects usually cause a problem in fully capturing facial features such as wrinkles, which are essential to age estimation, thereby degrading accuracy. Most of the previous studies on age estimation were conducted for input images almost free from blurring effect. To overcome this limitation, we propose the use of a deep ResNet-152 convolutional neural network for age estimation, which is robust to various optical and motion blurring effects of visible light camera sensors. We performed experiments with various optical and motion blurred images created from the park aging mind laboratory (PAL and craniofacial longitudinal morphological face database (MORPH databases, which are publicly available. According to the results, the proposed method exhibited better age estimation performance than the previous methods.

  18. Entropy production of stationary diffusions on non-compact Riemannian manifolds

    Institute of Scientific and Technical Information of China (English)

    龚光鲁; 钱敏平

    1997-01-01

    The closed form of the entropy production of stationary diffusion processes with bounded Nelson’s current velocity is given.The limit of the entropy productions of a sequence of reflecting diffusions is also discussed.

  19. Altered Ecological Flows Blur Boundaries in Urbanizing Watersheds

    Directory of Open Access Journals (Sweden)

    Todd R. Lookingbill

    2009-12-01

    Full Text Available The relevance of the boundary concept to ecological processes has been recently questioned. Humans in the post-industrial era have created novel lateral transport fluxes that have not been sufficiently considered in watershed studies. We describe patterns of land-use change within the Potomac River basin and demonstrate how these changes have blurred traditional ecosystem boundaries by increasing the movement of people, materials, and energy into and within the basin. We argue that this expansion of ecological commerce requires new science, monitoring, and management strategies focused on large rivers and suggest that traditional geopolitical and economic boundaries for environmental decision making be appropriately revised. Effective mitigation of the consequences of blurred boundaries will benefit from a broad-scale, interdisciplinary framework that can track and explicitly account for ecological fluxes of water, energy, materials, and organisms across human-dominated landscapes.

  20. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i

  1. Study of charge transport in silicon detectors: Non-irradiated and irradiated

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    The electrical characteristics of silicon detectors (standard planar float zone and MESA detectors) as a function of the particle fluence can be extracted by the application of a model describing the transport of charge carriers generated in the detectors by ionizing particles. The current pulse response induced by α and β particles in non-irradiated detectors and detectors irradiated up to fluences PHI ∼ 3 · 10 14 particles/cm 2 is reproduced via this model: i) by adding a small n-type region 15 μm deep on the p + side for the detectors at fluences beyond the n to p-type inversion and ii) for the MESA detectors, by considering one additional dead layer of 14 μm (observed experimentally) on each side of the detector, and introducing a second (delayed) component to the current pulse response. For both types of detectors, the model gives mobilities decreasing linearily up to fluences of about 5·10 13 particles/cm 2 and converging, beyond, to saturation values of about 1050 cm 2 /Vs and 450 cm 2 /Vs for electrons and holes, respectively. At a fluence PHI ∼ 10 14 particles/cm 2 (corresponding to about ten years of operation at the CERN-LHC), charge collection deficits of about 14% for β particles, 25% for α particles incident on the front and 35% for α particles incident on the back of the detector are found for both type of detectors

  2. The simulation of stationary and non-stationary regime operation of heavy water production facilities

    International Nuclear Information System (INIS)

    Peculea, M.; Beca, T.; Constantinescu, D.M.; Dumitrescu, M.; Dimulescu, A.; Isbasescu, G.; Stefanescu, I.; Mihai, M.; Dogaru, C.; Marinescu, M.; Olariu, S.; Constantin, T.; Necula, A.

    1995-01-01

    This paper refers to testing procedures of the production capacity of heavy water production pilot, industrial scale plants and of heavy water reconcentration facilities. Simulation codes taking into account the mass and heat transfers inside the exchange columns were developed. These codes provided valuable insight about the isotope build-up of the installation which allowed estimating the time of reaching the stationary regime. Also transient regimes following perturbations in the operating parameters (i.e. temperature, pressure, fluid rates) of the installation were simulated and an optimal rate of routine inspections and adjustments was thus established

  3. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    Science.gov (United States)

    Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.

    2002-04-01

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.

  4. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    International Nuclear Information System (INIS)

    Ortolan, A; Baggio, L; Cerdonio, M; Prodi, G A; Vedovato, G; Vitale, S

    2002-01-01

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ 2 and the time of arrival are those that are expected

  5. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    Energy Technology Data Exchange (ETDEWEB)

    Ortolan, A [INFN - Laboratori Nazionali di Legnaro, Via Romea, 4 I-35020 Legnaro, Padova (Italy); Baggio, L [Department of Physics, University of Trento and INFN Gruppo Collegato di Trento, I-38050 Povo, Trento (Italy); Cerdonio, M [Department of Physics, University of Padova and INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Prodi, G A [Department of Physics, University of Trento and INFN Gruppo Collegato di Trento, I-38050 Povo, Trento (Italy); Vedovato, G [INFN - Laboratori Nazionali di Legnaro, Via Romea, 4 I-35020 Legnaro, Padova (Italy); Vitale, S [Department of Physics, University of Trento and INFN Gruppo Collegato di Trento, I-38050 Povo, Trento (Italy)

    2002-04-07

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio {chi}{sup 2} and the time of arrival are those that are expected.

  6. Iterative PSF Estimation and Its Application to Shift Invariant and Variant Blur Reduction

    Directory of Open Access Journals (Sweden)

    Seung-Won Jung

    2009-01-01

    Full Text Available Among image restoration approaches, image deconvolution has been considered a powerful solution. In image deconvolution, a point spread function (PSF, which describes the blur of the image, needs to be determined. Therefore, in this paper, we propose an iterative PSF estimation algorithm which is able to estimate an accurate PSF. In real-world motion-blurred images, a simple parametric model of the PSF fails when a camera moves in an arbitrary direction with an inconsistent speed during an exposure time. Moreover, the PSF normally changes with spatial location. In order to accurately estimate the complex PSF of a real motion blurred image, we iteratively update the PSF by using a directional spreading operator. The directional spreading is applied to the PSF when it reduces the amount of the blur and the restoration artifacts. Then, to generalize the proposed technique to the linear shift variant (LSV model, a piecewise invariant approach is adopted by the proposed image segmentation method. Experimental results show that the proposed method effectively estimates the PSF and restores the degraded images.

  7. Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2017-05-01

    In recent years, because the frequency and severity of floods have increased across Canada, it is important to understand the characteristics of Canadian heavy precipitation. Long-term precipitation data of 463 gauging stations of Canada were analyzed using non-stationary generalized extreme value distribution (GEV), Poisson distribution and generalized Pareto (GP) distribution. Time-varying covariates that represent large-scale climate patterns such as El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific decadal oscillation (PDO) and North Pacific Oscillation (NP) were incorporated to parameters of GEV, Poisson and GP distributions. Results show that GEV distributions tend to under-estimate annual maximum daily precipitation (AMP) of western and eastern coastal regions of Canada, compared to GP distributions. Poisson regressions show that temporal clusters of heavy precipitation events in Canada are related to large-scale climate patterns. By modeling AMP time series with non-stationary GEV and heavy precipitation with non-stationary GP distributions, it is evident that AMP and heavy precipitation of Canada show strong non-stationarities (abrupt and slowly varying changes) likely because of the influence of large-scale climate patterns. AMP in southwestern coastal regions, southern Canadian Prairies and the Great Lakes tend to be higher in El Niño than in La Niña years, while AMP of other regions of Canada tends to be lower in El Niño than in La Niña years. The influence of ENSO on heavy precipitation was spatially consistent but stronger than on AMP. The effect of PDO, NAO and NP on extreme precipitation is also statistically significant at some stations across Canada.

  8. Regulation No. 0-31 on handling of radiation flaw-detectors

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation contains mandatory design, commissioning, and operational requirements for laboratories using flaw-detectors emitting ionizing radiation; also, design, manufacturing, and operational requirements for the production of any type of X-ray or gamma-ray flaw-detectors. Laboratories carrying out non-destructive testing are either stationary or mobile. Conceptual and operating designs are elaborated, including the building and the laboratory lay-outs, the mains, water supply, and sewerage system technological lay-out, explanatory comments, and a lay-out of the shielding equipment. Approbated designs are implemented, and the laboratories commissioned to representatives of the State Sanitary Inspectorate. Licences are issued by the Ministry of Public Health (MPH) and the Committee on Peaceful Uses of Atomic Energy (CPUAE). Any flaw-detector has to conform to the Bulgarian State Standards and be coordinated with the MPH, the CPUAE, and the Central Laboratory for Nuclear Flaw-Detection (CLNFD). The laboratories are required to have operational instructions, an emergency plan, and to keep technological and dosimetric records. The latter are provided and processed by the relevant service at the Research Institute of Radiobiology and Radiation Hygiene. For operations involving of flaw-detectors, presence of at least two workers is required. (G.G.)

  9. Blurred image restoration using knife-edge function and optimal window Wiener filtering

    Science.gov (United States)

    Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950

  10. Identifying and tracking switching, non-stationary opponents: a Bayesian approach

    CSIR Research Space (South Africa)

    Hernandez-Leal, P

    2016-02-01

    Full Text Available extend BPR to adversarial settings, in particular, to opponents that switch from one stationary strategy to another. Our proposed extension enables learning new models in an online fashion when the learning agent detects that the current policies...

  11. The Methods of Information Security Based on Blurring of System

    Directory of Open Access Journals (Sweden)

    Mikhail Andreevich Styugin

    2016-03-01

    Full Text Available The paper present the model of researching system with own known input, output and set of discrete internal states. These theoretical objects like an absolutely protected from research system and an absolutely indiscernible data transfer channel are defined. Generalization of the principle of Shannon Secrecy are made. The method of system blurring is defined. Theoretically cryptographically strong of absolutely indiscernible data transfer channel is proved and its practical unbreakable against unreliable pseudo random number generator is shown. This paper present system with blurring of channel named Pseudo IDTC and shown asymptotic complexity of break this system compare with AES and GOST.

  12. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    Science.gov (United States)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all

  13. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  14. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  15. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Friis Hansen, P.; Garrè, Luca

    2014-01-01

    Urban flooding introduces significant risk to society. Non-stationarity leads to increased uncertainty and this is challenging to include in actual decision-making. The primary objective of this study was to develop a risk assessment and decision support framework for pluvial urban flood risk under...... non-stationary conditions using an influence diagram (ID) which is a Bayesian network (BN) extended with decision and utility nodes. Non-stationarity is considered to be the influence of climate change where extreme precipitation patterns change over time. The overall risk is quantified in monetary...... terms expressed as expected annual damage. The network is dynamic in as much as it assesses risk at different points in time. The framework provides means for decision-makers to assess how different decisions on flood adaptation affect the risk now and in the future. The result from the ID was extended...

  16. Reduce blurring and distortion in a projection type virtual image display using integrated small optics

    Science.gov (United States)

    Hasegawa, Tatsuya; Yendo, Tomohiro

    2015-03-01

    Head Up Display (HUD) is being applied to automobile. HUD displays information as far virtual image on the windshield. Existing HUD usually displays planar information. If the image corresponding to scenery on the road like Augmented Reality (AR) is displayed on the HUD, driver can efficiently get the information. To actualize this, HUD covering large viewing field is needed. However existing HUD cannot cover large viewing field. Therefore we have proposed system consisting of projector and many small diameter convex lenses. However observed virtual image has blurring and distortion . In this paper, we propose two methods to reduce blurring and distortion of images. First, to reduce blurring of images, distance between each of screen and lens comprised in lens array is adjusted. We inferred from the more distant the lens from center of the array is more blurred that the cause of blurring is curvature of field of lens in the array. Second, to avoid distortion of images, each lens in the array is curved spherically. We inferred from the more distant the lens from center of the array is more distorted that the cause of distortion is incident angle of ray. We confirmed effectiveness of both methods.

  17. Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis.

    Science.gov (United States)

    Morisaki, Soichiro; Yokoyama, Jun'ichi; Eda, Kazunari; Itoh, Yousuke

    2016-01-01

    We introduce a new analysis method to deal with stationary non-Gaussian noises in gravitational wave detectors in terms of the independent component analysis. First, we consider the simplest case where the detector outputs are linear combinations of the inputs, consisting of signals and various noises, and show that this method may be helpful to increase the signal-to-noise ratio. Next, we take into account the time delay between the inputs and the outputs. Finally, we extend our method to nonlinearly correlated noises and show that our method can identify the coupling coefficients and remove non-Gaussian noises. Although we focus on gravitational wave data analysis, our methods are applicable to the detection of any signals under non-Gaussian noises.

  18. Iterative correction method for shift-variant blurring caused by collimator aperture in SPECT

    International Nuclear Information System (INIS)

    Ogawa, Koichi; Katsu, Haruto

    1996-01-01

    A collimation system in single photon computed tomography (SPECT) induces blurring on reconstructed images. The blurring varies with the collimator aperture which is determined by the shape of the hole (its diameter and length), and with the distance between the collimator surface and the object. The blurring has shift-variant properties. This paper presents a new iterative method for correcting the shift-variant blurring. The method estimates the ratio of 'ideal projection value' to 'measured projection value' at each sample point. The term 'ideal projection value' means the number of photons which enter the hole perpendicular to the collimator surface, and the term 'measured projection value' means the number of photons which enter the hole at acute angles to the collimator aperture axis. If the estimation is accurate, ideal projection value can be obtained as the product of the measured projection value and the estimated ratio. The accuracy of the estimation is improved iteratively by comparing the measured projection value with a weighted summation of several estimated projection value. The simulation results showed that spatial resolution was improved without amplification of artifacts due to statistical noise. (author)

  19. Non-Stationary Single-Channel Queuing System Features Research in Context of Number of Served Queries

    Directory of Open Access Journals (Sweden)

    Porshnev Sergey

    2017-01-01

    Full Text Available This work devoted to researching of mathematical model of non-stationary queuing system (NQS. Arrival rate in studied NQS λ(t is similar to rate which observed in practice in a real access control system of objects of mass events. Dependence of number of serviced requests from time was calculated. It is proven that the ratio value of served requests at the beginning of event to all served requests described by a deterministic function, depending on the average service rate μ¯$\\bar \\mu $ and the maximum value of the arrival rate function λ(t.

  20. Modeling fire spatial non-stationary in Portugal using GWR and GAMLSS

    Science.gov (United States)

    Sá, Ana C. L.; Amaral Turkman, Maria A.; Bistinas, Ioannis; Pereira, José M. C.

    2014-05-01

    Portuguese wildfires are responsible for large environmental, ecological and socio-economic impacts and, in the last decade, vegetation fires consumed on average 140.000ha/year. Portugal has a unique fires-atlas of burnt scar perimeters covering the 1975-2009 period, which allows the assessment of the fire most affected areas. It's crucial to understand the influence of the main drivers of forest fires and its spatial distribution in order to set new management strategies to reduce its impacts. Thus, this study aims at evaluating the spatial stationarity of the fire-environment relationship using two statistical approaches: Geographically Weighted Regression (GWR) and Generalized Additive Models for Location, Scale and Shape (GAMLSS). Analysis was performed using a regular 2kmx2km cell size grid, a total of 21293 observations overlaying the mainland of Portugal. Fire incidence was determined as the number of times each grid cell burned in the 35 years period. For the GWR analysis the group of environmental variables selected as predictors are: ignition source (population density (PD)); vegetation (proportion of forest and shrubland (FORSHR)); and weather (total precipitation of the coldest quarter (PCQ). Results showed that the fire-environment relationship is non-stationary, thus the coefficient estimates of all the predictors vary spatially, both in magnitude and sign. The most statistically significant predictor is FORSHR, followed by the PCQ. Despite the relationship between fire incidence and PD is non-stationary, only 9% of the observations are statistically significant at a 95% level of confidence. When compared with the Ordinary Least Squares (OLS) global model, 53% of the R2 statistic is above the 26% global estimated value, meaning a better explanation of the fire incidence variance with the local model approach. Using the same environmental variables, fire incidence was also modeled using GAMLSS to characterize nonstationarities in fire incidence. It is

  1. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1997-01-01

    Full Text Available The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general case of matching a target probability density function using a zero memory nonlinear (ZMNL function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.

  2. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    Directory of Open Access Journals (Sweden)

    Ng Michael K

    2006-01-01

    Full Text Available We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF, and a maximum a posteriori (MAP estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition. Computer simulations are given to illustrate the effectiveness of the proposed approach.

  3. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nanotech, blur and tragedy in recent artworks by Gerhard Richter

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    2008-01-01

    The author considers Gerhard Richter's work on nanotechnology, highlighting how these pieces continue the artist's ontology on photographic blur and, as such, raise questions about truth and reality with respect to the mass media's visual presentation of nanotechnology. The four works discussed i...... and terrorism, and contrasts Richter's artworks with utopian visions of nano-science in the mass media.......The author considers Gerhard Richter's work on nanotechnology, highlighting how these pieces continue the artist's ontology on photographic blur and, as such, raise questions about truth and reality with respect to the mass media's visual presentation of nanotechnology. The four works discussed...

  5. Unveiling non-stationary coupling between Amazon and ocean during recent extreme events

    Science.gov (United States)

    Ramos, Antônio M. de T.; Zou, Yong; de Oliveira, Gilvan Sampaio; Kurths, Jürgen; Macau, Elbert E. N.

    2018-02-01

    The interplay between extreme events in the Amazon's precipitation and the anomaly in the temperature of the surrounding oceans is not fully understood, especially its causal relations. In this paper, we investigate the climatic interaction between these regions from 1999 until 2012 using modern tools of complex system science. We identify the time scale of the coupling quantitatively and unveil the non-stationary influence of the ocean's temperature. The findings show consistently the distinctions between the coupling in the recent major extreme events in Amazonia, such as the two droughts that happened in 2005 and 2010 and the three floods during 1999, 2009 and 2012. Interestingly, the results also reveal the influence over the anomalous precipitation of Southwest Amazon has become increasingly lagged. The analysis can shed light on the underlying dynamics of the climate network system and consequently can improve predictions of extreme rainfall events.

  6. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    International Nuclear Information System (INIS)

    Roberts, J; Maddula, R; Clackdoyle, R; DiBella, E; Fu, Z

    2007-01-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period

  7. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    Science.gov (United States)

    Roberts, J.; Maddula, R.; Clackdoyle, R.; Di Bella, E.; Fu, Z.

    2007-08-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period.

  8. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  9. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    We present an idealized simple, but fast, semi-analytical algorithm for computation of stationary wind farm wind fields with a possible potential within a multi-fidelity strategy for wind farm topology optimization. Basically, the model considers wakes as linear perturbations on the ambient non......-linear. With each of these approached, a parabolic system are described, which is initiated by first considering the most upwind located turbines and subsequently successively solved in the downstream direction. Algorithms for the resulting wind farm flow fields are proposed, and it is shown that in the limit......-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...

  10. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    Science.gov (United States)

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  11. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  12. Blind assessment of image blur using the Haar wavelet

    CSIR Research Space (South Africa)

    Bachoo, A

    2010-10-01

    Full Text Available algorithms. We present an intuitive quality metric for characterizing the amount of blur in an image, through blind image assessment, using the Haar discrete wavelet transform. Thus, the method does not require a reference image or any prior information...

  13. Registration of Large Motion Blurred CMOS Images

    Science.gov (United States)

    2017-08-28

    raju@ee.iitm.ac.in - Institution : Indian Institute of Technology (IIT) Madras, India - Mailing Address : Room ESB 307c, Dept. of Electrical ...AFRL-AFOSR-JP-TR-2017-0066 Registration of Large Motion Blurred CMOS Images Ambasamudram Rajagopalan INDIAN INSTITUTE OF TECHNOLOGY MADRAS Final...NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY MADRAS SARDAR PATEL ROAD Chennai, 600036

  14. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches

    Science.gov (United States)

    Ortiz-Villanueva, Elena; Tauler, Romà

    2017-01-01

    Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436

  15. Postural stability changes in the elderly with cataract simulation and refractive blur.

    Science.gov (United States)

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-11-01

    To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in

  16. Iterative PSF Estimation and Its Application to Shift Invariant and Variant Blur Reduction

    OpenAIRE

    Seung-Won Jung; Byeong-Doo Choi; Sung-Jea Ko

    2009-01-01

    Among image restoration approaches, image deconvolution has been considered a powerful solution. In image deconvolution, a point spread function (PSF), which describes the blur of the image, needs to be determined. Therefore, in this paper, we propose an iterative PSF estimation algorithm which is able to estimate an accurate PSF. In real-world motion-blurred images, a simple parametric model of the PSF fails when a camera moves in an arbitrary direction with an inconsistent speed during an e...

  17. Segmentation algorithm for non-stationary compound Poisson processes. With an application to inventory time series of market members in a financial market

    Science.gov (United States)

    Tóth, B.; Lillo, F.; Farmer, J. D.

    2010-11-01

    We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.

  18. Neural networks prediction and fault diagnosis applied to stationary and non stationary ARMA (Autoregressive moving average) modeled time series

    International Nuclear Information System (INIS)

    Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.

    1992-01-01

    The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)

  19. A unique Fock quantization for fields in non-stationary spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.

    2010-01-01

    In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology

  20. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    Science.gov (United States)

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  1. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    DEFF Research Database (Denmark)

    Jødal, Lars; Le Loirec, Cindy; Champion, Christophe

    2012-01-01

    Background: Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Further, the percentage of annihilation events within a given distance from the point...... on allowed-decay isotopes. Methods: It is argued that blurring at the detection level should not be described by positron range r, but instead the 2D-projected distance δ (equal to the closest distance between decay and line-of-response). To determine these 2D distributions, results from a dedicated positron...... is important for improved resolution in PET imaging. Relevant distributions for positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas....

  2. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

    Science.gov (United States)

    Kashiwabara, Takahito

    Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

  3. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Chan, Chung; Sinusas, Albert J; Liu, Chi; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  4. A MAP Estimator for Simultaneous Superresolution and Detector Nonunifomity Correction

    Directory of Open Access Journals (Sweden)

    Douglas R. Droege

    2007-01-01

    Full Text Available During digital video acquisition, imagery may be degraded by a number of phenomena including undersampling, blur, and noise. Many systems, particularly those containing infrared focal plane array (FPA sensors, are also subject to detector nonuniformity. Nonuniformity, or fixed pattern noise, results from nonuniform responsivity of the photodetectors that make up the FPA. Here we propose a maximum a posteriori (MAP estimation framework for simultaneously addressing undersampling, linear blur, additive noise, and bias nonuniformity. In particular, we jointly estimate a superresolution (SR image and detector bias nonuniformity parameters from a sequence of observed frames. This algorithm can be applied to video in a variety of ways including using a moving temporal window of frames to process successive groups of frames. By combining SR and nonuniformity correction (NUC in this fashion, we demonstrate that superior results are possible compared with the more conventional approach of performing scene-based NUC followed by independent SR. The proposed MAP algorithm can be applied with or without SR, depending on the application and computational resources available. Even without SR, we believe that the proposed algorithm represents a novel and promising scene-based NUC technique. We present a number of experimental results to demonstrate the efficacy of the proposed algorithm. These include simulated imagery for quantitative analysis and real infrared video for qualitative analysis.

  5. On the Oracle Property of the Adaptive LASSO in Stationary and Nonstationary Autoregressions

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl

    We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...

  6. RID-41 gamma flaw detector

    International Nuclear Information System (INIS)

    Glebov, V.N.; Zubkov, V.S.; Majorov, A.N.; Murashev, A.I.; Firstov, V.G.; Yampol'skij, V.V.; Goncharov, V.I.; Sakhanov, A.S.

    1978-01-01

    The design is described and the main characteristics are given of a universal stationary hose-type gamma flow detector with a 60 Co source from 3O to 4g0 Ci for high-productive control of thick-walled products from steel and other materials. The principal units of the instrument are a radiation head, a control panel, and a charge-exchange container. The flaw detector may be used both in shield chambers and in shop or mounting conditions on complying with due requirements of radiation protection. The high activity of the source at relatively small dimensions of its active part ensures good detection of defects. The high radioscopy rate permits to use the flaw detector in conditions of increased background radiation, e.g. during routine repairs and inspections at nuclear power plants. The instrument may also be used in radiometric complexes, and produces a considerable economic effect. This flaw-detector corresponds to ISO and IAEA requirements and may be delivered for export

  7. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  8. Charge collection efficiency in a semiconductor radiation detector with a non-constant electric field

    International Nuclear Information System (INIS)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1990-01-01

    The development of improved semiconductor radiation detectors would be facilitated by a quantitative model that predicts the performance of these detectors as a function of material characteristics and device operating parameters. An accurate prediction of the pulse height spectrum from a radiation detector can be made if both the noise and the charge collection properties of the detector are understood. The noise characteristics of semiconductor radiation detectors have been extensively studied. The effect of noise can be closely simulated by convoluting the noise-free pulse height spectrum with a Gaussian function. Distortion of semiconductor detector's pulse height spectrum from charge collection effects is more complex than the effects of noise and is more difficult to predict. To compute these distortions it is necessary to know how the charge collection efficiency η varies as a function of position within the detector x. These effects are shown. This problem has been previously solved for planar detectors with a constant electric field, for the case of spherical detectors, and for coaxial detectors. In this paper the authors describe a more general solution to the charge collection problem which includes the case of a non-constant electric field in a planar geometry

  9. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    International Nuclear Information System (INIS)

    Zhao Bo; Zhao Wei

    2008-01-01

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of ±25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 μm. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to

  10. Photographic simulation of off-axis blurring due to chromatic aberration in spectacle lenses.

    Science.gov (United States)

    Doroslovački, Pavle; Guyton, David L

    2015-02-01

    Spectacle lens materials of high refractive index (nd) tend to have high chromatic dispersion (low Abbé number [V]), which may contribute to visual blurring with oblique viewing. A patient who noted off-axis blurring with new high-refractive-index spectacle lenses prompted us to do a photographic simulation of the off-axis aberrations in 3 readily available spectacle lens materials, CR-39 (nd = 1.50), polyurethane (nd = 1.60), and polycarbonate (nd = 1.59). Both chromatic and monochromatic aberrations were found to cause off-axis image degradation. Chromatic aberration was more prominent in the higher-index materials (especially polycarbonate), whereas the lower-index CR-39 had more astigmatism of oblique incidence. It is important to consider off-axis aberrations when a patient complains of otherwise unexplained blurred vision with a new pair of spectacle lenses, especially given the increasing promotion of high-refractive-index materials with high chromatic dispersion. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  11. Fluctuations and pseudo long range dependence in network flows: A non-stationary Poisson process model

    International Nuclear Information System (INIS)

    Yu-Dong, Chen; Li, Li; Yi, Zhang; Jian-Ming, Hu

    2009-01-01

    In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain power-law between the mean flux (activity) (F i ) of the i-th node and its variance σ i as σ i α (F i ) α . Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaling phenomenon. (general)

  12. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Zakir, U. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan); Department of Physics, University of Malakand, Khyber Pakhtun Khwa 18800 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan)

    2015-12-15

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of η{sub e}-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  13. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Science.gov (United States)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  14. Inference for local autocorrelations in locally stationary models.

    Science.gov (United States)

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  15. On the (In)Efficiency of the Cross-Correlation Statistic for Gravitational Wave Stochastic Background Signals with Non-Gaussian Noise and Heterogeneous Detector Sensitivities

    OpenAIRE

    Lionel, Martellini; Tania, Regimbau

    2015-01-01

    Under standard assumptions including stationary and serially uncorrelated Gaussian gravitational wave stochastic background signal and noise distributions, as well as homogenous detector sensitivities, the standard cross-correlation detection statistic is known to be optimal in the sense of minimizing the probability of a false dismissal at a fixed value of the probability of a false alarm. The focus of this paper is to analyze the comparative efficiency of this statistic, versus a simple alt...

  16. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  17. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens; Raoul, Gaë l

    2011-01-01

    repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  18. 4th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2016-01-01

    The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining, or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book no...

  19. Circular blurred shape model for multiclass symbol recognition.

    Science.gov (United States)

    Escalera, Sergio; Fornés, Alicia; Pujol, Oriol; Lladós, Josep; Radeva, Petia

    2011-04-01

    In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.

  20. Calculation of control rod oscillations in a hexagonal flow channel by means of the non-stationary pressure distribution around the rods

    International Nuclear Information System (INIS)

    Grunwald, G.; Mueller, E.

    1983-08-01

    For the computation of control rod oscillations in a flow channel we set up the differential equations for the non-stationary pressure distribution around the control elements which are coupled with the motion equations of the rods. The equation system is solved by means of a finite difference method. An example shows the efficiency of the numerical calculation procedure. (author)

  1. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    Science.gov (United States)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  2. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF

  3. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    DEFF Research Database (Denmark)

    Wolf, Paul A.; Jørgensen, Jakob Sauer; Schmidt, Taly G.

    2013-01-01

    the assumed blurring model. Generally, increased values of the blurring parameter and TV weighting parameters reduced noise and streaking artifacts, while decreasing spatial resolution. As the number of views decreased from 60 to 9 the accuracy of images reconstructed using the proposed algorithm varied...

  4. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  5. Charge transport in non-irradiated and irradiated silicon detectors

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.L.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    A model describing the transport of the charge carriers generated in n-type silicon detectors by ionizing particles is presented. In order to reproduce the experimental current pulse responses induced by α and β particles in non-irradiated and irradiated detectors up to fluences (PHI) much beyond the n to p-type inversion, an n-type region 15 μm deep is introduced on the p + side of the diode. This model also gives mobilities which decrease linearly up to fluences of around 5x10 13 particles/cm 2 and beyond, converging to saturation values of about 1000 and 450 cm 2 /V s for electrons and holes, respectively. The charge carrier lifetime degradation with increased fluence, due to trapping, is responsible for a predicted charge collection deficit for β particles and for α particles which is found to agree with direct CCE measurements. (author)

  6. Validation of the blurring of a small object on CT images calculated on the basis of three-dimensional spatial resolution

    International Nuclear Information System (INIS)

    Okubo, Masaki; Wada, Shinichi; Saito, Masatoshi

    2005-01-01

    We determine three-dimensional (3D) blurring of a small object on computed tomography (CT) images calculated on the basis of 3D spatial resolution. The images were characterized by point spread function (PSF), line spread function (LSF) and slice sensitivity profile (SSP). In advance, we systematically arranged expressions in the model for the imaging system to calculate 3D images under various conditions of spatial resolution. As a small object, we made a blood vessel phantom in which the direction of the vessel was not parallel to either the xy scan-plane or the z-axis perpendicular to the scan-plane. Therefore, when scanning the phantom, non-sharpness must be induced in all axes of the image. To predict the image blurring of the phantom, 3D spatial resolution is essential. The LSF and SSP were measured on our scanner, and two-dimensional (2D) PSF in the scan-plane was derived from the LSF by solving an integral equation. We obtained 3D images by convolving the 3D object-function of the phantom with both 2D PSF and SSP, corresponding to the 3D convolution. Calculated images showed good agreement with scanned images. Our technique of determining 3D blurring offers an accuracy advantage in 3D shape (size) and density measurements of small objects. (author)

  7. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  8. Condensation in models with factorized and pair-factorized stationary states

    International Nuclear Information System (INIS)

    Evans, M R; Waclaw, B

    2015-01-01

    Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc) becomes spatially localized. We review two popular stochastic models of hopping particles that lead to condensation and whose stationary states assume a factorized form: the zero-range process and the misanthrope process, and their various generalizations. We also introduce a new model—a misanthrope process with parallel dynamics—that exhibits condensation and has a pair-factorized stationary state

  9. 3rd International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Rubini, Riccardo; D'Elia, Gianluca; Cocconcelli, Marco; Chaari, Fakher; Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2014-01-01

    This book presents the processings of the third edition of the Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO13) which was held in Ferrara, Italy. This yearly event merges an international community of researchers who met – in 2011 in Wroclaw (Poland) and in 2012 in Hammamet (Tunisia) – to discuss issues of diagnostics of rotating machines operating in complex motion and/or load conditions. The growing interest of the industrial world on the topics covered by the CMMNO13 involves the fields of packaging, automotive, agricultural, mining, processing and wind machines in addition to that of the systems for data acquisition.The participation of speakers and visitors from industry makes the event an opportunity for immediate assessment of the potential applications of advanced methodologies for the signal analysis. Signals acquired from machines often contain contributions from several different components as well as noise. Therefore, the major challenge of condition monitoring is to po...

  10. Three-dimensional density field determination by external stationary detectors and gamma sources using selective scattering

    International Nuclear Information System (INIS)

    Kondic, N.; Jacobs, A.; Ebert, D.

    1983-01-01

    In many fields one needs to know the spatial density distribution; two-phase systems are of particular importance. In particular, gas-liquid mixtures play a role in power generation, chemistry, bio-medicine etc. An intrusion into the measured system is frequently undesired or not permitted. Therefore, external, non-invasive instrumentation has definite advantages. Photon-energy discrimination methods, measuring scattered fluxes, can employ stationary equipment; they need partial collimation or only protective shielding. The results are achieved with a higher information/irradiation ratio than is the case with transmission methods. The utilization a mesh of isogonic lines (each of them being characterised by its particular scattering angle) has several advantages when compared with the mesh of straight lines (''pencil beams'') used in tomography. The ultimate experimental arrangement employing Compton scattering has fan/fan beam geometry, i.e., wide angle emitting and receiving of gammas. The direct result of the measurement is a ''scattergram'', i.e., countrate versus scattered energy spectrum. Besides representing the ''signature'' of a two- or three-dimensional density distribution, it also enables the reconstruction of local density values. The report outlines the necessary analysis and presents experimental proof of principle

  11. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  12. Registration of Images with N-fold Dihedral Blur

    Czech Academy of Sciences Publication Activity Database

    Pedone, M.; Flusser, Jan; Heikkila, J.

    2015-01-01

    Roč. 24, č. 3 (2015), s. 1036-1045 ISSN 1057-7149 R&D Projects: GA ČR GA13-29225S; GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image registration * blurred images * N-fold rotational symmetry * dihedral symmetry * phase correlation Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.735, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441247.pdf

  13. Space charge in ionization detectors and the NA48 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Chollet, J.C.; Cirilli, M.; Cogan, J.; Costantini, F.; Crepe, S.; Cundy, D.; Fantechi, R.; Fayard, L.; Fischer, G.; Formica, A.; Frabetti, P.L.; Funk, W.; Gianoli, A.; Giudici, S.; Gonidec, A.; Gorini, B.; Govi, G.; Iconomidou-Fayard, L.; Kekelidze, V.; Kubischta, W.; Luitz, S.; Mannelli, I.; Martini, M.; Mikulec, I.; Norton, A.; Ocariz, J.; Schinzel, D.; Sozzi, M.; Tatishvili, G.; Tkatchev, A.; Unal, G.; Velasco, M.; Vossnack, O.; Wahl, H.

    1999-01-01

    The subject of space charge due to positive ions slowly moving in parallel plate ionization chambers is considered. A model for the degradation of the detector response is developed, with particular emphasis on electromagnetic calorimeters.The topics discussed include: (a) the stationary; (b) the time dependent cases; (c) the limit of very large space charge; (d) the electric field dependence of the electron drift velocity; (e) the effect of longitudinal development of showers; (f) the behaviour of the average reductions of response; (g) the non-uniformity of response for different positions of the shower axis inside the cell defined by the electrodes. The NA48 calorimeter is used as application and for comparison of results

  14. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions

    International Nuclear Information System (INIS)

    Gil, E; Orini, M; Bailón, R; Laguna, P; Vergara, J M; Mainardi, L

    2010-01-01

    In this paper we assessed the possibility of using the pulse rate variability (PRV) extracted from the photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on analysis of the changes observed during a tilt table test in the heart rate modulation of 17 young subjects. First, the classical indices of HRV analysis were compared to the indices from PRV in intervals where stationarity was assumed. Second, the time-varying spectral properties of both signals were compared by time-frequency (TF) and TF coherence analysis. Third, the effect of replacing PRV with HRV in the assessment of the changes of the autonomic modulation of the heart rate was considered. Time-invariant HRV and PRV indices showed no statistically significant differences (p > 0.05) and high correlation (>0.97). Time-frequency analysis revealed that the TF spectra of both signals were highly correlated (0.99 ± 0.01); the difference between the instantaneous power, in the LF and HF bands, obtained from HRV and PRV was small (<10 −3 s −2 ) and their temporal patterns were highly correlated (0.98 ± 0.04 and 0.95 ± 0.06 in the LF and HF bands, respectively) and TF coherence in the LF and HF bands was high (0.97 ± 0.04 and 0.89 ± 0.08, respectively). Finally, the instantaneous power in the LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that although some differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as a surrogate of HRV during non-stationary conditions, at least during the tilt table test

  15. H2 emission from non-stationary magnetized bow shocks

    Science.gov (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  16. Thermal blurring effects on fluctuations of conserved charges in rapidity space

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, M.; Kitazawa, M.; Onishi, Y.; Sakaida, M.

    2016-12-15

    We argue that the diffusion in the hadron phase and the thermal blurring at thermal freezeout affect observed conserved charge fluctuations considerably in relativistic heavy ion collisions, and show that their effects are of similar order at RHIC and LHC, and thus equally important in understanding experimental data. We also argue that, in order to disentangle them and obtain the initial state charge fluctuations, which we are interested in, it is crucial to measure their dependence on the rapidity window size. In the energy range of the beam energy scan program at RHIC, the diffusion effect would be less important because of the shorter duration of the hadron phase, but the importance of thermal blurring is not reduced. In addition, it is necessary to take account of the complex correspondence between the space-time rapidity and rapidity of observed particles, there.

  17. An observational criterion to look for an inspiral in a non-Kerr spacetime

    International Nuclear Information System (INIS)

    Apostolatos, Theocharis A; Lukes-Gerakopoulos, Georgios; Deligiannis, John; Contopoulos, George

    2009-01-01

    In this short article we present a useful observational tool for gravitational wave detectors. More specifically, if we are looking for extreme-mass-ratio inspiraling objects in a non-Kerr spacetime, we could exploit the consequences of the KAM and the Poincare-Birkhoff theorem which predicts plateaus in the ratio of frequencies f ρ /f z , that are related to a generic geodesic orbit in such a spacetime, as a function of the initial conditions of the orbit itself. While both these frequencies are changing under radiation reaction, their ratio is expected to stay stationary if it passes through such a plateau. Therefore, if detectors are able to discern the fundamental frequencies due to ρ and z oscillations of the orbit, they could in principle detect the non-Kerr-ness of the spacetime involved, just by monitoring the ratio of these two frequencies.

  18. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field, one of the most prominent phenomena occurs around air cavities: the electron return effect (ERE). For stationary, spherical air cavities which are centrally located in the phantom, the ERE can be compensated by using opposing beams configurations in combination with IMRT. In this paper we investigate the effects of non-stationary spherical air cavities, centrally located within the target in a phantom containing no organs at risk, on IMRT dose delivery in 0.35 T and 1.5 T transverse magnetic fields by using Monte Carlo simulations. We show that IMRT can be used for compensating ERE around those air cavities, except for intrafraction appearing or disappearing air cavities. For these cases, gating or plan re-optimization should be used. We also analyzed the option of using IMRT plans optimized at 0 T to be delivered in the presence of 0.35 T and 1.5 T magnetic field. When delivering dose at 0.35 T, IMRT plans optimized at 0 T and 0.35 T perform equally well regarding ERE compensation. Within a 1.5 T environment, the 1.5 T optimized plans perform slightly better for the static and random intra- and interfraction air cavity movement cases than the 0 T optimized plans. For non-stationary spherical air cavities with a baseline shift (intra- and interfraction) the 0 T optimized plans perform better. These observations show the intrinsic ERE compensation by equidistant and opposing beam configurations for spherical air cavities within the target area. IMRT gives some additional compensation, but only in case of correct positioning of the air cavity according to the IMRT compensation. For intrafraction appearing or disappearing air cavities this correct

  19. Stationary analysis of signals and ratio decay determination in BWR type reactors by neuronal network

    International Nuclear Information System (INIS)

    Sanchis, R.; Palomo, M. J.; Munoz-Cobo, J. L.

    1998-01-01

    The signals registered in the nuclear plants have non stationary characteristics, in numerous times. This made difficult the application of the methods of analysis. There are determinate temporal intervals in that the signal is stationary with determinate mean, value together of zones with corrupt registers, and other zones with mean value distinct, but stationary during a temporal interval. The methodology consist in a stationary analysis to the signal received of the nuclear plant. With the Gabor Transformation are determined the temporal intervals of the stationary signals, synthesised it, as previous phase to the application of the methods of the analysis of stability parameters with methods ARMA, SVD, Neural Net,... to the reconstructed signal. 4 refs. (Author)

  20. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  1. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    International Nuclear Information System (INIS)

    Urbach, H.; Mader, I.; Rauer, S.; Baumgartner, A.; Paus, S.; Wagner, J.; Malter, M.P.; Pruess, H.; Lewerenz, J.; Kassubek, J.; Hegen, H.; Auer, M.; Deisenhammer, F.; Ufer, F.; Bien, C.G.

    2015-01-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  2. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis.

    Science.gov (United States)

    Urbach, H; Rauer, S; Mader, I; Paus, S; Wagner, J; Malter, M P; Prüss, H; Lewerenz, J; Kassubek, J; Hegen, H; Auer, M; Deisenhammer, F; Ufer, F; Bien, C G; Baumgartner, A

    2015-12-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE.

  3. Blurring the Boundaries of Public and Private Education in Brazil

    Science.gov (United States)

    Akkari, Abdeljalil

    2013-01-01

    A typical analysis of the privatization of education in Latin America focuses on private sector development at the expense of public education. In this paper, I propose a different view that will highlight the blurring of boundaries between public and private education in Brazil. This confusion perpetuates the historical duality of the education…

  4. A pilot trial of tele-ophthalmology for diagnosis of chronic blurred vision.

    Science.gov (United States)

    Tan, Johnson Choon Hwai; Poh, Eugenie Wei Ting; Srinivasan, Sanjay; Lim, Tock Han

    2013-02-01

    We evaluated the accuracy of tele-ophthalmology in diagnosing the major causes of chronic blurring of vision. Thirty consecutive patients attending a primary eye-care facility in Singapore (the Ang Mo Kio Polyclinic, AMKP) with the symptom of chronic blurred vision were recruited. An ophthalmic technician was trained to perform Snellen acuity; auto-refraction; intraocular pressure measurement; red-colour perimetry; video recordings of extraocular movement, cover tests and pupillary reactions; and anterior segment and fundus photography. Digital information was transmitted to a tertiary hospital in Singapore (the Tan Tock Seng Hospital) via a tele-ophthalmology system for teleconsultation with an ophthalmologist. The diagnoses were compared with face-to-face consultation by another ophthalmologist at the AMKP. A user experience questionnaire was administered at the end of the consultation. Using face-to-face consultation as the gold standard, tele-ophthalmology achieved 100% sensitivity and specificity in diagnosing media opacity (n = 29), maculopathy (n = 23) and keratopathy (n = 30) of any type; and 100% sensitivity and 92% specificity in diagnosing optic neuropathy of any type (n = 24). The majority of the patients (97%) were satisfied with the tele-ophthalmology workflow and consultation. The tele-ophthalmology system was able to detect causes of chronic blurred vision accurately. It has the potential to deliver high-accuracy diagnostic eye support to remote areas if suitably trained ophthalmic technicians are available.

  5. Nanotech, blur and tragedy in recent artworks by Gerhard Richter

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    2008-01-01

    The author considers Gerhard Richter's work on nanotechnology, highlighting how these pieces continue the artist's ontology on photographic blur and, as such, raise questions about truth and reality with respect to the mass media's visual presentation of nanotechnology. The four works discussed i...

  6. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David; Gomes, Diogo A.

    2017-01-01

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  7. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David

    2017-09-11

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  8. Stationary flow near fronts

    Directory of Open Access Journals (Sweden)

    Reinhold Steinacker

    2016-12-01

    Full Text Available In 1906, the Austrian scientist Max Margules published a paper on temperature stratification in resting and non-accelerated moving air. The paper derives conditions for stationary slopes of air mass boundaries and was an important forerunner of frontal theories. Its formulation of relations between changes in density and geostrophic wind across the front is basically a discrete version of the thermal wind balance equation. The paper was highly influential and is still being cited to the present day. This paper accompanies an English translation of Margules’ seminal paper. We conclude here our “Classic Papers” series of the Meteorologische Zeitschrift.

  9. Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies

    Directory of Open Access Journals (Sweden)

    Julio Ramirez Pacheco

    2012-01-01

    Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.

  10. GrabBlur--a framework to facilitate the secure exchange of whole-exome and -genome SNV data using VCF files.

    Science.gov (United States)

    Stade, Björn; Seelow, Dominik; Thomsen, Ingo; Krawczak, Michael; Franke, Andre

    2014-01-01

    Next Generation Sequencing (NGS) of whole exomes or genomes is increasingly being used in human genetic research and diagnostics. Sharing NGS data with third parties can help physicians and researchers to identify causative or predisposing mutations for a specific sample of interest more efficiently. In many cases, however, the exchange of such data may collide with data privacy regulations. GrabBlur is a newly developed tool to aggregate and share NGS-derived single nucleotide variant (SNV) data in a public database, keeping individual samples unidentifiable. In contrast to other currently existing SNV databases, GrabBlur includes phenotypic information and contact details of the submitter of a given database entry. By means of GrabBlur human geneticists can securely and easily share SNV data from resequencing projects. GrabBlur can ease the interpretation of SNV data by offering basic annotations, genotype frequencies and in particular phenotypic information - given that this information was shared - for the SNV of interest. GrabBlur facilitates the combination of phenotypic and NGS data (VCF files) via a local interface or command line operations. Data submissions may include HPO (Human Phenotype Ontology) terms, other trait descriptions, NGS technology information and the identity of the submitter. Most of this information is optional and its provision at the discretion of the submitter. Upon initial intake, GrabBlur merges and aggregates all sample-specific data. If a certain SNV is rare, the sample-specific information is replaced with the submitter identity. Generally, all data in GrabBlur are highly aggregated so that they can be shared with others while ensuring maximum privacy. Thus, it is impossible to reconstruct complete exomes or genomes from the database or to re-identify single individuals. After the individual information has been sufficiently "blurred", the data can be uploaded into a publicly accessible domain where aggregated genotypes are

  11. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    International Nuclear Information System (INIS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Qi, Jinyi; Rodríguez-Villafuerte, Mercedes

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement. (paper)

  12. Stationary solutions of multicomponent chiral and gauge models

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)

  13. Scalability of Direct Solver for Non-stationary Cahn-Hilliard Simulations with Linearized time Integration Scheme

    KAUST Repository

    Woźniak, M.

    2016-06-02

    We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.

  14. New Hybrid Variational Recovery Model for Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Zeng, Tieyong

    2013-01-01

    A new hybrid variational model for recovering blurred images in the presence of multiplicative noise is proposed. Inspired by previous work on multiplicative noise removal, an I-divergence technique is used to build a strictly convex model under a condition that ensures the uniqueness...

  15. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Tieyong Zeng

    2013-01-01

    In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees...

  16. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    Science.gov (United States)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  17. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)]. E-mail: rush@nirs.go.jp; Kitamura, Keishi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Kimura, Yuichi [Tokyo Metropolitan Institute of Gerontology, Nakamachi 1-1 Itabashi-ku, Tokyo 173-0022 (Japan); Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shibuya, Kengo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm{sup 3}. The FP-PMT has a large detective area (49x49 mm{sup 2}) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident {gamma} rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.

  18. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo

    2007-01-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm 3 . The FP-PMT has a large detective area (49x49 mm 2 ) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET

  19. Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of parameter-driven blurring. During this evolution two different types of special points are encountered, the so-called scale space saddles and the

  20. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Directory of Open Access Journals (Sweden)

    Belén Rodríguez-Fonseca

    2016-06-01

    Full Text Available The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years and modeling projects (e.g., CMIP permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

  1. Comparative study for small computer supported clearance determination with 131iodine hippuran using CdTe detectors

    International Nuclear Information System (INIS)

    Duerr, G.

    1986-01-01

    With the goal to work out a simple, non-invasive method for the total clearance determination also for immobile patients, we carried out this clearance study with CdTe semi-conductor detectors. The 131 iodine hippuran clearance determination was carried out on 69 patients in the nuclear medicine department of the Radiological Policlinic in the framework of a routine diagnosis with ambulant and stationary patients with a gamma camera and a connecting evaluation system. At the same time we recorded the shoulder curves using two CdTe semi-conductor detectors and deposited the data in a portable semi-conductor memory. Next the hypotheses for the routine use with the inclusion of commercially common small computers was worked out. The plasma disappearance curves which were recorded over the shoulder region were evaluated with a small computer according to the method of the modified Oberhausen tables and the Oberhausen formula. (orig./DG) [de

  2. Non-stationary Bias Correction of Monthly CMIP5 Temperature Projections over China using a Residual-based Bagging Tree Model

    Science.gov (United States)

    Yang, T.; Lee, C.

    2017-12-01

    The biases in the Global Circulation Models (GCMs) are crucial for understanding future climate changes. Currently, most bias correction methodologies suffer from the assumption that model bias is stationary. This paper provides a non-stationary bias correction model, termed Residual-based Bagging Tree (RBT) model, to reduce simulation biases and to quantify the contributions of single models. Specifically, the proposed model estimates the residuals between individual models and observations, and takes the differences between observations and the ensemble mean into consideration during the model training process. A case study is conducted for 10 major river basins in Mainland China during different seasons. Results show that the proposed model is capable of providing accurate and stable predictions while including the non-stationarities into the modeling framework. Significant reductions in both bias and root mean squared error are achieved with the proposed RBT model, especially for the central and western parts of China. The proposed RBT model has consistently better performance in reducing biases when compared to the raw ensemble mean, the ensemble mean with simple additive bias correction, and the single best model for different seasons. Furthermore, the contribution of each single GCM in reducing the overall bias is quantified. The single model importance varies between 3.1% and 7.2%. For different future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5), the results from RBT model suggest temperature increases of 1.44 ºC, 2.59 ºC, and 4.71 ºC by the end of the century, respectively, when compared to the average temperature during 1970 - 1999.

  3. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    Science.gov (United States)

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    Bojsen, J.

    1985-01-01

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  5. A Blur track on Mars: how do you top that?

    CERN Multimedia

    Cooke, Rachel

    2003-01-01

    "On the eve of the landing of the Beagle 2 space probe on Mars, one of its instigators, Blur bassist Alex James, talks exclusively about his new-found passion for space 'Talking with scientists makes me feel giddy with excitement. Life on Mars, I mean, come on! How dead do you have to be not to find that interesting?' (1 page).

  6. Stationary and protable instruments for assay of HEU [highly enriched uranium] solids holdup

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.

    1987-01-01

    Two NaI(Tl)-based instruments, one stationary and one portable, designed for automated assay of highly enriched uranium (HEU) solids holdup, are being evaluated at the scrap recovery facility of the Oak Ridge Y-12 Plant. The stationary instrument, a continuous monitor of HEU within the filters of the chip burner exhaust system, measures the HEU deposits that accumulate erratically and rapidly during chip burner operation. The portable system was built to assay HEU in over 100 m of elevated piping used to transfer UO 3 , UO 2 , and UF 4 powder to, from, and between the fluid bed conversion furnances and the powder storage hoods. Both instruments use two detector heads. Both provide immediate automatic readout of accumulated HEU mass. The 186-keV 235 U gamma ray is the assay signature, and the 60-keV gamma ray from an 241 Am source attached to each detector is used to normalize the 186-keV rate. The measurement geometries were selected for compatibility with simple calibration models. The assay calibrations were calculated from these models and were verified and normalized with measurements of HEU standards built to match geometries of uniform accumulations on the surfaces of the process equipment. This instrumentation effort demonstrates that simple calibration models can often be applied to unique measurement geometries, minimizing the otherwise unreasonable requirements for calibration standards and allowing extension of the measurements to other process locations

  7. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  8. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    Science.gov (United States)

    Jødal, L.; Le Loirec, C.; Champion, C.

    2012-06-01

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, 18F, 11C, 13N, 15O, 68Ga, 62Cu and 82Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G2D(δ) and the radial probability density distribution g2D(δ) were determined. G2D(δ) could be approximated by the empirical function 1 - exp(-Aδ2 - Bδ), where A = 0.0266 (Emean)-1.716 and B = 0.1119 (Emean)-1.934, with Emean being the mean positron energy in MeV and δ in mm. The radial density distribution g2D(δ) could be approximated by differentiation of G2D(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  9. SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S; Shrestha, S; Shi, L; Vijayaraghavan, G; Karellas, A [University of Massachusetts Medical School, Worcester, MA (United States)

    2016-06-15

    Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability index inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability index for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl lowered

  10. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  11. Impact of the Parameter Variation on the Image Blurring in 3 T Magnetic Resonance Imaging: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Lee, Sang Hoon; Kim, Nam Kug; Cho, Kyung Sik; Lee, Jin Seong [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-04-15

    To evaluate the effects of the key imaging-parameter alterations on the four MR sequences in a phantom study. Magnetic resonance (MR) imaging was performed on a MR phantom with an 8-channel head coil by using a 3 T MR system. The images were obtained in the axial plane on four MR sequences [T1-weighted, T2-weighted, Proton-density, and 3 dimensional (3D) fast spin echo (FSE)] with controlled variations in the following key parameters: 1) echo train length (ETL), 2) repetition time (TR), and 3) echo time (TE). The image blurring was determined by the degree of the gradient angle; i.e., the blurring increased as the gradient angle decreases. The increasing ETL was observed to cause an increase in the image blurring on all pulse sequences with a statistical significance (p = 0.004) on the 3D FSE. Increasing the TR appeared to have no effect except a statistically significant decrease on the T1-weighted images (p = 0.011). Increasing TE showed no effect on the T1-weighted images (p = 0.932); however, it caused an increase of blurring on the proton density images (p = 0.016) as well as the T2-weighted images (p < 0.001), and a decrease on the 3D FSE (p = 0.001). To reduce the image blurring, short ETL and long TE for 3D FSE, long TR for T1-weighted images and short TE for proton-density and T2-weighted images should be applied.

  12. On the stationary Einstein-Maxwell-Klein-Gordon equations

    International Nuclear Information System (INIS)

    Gegenberg, J.D.

    1981-05-01

    The stationary Einstein-Maxwell-Klein-Gordon (EMKG) equations for interacting gravitational, electromagnetic and meson fields are examined. The theory is cast into the formalism of principal fiber bundles with a connection, wherein its relationship to current trends in theoretical physics is made manifest. The EMKG equations are shown to admit a Higgs-like mechanism for giving mass to the gauge field. A theorem specifying sufficient conditions for the stationarity of the spacetime metric to imply stationarity of the other fields is proved. By imposing additional constraints and symmetries, the EMKG equations are considerably simplified. An attempt is made to apply a solution-generation technique, and this meets with only partial success. Finally, a stationary but non-static solution is found, and the geometric and physical properties are discussed

  13. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  14. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  15. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  16. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    International Nuclear Information System (INIS)

    Furse, D.

    2005-01-01

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptions of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results

  17. Preliminary application of 320-detector spiral CT with ECG editing for assessing coronary artery in-stent restenosis

    International Nuclear Information System (INIS)

    Li Zhiming; Tan Lilian; Li Shuxin; Fu Xi; He Weihong; Liu Ke; Huang Yong; Yu Lin

    2011-01-01

    Objective: To determine the value of 320-detector spiral CT with retrospective ECG gating and editing software for detecting coronary artery in-stent restenosis. Methods: CT scans of 14 patients with coronary artery stnets were retrospectively analyzed. The examinations were performed using a 320-detector spiral CT scanner and retrospective ECG gating combined with ECG editing software. The image quality of reconstructed coronary artery in-stents was compared before and after the editing of synchronously recorded ECG. The paired-sample t test was used for statistical analysis. Results: Before ECG editing, arrhythmia and in-stent artifact resulted in image blurring, missing arterial segments, significant stepladder artifacts or non-visualization of the interior of stents. Of 14 cases before ECG editing, in-stent restenosis was detected in 10 and patency in 3. The coronary artery stent and distal bifurcation were delineated in one patient. After ECG editing, the image quality of coronary artery stents was improved with detection of in-stent restenosis (4 cases) including the one case that not evaluable before ECG editing. The average image quality score before ECG editing (2.14±0.86) was significantly (P<0.001) lower than that after ECG editing (3.07±0.73). Conclusion: Retrospective ECG gating combined with ECG editing of 320-detector spiral CT can reduce the artifacts produced by arrhythmia or in-stent swings and improve the imaging quality of coronary artery stents. (authors)

  18. Tomographic apparatus for reconstructing planar slices from non-absorbed and non-scattered radiation

    International Nuclear Information System (INIS)

    1980-01-01

    After briefly reviewing the history of computerised tomography, the deficiencies inherent in the various methods that have been adopted are discussed, e.g. slow data collection time, blurring of images and poor spatial resolution. Tomographic apparatus and processing methods are then described which can overcome these problems. The apparatus consists of a fan-shaped source of X-rays and a detector array which both rotate around the patient being examined. The data reduction process is derived in great detail; it is claimed that digital processing using convolution techniques is much faster than conventional methods. (U.K.)

  19. 40 CFR 63.6604 - What fuel requirements must I meet if I own or operate an existing stationary CI RICE?

    Science.gov (United States)

    2010-07-01

    ... I own or operate an existing stationary CI RICE? 63.6604 Section 63.6604 Protection of Environment....6604 What fuel requirements must I meet if I own or operate an existing stationary CI RICE? If you own or operate an existing non-emergency CI stationary RICE with a site rating of more than 300 brake HP...

  20. Blur kernel estimation with algebraic tomography technique and intensity profiles of object boundaries

    Science.gov (United States)

    Ingacheva, Anastasia; Chukalina, Marina; Khanipov, Timur; Nikolaev, Dmitry

    2018-04-01

    Motion blur caused by camera vibration is a common source of degradation in photographs. In this paper we study the problem of finding the point spread function (PSF) of a blurred image using the tomography technique. The PSF reconstruction result strongly depends on the particular tomography technique used. We present a tomography algorithm with regularization adapted specifically for this task. We use the algebraic reconstruction technique (ART algorithm) as the starting algorithm and introduce regularization. We use the conjugate gradient method for numerical implementation of the proposed approach. The algorithm is tested using a dataset which contains 9 kernels extracted from real photographs by the Adobe corporation where the point spread function is known. We also investigate influence of noise on the quality of image reconstruction and investigate how the number of projections influence the magnitude change of the reconstruction error.

  1. Stationary and through-flow radiochemical detectors in cooperation with high performance liquid chromatography: Application in biochemistry

    International Nuclear Information System (INIS)

    Kehr, J.

    1986-01-01

    A review article is presented containing some original experimental data and discussing the usability of radiochemical detection of labelled compounds using high performance liquid chromatography. The stationary and through-flow types of detection are compared with respect to efficiency, chromatographic zone resolution, usability in biochemical research, and also to the current trends of development of liquid chromatography. (author). 3 figs., 1 tab., 19 refs

  2. Statistical downscaling of rainfall: a non-stationary and multi-resolution approach

    Science.gov (United States)

    Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir

    2016-05-01

    A novel downscaling technique is proposed in this study whereby the original rainfall and reanalysis variables are first decomposed by wavelet transforms and rainfall is modelled using the semi-parametric additive model formulation of Generalized Additive Model in Location, Scale and Shape (GAMLSS). The flexibility of the GAMLSS model makes it feasible as a framework for non-stationary modelling. Decomposition of a rainfall series into different components is useful to separate the scale-dependent properties of the rainfall as this varies both temporally and spatially. The study was conducted at the Onkaparinga river catchment in South Australia. The model was calibrated over the period 1960 to 1990 and validated over the period 1991 to 2010. The model reproduced the monthly variability and statistics of the observed rainfall well with Nash-Sutcliffe efficiency (NSE) values of 0.66 and 0.65 for the calibration and validation periods, respectively. It also reproduced well the seasonal rainfall over the calibration (NSE = 0.37) and validation (NSE = 0.69) periods for all seasons. The proposed model was better than the tradition modelling approach (application of GAMLSS to the original rainfall series without decomposition) at reproducing the time-frequency properties of the observed rainfall, and yet it still preserved the statistics produced by the traditional modelling approach. When downscaling models were developed with general circulation model (GCM) historical output datasets, the proposed wavelet-based downscaling model outperformed the traditional downscaling model in terms of reproducing monthly rainfall for both the calibration and validation periods.

  3. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    Science.gov (United States)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  4. A practical depth-of-interaction PET/MR detector with dichotomous-orthogonal-symmetry decoding

    International Nuclear Information System (INIS)

    Zhang, Yuxuan; Baghaei, Hossain; Yan, Han; Wong, Wai-Hoi

    2015-01-01

    Conventional dual-end depth-of-interaction (DOI) PET detector readout requires two 2D SiPM arrays; with top and bottom SiPM reading the same pixel, there is information redundancy. We proposed a dichotomous-orthogonal-symmetric (DOS) dual-end DOI readout to eliminate this redundancy to significantly reduce SiPM usage, electronic channels, and heat load. Reflecting films are used within the scintillator array to channel light exiting the top along the X-direction, while light exiting the bottom is channeled along the orthogonal Y-direction. Despite the unidirectional channeling on each end, the top readout can provide X-Y information using two 1-D SiPM arrays; similarly, the bottom readout also provides X-Y information with two 1-D SiPM arrays. Thus four 1-D SiPM arrays (4xN) are used to decode XYZ to replace two 2D SiPM arrays (2NxN); SiPM usage is reduced from 2N**2 to 4N. Monte Carlo simulations (GATE) were carried out to study the XY decoding accuracy, energy resolution, and DOI resolution. Coupling the DOS-DOI design with a channel-decoding scheme, an array of 15x15 LSO (2.4x2.4x20 mm pixels) can be decoded by 18 SiPMs (2 rows of nine 3x3mm SiPM) on top and 18 SiPMs at bottom, thus achieving a 10X reduction in SiPM usage, electronic channels and heat load. For BGO detectors, an 8x8 array (2.4x2.4x20 mm pixels) can be achieved with 6.4X reduction. Simulations show 5-6mm DOI resolution, 0.45-0.96mm XY decoding blurring, 20-24% energy resolution. This study shows the feasibility of the DOS-DOI design. Even comparing to non-DOI detectors, there is a 5X/3X SiPM reduction for LSO/BGO. The proposed detector may yield practical ultrahigh-resolution PET/MR systems with depth-of-interaction with a production cost below current non-DOI systems.

  5. Impact of detector-element active-area shape and fill factor on super-resolution

    Directory of Open Access Journals (Sweden)

    Russell Craig Hardie

    2015-05-01

    Full Text Available In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF. Conventional focal plane arrays (FPAs utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR. However, the large active area works against super-resolution (SR image restoration by acting as an additional low pass filter in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to increase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element shape and fill factor on SR. A detailed modulation transfer function analysis is provided along with a number of experimental results with both simulated data and real data acquired with a midwave infrared (MWIR imaging system. We demonstrate the potential advantage of low fill factor detector elements when combined with SR image restoration. Our results suggest that low fill factor circular detector elements may be the best choice. New video results are presented using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR imaging system with both high and low detector element fill factors.

  6. Restoration of color images degraded by space-variant motion blur

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Flusser, Jan

    2007-01-01

    Roč. 2007, č. 4673 (2007), s. 450-457 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : deblurring * space-variant restoration * motion blur * color Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http://dx.doi.org/10.1007/978-3-540-74272-2_56

  7. Some strange numerical solutions of the non-stationary Navier-Stokes equations in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rummler, B.

    2001-07-01

    A general class of boundary-pressure-driven flows of incompressible Newtonian fluids in three-dimensional pipes with known steady laminar realizations is investigated. Considering the laminar velocity as a 3D-vector-function of the cross-section-circle arguments, we fix the scale for the velocity by the L{sub 2}-norm of the laminar velocity. The usual new variables are introduced to get dimension-free Navier-Stokes equations. The characteristic physical and geometrical quantities are subsumed in the energetic Reynolds number Re and a parameter {psi}, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form u=u{sub L}+u, where u{sub L} is the scaled laminar velocity and periodical conditions in center-line-direction are prescribed for u. An autonomous system (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction is got by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u. The finite-dimensional approximations u{sub N({lambda}}{sub )} of u are defined in the usual way. (orig.)

  8. Optimized waveform relaxation domain decomposition method for discrete finite volume non stationary convection diffusion equation

    International Nuclear Information System (INIS)

    Berthe, P.M.

    2013-01-01

    In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr

  9. Analytical approximations to the Hotelling trace for digital x-ray detectors

    Science.gov (United States)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  10. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty

    Science.gov (United States)

    Ušćumlić, Marija; Blankertz, Benjamin

    2016-02-01

    Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and

  11. Restoration of motion-blurred image based on border deformation detection: a traffic sign restoration model.

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    Full Text Available Due to the rapid development of motor vehicle Driver Assistance Systems (DAS, the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.

  12. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2017-03-01

    Full Text Available Tool fault diagnosis in numerical control (NC machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA and least squares support vector machine (LS-SVM using only a single sensor. First, SSA was used to extract stationary and non-stationary sources from multi-dimensional signals without the need for independency and without prior information of the source signals, after the dimensionality of the vibration signal observed by a single sensor was expanded by phase space reconstruction technique. Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals from tools of an unknown state and their non-stationary sources were separated by SSA to serve as test samples for the trained SVM. The experimental validation demonstrated that the proposed method has better diagnosis accuracy than three previous methods based on LS-SVM alone, Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

  13. The Role of Clarity and Blur in Guiding Visual Attention in Photographs

    Science.gov (United States)

    Enns, James T.; MacDonald, Sarah C.

    2013-01-01

    Visual artists and photographers believe that a viewer's gaze can be guided by selective use of image clarity and blur, but there is little systematic research. In this study, participants performed several eye-tracking tasks with the same naturalistic photographs, including recognition memory for the entire photo, as well as recognition memory…

  14. Stationary and Transient Response Statistics

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Krenk, Steen

    1982-01-01

    The covariance functions for the transient response of a linear MDOF-system due to stationary time limited excitation with an arbitrary frequency content are related directly to the covariance functions of the stationary response. For rational spectral density functions closed form expressions fo...

  15. Comments on "Weed Recognition using Image Blur Information" by Peng, Z. & Jun, C., Biosystems Engineering 110 (2), p. 198-205”

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Suk, Tomáš; Zitová, Barbara

    2014-01-01

    Roč. 2014, č. 126 (2014), s. 104-108 ISSN 1537-5110 R&D Projects: GA ČR GAP103/11/1552 Keywords : Weed recognition * Blur * Moment Invariants * Blur Invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.619, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0431031.pdf

  16. Postural stability in the elderly during sensory perturbations and dual tasking: the influence of refractive blur.

    Science.gov (United States)

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-07-01

    To determine the influence of refractive blur on postural stability during somatosensory and vestibular system perturbation and dual tasking. Fifteen healthy, elderly subjects (mean age, 71 +/- 5 years), who had no history of falls and had normal vision, were recruited. Postural stability during standing was assessed using a force platform, and was determined as the root mean square (RMS) of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions collected over a 30-second period. Data were collected under normal standing conditions and with somatosensory and vestibular system perturbations. Measurements were repeated with an additional physical and/or cognitive task. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with eyes closed. The data were analyzed with a population-averaged linear model. The greatest increases in postural instability were due to disruptions of the somatosensory and vestibular systems. Increasing refractive blur caused increasing postural instability, and its effect was greater when the input from the other sensory systems was disrupted. Performing an additional cognitive and physical task increased A-P RMS COP further. All these detrimental effects on postural stability were cumulative. The findings highlight the multifactorial nature of postural stability and indicate why the elderly, many of whom have poor vision and musculoskeletal and central nervous system degeneration, are at greater risk of falling. The findings also highlight that standing instability in both normal and perturbed conditions was significantly increased with refractive blur. Correcting visual impairment caused by uncorrected refractive error could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.

  17. Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time-frequency analysis.

    Science.gov (United States)

    Melkonian, D; Korner, A; Meares, R; Bahramali, H

    2012-10-01

    A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Digital radiography: Present detectors and future developments

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs

  19. Mass-density compensation can improve the performance of a range of different detectors under non-equilibrium conditions

    International Nuclear Information System (INIS)

    Underwood, T S A; Hill, M A; Winter, H C; Fenwick, J D

    2013-01-01

    Dosimeters often consist of several components whose mass densities differ substantially from water. These components cause small-field correction factors to vary significantly as lateral electronic equilibrium breaks down. Even amongst instruments designed for small-field dosimetry, inter-detector variation in the correction factors associated with very small (∼0.5 cm) fields can amount to tens of per cent. For a given dosimeter, small-field correction factors vary not only with field size but also with detector azimuthal angle and position within the field. Furthermore the accurate determination of these factors typically requires time-intensive Monte Carlo simulations. Thus, if achievable, ‘correction factor free’ small-field dosimetry would be highly desirable. This study demonstrates that a new generation of mass-density compensated detectors could take us towards this goal. Using a 6 MV beam model, it shows that ‘mass-density compensation’ can be utilized to improve the performance of a range of different detectors under small-field conditions. Non-sensitive material of appropriate mass-density is incorporated into detector designs in order to make the instruments behave as if consisting only of water. The dosimeter perturbative effects are then reduced to those associated with volume averaging. An even better solution—which modifies detectors to obtain profiles that look like those measured by a point-like water structure—is also considered. Provided that adequate sensitivity can be achieved for a small measurement volume, this study shows that it may be possible to use mass-density compensation (and Monte Carlo-driven design) to produce a solid-state dosimeter/ionization chamber with a near-perfect non-equilibrium response. (paper)

  20. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  1. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  2. 30 CFR 57.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods...

  3. Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms.

    Science.gov (United States)

    Harikumar, G; Bresler, Y

    1999-01-01

    We address the problem of restoring an image from its noisy convolutions with two or more unknown finite impulse response (FIR) filters. We develop theoretical results about the existence and uniqueness of solutions, and show that under some generically true assumptions, both the filters and the image can be determined exactly in the absence of noise, and stably estimated in its presence. We present efficient algorithms to estimate the blur functions and their sizes. These algorithms are of two types, subspace-based and likelihood-based, and are extensions of techniques proposed for the solution of the multichannel blind deconvolution problem in one dimension. We present memory and computation-efficient techniques to handle the very large matrices arising in the two-dimensional (2-D) case. Once the blur functions are determined, they are used in a multichannel deconvolution step to reconstruct the unknown image. The theoretical and practical implications of edge effects, and "weakly exciting" images are examined. Finally, the algorithms are demonstrated on synthetic and real data.

  4. 30 CFR 56.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 56.14115 Section... Equipment Safety Devices and Maintenance Requirements § 56.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods capable of...

  5. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  6. Virtual Stationary Automata for Mobile Networks

    National Research Council Canada - National Science Library

    Dolev, Shlomi; Gilbert, Seth; Lahiani, Limor; Lynch, Nancy; Nolte, Tina

    2005-01-01

    We define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual stationary automata (VSAs...

  7. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Heusler Markus

    1998-01-01

    Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

  8. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Piotr T. Chruściel

    2012-05-01

    Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  9. Variational analysis of topological stationary barotropic MHD in the case of single-valued magnetic surfaces

    International Nuclear Information System (INIS)

    Yahalom, A

    2014-01-01

    Variational principles for magnetohydrodynamics have been introduced by previous authors both in Lagrangian and Eulerian form. Yahalom and Lynden-Bell (2008) have previously introduced simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. These variational principles were given in terms of six independent functions for non-stationary barotropic flows with given topologies and three independent functions for stationary barotropic flows. This is less then the seven variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field B-vector the velocity field v-vector and the density ρ. Later, Yahalom (2010) introduced a simpler variational principle in terms of four functions for non-stationary barotropic magnetohydrodynamics. It was shown that the above variational principles are also relevant for flows of non-trivial topologies and in fact using those variational variables one arrives at additional topological conservation laws in terms of cuts of variables which have close resemblance to the Aharonov- Bohm phase (Yahalom (2013)). In previous examples (Yahalom and Lynden-Bell (2008); Yahalom (2013)) the magnetic field lines with non-trivial topology were at the intersection of two surface one of which was always multivalued; in this paper an example is introduced in which the magnetic helicity is not zero yet both surfaces are single-valued

  10. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  11. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    Science.gov (United States)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  12. Strong Stationary Duality for Diffusion Processes

    OpenAIRE

    Fill, James Allen; Lyzinski, Vince

    2014-01-01

    We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...

  13. On the theory of improved confinement due to stationary multifaceted asymmetric radiation from the edge

    International Nuclear Information System (INIS)

    Herrera, J.J.E.

    2002-01-01

    Multifaceted asymmetric radiation from the edge (MARFE's) are toroidally symmetric and poloidally asymmetric radiation bands that occur in tokamaks as a result of a thermal instability, originated by radiation losses. It was observed in TFTR and TEXTOR that they formed as density was increased, and impurities concentrated on the edge. Under certain circumstances, they could evolve into weakly poloidal symmetric structures that cooled the edge of the plasma to a few tens of eV, thus leading to detachment from the limiter. Although non-stationary MARFE's are often precursors of disruptions, the use of a stochastic divertor in TORE-SUPRA, and of feedback controlled gas-puff in HT-7 have proved the existence of stationary MARFE's. Their appearance has been found to depend strongly on the impurity content of the plasma. They trigger internal transport barriers, observed in the electron temperature profiles. The purpose of this work is: to take into account the edge control in order to understand the sustainment of stationary MARFE's, and to propose non-local mechanisms that can explain the formation of internal transport barriers. (author)

  14. On the theory of improved confinement due to stationary multifaceted asymmetric radiation from the edge

    International Nuclear Information System (INIS)

    Herrera, J.J.E.; Martinell, J.J.; Morozov, D.Kh.

    2003-01-01

    Multifaceted asymmetric radiation from the edge (MARFE's) are toroidally symmetric and poloidally asymmetric radiation bands that occur in tokamaks as a result of a thermal instability, originated by radiation losses. It was observed in TFfR and TEXTOR that they formed as density was increased, and impurities concentrated on the edge. Under certain circumstances, they could evolve into weakly poloidal symmetric structures that cooled the edge of the plasma to a few tens of eV, thus leading to detachment from the limiter. Although non-stationary MARFE's are often precursors of disruptions, the use of a stochastic divertor in TORESUPRA, and of feedback controlled gas-puff in HT- 7 have proved the existence of stationary MARFE' s. Their appearance has been found to depend strongly on the impurity content of the plasma. They trigger internal transport barriers, observed in the electron temperature profiles. The purpose of this work is to review the evidence of the existence of stationary MARFEs, and whether they can actually lead to improved confinement regimes, through non-local mechanisms. (author)

  15. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  16. Stationary intraoral tomosynthesis for dental imaging

    Science.gov (United States)

    Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto

    2017-03-01

    Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.

  17. The blurred boundaries of political violence in the Sahel-Sahara

    DEFF Research Database (Denmark)

    Walther, Olivier

    2017-01-01

    The Sahel and the Sahara are faced with exceptional political instability involving a combination of rebellions, jihadist insurgencies, coups d’état, protest movements and illegal trafficking. Analysis of the outbreaks of violence reveals that the region is not just the victim of an escalation...... of wars and conflicts that marked the 20th century. The Sahel-Sahara has also become the setting of a globalised security environment, in which boundaries between what is local and global, domestic and international, military and civilian, politics and identity are blurred....

  18. Moment forms invariant to rotation and blur in arbitrary number of dimensions

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Boldyš, Jiří; Zitová, Barbara

    2003-01-01

    Roč. 25, č. 2 (2003), s. 234-246 ISSN 0162-8828 R&D Projects: GA ČR GA102/00/1711; GA ČR GP102/01/P065 Institutional research plan: CEZ:AV0Z1075907 Keywords : blur invariants * rotation invariants * group representation theory Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.823, year: 2003 http://library.utia.cas.cz/prace/20030006.pdf

  19. Accumulated damage evaluation for a piping system by the response factor on non-stationary random process, 2

    International Nuclear Information System (INIS)

    Shintani, Masanori

    1988-01-01

    This paper shows that the average and variance of the accumulated damage caused by earthquakes on the piping system attached to a building are related to the seismic response factor λ. The earthquakes refered to in this paper are of a non-stationary random process kind. The average is proportional to λ 2 and the variance to λ 4 . The analytical values of the average and variance for a single-degree-of-freedom system are compared with those obtained from computer simulations. Here the model of the building is a single-degree-of-freedom system. Both average of accumulated damage are approximately equal. The variance obtained from the analysis does not coincide with that from simulations. The reason is considered to be the forced vibraiton by sinusoidal waves, and the sinusoidal waves included random waves. Taking account of amplitude magnification factor, the values of the variance approach those obtained from simulations. (author)

  20. Prosthetic component segmentation with blur compensation: a fast method for 3D fluoroscopy.

    Science.gov (United States)

    Tarroni, Giacomo; Tersi, Luca; Corsi, Cristiana; Stagni, Rita

    2012-06-01

    A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient. The performance of the method was assessed by comparing estimated contours to references using different metrics. Results showed that the segmentation procedure is fast, accurate, independent on the operator as well as on the specific geometrical characteristics of the prosthetic component, and able to compensate for amount of blurring and illumination gradient. Importantly, the method allows a strong reduction of required user interaction time when compared to traditional segmentation techniques. Its effectiveness and robustness in different image conditions, together with simplicity and fast implementation, make this prosthetic component segmentation procedure promising and suitable for multiple clinical applications including assessment of in vivo joint kinematics in a variety of cases.

  1. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  2. Stationary infinitely divisible processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.

    Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented.......Several recent strands of work has led to the consideration of various types of continuous time stationary and infinitely divisible processes. A review of these types, with some new results, is presented....

  3. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    Science.gov (United States)

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  4. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  5. Erasing and blurring memories: The differential impact of interference on separate aspects of forgetting.

    Science.gov (United States)

    Sun, Sol Z; Fidalgo, Celia; Barense, Morgan D; Lee, Andy C H; Cant, Jonathan S; Ferber, Susanne

    2017-11-01

    Interference disrupts information processing across many timescales, from immediate perception to memory over short and long durations. The widely held similarity assumption states that as similarity between interfering information and memory contents increases, so too does the degree of impairment. However, information is lost from memory in different ways. For instance, studied content might be erased in an all-or-nothing manner. Alternatively, information may be retained but the precision might be degraded or blurred. Here, we asked whether the similarity of interfering information to memory contents might differentially impact these 2 aspects of forgetting. Observers studied colored images of real-world objects, each followed by a stream of interfering objects. Across 4 experiments, we manipulated the similarity between the studied object and the interfering objects in circular color space. After interference, memory for object color was tested continuously on a color wheel, which in combination with mixture modeling, allowed for estimation of how erasing and blurring differentially contribute to forgetting. In contrast to the similarity assumption, we show that highly dissimilar interfering items caused the greatest increase in random guess responses, suggesting a greater frequency of memory erasure (Experiments 1-3). Moreover, we found that observers were generally able to resist interference from highly similar items, perhaps through surround suppression (Experiments 1 and 4). Finally, we report that interference from items of intermediate similarity tended to blur or decrease memory precision (Experiments 3 and 4). These results reveal that the nature of visual similarity can differentially alter how information is lost from memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Generalized boundary conditions in an existence and uniqueness proof for the solution of the non-stationary electron Boltzmann equation by means of operator-semigroups

    International Nuclear Information System (INIS)

    Bartolomaeus, G.; Wilhelm, J.

    1983-01-01

    Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)

  7. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  8. Quasiparticles in non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1994-01-01

    A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs

  9. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series

    Directory of Open Access Journals (Sweden)

    Jorge E. Pinzon

    2014-07-01

    Full Text Available The NDVI3g time series is an improved 8-km normalized difference vegetation index (NDVI data set produced from Advanced Very High Resolution Radiometer (AVHRR instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of ± 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  10. A Non-Stationary 1981-2012 AVHRR NDVI(sub 3g) Time Series

    Science.gov (United States)

    Pinzon, Jorge E.; Tucker, Compton J.

    2014-01-01

    The NDVI(sub 3g) time series is an improved 8-km normalized difference vegetation index (NDVI) data set produced from Advanced Very High Resolution Radiometer (AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of plus or minus 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  11. Double Chooz Improved Multi-Detector Measurements

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Double Chooz experiment (DC) is a reactor neutrino oscillation experiment running at Chooz nuclear power plant (2 reactors) in France. In 2011, DC first reported indication of non-zero θ13 with the far detector (FD) located at the maximum of oscillation effects (i.e. disappearance), thus challenging the CHOOZ non-observation limit. A robust observation of θ13 followed in 2012 by the Daya Bay experiments with multiple detector configurations. Since 2015 DC runs in a multi-detector configuration making thus the impact of several otherwise dominating systematics reduce strongly. DC’s unique almost "iso-flux" site, allows the near detector (ND) to become a direct accurate non-oscillation reference to the FD. Our first multi-detector results at MORIOND-2016 showed an intriguing deviation of θ13 with respect to the world average. We will address this issue in this seminar. The combined "reactor-θ13" measurement is expected to ...

  12. Position detectors, methods of detecting position, and methods of providing positional detectors

    Science.gov (United States)

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  13. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  14. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  15. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics.

    Science.gov (United States)

    Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2010-03-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.

  16. Non-Gaussianity in a quasiclassical electronic circuit

    Science.gov (United States)

    Suzuki, Takafumi J.; Hayakawa, Hisao

    2017-05-01

    We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.

  17. Flexible friends? Flexible working time arrangements, blurred work-life boundaries and friendship

    OpenAIRE

    Pedersen, Vivi Bach; Lewis, Suzan

    2012-01-01

    The changing nature and demands of work raise concerns about how workers can find time for activities such as friendship and leisure, which are important for well-being. This article brings friendship into the work-life debate by exploring how individuals do friendship in a period characterised by time dilemmas, blurred work-life boundaries and increased employer- and employee-led flexible working. Interviews with employees selected according to their working time structures were supplemented...

  18. Impact of corneal cross-linking combined with photorefractive keratectomy on blurring strength

    OpenAIRE

    Labiris, Georgios; Sideroudi, Haris; Angelonias, Dimitris; Georgantzoglou, Kimonas; Kozobolis, Vassilios P

    2016-01-01

    Georgios Labiris,1,2 Haris Sideroudi,2 Dimitris Angelonias,2 Kimonas Georgantzoglou,2 Vassilios P Kozobolis1,21Department of Ophthalmology, University Hospital of Alexandroupolis, 2Eye Institute of Thrace, Alexandroupolis, GreecePurpose: The aim of this study was to evaluate the impact of corneal cross-linking combined with photorefractive keratectomy (PRK) on blurring strength.Methods: A total of 63 patients with keratoconus were recruited for this study, and two study groups were formed acc...

  19. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  20. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  1. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    International Nuclear Information System (INIS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J

    2017-01-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold–Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis. (paper)

  2. TH-CD-207B-05: Measurement of CT Bow-Tie Profiles Using a Linear Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K; Li, X; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To accurately measure CT bow-tie profiles from various manufacturers and to provide non-proprietary information for CT system modeling. Methods: A GOS-based linear detector (0.8 mm per pixel and 51.2 cm in length) with a fast data sampling speed (0.24 ms/sample) was used to measure the relative profiles of bow-tie filters from a collection of eight CT scanners by three different vendors, GE (LS Xtra, LS VCT, Discovery HD750), Siemens (Sensation 64, Edge, Flash, Force), and Philips (iBrilliance 256). The linear detector was first calibrated for its energy response within typical CT beam quality ranges and compared with an ion chamber and analytical modeling (SPECTRA and TASMIP). A geometrical calibration process was developed to determine key parameters including the distance from the focal spot to the linear detector, the angular increment of the gantry at each data sampling, the location of the central x-ray on the linear detector, and the angular response of the detector pixel. Measurements were performed under axial-scan modes for most representative bow-tie filters and kV selections from each scanner. Bow-tie profiles were determined by re-binning the measured rotational data with an angular accuracy of 0.1 degree using the calibrated geometrical parameters. Results: The linear detector demonstrated an energy response as a solid state detector, which is close to the CT imaging detector. The geometrical calibration was proven to be sufficiently accurate (< 1mm in error for distances >550 mm) and the bow-tie profiles measured from rotational mode matched closely to those from the gantry-stationary mode. Accurate profiles were determined for a total of 21 bow-tie filters and 83 filter/kV combinations from the abovementioned scanner models. Conclusion: A new improved approach of CT bow-tie measurement was proposed and accurate bow-tie profiles were provided for a broad list of CT scanner models.

  3. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  4. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  5. Stationary shear flows in CGL anisotropic toroidal plasmas

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  6. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  7. Developmental changes in the balance of disparity, blur and looming/proximity cues to drive ocular alignment and focus

    Science.gov (United States)

    Horwood, Anna M; Riddell, Patricia M

    2015-01-01

    Accurate co-ordination of accommodation and convergence is necessary to view near objects and develop fine motor co-ordination. We used a remote haploscopic videorefraction paradigm to measure longitudinal changes in simultaneous ocular accommodation and vergence to targets at different depths, and to all combinations of blur, binocular disparity, and change-in-size (“proximity”) cues. Infants were followed longitudinally and compared to older children and young adults, with the prediction that sensitivity to different cues would change during development. Mean infant responses to the most naturalistic condition were similar to those of adults from 6-7 weeks (accommodation) and 8-9 weeks (vergence). Proximity cues influenced responses most in infants less than 14 weeks of age, but sensitivity declined thereafter. Between 12-28 weeks of age infants were equally responsive to all three cues, while in older children and adults manipulation of disparity resulted in the greatest changes in response. Despite rapid development of visual acuity (thus increasing availability of blur cues), responses to blur were stable throughout development. Our results suggest that during much of infancy, vergence and accommodation responses are not dependent on the development of specific depth cues, but make use of any cues available to drive appropriate changes in response. PMID:24344547

  8. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    Science.gov (United States)

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  10. Direct imaging of slow, stored and stationary EIT polaritons

    Science.gov (United States)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  11. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  12. Localization and stationary phase approximation on supermanifolds

    Science.gov (United States)

    Zakharevich, Valentin

    2017-08-01

    Given an odd vector field Q on a supermanifold M and a Q-invariant density μ on M, under certain compactness conditions on Q, the value of the integral ∫Mμ is determined by the value of μ on any neighborhood of the vanishing locus N of Q. We present a formula for the integral in the case where N is a subsupermanifold which is appropriately non-degenerate with respect to Q. In the process, we discuss the linear algebra necessary to express our result in a coordinate independent way. We also extend the stationary phase approximation and the Morse-Bott lemma to supermanifolds.

  13. Dealing with Non-stationarity in Intensity-Frequency-Duration Curve

    Science.gov (United States)

    Rengaraju, S.; Rajendran, V.; C T, D.

    2017-12-01

    Extremes like flood and drought are becoming frequent and more vulnerable in recent times, generally attributed to the recent revelation of climate change. One of the main concerns is that whether the present infrastructures like dams, storm water drainage networks, etc., which were designed following the so called `stationary' assumption, are capable of withstanding the expected severe extremes. Stationary assumption considers that extremes are not changing with respect to time. However, recent studies proved that climate change has altered the climate extremes both temporally and spatially. Traditionally, the observed non-stationary in the extreme precipitation is incorporated in the extreme value distributions in terms of changing parameters. Nevertheless, this raises a question which parameter needs to be changed, i.e. location or scale or shape, since either one or more of these parameters vary at a given location. Hence, this study aims to detect the changing parameters to reduce the complexity involved in the development of non-stationary IDF curve and to provide the uncertainty bound of estimated return level using Bayesian Differential Evolutionary Monte Carlo (DE-MC) algorithm. Firstly, the extreme precipitation series is extracted using Peak Over Threshold. Then, the time varying parameter(s) is(are) detected for the extracted series using Generalized Additive Models for Location Scale and Shape (GAMLSS). Then, the IDF curve is constructed using Generalized Pareto Distribution incorporating non-stationarity only if the parameter(s) is(are) changing with respect to time, otherwise IDF curve will follow stationary assumption. Finally, the posterior probability intervals of estimated return revel are computed through Bayesian DE-MC approach and the non-stationary based IDF curve is compared with the stationary based IDF curve. The results of this study emphasize that the time varying parameters also change spatially and the IDF curves should incorporate non

  14. Matrix product representation of the stationary state of the open zero range process

    Science.gov (United States)

    Bertin, Eric; Vanicat, Matthieu

    2018-06-01

    Many one-dimensional lattice particle models with open boundaries, like the paradigmatic asymmetric simple exclusion process (ASEP), have their stationary states represented in the form of a matrix product, with matrices that do not explicitly depend on the lattice site. In contrast, the stationary state of the open 1D zero-range process (ZRP) takes an inhomogeneous factorized form, with site-dependent probability weights. We show that in spite of the absence of correlations, the stationary state of the open ZRP can also be represented in a matrix product form, where the matrices are site-independent, non-commuting and determined from algebraic relations resulting from the master equation. We recover the known distribution of the open ZRP in two different ways: first, using an explicit representation of the matrices and boundary vectors; second, from the sole knowledge of the algebraic relations satisfied by these matrices and vectors. Finally, an interpretation of the relation between the matrix product form and the inhomogeneous factorized form is proposed within the framework of hidden Markov chains.

  15. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  16. A new method by steering kernel-based Richardson–Lucy algorithm for neutron imaging restoration

    International Nuclear Information System (INIS)

    Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng

    2014-01-01

    Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson–Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively

  17. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises

    International Nuclear Information System (INIS)

    Wu, Y.; Zhu, W.Q.

    2008-01-01

    The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator

  18. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  19. Stationary radiation of objects with scattering media

    International Nuclear Information System (INIS)

    Vasil'eva, Inna A

    2001-01-01

    The radiation observed inside or outside a stationary radiator with a scattering medium is a sum of components, each being determined by, first, the primary radiation from some part of the radiator and, second, the probability of this radiation reaching the region where it is observed. In this review, general and rather simple relations between these components are discussed. These relations, unlike the components themselves, are independent of the specific optical characteristics of the object as well as of its geometry, inhomogeneity, etc. In deriving the relations, the situations in which geometrical optics is either applicable or inapplicable to radiation in a scattering medium are considered. For the case where geometrical optics does apply, stationary relations are derived from the probabilistic stationarity condition for radiation passing through the medium, i.e., from the fact that all radiation emitted in a stationary regime disappears with probability unity. Equilibrium relations are derived from the stationary relations in the particular case of a thermal radiator in an isothermal cavity. To derive the stationary relations in the geometrical optics approximation, we obtain general solutions of the linear equation of transfer using the Green function approach. If geometrical optics cannot be applied to a scattering and radiating medium, only relations for the components of outgoing thermal radiation are obtained, and the generalized Kirchhoff law, obtained by Levin and Rytov using statistical radio-physics methods, is employed. In this case, stationary relations are also derived from a probabilistic stationarity condition; the equilibrium relations follow from the stationary ones as well as from the equilibrium condition for radiation in the isothermal cavity. The quantities involved in all the relations obtained are a subject of experimental and computational spectroscopic studies. Examples of current and potential applications are given. The relations

  20. Comparison between Hilbert-Huang transform and scalogram methods on non-stationary biomedical signals: application to laser Doppler flowmetry recordings

    International Nuclear Information System (INIS)

    Roulier, Remy; Humeau, Anne; Flatley, Thomas P; Abraham, Pierre

    2005-01-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application on healthy subjects. This reflex may be impaired in diabetic patients. The work presents a comparison between two signal processing methods that provide a clarification of this phenomenon. Analyses by the scalogram and the Hilbert-Huang transform (HHT) of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied at different time intervals in order to take into account the dynamics of the phenomenon. The results show that both the scalogram and the HHT methods lead to the same conclusions concerning the comparisons of the myogenic, neurogenic and endothelial related metabolic activities-during the progressive pressure and at rest-in healthy and diabetic subjects. However, the HHT shows more details that may be obscured by the scalogram. Indeed, the non-locally adaptative limitations of the scalogram can remove some definition from the data. These results may improve knowledge on the above-mentioned reflex as well as on non-stationary biomedical signal processing methods

  1. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.

    Science.gov (United States)

    Netz, Roland R

    2018-05-14

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non

  2. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium

    Science.gov (United States)

    Netz, Roland R.

    2018-05-01

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non

  3. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    International Nuclear Information System (INIS)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-01-01

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2

  4. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images.

    Science.gov (United States)

    Elad, M; Feuer, A

    1997-01-01

    The three main tools in the single image restoration theory are the maximum likelihood (ML) estimator, the maximum a posteriori probability (MAP) estimator, and the set theoretic approach using projection onto convex sets (POCS). This paper utilizes the above known tools to propose a unified methodology toward the more complicated problem of superresolution restoration. In the superresolution restoration problem, an improved resolution image is restored from several geometrically warped, blurred, noisy and downsampled measured images. The superresolution restoration problem is modeled and analyzed from the ML, the MAP, and POCS points of view, yielding a generalization of the known superresolution restoration methods. The proposed restoration approach is general but assumes explicit knowledge of the linear space- and time-variant blur, the (additive Gaussian) noise, the different measured resolutions, and the (smooth) motion characteristics. A hybrid method combining the simplicity of the ML and the incorporation of nonellipsoid constraints is presented, giving improved restoration performance, compared with the ML and the POCS approaches. The hybrid method is shown to converge to the unique optimal solution of a new definition of the optimization problem. Superresolution restoration from motionless measurements is also discussed. Simulations demonstrate the power of the proposed methodology.

  5. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    Science.gov (United States)

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  6. Chaotic Bohmian trajectories for stationary states

    International Nuclear Information System (INIS)

    Cesa, Alexandre; Martin, John; Struyve, Ward

    2016-01-01

    In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does. (paper)

  7. The stationary neutron radiography system

    International Nuclear Information System (INIS)

    Weeks, A.A.; Newell, D.L.; Heidel, C.C.

    1990-01-01

    To provide the high intensity neutron beam and support systems necessary for radiography, the Stationary Neutron Radiography System was constructed at McClellan Air Force Base. The Stationary Neutron Radiography System utilizes a one megawatt TRIGA reactor contained in an Aluminium tank surrounded by eight foot thick concrete walls. There are four neutron beam tubes at inclined angles from the reactor core to separate radiography bays. In three of the bays, robotic systems manipulate aircraft components in the neutron beam, while real-time imaging systems provide images concurrent with the irradiation. Film radiography of smaller components is performed in the remaining bay

  8. The Methodology for Integral Assessment of the Impact of Renewable Energy on the Environment under Non-Stationary Economy

    Directory of Open Access Journals (Sweden)

    Petrakov Iaroslav V.

    2017-12-01

    Full Text Available The need to reduce anthropogenic load, eliminate threats to environmental safety and provide ecologically oriented development are one of the main global challenges of our time. At the same time, the replacement of traditional energy sources with alternatives ones requires a quantitative assessment of direct and indirect environmental impacts. The article analyzes the dynamics and structure of pollution in Ukraine in terms of its sources and forms as well as their impact on the carbon productivity of the GDP. It is proposed to assess the impact of alternative energy on the environment under non-stationary economy using an integral indicator that takes into account a number of factors, in particular the change in the share of RES in the total primary energy supply, share of renewable energy production, the index of greenhouse gases by the energy sector, change in the quality of atmospheric air in the urban populated area, amount of investment in reducing CO2 emissions, carbon intensity of energy production, share of thermal generation capacity that meets the ecological requirements of the EU.

  9. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.

  10. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  11. Automatic Threshold Detector Techniques

    Science.gov (United States)

    1976-07-15

    Averaging CFAR in Non- Stationary Weibull Clutter, " L. Novak, (1974 IEEE Symposium on Information Theory ). 8. "The Weibull Distribution Applied to the... UGTS (K) ,Kml NPTS) 140 DO 153 K~lvNPT9 IF(SIGCSO(K) .LT.0. )SIOCSO(K).1 .E-50 IF(SIOWSO(K) .LT.0. )SIGWSQ(K)-1 .E-50 IF(SIONSG(K) .LT.O. )SIG3NSQCIO-1.E

  12. Fish invasions in the world's river systems: when natural processes are blurred by human activities.

    Directory of Open Access Journals (Sweden)

    Fabien Leprieur

    2008-02-01

    Full Text Available Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the "human activity" hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the "biotic resistance" hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the "biotic acceptance" hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the "human activity" hypothesis. In contrast, our results do not provide support for either the "biotic acceptance" or the "biotic resistance" hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems

  13. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  14. Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    International Nuclear Information System (INIS)

    Al-Salti, Nasser; Neukirch, Thomas

    2009-01-01

    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.

  15. Dynamic Model of a Structure Carrying Stationary Humans and Assessment of its Response to Walking Excitation

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    A flooring-system, e.g. a floor in a building, is excited dynamically when a person walks across the floor, and resonant excitation might bring structural vibrations to unacceptable levels. Stationary (non-moving) crowds of people might be present on the same floor and they will sense the floor...... vibrations, but they will also interact dynamically with the floor in a passive sense, thus altering the dynamic system excited to vibration by the walking person. Consequently, the vibration level of the floor is likely to depend on the presence and size of the stationary crowd. It is also known...... that different techniques (different parameters calculated from structural response time series) are proposed for assessing floor serviceability. The paper looks into the influence of the stationary crowd of people on the floor response to walking excitation and into the influence of the crowd on different...

  16. Quasi-stationary gravitational collapse of slowly rotating bodies in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J C [Oxford Univ. (UK). Dept. of Astrophysics

    1977-05-01

    This paper presents results of quasi-stationary collapse calculations for a class of slowly rotating non-homogeneous bodies in general relativity. The results are qualitatively similar to those obtained previously for homogeneous models indicating that the effects described for the homogeneous models are likely to have some relevance for the gravitational collapse of real stars towards the black hole state. There is also a discussion of some basic questions associated with such calculations.

  17. Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Purcell, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-29

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even as small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding

  18. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  19. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  20. Numerical Estimation Method for the NonStationary Thrust of Pulsejet Ejector Nozzle

    Directory of Open Access Journals (Sweden)

    A. Yu. Mikushkin

    2016-01-01

    Full Text Available The article considers a calculation method for the non-stationary thrust of pulsejet ejector nozzle that is based on detonation combustion of gaseous fuel.To determine initial distributions of the thermodynamic parameters inside the detonation tube was carried out a rapid analysis based on x-t-diagrams of motion of glowing combustion products. For this purpose, the section with transparent walls was connected to the outlet of the tube to register the movement of products of combustion.Based on obtained images and gas-dynamic and thermodynamic equations the velocity distribution of the combustion products, its density, pressure and temperature required for numerical analysis were calculated. The world literature presents data on distribution of parameters, however they are given only for direct initiation of detonation at the closed end and for chemically "frozen" gas composition. The article presents the interpolation methods of parameters measured at the temperatures of 2500-2800K.Estimation of the thermodynamic parameters is based on the Chapman-Jouguet theory that the speed of the combustion products directly behind the detonation wave front with respect to the wave front is equal to the speed of sound of these products at a given point. The method of minimizing enthalpy of the final thermodynamic state was used to calculate the equilibrium parameters. Thus, a software package «IVTANTHERMO», which is a database of thermodynamic properties of many individual substances in a wide temperature range, was used.An integral thrust was numerically calculated according to the ejector nozzle surface. We solved the Navier-Stokes equations using the finite-difference Roe scheme of the second order. The combustion products were considered both as an inert mixture with "frozen" composition and as a mixture in chemical equilibrium with the changing temperature. The comparison with experimental results was made.The above method can be used for rapid

  1. Diagnostics of a stationary MPD-type plasma jet with a HCN laser interferometer

    International Nuclear Information System (INIS)

    Graser, W.; Hoffmann, P.

    1975-01-01

    A HCN laser interferometer of the Ashby-Jephcott type operating at a wavelength of 337 μm was used to measure spatially resolved electron densities in a stationary MPD-type plasma jet with non-LTE behavior. Experiments were performed with and without superimposed magnetic fields up to 0.1 T at the exit of the plasma accelerator. Electron densities were obtained within the limits of 5times10 12 and 10 15 cm -3 with an accuracy better than 10%. Within the axially symmetric expanding plasma of about 15-cm average diameter and 50-cm length the radial resolving power came to less than 1 cm. So this technique has proved to be suitable to fill a gap in the diagnostics of stationary magnetized plasmas in the mean range of electron densities. (auth)

  2. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Science.gov (United States)

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Schools at the Rural-Urban Boundary - Blurring the Divide?

    Science.gov (United States)

    Burdick-Will, Julia; Logan, John R

    2017-07-01

    Schools mirror the communities in which they are located. Research on school inequality across the rural-urban spectrum tends to focus on the contrast between urban, suburban, and rural schools and glosses over the variation within these areas as well as the similarities between them. To address this gap and provide a richer description of the spatial distribution of educational inequality, we examine the school composition, achievement, and resources of all U.S. elementary schools in 2010-2011. We apply standard census definitions of what areas fall within central cities, the remainder of metropolitan regions, and in rural America. We then apply spatially explicit methods to reveal blurred boundaries and gradual gradients rather than sharp breaks at the edges of these zones. The results show high levels of variation within the suburbs and substantial commonality between rural and urban areas.

  4. Laser-light sailing and non-stationary power stations applied to robotic star probes

    International Nuclear Information System (INIS)

    Matloff, Gregory L.

    2000-01-01

    The light sail has emerged as a leading contender to propel extrasolar expeditions. Because solar-sail performance is limited by the inverse-square law, one-way expeditions to other stars requiring voyage durations of a few centuries or less may be propelled by radiation pressure from a laser beam originating from a location closer to the Sun than the space probe. Maintaining a stationary laser power station in position between Sun and spacecraft for years or decades presents many technical challenges. This paper presents a variation on the laser power station that may be simpler to implement, in which the Sun-pumped laser power station follows the spacecraft on a parabolic or slightly hyperbolic trajectory

  5. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    Science.gov (United States)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  6. Stationary black holes as holographs

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan); MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2007-11-21

    Smooth spacetimes possessing a (global) one-parameter group of isometries and an associated Killing horizon in Einstein's theory of gravity are investigated. No assumption concerning the asymptotic structure is made; thereby, the selected spacetimes may be considered as generic distorted stationary black holes. First, spacetimes of arbitrary dimension, n {>=} 3, with matter satisfying the dominant energy condition and allowing a non-zero cosmological constant are investigated. In this part, complete characterization of the topology of the event horizon of 'distorted' black holes is given. It is shown that the topology of the event horizon of 'distorted' black holes is allowed to possess a much larger variety than that of the isolated black hole configurations. In the second part, four-dimensional (non-degenerate) electrovac distorted black hole spacetimes are considered. It is shown that the spacetime geometry and the electromagnetic field are uniquely determined in the black hole region once the geometry of the bifurcation surface and one of the electromagnetic potentials are specified there. Conditions guaranteeing the same type of determinacy, in a neighbourhood of the event horizon, on the domain of outer communication side are also investigated. In particular, they are shown to be satisfied in the analytic case.

  7. Particlc detectors. Foundations and applications; Teilchendetektoren. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolanoski, Hermann; Wermes, Norbert

    2016-08-01

    The following topics are dealt with: Interaction of particles with matter, motion of charge carriers in electric and magnetic fields, signal generation by moving charges, non-electronic detectors, gas-filled detectors, semiconductor detectors, track reconstruction and momentum measurement, photodetectors, Cherenkov detectors, transition-radiation detectors, scintillation detectors, particle identification, calorimeters, detection of cosmic particles, signal processing and noise, trigger and data acquisition systems. (HSI)

  8. Search Strategy of Detector Position For Neutron Source Multiplication Method by Using Detected-Neutron Multiplication Factor

    International Nuclear Information System (INIS)

    Endo, Tomohiro

    2011-01-01

    In this paper, an alternative definition of a neutron multiplication factor, detected-neutron multiplication factor kdet, is produced for the neutron source multiplication method..(NSM). By using kdet, a search strategy of appropriate detector position for NSM is also proposed. The NSM is one of the practical subcritical measurement techniques, i.e., the NSM does not require any special equipment other than a stationary external neutron source and an ordinary neutron detector. Additionally, the NSM method is based on steady-state analysis, so that this technique is very suitable for quasi real-time measurement. It is noted that the correction factors play important roles in order to accurately estimate subcriticality from the measured neutron count rates. The present paper aims to clarify how to correct the subcriticality measured by the NSM method, the physical meaning of the correction factors, and how to reduce the impact of correction factors by setting a neutron detector at an appropriate detector position

  9. Influence of Stationary Crossflow Modulation on Secondary Instability

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  10. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair; Dance, David R.; Workman, Adam; Yip, Mary; Wells, Kevin; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Northern Ireland Regional Medical Physics Service, Forster Green Hospital, Belfast, BT8 4HD (United Kingdom); Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2012-05-15

    Purpose: Undertaking observer studies to compare imaging technology using clinical radiological images is challenging due to patient variability. To achieve a significant result, a large number of patients would be required to compare cancer detection rates for different image detectors and systems. The aim of this work was to create a methodology where only one set of images is collected on one particular imaging system. These images are then converted to appear as if they had been acquired on a different detector and x-ray system. Therefore, the effect of a wide range of digital detectors on cancer detection or diagnosis can be examined without the need for multiple patient exposures. Methods: Three detectors and x-ray systems [Hologic Selenia (ASE), GE Essential (CSI), Carestream CR (CR)] were characterized in terms of signal transfer properties, noise power spectra (NPS), modulation transfer function, and grid properties. The contributions of the three noise sources (electronic, quantum, and structure noise) to the NPS were calculated by fitting a quadratic polynomial at each spatial frequency of the NPS against air kerma. A methodology was developed to degrade the images to have the characteristics of a different (target) imaging system. The simulated images were created by first linearizing the original images such that the pixel values were equivalent to the air kerma incident at the detector. The linearized image was then blurred to match the sharpness characteristics of the target detector. Noise was then added to the blurred image to correct for differences between the detectors and any required change in dose. The electronic, quantum, and structure noise were added appropriate to the air kerma selected for the simulated image and thus ensuring that the noise in the simulated image had the same magnitude and correlation as the target image. A correction was also made for differences in primary grid transmission, scatter, and veiling glare. The method was

  11. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Donner, E. [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); CRC CARE, PO Box 486, Salisbury, South Australia (Australia); Jonge, M.D. de; Paterson, D. [Australian Synchrotron, X-ray Fluorescence Microscopy, 800 Blackburn Road, Clayton, Victoria (Australia); Ryan, C.G. [CSIRO Earth Science and Resource Engineering, Normanby Road, Clayton, Victoria (Australia)

    2011-06-15

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence ({mu}XRF) tomography increasingly feasible. This article focuses on {mu}XRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches. (orig.)

  12. Expansion of a stochastic stationary optical field at a fixed point

    International Nuclear Information System (INIS)

    Martinez-Herrero, R.; Mejias, P.M.

    1984-01-01

    An important problem in single and multifold photoelectron statistics is to determine the statistical properties of a totally polarized optical field at some point →r from the photoelectron counts registered by the detector. The solution to this problem may be found in the determination of the statistical properties of an integral over a stochastic process; a complicated and formidable task. This problem can be solved in some cases of interest by expanding the process V(t) (which represents the field at →r) in a set of complete orthonormal deterministic functions, resulting in the so-called Karhunen-Loeve expansion of V(t). Two disadvantages are that the process must be defined over a finite time interval, and that each term of the series does not represent any special optical field. Taking into account these limitations of the expansion, the purpose of this work is to find another alternative expansion of stationary optical fields defined over the infinite time interval, and whose terms represent stochastic fields

  13. Neuropsychological benefits of stationary bike exercise and a cybercycle exergame for older adults with diabetes: an exploratory analysis.

    Science.gov (United States)

    Anderson-Hanley, Cay; Arciero, Paul J; Westen, Sarah C; Nimon, Joseph; Zimmerman, Earl

    2012-07-01

    This quasi-experimental exploratory study investigated neuropsychological effects of exercise among older adults with diabetes mellitus (DM) compared with adults without diabetes (non-DM), and it examined the feasibility of using a stationary bike exergame as a form of exercise for older adults with and without diabetes. It is a secondary analysis that uses a small dataset from a larger randomized clinical trial (RCT) called the Cybercycle Study, which compared cognitive and physiological effects of traditional stationary cycling versus cybercycling. In the RCT and the secondary analysis, older adults living in eight independent living retirement facilities in the state of New York were enrolled in the study and assigned to exercise five times per week for 45 min per session (two times per week was considered acceptable for retention in the study) by using a stationary bicycle over the course of 3 months. They were randomly assigned to use either a standard stationary bicycle or a "cybercycle" with a video screen that displayed virtual terrains, virtual tours, and racing games with virtual competitors. For this secondary analysis, participants in the RCT who had type 2 DM (n = 10) were compared with age-matched non-DM exercisers (n = 10). The relationship between exercise and executive function (i.e., Color Trials 2, Digit Span Backwards, and Stroop C tests) was examined for DM and non-DM patients. Older adults with and without diabetes were able to use cybercycles successfully and complete the study, so the feasibility of this form of exercise for this population was supported. However, in contrast with the larger RCT, this small subset did not demonstrate statistically significant differences in executive function between the participants who used cybercycles and those who used stationary bikes with no games or virtual content on a video screen. Therefore, the study combined the two groups and called them "exercisers" and compared cognitive outcomes for DM versus

  14. Laboratory and field evaluations of a methodology for determining hexavalent-chromium emissions from stationary sources. Final report

    International Nuclear Information System (INIS)

    Carver, A.C.

    1991-10-01

    The study was initiated to determine whether chromium emissions should be regulated under Section 112 of the Clean Air Act National Emissions Standards for Hazardous Air Pollutants (NESHAP). To support stationary source regulations, it is important that (1) the sampling procedure not change the chromium valence state during sampling and (2) an analytical technique for measuring low concentration levels of chromium be available. These goals are achieved with the current EPA 'Draft Method for Sampling and Analysis of Hexavalent Chromium at Stationary Sources.' The draft method utilizes a recirculating system to flush impinger reagent into the sampling nozzle during sample collection. Immediate contact of the stack gas with impinger reagent 'fixes' the chromium valence state. Ion chromatography coupled with post column derivatization and ultraviolet visible detector is used to analyze Cr(VI) in the parts per trillion range. Field tests were conducted at metal plating facilities, industrial cooling towers, municipal waste incinerators, sewage sludge incinerators, and hazardous waste incinerators. It was at the hazardous waste facility that the new method was proven to have acceptable precision and essentially no conversion in the sample train

  15. The stationary Alfven wave in laboratory and space regimes

    Science.gov (United States)

    Finnegan, S. M.

    In this thesis, a non-linear, collisional, two-fluid model of uniform plasma convection across field-aligned current (FAC) sheets, describing stationary Alfven (StA) waves is developed in support of laboratory experiments performed to test the hypothesis that a stationary inertial Alfven wave pattern forms within a channel of parallel electron current across which plasma is convected. In a previous work, Knudsen (D. J. Knudsen, J. Geophys. Res. 101, 10,761 (1996)) showed that, for cold, collisionless plasma, stationary inertial Alfven (StIA) waves can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Here, Knudsen's model has been generalized for warm, collisional, anisotropic plasma. The inclusion of parallel electron thermal pressure introduces dispersive effects which extend the model to the kinetic (beta > me/mi) regime. The effects of both ion-neutral and electron-ion collisional resistivity on StIA and stationary kinetic Alfven (StKA) wave solutions is studied. Conditions for both periodic and solitary wave solutions are identified. In the small amplitude limit, it is shown that the StA wave equation reduces to the differential equation describing the behavior of a forced harmonic oscillator. Analytical solutions are obtained for both a step and impulse, of finite width, forcing functions. Plasma rotation experiments in the West Virginia University Q-machine (WVUQ) demonstrate that an electron-emitting spiral electrode produces controllable, parabolic radial profile of floating potential, while the space potential showed no such structure. Laser-induced fluorescence measurements confirmed that the azimuthal ion drift velocity is inconsistent with a drift due to a gradient in the space potential. Experiments designed to produce StIA wave signatures were performed in the

  16. An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.

    Science.gov (United States)

    Burden, Conrad J; Tang, Yurong

    2016-12-01

    We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Concentration and limit behaviors of stationary measures

    Science.gov (United States)

    Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei

    2018-04-01

    In this paper, we study limit behaviors of stationary measures of the Fokker-Planck equations associated with a system of ordinary differential equations perturbed by a class of multiplicative noise including additive white noise case. As the noises are vanishing, various results on the invariance and concentration of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact set whose weak∗-limits are invariant measures of the unperturbed system concentrated on its global attractor. In the case that the global attractor contains a strong local attractor, we further show that there exists a family of admissible multiplicative noises with respect to which all limit measures are actually concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the global attractor, there exists a family of admissible multiplicative noises with respect to which no limit measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative noises are always concentrated away from the equilibrium. As applications of these results, an example of stochastic Hopf bifurcation and an example with non-decomposable ω-limit sets are provided. Our study is closely related to the problem of noise stability of compact invariant sets and invariant measures of the unperturbed system.

  18. High P/sub T/ detectors for the SSC

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1987-11-01

    Summarized in this report is some of the work done at the recent Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider held at Berkeley. The major goal was to develop an understanding of what complement of detectors would provide the capability for a well-balanced physics program at the SSC. Unlike earlier studies which had emphasized individual components such as tracking, calorimetry, etc., the intention was to focus on complete detectors. The particular detectors discussed in this paper are: the large solenoid detectors, the compact solenoid detectors, the non-magnetic detectors, the dipole detectors and muon detectors. 10 refs., 6 figs., 2 tabs

  19. The dynamic behaviour of a non-stationary elevator compensating rope system under harmonic and stochastic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, S [School of Applied Sciences, University of Northampton, St. George' s Avenue, Northampton NN2 6JD (United Kingdom); Iwankiewicz, R [Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Eissendorfer Strasse 42 D-21073, Hamburg (Germany); Terumichi, Y, E-mail: stefan.kaczmarczyk@northampton.ac.u [Faculty of Science and Technology, Sophia University, 7-1 KIOI-CHO, CHIYODAKU, Tokyo, 102-8554 Japan (Japan)

    2009-08-01

    Moving slender elastic elements such as ropes, cables and belts are pivotal components of vertical transportation systems such as traction elevators. Their lengths vary within the host building structure during the elevator operation which results in the change of the mass and stiffness characteristics of the system. The structure of modern high-rise buildings is flexible and when subjected to loads due to strong winds and earthquakes it vibrates at low frequencies. The inertial load induced by the building motion excites the flexible components of the elevator system. The compensating ropes due to their lower tension are particularly affected and undergo large dynamic deformations. The paper focuses on the presentation of the non-stationary model of a building-compensating rope system and on the analysis to predict its dynamic response. The excitation mechanism is represented by a harmonic process and the results of computer simulations to predict transient resonance response are presented. The analysis of the simulation results leads to recommendations concerning the selection of the weight of the compensation assembly to minimize the effects of an adverse dynamic response of the system. The scenario when the excitation is represented as a narrow-band stochastic process with the state vector governed by stochastic equations is then discussed and the stochastic differential equations governing the second-order statistical moments of the state vector are developed.

  20. The Effect of a Voice Activity Detector on the Speech Enhancement

    DEFF Research Database (Denmark)

    Dau, Torsten; Catic, Jasmina; Buchholz, Jörg

    2010-01-01

    A multimicrophone speech enhancement algorithm for binaural hearing aids that preserves interaural time delays was proposed recently. The algorithm is based on multichannel Wiener filtering and relies on a voice activity detector (VAD) for estimation of second-order statistics. Here, the effect...... of a VAD on the speech enhancement of this algorithm was evaluated using an envelopebased VAD, and the performance was compared to that achieved using an ideal error-free VAD. The performance was considered for stationary directional noise and nonstationary diffuse noise interferers at input SNRs from −10...

  1. Copy-move forgery detection through stationary wavelets and local binary pattern variance for forensic analysis in digital images.

    Science.gov (United States)

    Mahmood, Toqeer; Irtaza, Aun; Mehmood, Zahid; Tariq Mahmood, Muhammad

    2017-10-01

    The most common image tampering often for malicious purposes is to copy a region of the same image and paste to hide some other region. As both regions usually have same texture properties, therefore, this artifact is invisible for the viewers, and credibility of the image becomes questionable in proof centered applications. Hence, means are required to validate the integrity of the image and identify the tampered regions. Therefore, this study presents an efficient way of copy-move forgery detection (CMFD) through local binary pattern variance (LBPV) over the low approximation components of the stationary wavelets. CMFD technique presented in this paper is applied over the circular regions to address the possible post processing operations in a better way. The proposed technique is evaluated on CoMoFoD and Kodak lossless true color image (KLTCI) datasets in the presence of translation, flipping, blurring, rotation, scaling, color reduction, brightness change and multiple forged regions in an image. The evaluation reveals the prominence of the proposed technique compared to state of the arts. Consequently, the proposed technique can reliably be applied to detect the modified regions and the benefits can be obtained in journalism, law enforcement, judiciary, and other proof critical domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  3. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Azadeh, A; Seraj, O [Department of Industrial Engineering and Research Institute of Energy Management and Planning, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563 (Iran); Saberi, M [Department of Industrial Engineering, University of Tafresh (Iran); Institute for Digital Ecosystems and Business Intelligence, Curtin University of Technology, Perth (Australia)

    2010-06-15

    This study presents an integrated fuzzy regression and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy regression (FR) or time series and the integrated algorithm could be an ideal substitute for such cases. At First, preferred Time series model is selected from linear or nonlinear models. For this, after selecting preferred Auto Regression Moving Average (ARMA) model, Mcleod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, the preferred nonlinear model is selected and defined as preferred time series model. At last, the preferred model from fuzzy regression and time series model is selected by the Granger-Newbold. Also, the impact of data preprocessing on the fuzzy regression performance is considered. Monthly electricity consumption of Iran from March 1994 to January 2005 is considered as the case of this study. The superiority of the proposed algorithm is shown by comparing its results with other intelligent tools such as Genetic Algorithm (GA) and Artificial Neural Network (ANN). (author)

  4. Persistence of non-Markovian Gaussian stationary processes in discrete time

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig

    2018-04-01

    The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time n . Few results are known for the persistence P0(n ) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through P0(n ) ˜θn . Using a modified version of the independent interval approximation (IIA) that we developed before, we are able to calculate P0(n ) analytically in z -transform space in terms of the autocorrelation function A (n ) . If A (n )→0 as n →∞ , we extract θ numerically, while if A (n )=0 , for finite n >N , we find θ exactly (within the IIA). We apply our results to three special cases: the nearest-neighbor-correlated "first order moving average process", where A (n )=0 for n >1 , the double exponential-correlated "second order autoregressive process", where A (n ) =c1λ1n+c2λ2n , and power-law-correlated variables, where A (n ) ˜n-μ . Apart from the power-law case when μ <5 , we find excellent agreement with simulations.

  5. Improving Technology for Vascular Imaging

    Science.gov (United States)

    Rana, Raman

    detector blur can be reduced significantly by using a higher magnification. As discussed earlier, interventionalist need higher resolution capabilities during EIGIs for more confident and successful treatment of the patient. An experimental MAF-CCD enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Whenever the higher resolution is needed, the MAD-CCD detector can be moved in front of the FPD. A particular set of steps were needed to deploy the MAF in front of the FPD and to transfer the controls to CAPIDS from the Toshiba Systems. In order to minimize any possible negative impact of using two different detectors during a procedure, a well-designed workflow was developed that enables smooth deployment of the MAF at critical stages of clinical procedures. The images obtained using MAF-CCD detector demonstrated the advantages the high resolution imagers have over FPDs. Scatter is inevitable in x-ray imaging as it reduces the image quality. The benefit of removing the scatter is that it improves contrast and also increases the signal-to-Noise (SNR). There are various scatter reduction methods like air-gap techniques, collimation, moving anti-scatter grids, stationary anti-scatter grids. Stationary anti-scatter grids is a preferred choice in dynamic imaging because of its compact design and ease to use. However, when these anti-scatter grids are used with high resolution detector, there will be anti-scatter grid-line pattern present in the image, as structure noise. Because of presence of this anti-scatter grid artifact, the contrast-to-Noise (CNR) of the image

  6. Stationary spherical shells around Kerr-Newman naked singularities

    International Nuclear Information System (INIS)

    Zdenek Stuchlik; Stanislav Hledik

    1998-01-01

    It is shown that in the field of some Kerr-Newman naked singularities a stationary spherical shell of charged dust can exist, with the specific charge being the same for all particles of the dusty shell. Gravitational attractions acting on the particles are balanced by electromagnetic repulsion in such a way that the shell is stable against radial perturbations. Particles of the shell move along orbits with constant latitude and radius. Rotation of the shell is differential. The shell is corotating relative to static observers at infinity, but it is counter rotating relative to the family of locally non-rotating observers. No such a shell can exist in the field of Kerr-Newman black holes. (authors)

  7. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  8. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years.

    Science.gov (United States)

    Tailor, Vijay; Bossi, Manuela; Bunce, Catey; Greenwood, John A; Dahlmann-Noor, Annegret

    2015-08-11

    Current treatments for amblyopia in children, occlusion and pharmacological blurring, have had limited success, with less than two-thirds of children achieving good visual acuity of at least 0.20 logMAR in the amblyopic eye, limited improvement of stereopsis, and poor compliance. A new treatment approach, based on the dichoptic presentation of movies or computer games (images presented separately to each eye), may yield better results, as it aims to balance the input of visual information from each eye to the brain. Compliance may also improve with these more child-friendly treatment procedures. To determine whether binocular treatments in children aged three to eight years with unilateral amblyopia result in better visual outcomes than conventional occlusion or pharmacological blurring treatment. We searched the Cochrane Eyes and Vision Group Trials Register (last date of searches: 14 April 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to April 2015), EMBASE (January 1980 to April 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. Two review authors independently screened the results of the search in order to identify studies that met the inclusion criteria of the review: randomised controlled trials (RCTs) that enrolled participants between the ages of three and eight years old with unilateral amblyopia, defined as best-corrected visual acuity (BCVA) worse than 0.200 logMAR in the amblyopic eye, and BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor such as anisometropia, strabismus, or both. Prior

  9. Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs.

    Science.gov (United States)

    Xing, Ya; Zou, Xihua; Pan, Wei; Yan, Lianshan; Luo, Bin; Shao, Liyang

    2015-08-10

    Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform "ghost" gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.

  10. Cosmological red shift in the Seeliger-Einstein stationary Universe

    International Nuclear Information System (INIS)

    Kropotkin, P.N.

    1988-01-01

    A problem of Seeliger-Einstein stationary Universe is considered. Simple empirical relations between cosmological and physical constants to which attention was paid by Stanukovich K., Dikke R., Dirac P. testify to the supposition on stationary Universe. The Universe expansion being absent, a hypothesis of ''photon aging'' suggested in 1929 by Belopolskij A. and Zwicky F. must be accepted for explanation of Hubble effect. It is stated that abandon the Seeliger-Einstein stationary cosmological model would be premature. Study and comparison of different mechanisms suggested for validation of photon aging hypothesis is necessary

  11. Stationary bubbles and their tunneling channels toward trivial geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin; Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Domènech, Guillem; Sasaki, Misao, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: innocent.yeom@gmail.com [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2016-04-01

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition of geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. This may provide a resolution to the information loss dilemma.

  12. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  13. Modelling non-stationary annual maximum flood heights in the lower Limpopo River basin of Mozambique

    Directory of Open Access Journals (Sweden)

    Daniel Maposa

    2016-05-01

    Full Text Available In this article we fit a time-dependent generalised extreme value (GEV distribution to annual maximum flood heights at three sites: Chokwe, Sicacate and Combomune in the lower Limpopo River basin of Mozambique. A GEV distribution is fitted to six annual maximum time series models at each site, namely: annual daily maximum (AM1, annual 2-day maximum (AM2, annual 5-day maximum (AM5, annual 7-day maximum (AM7, annual 10-day maximum (AM10 and annual 30-day maximum (AM30. Non-stationary time-dependent GEV models with a linear trend in location and scale parameters are considered in this study. The results show lack of sufficient evidence to indicate a linear trend in the location parameter at all three sites. On the other hand, the findings in this study reveal strong evidence of the existence of a linear trend in the scale parameter at Combomune and Sicacate, whilst the scale parameter had no significant linear trend at Chokwe. Further investigation in this study also reveals that the location parameter at Sicacate can be modelled by a nonlinear quadratic trend; however, the complexity of the overall model is not worthwhile in fit over a time-homogeneous model. This study shows the importance of extending the time-homogeneous GEV model to incorporate climate change factors such as trend in the lower Limpopo River basin, particularly in this era of global warming and a changing climate. Keywords: nonstationary extremes; annual maxima; lower Limpopo River; generalised extreme value

  14. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  15. Social Media Blurred the Distinction Between Author and Reader

    Science.gov (United States)

    Lambiotte, Renaud

    The last few years have seen the emergence of the sharing economy. As social media blurred the distinction between author and reader, everyone can now offer or receive services thanks to the networking tools provided by new technological companies. Take Uber, and its billion of journeys in 2015 alone, with tens of thousands of vehicles crawling every moment in the globe's biggest cities. As often, when confronted with a technological change, we observe a polarization of society, and the search for an equilibrium characterized by new norms, rights, and obligations. Understanding the mechanisms behind this re-organization requires an integrated, interdisciplinary approach, covering an intricate web of legal, societal, economical, and computational issues which, we believe, could benefit from a complex systems perspective. As a first step, we are currently studying the dynamics of pricing in Uber. In this new de-regulated world, journey prices fluctuate in time depending on traffic but also on the service's perceived balance of passenger demand and driver supply...

  16. The LiC detector toy program

    International Nuclear Information System (INIS)

    Regler, Meinhard; Valentan, Manfred; Fruehwirth, Rudolf

    2007-01-01

    This note describes the 'LiC Detector Toy' ('LiC' for Linear Collider) software tool which has been developed for detector design studies, aiming at investigating the resolution of reconstructed track parameters for the purpose of comparing and optimizing various detector setups. It consists of a simplified simulation of the detector measurements, taking into account multiple scattering, followed by full single track reconstruction using the Kalman filter. The tool is written in MATLAB and may be installed on a laptop. It can easily be used as a black-box tool by non-experts, but also adapted to individual needs

  17. Towards Gravitating Discs around Stationary Black Holes

    Science.gov (United States)

    Semerák, Oldřich

    This article outlines the search for an exact general relativistic description of the exterior(vacuum) gravitational field of a rotating spheroidal black hole surrounded by a realistic axially symmetric disc of matter. The problem of multi-body stationary spacetimes is first exposed from the perspective of the relativity theory (section 1) and astrophysics (section 2), listing the basic methods employed and results obtained. Then (in section 3) basic formulas for stationary axisymmetric solutions are summarized. Sections 4 and 5 review what we have learnt with Miroslav Žáček and Tomáš Zellerin about certain static and stationary situations recently. Concluding remarks are given in section 6. Although the survey part is quite general, the list of references cannot be complete.Our main desideratum was the informative value rather than originality — novelties have been preferred, mainly reviews and those with detailed introductions.

  18. Quantum manipulation of two-color stationary light: Quantum wavelength conversion

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Ham, B. S.

    2006-01-01

    We present a quantum manipulation of a traveling light pulse using electromagnetically induced transparency-based slow light phenomenon for the generation of two-color stationary light. We theoretically discuss the two-color stationary light for the quantum wavelength conversion process in terms of pulse area, energy transfer, and propagation directions. The condition of the two-color stationary light pulse generation has been found and the quantum light dynamics has been studied analytically in the adiabatic limit. The quantum frequency conversion rate of the traveling light is dependent on the spatial spreading of the two-color stationary light pulse and can be near unity in an optically dense medium for the optimal frequencies of the control laser fields

  19. Mirage effect sensor with simple detector and with multiple detector: application to non destructive evaluation by photothermal excitation

    International Nuclear Information System (INIS)

    Charbonnier, Francois

    1990-01-01

    Local photothermal excitation of absorbing sample provides spatial and temporal temperature distribution inside this sample and its neighbouring medium. Optical, thermal and geometrical characteristics (thickness, presence of a defect...) modify surface temperature evolution. The realization of an optical instrument using mirage effect, sensitive and accurate, has came out of two industrial applications of non destructive evaluation: - automatic set-up for absolute measurement of thermal losses on concentrical pipes interface.- set up for quantitative measurement of optical absorption losses on multi coated laser mirrors. To obtain images and compensate acquisition slowness due to investigated thermal phenomenons, a synchronous integration signal process from a multi detector, is described. Experimental set-up using mirage effect detected by a linear CCD reading sensor is realized on this principle. Some examples prove feasibility of this parallel measurement along an excitation line. At last, high frequency parallel synchronous detection with sequential cut-out demodulation was tested and succeeded with a 50 kHz optical signal. (author) [fr

  20. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)