WorldWideScience

Sample records for non-standard model interactions

  1. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  2. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  3. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  4. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  5. Non-standard neutrino interactions in the mu–tau sector

    Directory of Open Access Journals (Sweden)

    Irina Mocioiu

    2015-04-01

    Full Text Available We discuss neutrino mass hierarchy implications arising from the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu–tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the ϵμτ parameter describing this non-standard interaction. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracy could be lifted.

  6. Constraints on Non-Standard Contributions to the Charged-Current Interactions

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Matsumoto, Seiji

    1998-01-01

    The success of the quantum level predictions of the Standard Model on the $Z$ boson properties, on $\\mw$ and on $\\mt$, which makes use of the muon lifetime as an input, implies a stringent constraint on new physics contributions to the $V-A$ charged-current interactions among leptons. Observed unitarity of the CKM matrix elements then implies constraints on non-standard contributions to the lepton-quark charged-current interactions. By using the recent electroweak data as inputs, we find the 95% CL limits for the corresponding contact interactions: $\\Lambda_{CC,+}^{\\ell\\ell}>7.5$ TeV and the lepton-quark contact interactions.

  7. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  8. Effects of non-standard interactions in the MINOS experiment

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Skrotzki, Julian

    2008-01-01

    We investigate the effects of non-standard interactions on the determination of the neutrino oscillation parameters Δm 31 2 , θ 23 , and θ 13 in the MINOS experiment. We show that adding non-standard interactions to the analysis lead to an extension of the allowed parameter space to larger values of Δm 31 2 and smaller θ 23 , and basically removes all predictability for θ 13 . In addition, we discuss the sensitivities to the non-standard interaction parameters of the MINOS experiment alone. In particular, we examine the degeneracy between θ 13 and the non-standard interaction parameter ε eτ . We find that this degeneracy is responsible for the removal of the θ 13 predictability and that the possible bound on |ε eτ | is competitive with direct bounds only if a more stringent external bound on θ 13 is applied

  9. Non Standard Finite Difference Scheme for Mutualistic Interaction Description

    OpenAIRE

    Gabbriellini, Gianluca

    2012-01-01

    One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...

  10. Status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. (review article)

  11. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  12. Curtailing the dark side in non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Denton, Peter B. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute,Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe (Germany)

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

  13. Lepton flavor violating non-standard interactions via light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, Yasaman [School of physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Shoemaker, Ian M. [Department of Physics, Department of Astronomy & Astrophysics,Center for Particle and Gravitational Astrophysics,The Pennsylvania State University, PA 16802 (United States)

    2016-07-07

    Non-Standard neutral current Interactions (NSIs) of neutrinos with matter can alter the pattern of neutrino oscillation due to the coherent forward scattering of neutrinos on the medium. This effect makes long-baseline neutrino experiments such as NOνA and DUNE a sensitive probe of beyond standard model (BSM) physics. We construct light mediator models that can give rise to both lepton flavor conserving as well as Lepton Flavor Violating (LFV) neutral current NSI. We outline the present phenomenological viability of these models and future prospects to test them. We predict a lower bound on Br(H→μτ) in terms of the parameters that can be measured by DUNE and NOνA, and show that the hint for H→μτ in current LHC data can be accommodated in our model. A large part of the parameter space of the model is already constrained by the bound on Br(τ→Z{sup ′}μ) and by the bounds on rare meson decays and can be in principle fully tested by improving these bounds.

  14. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  15. A brief status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    In this plenary talk, we review the status of non-standard neutrino interactions (NSIs). First, we give a brief introduction to neutrino flavor transitions with NSIs based on the standard paradigm of neutrino oscillations. Then, we discuss alternative scenarios for neutrino flavor transitions such as neutrino decoherence, neutrino decay, and NSIs. Second, we investigate NSIs with three neutrino flavors. In general, we introduce production and detection NSIs, including the so-called zero-distance effect, and matter NSIs. In addition, we study mappings and approximate formulas for NSIs. Third, we present a brief account of theoretical models for NSIs. Fourth and most important, we investigate in detail the phenomenology of NSIs based on different types of data from neutrino experiments. Fifth, we give some phenomenological bounds on both matter and production/detection NSIs as well as we present sensitivity and discovery reach of NSIs at future experiments. Finally, we present a summary and state our conclusions

  16. Can OPERA help in constraining neutrino non-standard interactions?

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Pretel, A.; Valle, J.W.F. [AHEP Group, Institut de Fisica Corpuscular, C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain); Huber, P. [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Institute for Particle, Nuclear and Astronomical Sciences, Physics Department, Virgina Tech, Blacksburg, VA 24062 (United States)], E-mail: pahuber@vt.edu

    2008-10-09

    We study how much the unique ability of the OPERA experiment to directly detect {nu}{sub {tau}} can help in probing new, non-standard contact interactions of the third family of neutrinos. We perform a combined analysis of future, high-statistics MINOS and OPERA data. For the case of non-standard interactions in {nu}{sub {mu}} to {nu}{sub e} transitions we also include the impact of possible Double Chooz data. In all cases we find that the {nu}{sub {tau}} sample of OPERA is too small to be statistically significant, even if one doubles the nominal exposure of OPERA to 9x10{sup 19} pot. OPERA's real benefit for this measurement lies in its very high neutrino energy and hence very different L/E compared to MINOS.

  17. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  18. Improving LMA predictions with non standard interactions

    CERN Document Server

    Das, C R

    2010-01-01

    It has been known for some time that the well established LMA solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for SuperKamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with non standard neutrino interactions, assuming that they come as extra contributions to the $\

  19. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  20. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  1. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  2. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  3. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  4. Searches for non-Standard Model Higgs bosons

    CERN Document Server

    Dumitriu, Ana Elena; The ATLAS collaboration

    2018-01-01

    This presentation focuses on the Searches for non-Standard Model Higgs bosons using 36.1 fb of data collected by the ATLAS experiment. There are several theoretical models with an extended Higgs sector considered: 2 Higgs Doublet Models (2HDM), Supersymmetry (SUSY), which brings along super-partners of the SM particles (+ The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM)), General searches and Invisible decaying Higgs boson.

  5. Non-standard interaction effects at reactor neutrino experiments

    International Nuclear Information System (INIS)

    Ohlsson, Tommy; Zhang, He

    2009-01-01

    We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on θ 13 . We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles θ 13 and θ 12 are discussed in detailed. Finally, we show that, even for a vanishing θ 13 , an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs

  6. Probing non-standard interactions at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Bagchi, Partha [Institute of Physics, Sachivalaya Marg,Sainik School Post, Bhubaneswar 751005 (India); Forero, David V. [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Center for Neutrino Physics, Virginia Tech,Blacksburg, VA 24061 (United States); Tórtola, Mariam [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-07-13

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ{sub 13}, making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ{sub 13} that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  7. Probing non-standard interactions at Daya Bay

    International Nuclear Information System (INIS)

    Agarwalla, Sanjib Kumar; Bagchi, Partha; Forero, David V.; Tórtola, Mariam

    2015-01-01

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ 13 , making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ 13 that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  8. e+e- interactions at very high energy: searching beyond the standard model

    International Nuclear Information System (INIS)

    Dorfan, J.

    1983-04-01

    These lectures discuss e + e - interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/Λ SU(2) Λ U(1). The highest e + e - collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e + e - collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model

  9. Parametrisation D'effets Non-Standard EN Phenomenologie Electrofaible

    Science.gov (United States)

    Maksymyk, Ivan

    Cette these pat articles porte sur la parametrisation d'effets non standard en physique electrofaible. Dans chaque analyse, nous avons ajoute plusieurs operateurs non standard au lagrangien du modele standard electrofaible. Les operateurs non standard decrivent les nouveaux effets decoulant d'un modele sous-jacent non-specefie. D'emblee, le nombre d'operateurs non standard que l'on peut inclure dans une telle analyse est illimite. Mais pour une classe specifique de modeles sous-jacents, les effets non standard peuvent etre decrits par un nombre raisonnable d'operateurs. Dans chaque analyse nous avons developpe des expressions pour des observables electrofaibles, en fonction des coefficients des operateurs nouveaux. En effectuant un "fit" statistique sur un ensemble de donnees experimentales precises, nous avons obtenu des contraintes phenomenologiques sur ces coefficients. Dans "Model-Independent Global Constraints on New Physics", nous avons adopte des hypotheses tres peu contraignantes relatives aux modeles sous-jacents. Nous avons tronque le lagrangien effectif a la dimension cinq (inclusivement). Visant la plus grande generalite possible, nous avons admis des interactions qui ne respectent pas les symetries discretes (soit C, P et CP) ainsi que des interactions qui ne conservent pas la saveur. Le lagrangien effectif contient une quarantaine d'operateurs nouveaux. Nous avons determine que, pour la plupart des coefficients des nouveaux operateurs, les contraintes sont assez serrees (2 ou 3%), mais il y a des exceptions interessantes. Dans "Bounding Anomalous Three-Gauge-Boson Couplings", nous avons determine des contraintes phenomenologiques sur les deviations des couplages a trois bosons de jauge par rapport aux interactions prescrites par le modele standard. Pour ce faire, nous avons calcule les contributions indirectes des CTBJ non standard aux observables de basse energie. Puisque le lagrangien effectif est non-renormalisable, certaines difficultes techniques

  10. Physics beyond the standard model in the non-perturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)

  11. A Search for Non-Standard Model $W$ Helicity in Top Quark Decays

    Energy Technology Data Exchange (ETDEWEB)

    Kilminster, Benjamin John [Univ. of Rochester, NY (United States)

    2004-01-01

    The structure of the tbW vertex is probed by measuring the polarization of the W in t → W + b → l + v + b. The invariant mass of the lepton and b quark measures the W decay angle which in turn allows a comparison with polarizations expected from different possible models for the spin properties of the tbW interaction. We measure the fraction by rate of Ws produced with a V + A coupling in lieu of the Standard Model V-A to be fV + A = [special characters omitted] (stat) ± 0.21 (sys). We assign a limit of fV + A < 0.80 @ 95% Confidence Level (CL). By combining this result with a complementary observable in the same data, we assign a limit of fV + A < 0.61 @ 95% CL. We find no evidence for a non-Standard Model tbW vertex.

  12. $\\beta$-asymmetry measurements in nuclear $\\beta$-decay as a probe for non-standard model physics

    CERN Multimedia

    Roccia, S

    2002-01-01

    We propose to perform a series of measurements of the $\\beta$-asymmetry parameter in the decay of selected nuclei, in order to investigate the presence of possible time reversal invariant tensor contributions to the weak interaction. The measurements have the potential to improve by a factor of about four on the present limits for such non-standard model contributions in nuclear $\\beta$-decay.

  13. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Directory of Open Access Journals (Sweden)

    Nicola Gritti

    Full Text Available The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  14. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Science.gov (United States)

    Gritti, Nicola; Caccia, Michele; Sironi, Laura; Collini, Maddalena; D'Alfonso, Laura; Granucci, Francesca; Zanoni, Ivan; Chirico, Giuseppe

    2013-01-01

    The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines) allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase) upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  15. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  16. PATELLOFEMORAL MODEL OF THE KNEE JOINT UNDER NON-STANDARD SQUATTING

    OpenAIRE

    FEKETE, GUSZTÁV; CSIZMADIA, BÉLA MÁLNÁSI; WAHAB, MAGD ABDEL; DE BAETS, PATRICK; VANEGAS-USECHE, LIBARDO V.; BÍRÓ, ISTVÁN

    2014-01-01

    The available analytical models for calculating knee patellofemoral forces are limited to the standard squat motion when the center of gravity is fixed horizontally. In this paper, an analytical model is presented to calculate accurately patellofemoral forces by taking into account the change in position of the trunk's center of gravity under deep squat (non-standard squatting). The accuracy of the derived model is validated through comparisons with results of the inverse dynamics technique. ...

  17. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  18. Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H→γγ decay channel at s=8 TeV with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-02-01

    Full Text Available The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.

  19. Improving LMA predictions with non-standard interactions: neutrino decay in solar matter?

    CERN Document Server

    Das, C R

    2010-01-01

    It has been known for some time that the well established LMA solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for SuperKamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with non standard neutrino interactions, assuming that they come as extra contributions to the $\

  20. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  1. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  2. e/sup +/e/sup -/ interactions at very high energy: searching beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Dorfan, J.

    1983-04-01

    These lectures discuss e/sup +/e/sup -/ interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/..lambda.. SU(2) ..lambda.. U(1). The highest e/sup +/e/sup -/ collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e/sup +/e/sup -/ collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model.

  3. NASCENT: an automatic protein interaction network generation tool for non-model organisms.

    Science.gov (United States)

    Banky, Daniel; Ordog, Rafael; Grolmusz, Vince

    2009-04-24

    Large quantity of reliable protein interaction data are available for model organisms in public depositories (e.g., MINT, DIP, HPRD, INTERACT). Most data correspond to experiments with the proteins of Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli and Mus musculus. For other important organisms the data availability is poor or non-existent. Here we present NASCENT, a completely automatic web-based tool and also a downloadable Java program, capable of modeling and generating protein interaction networks even for non-model organisms. The tool performs protein interaction network modeling through gene-name mapping, and outputs the resulting network in graphical form and also in computer-readable graph-forms, directly applicable by popular network modeling software. http://nascent.pitgroup.org.

  4. Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior

    Science.gov (United States)

    Kano, Takeshi; Osuka, Koichi; Kawakatsu, Toshihiro; Ishiguro, Akio

    2017-12-01

    In many natural and social systems, collective behaviors emerge as a consequence of non-reciprocal interaction between their constituents. As a first step towards understanding the core principle that underlies these phenomena, we previously proposed a minimal model of collective behavior based on non-reciprocal interactions by drawing inspiration from friendship formation in human society, and demonstrated via simulations that various non-trivial patterns emerge by changing parameters. In this study, a mathematical analysis of the proposed model wherein the system size is small is performed. Through the analysis, the mechanism of the transition between several patterns is elucidated.

  5. Standard and non-standard weak interactions

    International Nuclear Information System (INIS)

    Leurer, M.

    1985-12-01

    This work consists of independent chapters, all deal with weak interactions. The first chapter deals with left-right symmetric theories. Two main versions of these theories are discussed and compared. In addition, the K - K-bar mixing term is analysed: it has been known for several years now that in a left-right symmetric model there are new contributions to the mixing of kaons. We show that in the most appealing left-right symmetric model - the new contributions add up constructively. Consequently, we may derive reliable bounds on the mass of the right-handed gauge boson and the average mass of the (unavoidable) physical Higgs scalars. We also show that the new contributions are proportional to a new CP violating phase. While all previous treatments of the K - K-bar system were limited to the minimal model, we are able to show that our results hold also in the general case of nonminimal models. The second chapter deals with the possibility that W and Z are composite. Three experimental tests are discussed: (i) Universality -if W is composite then its coupling to the fermions is expected to deviate from universality. Since such deviations were not yet seen -we derive a lower bound on the compositeness scale. (ii) Possible enhancement of the reaction p-bar+p→Z 0 +γ+any - we show that if Z 0 is composite then the cross section for the above process might be considerably enhanced and this effect can be measured at CERN and Fermilab.(iii) The eeγ events of the 1983 run in CERN - we show that in contradiction to suggestions made in several papers, these events may not be explained by a composite-Z decaying through a scalar. In the last chapter we discuss the quark mixing angles

  6. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  7. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  8. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  9. Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS

    OpenAIRE

    Malek, Fairouz

    2015-01-01

    The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In this proceedings, we ...

  10. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  11. The Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.

  12. Testing non-standard CP violation in neutrino propagation

    International Nuclear Information System (INIS)

    Winter, Walter

    2009-01-01

    Non-standard physics which can be described by effective four fermion interactions may be an additional source of CP violation in the neutrino propagation. We discuss the detectability of such a CP violation at a neutrino factory. We assume the current baseline setup of the international design study of a neutrino factory (IDS-NF) for the simulation. We find that the CP violation from certain non-standard interactions is, in principle, detectable significantly below their current bounds - even if there is no CP violation in the standard oscillation framework. Therefore, a new physics effect might be mis-interpreted as the canonical Dirac CP violation, and a possibly even more exciting effect might be missed

  13. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  14. The hadronic standard model for strong and electroweak interactions

    International Nuclear Information System (INIS)

    Raczka, R.

    1993-01-01

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of Λ-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e + + e - → hadrons, e + + e - → W + + W - , e + + e - → p + anti-p, e + p → e + p and p + anti-p → p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant α(M z ) and we predicted the top baryon mass M Λ t ≅ 240 GeV. Since in our model the proton, neutron, Λ-particles, vector mesons like ρ, ω, φ, J/ψ ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab

  15. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  16. Minimal and non-minimal standard models: Universality of radiative corrections

    International Nuclear Information System (INIS)

    Passarino, G.

    1991-01-01

    The possibility of describing electroweak processes by means of models with a non-minimal Higgs sector is analyzed. The renormalization procedure which leads to a set of fitting equations for the bare parameters of the lagrangian is first reviewed for the minimal standard model. A solution of the fitting equations is obtained, which correctly includes large higher-order corrections. Predictions for physical observables, notably the W boson mass and the Z O partial widths, are discussed in detail. Finally the extension to non-minimal models is described under the assumption that new physics will appear only inside the vector boson self-energies and the concept of universality of radiative corrections is introduced, showing that to a large extent they are insensitive to the details of the enlarged Higgs sector. Consequences for the bounds on the top quark mass are also discussed. (orig.)

  17. An introduction to relativistic processes and the standard model of electroweak interactions

    CERN Document Server

    Becchi, Carlo Maria

    2006-01-01

    These notes are designed as a guide-line for a course in Elementary Particle Physics for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the theoretical framework and of the phenomenological aspects of the physics of interactions among fundamental constituents of matter. The first part of the volume is devoted to the description of scattering processes in the context of relativistic quantum field theory. The use of the semi-classical approximation allows us to illustrate the relevant computation techniques in a reasonably small amount of space. Our approach to relativistic processes is original in many respects. The second part contains a detailed description of the construction of the standard model of electroweak interactions, with special attention to the mechanism of particle mass generation. The extension of the standard model to include neutrino masses is also described. We have included a number of detailed computations of cross sections and decay rates of...

  18. The Standard Model

    Science.gov (United States)

    Burgess, Cliff; Moore, Guy

    2012-04-01

    List of illustrations; List of tables; Preface; Acknowledgments; Part I. Theoretical Framework: 1. Field theory review; 2. The standard model: general features; 3. Cross sections and lifetimes; Part II. Applications: Leptons: 4. Elementary boson decays; 5. Leptonic weak interactions: decays; 6. Leptonic weak interactions: collisions; 7. Effective Lagrangians; Part III. Applications: Hadrons: 8. Hadrons and QCD; 9. Hadronic interactions; Part IV. Beyond the Standard Model: 10. Neutrino masses; 11. Open questions, proposed solutions; Appendix A. Experimental values for the parameters; Appendix B. Symmetries and group theory review; Appendix C. Lorentz group and the Dirac algebra; Appendix D. ξ-gauge Feynman rules; Appendix E. Metric convention conversion table; Select bibliography; Index.

  19. Beyond the standard model

    International Nuclear Information System (INIS)

    Altarelli, G.

    1987-01-01

    The standard model of particle interactions is a complete and relatively simple theoretical framework which describes all the observed fundamental forces. It consists of quantum chromodynamics (QCD) and of the electro-weak theory of Glashow, Salam and Weinberg. The former is the theory of colored quarks and gluons, which underlies the observed phenomena of strong interactions, the latter leads to a unified description of electromagnetism and of weak interactions. The inclusion of the classical Einstein theory of gravity completes the set of established basic knowledge. The standard model is in agreement with essentially all of the experimental information which is very rich by now. The recent discovery of the charged and neutral intermediate vector bosons of weak interactions at the expected masses has closed a really important chapter of particle physics. Never before the prediction of new particles was so neat and quantitatively precise. Yet the experimental proof of the standard model is not completed. For example, the hints of experimental evidence for the top quark at a mass ∼ 40 GeV have not yet been firmly established. The Higgs sector of the theory has not been tested at all. Beyond the realm of pure QED, even remaining within the electro-weak sector, the level of quantitative precision in testing the standard model does not exceed 5% or so. Furthermore, the standard model does not look as the ultimate theory. To a closer inspection a large class of fundamental questions emerges and one finds that a host of crucial problems are left open by the standard model

  20. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ''Beyond the Standard Model'' for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e + e - colliders

  1. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  2. Foundational aspects of non standard mathematics

    CERN Document Server

    Ballard, David

    1994-01-01

    This work proposes a major new extension of "non"standard mathematics. Addressed to a general mathematical audience, the book is intended to be philosophically provocative. The model theory on which "non"standard mathematics has been based is first reformulated within point set topology, which facilitates proofs and adds perspective. These topological techniques are then used to give new, uniform conservativity proofs for the various versions of "non"standard mathematics proposed by Nelson, Hrbáček, and Kawai. The proofs allow for sharp comparison. Addressing broader issues, Ballard then argues that what is novel in these forms of "non"standard mathematics is the introduction, however tentative, of relativity in one's mathematical environment. This hints at the possibility of a mathematical environment which is radically relativistic. The work's major and final feature is to present and prove conservative a version of "non"standard mathematics which, for the first time, illustrates this full radical relativ...

  3. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  4. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  5. An executable model of the interaction between verbal and non-verbal communication.

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2000-01-01

    In this paper an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The model has been formalised by three-levelled partial temporal models, covering both the material and mental processes and their relations. The generic

  6. An Executable Model of the Interaction between Verbal and Non-Verbal Communication

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.; Dignum, F.; Greaves, M.

    2000-01-01

    In this paper an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The model has been formalised by three-levelled partial temporal models, covering both the material and mental processes and their relations. The generic

  7. Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the $H \\rightarrow \\gamma\\gamma$ decay channel at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-02-10

    The strength and tensor structure of the Higgs boson's interactions are investigated within an effective field theory framework, which allows new CP-even and CP-odd interactions that can lead to changes in the kinematic properties of the Higgs boson and associated jet spectra. The parameters of the effective field theory are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the $H \\rightarrow \\gamma\\gamma$ decay channel with an integrated luminosity of 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the $H \\rightarrow \\gamma\\gamma$ candidate events in the proton-proton collision data. No significant deviations from the Standard Model are observed and limits on the effective field theory parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model int...

  8. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  9. Does a massive neutrino imply to go beyond the standard model?

    International Nuclear Information System (INIS)

    Le Diberder, F.; Cohen-Tannoudji, G.; Davier, M.

    2002-01-01

    This article gathers the 15 contributions to this seminar. The purpose of this seminar was to define up to which extend the standard model is challenged by massive neutrinos. A non-zero mass for neutrinos, even a few eV, would solve the problem of the missing mass of the universe, and it would mean no more need for supersymmetry and its neutralinos. A massless neutrino theoretically implies a symmetry and an interaction that are not described by the standard model. In some aspects, it appears that a non-zero mass is natural within the framework of the standard model, and for some scientists the smallness of this value could be the hint of the need for a new physics

  10. The possibility to observe the non-standard interaction by the Hyperkamiokande atmospheric neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Shinya; Yasuda, Osamu, E-mail: yasuda@phys.se.tmu.ac.jp

    2017-01-15

    It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8σ, while the one from the global analysis can be examined at 5.0σ (1.4σ) for the normal (inverted) mass hierarchy.

  11. Building up the standard gauge model of high energy physics. 11

    International Nuclear Information System (INIS)

    Rajasekaran, G.

    1989-01-01

    This chapter carefully builds up, step by step, the standard gauge model of particle physics based on the group SU(3) c x SU(2) x U(1). Spontaneous symmetry breaking via the Nambu-Goldstone mode, and then via the Higgs mode for gauge theories, are presented via examples, first for the Abelian U(1) and then for the non-Abelian SU(2) case. The physically interesting SU(2) x U(1) model is then taken up. The emergence of massive vector bosons is demonstrated. After this preparation, the 'standard model' of the late 60's prior to the gauge theory revolution, based on the V-A current-current weak interactions, minimal electromagnetism, and an unspecified strong interaction, all in quark-lepton language, is set up. It is then compared to the standard gauge model of SU(3) c x SU(2) x U(1). The compelling reasons for QCD as the gauge theory of strong interactions are spelt out. An introduction to renormalization group methods as the main calculational tool for QCD, asymptotic freedom, infrared problems, and physically motivated reasons for going beyond the standard model are presented. (author). 6 refs.; 19 figs.; 2 tabs

  12. Beyond the standard model; Au-dela du modele standard

    Energy Technology Data Exchange (ETDEWEB)

    Cuypers, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs.

  13. Astrophysical neutrinos flavored with beyond the Standard Model physics

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lechner, Lukas [Vienna Univ. of Technology (Austria). Dept. of Physics; Kowalski, Marek [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2017-07-15

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  14. Astrophysical neutrinos flavored with beyond the Standard Model physics

    International Nuclear Information System (INIS)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter; Lechner, Lukas; Kowalski, Marek; Humboldt-Universitaet, Berlin

    2017-07-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  15. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    OpenAIRE

    Eeuwijk, van, F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model. Genotype by environment interaction is then taken to be equivalent to non-additivity. This thesis criticizes the analysis of variance approach. Modelling genotype by environment interaction by non-addit...

  16. Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS

    International Nuclear Information System (INIS)

    Malek, Fairouz

    2015-01-01

    The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In these proceedings, we will focus on the most recent results obtained by the ATLAS and CMS experiments at the LHC for BSM searches, excluding Higgs and supersymmetry searches. New results on Dark Matter, heavy narrow-width resonances, new heavy quarks and third generation leptoquarks are presented. A summary of the prospects at 14 TeV and at the High Luminosity LHC period is given. (paper)

  17. Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS

    CERN Document Server

    Malek, Fairouz; The ATLAS collaboration

    2015-01-01

    The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In this proceedings, we will focus on the most recent results obtained by the ATLAS and CMS experiments at the LHC for BSM searches, excluding Higgs and supersymmetry searches. New results on Dark matter, heavy narrow bosons, new heavy quarks and third generation leptoquarks are presented. A summary of the prospects at 14 TeV and at the High Luminosity LHC period is given.

  18. Flavor non-universal gauge interactions and anomalies in B-meson decays

    Science.gov (United States)

    Tang, Yong; Wu, Yue-Liang

    2018-02-01

    Motivated by flavor non-universality and anomalies in semi-leptonic B-meson decays, we present a general and systematic discussion about how to construct anomaly-free U(1)‧ gauge theories based on an extended standard model with only three right-handed neutrinos. If all standard model fermions are vector-like under this new gauge symmetry, the most general family non-universal charge assignments, (a,b,c) for three-generation quarks and (d,e,f) for leptons, need satisfy just one condition to be anomaly-free, 3(a+b+c) = - (d+e+f). Any assignment can be linear combinations of five independent anomaly-free solutions. We also illustrate how such models can generally lead to flavor-changing interactions and easily resolve the anomalies in B-meson decays. Probes with {{B}}{s} - {{\\bar B}}{s} mixing, decay into τ ±, dilepton and dijet searches at colliders are also discussed. Supported by the Grant-in-Aid for Innovative Areas (16H06490)

  19. Collider physics within the standard model a primer

    CERN Document Server

    Altarelli, Guido

    2017-01-01

    With this graduate-level primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field. In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the non-observation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses. “These lecture notes are a beautiful example of Guido’s unique pedagogical abilities and scientific vision”. From...

  20. CP Studies and Non-Standard Higgs Physics

    DEFF Research Database (Denmark)

    Kraml, S.; Accomando, E.; G. Akeroyd, A.

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state......, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories...

  1. Workshop on CP Studies and Non-Standard Higgs Physics

    CERN Document Server

    Accomando, E.; Akhmetzyanova, E.; Albert, J.; Alves, A.; Amapane, N.; Aoki, M.; Azuelos, G.; Baffioni, S.; Ballestrero, A.; Barger, V.; Bartl, A.; Bechtle, P.; Blanger, G.; Belhouari, A.; Bellan, R.; Belyaev, A.; Benes, Petr; Benslama, K.; Bernreuther, W.; Besanon, M.; Bevilacqua, G.; Beyer, M.; Bluj, M.; Bolognesi, S.; Boonekamp, M.; Borzumati, Francesca; Boudjema, F.; Brandenburg, A.; Brauner, Tomas; Buszello, C.P.; Butterworth, J.M.; Carena, Marcela; Cavalli, D.; Cerminara, G.; Choi, S.Y.; Clerbaux, B.; Collard, C.; Conley, John A.; Deandrea, A.; De Curtis, S.; Dermisek, R.; De Roeck, A.; Dewhirst, G.; Diaz, M.A.; Diaz-Cruz, J.L.; Dietrich, D.D.; Dolgopolov, M.; Dominici, D.; Dubinin, M.; Eboli, O.; Ellis, John R.; Evans, N.; Fano, L.; Ferland, J.; Ferrag, S.; Fitzgerald, S.P.; Fraas, H.; Franke, F.; Gennai, S.; Ginzburg, I.F.; Godbole, R.M.; Gregoire, T.; Grenier, Gerald Jean; Grojean, C.; Gudnason, S.B.; Gunion, J.F.; Haber, H.E.; Hahn, T.; Han, T.; Hankele, V.; Hays, Christopher Paul; Heinemeyer, S.; Hesselbach, S.; Hewett, J.L.; Hidaka, K.; Hirsch, M.; Hollik, W.; Hooper, D.; Hosek, J.; Hubisz, J.; Hugonie, C.; Kalinowski, J.; Kanemura, S.; Kashkan, V.; Kernreiter, T.; Khater, W.; Khoze, V.A.; Kilian, W.; King, S.F.; Kittel, O.; Klamke, G.; Kneur, J.L.; Kouvaris, C.; Kraml, S.; Krawczyk, M.; Krstonoic, P.; Kyriakis, A.; Langacker, P.; Le, M.P.; Lee, H.-S.; Lee, J.S.; Lemaire, M.C.; Liao, Y.; Lillie, B.; Litvine, Vladimir A.; Logan, H.E.; McElrath, Bob; Mahmoud, T.; Maina, E.; Mariotti, C.; Marquard, P.; Martin, A.D.; Mazumdar, K.; Miller, D.J.; Min, P.; Monig, Klaus; Moortgat-Pick, G.; Moretti, S.; Muhlleitner, M.M.; Munir, S.; Nevzorov, R.; Newman, H.; Niezurawski, P.; Nikitenko, A.; Noriega-Papaqui, R.; Okada, Y.; Osland, P.; Pilaftsis, A.; Porod, W.; Przysiezniak, H.; Pukhov, A.; Rainwater, D.; Raspereza, A.; Reuter, J.; Riemann, S.; Rindani, S.; Rizzo, T.G.; Ros, E.; Rosado, A.; Rousseau, D.; Roy, D.P.; Ryskin, M.G.; Rzehak, H.; Sannino, F.; Schmidt, E.; Schrder, H.; Schumacher, M.; Semenov, A.; Senaha, E.; Shaughnessy, G.; Singh, R.K.; Terning, J.; Vacavant, L.; Velasco, M.; Villanova del Moral, Albert; von der Pahlen, F.; Weiglein, G.; Williams, J.; Williams, K.E.; Zarnecki, A.F.; Zeppenfeld, D.; Zerwas, D.; Zerwas, P.M.; Zerwekh, A.R.; Ziethe, J.; 2nd Workshop on CP Studies and Non-standard Higgs Physics; 3rd Workshop on CP Studies and Non-standard Higgs Physics; 4th Workshop on CP Studies and Non-standard Higgs Physics; CPNSH; Workshop on CP Studies and Non-standard Higgs Physics; CP Studies and Non-Standard Higgs Physics

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents ...

  2. Three-body models of the 6ΛΛHe and 9ΛBe hypernuclei with non-local interactions

    International Nuclear Information System (INIS)

    Theeten, M.; Baye, D.; Descouvemont, P.

    2005-01-01

    A three-body model involving non-local interactions is developed in configuration space. It is based on a hyperspherical-harmonics expansion and the Lagrange-mesh method. The 6 ΛΛ He and 9 Λ Be hypernuclei are studied as three-body αΛΛ and ααΛ systems. Recently proposed quark-model based ΛN and ΛΛ interactions are used. A non-local Λα interaction is obtained by folding the ΛN interaction with a Gaussian α density. Various phenomenological αα interactions are employed. The results agree within 1 keV with recent Faddeev calculations in momentum space. Energies and radii of 6 ΛΛ He and 9 Λ Be are compared with a purely local model. The B(E2) between the 9 Λ Be bound states is also calculated. The role of non-locality is discussed

  3. Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe

    International Nuclear Information System (INIS)

    Karami, K; Abdolmaleki, A

    2010-01-01

    We study the correspondence between the interacting holographic dark energy and the polytropic gas model of dark energy in a non-flat FRW universe. This correspondence allows one to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.

  4. Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Abdolmaleki, A, E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of)

    2010-05-01

    We study the correspondence between the interacting holographic dark energy and the polytropic gas model of dark energy in a non-flat FRW universe. This correspondence allows one to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.

  5. Status of conversion of DOE standards to non-Government standards

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, H.L.

    1992-07-01

    One major goal of the DOE Technical Standards Program is to convert existing DOE standards into non-Government standards (NGS's) where possible. This means that a DOE standard may form the basis for a standards-writing committee to produce a standard in the same subject area using the non-Government standards consensus process. This report is a summary of the activities that have evolved to effect conversion of DOE standards to NGSs, and the status of current conversion activities. In some cases, all requirements in a DOE standard will not be incorporated into the published non-Government standard because these requirements may be considered too restrictive or too specific for broader application by private industry. If requirements in a DOE standard are not incorporated in a non-Government standard and the requirements are considered necessary for DOE program applications, the DOE standard will be revised and issued as a supplement to the non-Government standard. The DOE standard will contain only those necessary requirements not reflected by the non-Government standard. Therefore, while complete conversion of DOE standards may not always be realized, the Department's technical standards policy as stated in Order 1300.2A has been fully supported in attempting to make maximum use of the non-Government standard.

  6. Status of conversion of DOE standards to non-Government standards

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, H.L.

    1992-07-01

    One major goal of the DOE Technical Standards Program is to convert existing DOE standards into non-Government standards (NGS`s) where possible. This means that a DOE standard may form the basis for a standards-writing committee to produce a standard in the same subject area using the non-Government standards consensus process. This report is a summary of the activities that have evolved to effect conversion of DOE standards to NGSs, and the status of current conversion activities. In some cases, all requirements in a DOE standard will not be incorporated into the published non-Government standard because these requirements may be considered too restrictive or too specific for broader application by private industry. If requirements in a DOE standard are not incorporated in a non-Government standard and the requirements are considered necessary for DOE program applications, the DOE standard will be revised and issued as a supplement to the non-Government standard. The DOE standard will contain only those necessary requirements not reflected by the non-Government standard. Therefore, while complete conversion of DOE standards may not always be realized, the Department`s technical standards policy as stated in Order 1300.2A has been fully supported in attempting to make maximum use of the non-Government standard.

  7. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  8. Experimentally testing the standard cosmological model

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ω b , remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that Ω b ∼ 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming Ω total = 1) and the need for dark baryonic matter, since Ω visible b . Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M x approx-gt 20 GeV and an interaction weaker than the Z 0 coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for ν-masses may imply that the ν τ is a good hot dark matter candidate. 73 refs., 5 figs

  9. Non-standard work schedules, gender, and parental stress

    Directory of Open Access Journals (Sweden)

    Mariona Lozano

    2016-02-01

    Full Text Available Background: Working non-standard hours changes the temporal structure of family life, constraining the time that family members spend with one another and threatening individuals' well-being. However, the empirical research on the link between stress and non-standard schedules has provided mixed results. Some studies have indicated that working non-standard hours is harmful whereas others have suggested that working atypical hours might facilitate the balance between family and work. Moreover, there is some evidence that the association between stress and non-standard employment has different implications for men and women. Objective: This paper examines the association between non-standard work schedules and stress among dual-earner couples with children. Two research questions are addressed. First, do predictability of the schedule and time flexibility moderate the link between non-standard work hours and stress? Second, do non-standard schedules affect men's and women's perceptions of stress differently? Methods: We use a sample of 1,932 working parents from the Canadian 2010 General Social Survey, which includes a time-use diary. A sequential logit regression analysis stratified by gender is employed to model two types of result. First, we estimate the odds of being stressed versus not being stressed. Second, for all respondents feeling stressed, we estimate the odds of experiencing high levels versus moderate levels of stress. Results: Our analysis shows that the link between non-standard working hours and perceived stress differs between mothers and fathers. First, fathers with non-standard schedules appear more likely to experience stress than those working standard hours, although the results are not significant. Among mothers, having a non-standard schedule is associated with a significantly lower risk of experiencing stress. Second, the analysis focusing on the mediating role of flexibility and predictability indicates that

  10. Classification of effective operators for interactions between the Standard Model and dark matter

    International Nuclear Information System (INIS)

    Duch, M.; Grzadkowski, B.; Wudka, J.

    2015-01-01

    We construct a basis for effective operators responsible for interactions between the Standard Model and a dark sector composed of particles with spin ≤1. Redundant operators are eliminated using dim-4 equations of motion. We consider simple scenarios where the dark matter components are stabilized against decay by ℤ_2 symmetries. We determine operators which are loop-generated within an underlying theory and those that are potentially tree-level generated.

  11. Search for non-standard SUSY signatures in CMS

    International Nuclear Information System (INIS)

    Teyssier, Daniel

    2008-01-01

    New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.

  12. Non-generic couplings in supersymmetric standard models

    Directory of Open Access Journals (Sweden)

    Evgeny I. Buchbinder

    2015-09-01

    Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  13. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  14. Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies

    CERN Document Server

    Gelmini, Graciela B

    2008-01-01

    We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.

  15. — study of the use of two standard- and non-standard-measuring devices

    Directory of Open Access Journals (Sweden)

    Paweł Ostapkowicz

    2014-03-01

    Full Text Available This paper deals with leak detection in liquid transmission pipelines. Diagnostic method based on negative pressure wave detection is taken into account here. The paper focuses on variant of this method, related to the use of only two measurement points (devices, placed at the inlet and outlet of the pipeline. Standard transducers for measurement of pressure signals and non-standard elaborated technique for measurement of new diagnostic signals were used. New diagnostic signals, conventionally named the signals of weak interactions, result from the work of special devices (correctors joined to the pipeline. In order to compare both hardware solutions key performance attributes for the analyzed leak detection method were determined. The bases of such assessment were experimental tests. They were conducted with the use of a physical model of a pipeline. The pipeline was 380 meters long, 34 mm in internal diameter and made of polyethylene (PEHD pipes. The medium pumped through the pipeline was water. Carrying out such research, diagnostic procedures elaborated by the author were used and tested.[b]Keywords[/b]: technical diagnostics, pipelines, leak detection

  16. Interacting polytropic gas model of phantom dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.; Fehri, J.

    2009-01-01

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing K>Ba (3)/(n) , one can obtain ω Λ eff <-1, which corresponds to a universe dominated by phantom dark energy. (orig.)

  17. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    International Nuclear Information System (INIS)

    Caprini, Chiara; Tamanini, Nicola

    2016-01-01

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< z ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.

  18. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  19. A modification of projective spacetime by finite self-interaction models of virtual leptons and quarks and the electroweak GWS standard model

    International Nuclear Information System (INIS)

    Scheurich, H.

    1986-01-01

    From the projective Dirac equation in a six-dimensional Kleinian space R(3, 3) are derived finite-rotation-group models as self-interaction models of virtual leptons and quarks. The quaternion group underlying them is considered as a substructure group of projective spacetime. A finite hyperspherical carrier of the self-interaction models is embedded into projective spacetime by means of the Planck length L 0 = (hG/c 3 )/sup 1/2/ as a physical unit length. The corresponding modification of metrics in the Planck domain becomes apparent to be equivalent to the role of the Higgs field in the electroweak GWS standard model. (author)

  20. Exact and approximate formulas for neutrino mixing and oscillations with non-standard interactions

    International Nuclear Information System (INIS)

    Meloni, Davide; Ohlsson, Tommy; Zhang, He

    2009-01-01

    We present, both exactly and approximately, a complete set of mappings between the vacuum (or fundamental) leptonic mixing parameters and the effective ones in matter with non-standard neutrino interaction (NSI) effects included. Within the three-flavor neutrino framework and a constant matter density profile, a full set of sum rules is established, which enables us to reconstruct the moduli of the effective leptonic mixing matrix elements, in terms of the vacuum mixing parameters in order to reproduce the neutrino oscillation probabilities for future long-baseline experiments. Very compact, but quite accurate, approximate mappings are obtained based on series expansions in the neutrino mass hierarchy parameter η ≡ Δm 2 21 /Δm 2 31 , the vacuum leptonic mixing parameter s 13 ≡ sin θ 13 , and the NSI parameters ε αβ . A detailed numerical analysis about how the NSIs affect the smallest leptonic mixing angle θ 13 , the deviation of the leptonic mixing angle θ 23 from its maximal mixing value, and the transition probabilities useful for future experiments are performed using our analytical results.

  1. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  2. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  3. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    Science.gov (United States)

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  4. Beyond the standard model

    International Nuclear Information System (INIS)

    Cuypers, F.

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs

  5. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  6. Conformal standard model with an extended scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  7. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  8. Non-standard patch test

    Directory of Open Access Journals (Sweden)

    Astri Adelia

    2018-06-01

    Full Text Available In managing contact dermatitis, identification of the causative agent is essential to prevent recurrent complaints. Patch test is the gold standard to identify the causative agent. Nowadays, there are many patch test standard materials available in the market, but do not include all the materials that potentially cause contact dermatitis. Patch test using patient’s own products or later we refer to as non-standard materials, is very helpful in identifying the causative agents of contact dermatitis. Guidance is needed in producing non-standard patch test materials in order to avoid test results discrepancy.

  9. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  10. A Generalized Form of Context-Dependent Psychophysiological Interactions (gPPI): A Comparison to Standard Approaches

    Science.gov (United States)

    McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.

    2012-01-01

    Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our

  11. Dark Matter and Color Octets Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Krnjaic, Gordan Zdenko [Johns Hopkins Univ., Baltimore, MD (United States)

    2012-07-01

    Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.

  12. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2017-09-01

    Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Standard Model festival

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July.

  14. An alternative to the standard model

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-01-01

    We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models

  15. Simple standard problem for the Preisach moving model

    International Nuclear Information System (INIS)

    Morentin, F.J.; Alejos, O.; Francisco, C. de; Munoz, J.M.; Hernandez-Gomez, P.; Torres, C.

    2004-01-01

    The present work proposes a simple magnetic system as a candidate for a Standard Problem for Preisach-based models. The system consists in a regular square array of magnetic particles totally oriented along the direction of application of an external magnetic field. The behavior of such system was numerically simulated for different values of the interaction between particles and of the standard deviation of the critical fields of the particles. The characteristic parameters of the Preisach moving model were worked out during simulations, i.e., the mean value and the standard deviation of the interaction field. For this system, results reveal that the mean interaction field depends linearly on the system magnetization, as the Preisach moving model predicts. Nevertheless, the standard deviation cannot be considered as independent of the magnetization. In fact, the standard deviation shows a maximum at demagnetization and two minima at magnetization saturation. Furthermore, not all the demagnetization states are equivalent. The plot standard deviation vs. magnetization is a multi-valuated curve when the system undergoes an AC demagnetization procedure. In this way, the standard deviation increases as the system goes from coercivity to the AC demagnetized state

  16. Academic Training: An Introduction to the Standard Theory of Electroweak Interactions

    CERN Multimedia

    PH Department

    2011-01-01

    27, 28 and 29 April 2011 An introduction to the standard theory of electroweak interactions by Giovanni Ridolfi (INFN, Genova) 27, 28 and 29 April from 11:00 to 12:00, 28 April from 14:30 to 15:30 at CERN ( 222-R-001 - Filtration Plant )  The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  17. Beyond the standard model in many directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  18. Search for the standard model Higgs boson in $l\

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dikai [Pierre and Marie Curie Univ., Paris (France)

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3)c ⓍSU(2)L Ⓧ U(1)Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of these three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.

  19. Standard problems to evaluate soil structure interaction computer codes

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1979-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures

  20. An Introduction to the Standard Theory of Electroweak Interactions (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  1. Beyond the Standard Model of Cosmology

    International Nuclear Information System (INIS)

    Ellis, John; Nanopoulos, D. V.

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests

  2. The standard model and beyond

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab

  3. Standard Model festival

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July

  4. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  5. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  6. Digital economy and non-standard work

    Directory of Open Access Journals (Sweden)

    Patrizia Tullini

    2016-12-01

    Full Text Available Public and scientific debate on the digital economy is now widespread in many european countries. Also labour law scholars started to pay more attention to the new economical models and to the impact of digital technologies on productive processes. Economics and labour sciences should now move from a descriptive analysis to a deeper theoretical elaboration.The directions of the theoretical analysis are essentially two: the first one deals with the overbearing diffusion of non-standard forms of work on the web, especially on the digital platforms. This trend undermines the traditional foundation of subordination and affects the dynamics of global labour law market. The second directions deals with the increasing use of artificial intelligence in the industrial environment that presents new legal and social issues, concerning both the replacement of standard work with robotics and the complementarity between human work and «non-human agents» work.

  7. Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    Energy Technology Data Exchange (ETDEWEB)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2016-12-20

    Highlights: • Standard Frenkel exciton model is extended to include inter-band coupling. • It is formally linked with configuration interaction method of quantum chemistry. • Spectral shifts due to inter-band coupling are found in molecular aggregates. • Effects of peak amplitude redistribution in two-dimensional spectra are found. - Abstract: Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system–bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  8. Primordial nucleosynthesis: Beyond the standard model

    International Nuclear Information System (INIS)

    Malaney, R.A.

    1991-01-01

    Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs

  9. Kinetic Models for Topological Nearest-Neighbor Interactions

    Science.gov (United States)

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  10. Some Analytical Properties of the Model for Stochastic Evolutionary Games in Finite Populations with Non-uniform Interaction Rate

    International Nuclear Information System (INIS)

    Quan Ji; Wang Xianjia

    2013-01-01

    Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, ''The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations''. In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the infiuence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2 × 2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be

  11. Non-additive non-interacting kinetic energy of rare gas dimers

    Science.gov (United States)

    Jiang, Kaili; Nafziger, Jonathan; Wasserman, Adam

    2018-03-01

    Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.

  12. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  13. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  14. Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Palencia, Jose Enrique; /Fermilab

    2009-01-01

    We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.

  15. Towards a non-perturbative study of the strongly coupled standard model

    International Nuclear Information System (INIS)

    Dagotto, E.; Kogut, J.

    1988-01-01

    The strongly coupled standard model of Abbott and Farhi can be a good alternative to the standard model if it has a phase where chiral symmetry is not broken, the SU(2) sector confines and the scalar field is in the symmetric regime. To look for such a phase we did a numerical analysis in the context of lattice gauge theory. To simplify the model we studied a U(1) gauge theory with Higgs fields and four species of dynamical fermions. In this toy model we did not find a phase with the correct properties required by the strongly coupled standard model. We also speculate about a possible solution to this problem using a new phase of the SU(2) gauge theory with a large number of flavors. (orig.)

  16. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  17. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  18. Effective field theory and weak non-leptonic interactions

    International Nuclear Information System (INIS)

    Miller, R.D.C.

    1982-06-01

    The techniques of Ovrut and Schnitzer (1981) are used to calculate the finite decoupling renormalisation constants resulting from heavy fermion decoupling in a non-abelian gauge theory exhibiting broken flavour symmetry. The results of this calculation are applied to realistic, massive QCD. The decoupling information may be absorbed into renormalisation group (R.G.) invariants. Working in the Landau gauge R.G. invariants are derived for the running coupling constants and running quark masses of effective QCD in the modified minimal subtraction scheme (for effective QCD with 3 to 8 flavours). This work is then applied to the major part of the thesis; a complete derivation of the effective weak non-leptonic sector of the standard model (SU(3)/sub c/ x SU(2) x U(1)), that is the construction of all effective weak non-leptonic Hamiltonians resulting from the standard model when all quark generations above the third along with the W and Z are explicitily decoupled. The form of decoupling in the work of Gilman and Wise (1979) has been adopted. The weak non-leptonic sector naturally decomposes into flavour changing and flavour conserving sectors relative to anomalous dimension calculations. The flavour changing sector further decomposes into penguin free and penguin generating sectors. Individual analyses of these three sectors are given. All sectors are analysed uniformly, based upon a standard model with n generations

  19. Non-standard perturbative methods for the effective potential in λφ4 QFT

    International Nuclear Information System (INIS)

    Okopinska, A.

    1986-07-01

    The effective potential in scalar QFT is calculated in the non-standard perturbative methods and compared with the conventional loop expansion. In the space time dimensions 0 and 1 the results are compared with the ''exact'' effective potential obtained numerically. In 4 dimensions we show that λφ 4 theory is non-interacting. (author)

  20. Vehicle track interaction safety standards

    Science.gov (United States)

    2014-04-02

    Vehicle/Track Interaction (VTI) Safety Standards aim to : reduce the risk of derailments and other accidents attributable : to the dynamic interaction between moving vehicles and the : track over which they operate. On March 13, 2013, the Federal : R...

  1. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  2. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  3. From the CERN web: Standard Model, SESAME and more

    CERN Multimedia

    2015-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Left: ATLAS non-leptonic MWZ data. Right: ATLAS σ × B exclusion for W’ → WZ. Is the Standard Model about to crater? 28 October – CERN Courier The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC’s Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale. Continue to read…      Students and teachers participate in lectures about CERN science at the first ever SESAME teacher and students school. New CERN programme to develop network between SESAME schools 22 October - by Harriet Jarlett In September CERN welcomed 28 visitors from the Middle East for the first ever student and teacher school f...

  4. Higgs triplets in the standard model

    International Nuclear Information System (INIS)

    Gunion, J.F.; Vega, R.; Wudka, J.

    1990-01-01

    Even though the standard model of the strong and electroweak interactions has proven enormously successful, it need not be the case that a single Higgs-doublet field is responsible for giving masses to the weakly interacting vector bosons and the fermions. In this paper we explore the phenomenology of a Higgs sector for the standard model which contains both doublet and triplet fields [under SU(2) L ]. The resulting Higgs bosons have many exotic features and surprising experimental signatures. Since a critical task of future accelerators will be to either discover or establish the nonexistence of Higgs bosons with mass below the TeV scale, it will be important to keep in mind the alternative possibilities characteristic of this and other nonminimal Higgs sectors

  5. Searches for rare and non-Standard-Model decays of the Higgs boson

    CERN Document Server

    Sun, Xiaohu; The ATLAS collaboration

    2018-01-01

    Theories beyond the Standard Model predict Higgs boson decays at a much enhanced rate compared to the Standard Model, e.g. for decays to Z+photon or a meson and a photon, or decays that do not exist in the Standard Model, such as decays into two light bosons (a). This talk presents recent results based on 36 fb-1 of pp collision data collected at 13 TeV.

  6. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  7. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  8. Does non-standard work mean non-standard health? Exploring links between non-standard work schedules, health behavior, and well-being

    Directory of Open Access Journals (Sweden)

    Megan R. Winkler

    2018-04-01

    Full Text Available The last century has seen dramatic shifts in population work circumstances, leading to an increasing normalization of non-standard work schedules (NSWSs, defined as non-daytime, irregular hours. An ever-growing body of evidence links NSWSs to a host of non-communicable chronic conditions; yet, these associations primarily concentrate on the physiologic mechanisms created by circadian disruption and insufficient sleep. While important, not all NSWSs create such chronobiologic disruption, and other aspects of working time and synchronization could be important to the relationships between work schedules and chronic disease. Leveraging survey data from Project EAT, a population-based study with health-related behavioral and psychological data from U.S. adults aged 25–36 years, this study explored the risks for a broad range of less healthful behavioral and well-being outcomes among NSWS workers compared to standard schedule workers (n = 1402. Variations across different NSWSs (evening, night/rotating, and irregular schedules were also explored. Results indicated that, relative to standard schedule workers, workers with NSWSs are at increased risk for non-optimal sleep, substance use, greater recreational screen time, worse dietary practices, obesity, and depression. There was minimal evidence to support differences in relative risks across workers with different types of NSWSs. The findings provide insight into the potential links between NSWSs and chronic disease and indicate the relevancy social disruption and daily health practices may play in the production of health and well-being outcomes among working populations. Keywords: United States, Work schedule tolerance, Health behavior, Mental health, Substance abuse, Obesity

  9. Flamelet mathematical models for non-premixed laminar combustion

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222 Terrassa, Barcelona (Spain); Coelho, P.J. [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-02-15

    Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive (Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive (Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models. (author)

  10. Perspectives in the standard model

    International Nuclear Information System (INIS)

    Ellis, R.K.; Hill, C.T.; Lykken, J.D.

    1992-01-01

    Particle physics is an experimentally based science, with a need for the best theorists to make contact with data and to enlarge and enhance their theoretical descriptions as the subject evolves. The authors felt it imperative that the TASI (Theoretical Advanced Study Institute) program reflect this need. The goal of this conference, was to provide the students with a comprehensive look at the current understanding of the standard model, as well as the techniques which promise to advance that understanding in the future. Topics covered include: symmetry breaking in the standard model; physics beyond the standard model; chiral effective Lagrangians; semi-classical string theory; renormalization of electroweak gauge interactions; electroweak experiments at LEP; the CKM matrix and CP violation; axion searches; lattice QCD; perturbative QCD; heavy quark effective field theory; heavy flavor physics on the lattice; and neutrinos. Separate abstracts were prepared for 13 papers in this conference

  11. The standard model in a nutshell

    CERN Document Server

    Goldberg, Dave

    2017-01-01

    For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...

  12. A 'theory of everything'? [Extending the Standard Model

    International Nuclear Information System (INIS)

    Ross, G.G.

    1993-01-01

    The Standard Model provides us with an amazingly successful theory of the strong, weak and electromagnetic interactions. Despite this, many physicists believe it represents only a step towards understanding the ultimate ''theory of everything''. In this article we describe why the Standard Model is thought to be incomplete and some of the suggestions for its extension. (Author)

  13. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    Science.gov (United States)

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  14. Standard Model mass spectrum in inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2017-04-11

    We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

  15. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector

    Science.gov (United States)

    Pan, Supriya; Mukherjee, Ankan; Banerjee, Narayan

    2018-06-01

    Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model, has been discussed. It is shown that for the interactions that are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second-order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density, and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae Type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies, and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the Λ-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.

  16. Combining semantics with non-standard interpreter hierarchies

    DEFF Research Database (Denmark)

    Abramov, Sergei M.; Glück, Robert

    2000-01-01

    This paper reports on results concerning the combination of non-standard semantics via interpreters. We define what a semantics combination means and identify under which conditions a combination can be realized by computer programs (robustness, safely combinable). We develop the underlying mathe...... mathematical theory and examine the meaning of several non-standard interpreter towers. Our results suggest a technique for the implementation of a certain class of programming language dialects by composing a hierarchy of non-standard interpreters....

  17. The Daya Bay and T2K results on sin2⁡2θ13 and non-standard neutrino interactions

    Directory of Open Access Journals (Sweden)

    I. Girardi

    2014-09-01

    Full Text Available We show that the relatively large best fit value of sin2⁡2θ13=0.14(0.17 measured in the T2K experiment for fixed values of i the Dirac CP violation phase δ=0, and ii the atmospheric neutrino mixing parameters θ23=π/4, |Δm322|=2.4×10−3 eV2, can be reconciled with the Daya Bay result sin2⁡2θ13=0.090±0.009 if the effects of non-standard neutrino interactions (NSI in the relevant ν¯e→ν¯e and νμ→νe oscillation probabilities are taken into account.

  18. Lattice Gauge Theories Within and Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Gelzer, Zechariah John [Iowa U.

    2017-01-01

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \

  19. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  20. Non-standard and improperly posed problems

    CERN Document Server

    Straughan, Brian; Ames, William F

    1997-01-01

    Written by two international experts in the field, this book is the first unified survey of the advances made in the last 15 years on key non-standard and improperly posed problems for partial differential equations.This reference for mathematicians, scientists, and engineers provides an overview of the methodology typically used to study improperly posed problems. It focuses on structural stability--the continuous dependence of solutions on the initial conditions and the modeling equations--and on problems for which data are only prescribed on part of the boundary.The book addresses continuou

  1. From the standard model to dark matter

    International Nuclear Information System (INIS)

    Wilczek, F.

    1995-01-01

    The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics

  2. LHC 2008 talks "What’s at stake for the Standard Model "

    CERN Multimedia

    2008-01-01

    All the visible matter in the Universe can be described by the Standard Model. According to this theory, matter consists of atoms, which are made up of electrons orbiting around nuclei, whose fundamental building blocks are known as the quarks. Four fundamental forces govern interactions between the elementary particles: the electromagnetic force, the gravitational force, and the strong and weak nuclear interactions. Experiments have fully borne out the description that the Standard Model gives us of these particles and their interactions. However, some fundamental questions remain unresolved: what is the origin of particle mass? Why do so many different types of particles exist? Is there a unified theory that could explain all interactions? What is the nature of the dark matter postulated by astrophysicists? CERN’s LHC will provide clues to resolving these questions beyond the Standard Model. Thursday, 29 May 2008 at 8.00 p.m....

  3. A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions

    International Nuclear Information System (INIS)

    Andersson, B.

    1986-01-01

    The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works

  4. An introduction to the standard model of particle physics for the non-specialist

    CERN Document Server

    Marsh, Gerald E

    2018-01-01

    This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.

  5. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  6. Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt; Meyer, Seth

    2017-01-01

    This study investigates the economic interactions between a national renewable fuel policy, namely the Renewable Fuel Standard (RFS) in the United States, and a sub-national renewable fuel policy, the Low Carbon Fuel Standard (LCFS) in California. The two policies have a similar objective of reducing greenhouse gas emissions, but the policies differ in the manner in which those objectives are met. The RFS imposes a hierarchical mandate of renewable fuel use for each year whereas the LCFS imposes a specific annual carbon-intensity reduction with less of a fuel specific mandate. We model the interactions using a partial-equilibrium structural model of agricultural and energy markets in the US and Rest-of-World regions. Our results suggest the policies are mutually reinforcing in that the compliance costs of meeting one of the requirements is lower in the presence of the other policy. In addition, the two policies combine to create a spatial shift in renewable fuel use toward California even though overall renewable fuel use remains relatively unchanged. - Highlights: • Results suggest the RFS and LCFS are mutually reinforcing. • Overall level of renewable fuel use is similar across scenarios. • Renewable fuel use shifts toward California in the presence of the LCFS. • Higher ethanol blend (e.g. E85) use also shifts toward California.

  7. The Application and Its Consequences for Non-Standard Knowledge Work

    DEFF Research Database (Denmark)

    Nouwens, Midas; Klokmose, Clemens Nylandsted

    2018-01-01

    Application-centric computing dominates human-computer interactions, yet the concept of an application is ambiguous and the impact of its ubiquity underexplored. We unpack “the application” through the lens of non-standard knowledge work: freelance, self-employed, and fixed-term contract workers...... of applications, such as update processes, interface symmetries, application-document relationships, and operating system and hardware dependencies. By empirically and analytically focusing on “the application”, we reveal the implications of the current application-centric computing paradigm and discuss how...

  8. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  9. Is the Standard Model about to crater?

    CERN Multimedia

    Lane, Kenneth

    2015-01-01

    The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.

  10. On non-equilibrium states in QFT model with boundary interaction

    International Nuclear Information System (INIS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.

    1999-01-01

    We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed

  11. DOE Technical Standards List. Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This is a periodic report on the level of agency participation in non-Government standards activities. This technical standards list is intended to assist US Department of Energy (DOE) management and other personnel involved in the DOE technical Standards Program by identifying those participating individuals. The body of this document contains a listing of DOE employees and DOE contractors who have submitted a Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies. Appendices to this document are provided to list the information by parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees.

  12. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  13. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  14. Simple standard model extension by heavy charged scalar

    Science.gov (United States)

    Boos, E.; Volobuev, I.

    2018-05-01

    We consider a Standard Model (SM) extension by a heavy charged scalar gauged only under the UY(1 ) weak hypercharge gauge group. Such an extension, being gauge invariant with respect to the SM gauge group, is a simple special case of the well-known Zee model. Since the interactions of the charged scalar with the Standard Model fermions turn out to be significantly suppressed compared to the Standard Model interactions, the charged scalar provides an example of a long-lived charged particle being interesting to search for at the LHC. We present the pair and single production cross sections of the charged scalar at different colliders and the possible decay widths for various boson masses. It is shown that the current ATLAS and CMS searches at 8 and 13 TeV collision energy lead to the bounds on the scalar boson mass of about 300-320 GeV. The limits are expected to be much larger for higher collision energies and, assuming 15 a b-1 integrated luminosity, reach about 2.7 TeV at future 27 TeV LHC thus covering the most interesting mass region.

  15. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  16. Loop Corrections to Standard Model fields in inflation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Department of Physics, The University of Texas at Dallas,800 W Campbell Rd, Richardson, TX 75080 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2016-08-08

    We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

  17. Gravitational wave background from Standard Model physics: qualitative features

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors

  18. Integration and visualization of non-coding RNA and protein interaction networks

    DEFF Research Database (Denmark)

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian

    Non-coding RNAs (ncRNAs) fulfill a diverse set of biological functions relying on interactions with other molecular entities. The advent of new experimental and computational approaches makes it possible to study ncRNAs and their associations on an unprecedented scale. We present RAIN (RNA Associ......) co-occurrences found by text mining Medline abstracts. Each resource was assigned a reliability score by assessing its agreement with a gold standard set of microRNA-target interactions. RAIN is available at: http://rth.dk/resources/rain...

  19. The Brown Muck of $B^0$ and $B^0_s$ Mixing: Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Christopher Michael [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2011-01-01

    Standard Model contributions to neutral $B$ meson mixing begin at the one loop level where they are further suppressed by a combination of the GIM mechanism and Cabibbo suppression. This combination makes $B$ meson mixing a promising probe of new physics, where as yet undiscovered particles and/or interactions can participate in the virtual loops. Relating underlying interactions of the mixing process to experimental observation requires a precise calculation of the non-perturbative process of hadronization, characterized by hadronic mixing matrix elements. This thesis describes a calculation of the hadronic mixing matrix elements relevant to a large class of new physics models. The calculation is performed via lattice QCD using the MILC collaboration's gauge configurations with $2+1$ dynamical sea quarks.

  20. Non-supersymmetric orientifolds of Gepner models

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl

    2009-01-12

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.

  1. A Unitary and Renormalizable Theory of the Standard Model in Ghost-Free Light-Cone Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2002-02-15

    Light-front (LF) quantization in light-cone (LC) gauge is used to construct a unitary and simultaneously renormalizable theory of the Standard Model. The framework derived earlier for QCD is extended to the Glashow, Weinberg, and Salam (GWS) model of electroweak interaction theory. The Lorentz condition is automatically satisfied in LF-quantized QCD in the LC gauge for the free massless gauge field. In the GWS model, with the spontaneous symmetry breaking present, we find that the 't Hooft condition accompanies the LC gauge condition corresponding to the massive vector boson. The two transverse polarization vectors for the massive vector boson may be chosen to be the same as found in QCD. The non-transverse and linearly independent third polarization vector is found to be parallel to the gauge direction. The corresponding sum over polarizations in the Standard model, indicated by K{sub {mu}{nu}}(k); has several simplifying properties similar to the polarization sum D{sub {mu}{nu}}(k) in QCD. The framework is ghost-free, and the interaction Hamiltonian of electroweak theory can be expressed in a form resembling that of covariant theory, except for few additional instantaneous interactions which can be treated systematically. The LF formulation also provides a transparent discussion of the Goldstone Boson (or Electroweak) Equivalence Theorem, as the illustrations show.

  2. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  3. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  4. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  5. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  6. Modeling attacker-defender interactions in information networks.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael Joseph

    2010-09-01

    The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

  7. Comparative study on collaborative interaction in non-immersive and immersive systems

    Science.gov (United States)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  8. Constraints of a parity-conserving/time-reversal-non-conserving interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2002-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?

  9. Can An Amended Standard Model Account For Cold Dark Matter?

    International Nuclear Information System (INIS)

    Goldhaber, Maurice

    2004-01-01

    It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles

  10. Beyond the standard model

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.; Mrenna, S.

    1992-01-01

    In this paper the authors briefly review the necessity of going beyond the Standard Model. We argue that certain types of composite models of quarks and leptons may resolve some of the difficulties of the SM. Furthermore the authors argue that, even without a full specification of a composite model, one may predict some observable effects following from the compositeness hypothesis. The effects are most easily seen in reaction channels in which there is little competition from known processes predicted by the SM, typically in neutrino induced reactions. The authors suggest that above a certain characteristic energy, neutrino cross sections rise well above those predicted within the framework of the SM and the difference between the characteristic features of lepton and hadron induced reactions is blurred. The authors claim that there is some (so far, tenuous) evidence for the phenomenon we just alluded to: in certain high energy cosmic ray interactions it appears that photons and/or neutrinos behave in a manner which is inconsistent with the SM. The authors analyze the data and conclude that the origin of the anomaly in the observational data arises from an increased neutrino interaction cross section

  11. CP violation in the standard model and beyond

    International Nuclear Information System (INIS)

    Buras, A.J.

    1984-01-01

    The present status of CP violation in the standard six quark model is reviewed and a combined analysis with B-meson decays is presented. The theoretical uncertainties in the analysis are discussed and the resulting KM weak mixing angles, the phase delta and the ratio epsilon'/epsilon are given as functions of Tsub(B), GAMMA(b -> u)/GAMMA(b -> c), msub(t) and the B parameter. For certain ranges of the values of these parameters the standard model is not capable in reproducing the experimental values for epsilon' and epsilon parameters. Anticipating possible difficulties we discuss various alternatives to the standard explanation of CP violation such as horizontal interactions, left-right symmetric models and supersymmetry. CP violation outside the kaon system is also briefly discussed. (orig.)

  12. Aspects of hadronic B decays in and beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Vernazza, Leonardo

    2009-10-16

    In this thesis we address various issues of hadronic B decays, in the Standard Model and beyond. Concerning the first aspect, we focus on the problem of understanding better low energy strong interactions in these decays. We consider in particular B decays into a charmonium state and a light meson. We develop a complete treatment of low energy QCD interaction in the context of QCD factorization, treating the charmonia as nonrelativistic bound states. This allows us to demonstrate that, in the heavy-quark limit, a perturbative treatment of these decays is possible, even in case of decays into P-waves, which were found to be non-factorizing in previous studies. We achieve this, including in the analysis the bound state scales of charmonium, which in turn requires to consider charmonium production through colour-octet operators. Although there are very large uncertainties, we find reasonable parameter choices, where the main features of the data - large corrections to (naive) factorization and suppression of the {chi}{sub c2} and h{sub c} final states - are reproduced though the suppression of {chi}{sub c2} is not as strong as seen in the data. Our results also provide an example, where an endpoint divergence in hard spectator-scattering factorizes and is absorbed into colour-octet operator matrix elements. The second part of the thesis is devoted to a series of analyses of non-leptonic B decays in extensions of the Standard Model. The aim of these studies is twofold: on one hand we are interested in testing the sensitivity of these decays to new physics; on the other hand, we look for actual discrepancies between theory predictions and experimental results, trying to explain them in the context of a new physics model. Concerning the first aspect, we consider two well-motivated new physics scenarios, in which large deviations from the Standard Model are expected, i.e. the MSSM with large tan {beta}, and a supersymmetric GUT in which the large neutrino mixing angles

  13. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  14. A Non-standard Empirical Likelihood for Time Series

    DEFF Research Database (Denmark)

    Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.

    Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...

  15. Non-standard Employment in the Nordics – towards precarious work?

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Nätti, Jouko; Larsen, Trine Pernille

    2018-01-01

    This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries and w...... to be largely integrated in the Nordic labour markets, it still entails precarious elements in certain countries. Norway and Denmark stand out as less insecure labour markets, while Finland and Sweden have more precariousness associated with non-standard employment.......This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries...... and whether fixed-term contracts, temporary agency work, marginal part-time work and solo self-employment have precarious elements (income or job insecurity). We conclude that non-standard employment has remained rather stable in all four countries over time. However, although non-standard employment seems...

  16. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-11-04

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the oppositely charged dimuon final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 inverse femtobarns of proton-proton collisions at $\\sqrt{s}$ = 7 TeV, recorded by the CMS experiment at the LHC. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.78 +/- 0.05 fb on the product of the cross section times branching fraction times acceptance is obtained. The results are a...

  17. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Nikolai [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt (Germany); Scheid, Claire [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); University of Nice – Sophia Antipolis, Mathematics laboratory, Parc Valrose, 06108 Nice, Cedex 02 (France); Lanteri, Stéphane, E-mail: Stephane.Lanteri@inria.fr [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Moreau, Antoine [Institut Pascal, Université Blaise Pascal, 24, avenue des Landais, 63171 Aubière Cedex (France); Viquerat, Jonathan [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system

  18. Search for non-standard model signatures in the WZ/ZZ final state at CDF Run II

    International Nuclear Information System (INIS)

    Norman, Matthew

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high (cflx s). Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  19. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Matthew [Univ. of California, San Diego, CA (United States)

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  20. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    Science.gov (United States)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  1. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  2. Distinguishing standard model extensions using monotop chirality at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)

    2016-12-13

    We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.

  3. Non-Standard Hierarchies of the Runnings of the Spectral Index in Inflation

    Directory of Open Access Journals (Sweden)

    Chris Longden

    2017-03-01

    Full Text Available Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed-of-light models and canonical quantum gravity effects and their implications for runnings of the spectral index.

  4. Standard model Higgs boson-inflaton and dark matter

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Veldhuis, T. ter

    2009-01-01

    The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are then subject to cosmological constraints. These bounds, which can be more stringent than those arising from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values of the Higgs boson mass consistent with the cosmological data are allowed.

  5. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  6. Non-equilibrium magnetic interactions in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  7. Flavour alignment in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, Carolin Barbara

    2012-11-21

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple

  8. Flavour alignment in physics beyond the standard model

    International Nuclear Information System (INIS)

    Braeuninger, Carolin Barbara

    2012-01-01

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple extension of the Standard

  9. NON-STANDARD FORMS OF EMPLOYMENT IN BUSINESS ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. E. Chekanov

    2013-01-01

    Full Text Available The article discusses the emergence and development of non-standard forms of employment and flexible working. The causes of their use reflects the results of research conducted in the workplace. Non-standard forms of employment and attractive today as they allow to expand the circle of the workforce.

  10. 3rd International Conference on Particle Physics Beyond the Standard Model : Accelerator, Non-Accelerator and Space Approaches

    CERN Document Server

    Beyond The Desert 2002

    2003-01-01

    The third conference on particle physics beyond the Standard Model (BEYOND THE DESERT'02 - Accelerator, Non-accelerator and Space Approaches) was held during 2--7 June, 2002 at the Finish town of Oulu, almost at the northern Arctic Circle. It was the first of the BEYOND conference series held outside Germany (CERN Courier March 2003, pp. 29-30). Traditionally the Scientific Programme of BEYOND conferences, brought into life in 1997 (see CERN Courier, November 1997, pp.16-18), covers almost all topics of modern particle physics (see contents).

  11. Soil-Structure Interaction for Non-Slender, Large-Diameter Offshore Monopiles

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal

    conducted. The initial part of p-y curves for non-slender piles has been investigated by means of numerical modelling. The general behaviour of eccentrically loaded non-slender piles has been investigated by physical modelling. These tests have been conducted in the pressure tank at Aalborg University....... The monopile foundation concept has been employed as the foundation for the majority of the currently installed offshore wind turbines. Therefore, this PhD thesis concerns the soil-pile interaction for non-slender, large-diameter offshore piles. A combination of numerical and physical modelling has been....... Hence, the application of an overburden pressure is possible. The timescale of the backfill process and the compaction of soil material backfilled around piles in storm conditions have been investigated by means of large-scale physical modelling....

  12. Electroweak interaction: Standard and beyond

    International Nuclear Information System (INIS)

    Harari, H.

    1987-02-01

    Several important topics within the standard model raise questions which are likely to be answered only by further theoretical understanding which goes beyond the standard model. In these lectures we present a discussion of some of these problems, including the quark masses and angles, the Higgs sector, neutrino masses, W and Z properties and possible deviations from a pointlike structure. 44 refs

  13. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  14. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  15. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  16. The Family Alliance Model: A Way to Study and Characterize Early Family Interactions

    Directory of Open Access Journals (Sweden)

    Nicolas Favez

    2017-08-01

    Full Text Available The aim of this paper is to present the family alliance (FA model, which is designed to conceptualize the relational dynamics in the early family. FA is defined as the coordination a family can reach when fulfilling a task, such as playing a game or having a meal. According to the model, being coordinated as a family depends on four interactive functions: participation (all members are included, organization (members assume differentiated roles, focalization (family shares a common theme of activity, affect sharing (there is empathy between members. The functions are operationalized through the spatiotemporal characteristics of non-verbal interactions: for example, distance between the partners, orientation of their bodies, congruence within body segments, signals of readiness to interact, joint attention, facial expressions. Several standardized observational situations have been designed to assess FA: The Lausanne Trilogue Play (with its different versions, in which mother, father, and baby interact in all possible configurations of a triad, and the PicNic Game for families with several children. Studies in samples of non-referred and referred families (for infant or parental psychopathology have highlighted different types of FA: disorganized, conflicted, and cooperative. The type of FA in a given family is stable through the first years and is predictive of developmental outcomes in children, such as psychofunctional symptoms, understanding of complex emotions, and Theory of Mind development.

  17. A search for beyond the Standard Model physics using a final state with light and boosted muon pairs at CMS experiment

    CERN Document Server

    Castaneda Hernandez, Alfredo Martin

    2017-01-01

    A search for new physics phenomena is presented using a final state with multi-muons, the topology studied considers pairs of opposite sign muons (dimuons) with a low invariant mass and potentially produced far from the interaction point (displaced). Several beyond the Standard Model scenarios fit into this category, including those predicting Dark matter particles (i.e. dark photons) which weakly interact with SM particles via a kinetic mixing parameter and could have a non-negligible lifetime. Other scenario is the Next-to-Minimal Supersymmetric Standard Model (NMSSM) that extends the higgs sector introducing new light bosons that can decay to muon pairs. The data analyzed corresponds to the one collected by CMS experiment during 2015 using 13 TeV collision energy. This search constrains a large, previously unconstrained area of the parameter space for each mode and allows for an easy reinterpretation for new physics models with similar final state.

  18. The dark sector from interacting canonical and non-canonical scalar fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  19. Exploring and testing the Standard Model and beyond

    International Nuclear Information System (INIS)

    West, G.; Cooper, F.; Ginsparg, P.; Habib, S.; Gupta, R.; Mottola, E.; Nieto, M.; Mattis, M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to extend and develop the predictions of the Standard Model of particle physics in several different directions. This includes various aspects of the strong nuclear interactions in quantum chromodynamics (QCD), electroweak interactions and the origin of baryon asymmetry in the universe, as well as gravitational physics

  20. Non-standard quantum groups and superization

    Energy Technology Data Exchange (ETDEWEB)

    Majid, S. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP); Rodriguez-Plaza, M.J. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H

    1995-12-31

    We obtain the universal R-matrix of the non-standard quantum group associated to the Alexander-Conway knot polynomial. We show further that this nonstandard quantum group is related to the super-quantum group U{sub q}gl(1 vertical stroke 1) by a general process of superization, which we describe. We also study a twisted variant of this non-standard quantum group and obtain, as a result, a twisted version uf U{sub q}gl(1 vertical stroke 1) as a q-supersymmetry of the exterior differential calculus of any quantum plane of Hecke type, acting by mixing the bosonic x{sub i} co-ordinates and the forms dx{sub i}. (orig.).

  1. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  2. Towards modeling of nonlinear laser-plasma interactions with hydrocodes: The thick-ray approach

    Science.gov (United States)

    Colaïtis, A.; Duchateau, G.; Nicolaï, P.; Tikhonchuk, V.

    2014-03-01

    This paper deals with the computation of laser beam intensity in large-scale radiative hydrocodes applied to the modeling of nonlinear laser-plasma interactions (LPIs) in inertial confinement fusion (ICF). The paraxial complex geometrical optics (PCGO) is adapted for light waves in an inhomogeneous medium and modified to include the inverse bremsstrahlung absorption and the ponderomotive force. This thick-ray model is compared to the standard ray-tracing (RT) approach, both in the chic code. The PCGO model leads to different power deposition patterns and better diffraction modeling compared to standard RT codes. The intensity-reconstruction technique used in RT codes to model nonlinear LPI leads to artificial filamentation and fails to reproduce realistic ponderomotive self-focusing distances, intensity amplifications, and density channel depletions, whereas PCGO succeeds. Bundles of Gaussian thick rays can be used to model realistic non-Gaussian ICF beams. The PCGO approach is expected to improve the accuracy of ICF simulations and serve as a basis to implement diverse LPI effects in large-scale hydrocodes.

  3. Introduction to physics beyond the Standard Model

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    These lectures will give an introductory review of the main ideas behind the attempts to extend the standard-model description of elementary particle interactions. After analysing the conceptual motivations that lead us to blieve in the existence of an underlying fundamental theory, wi will discuss the present status of various theoretical constructs : grand unification, supersymmetry and technicolour.

  4. Yoga versus non-standard care for schizophrenia.

    Science.gov (United States)

    Broderick, Julie; Crumlish, Niall; Waugh, Alice; Vancampfort, Davy

    2017-09-28

    Yoga is an ancient spiritual practice that originated in India and is currently accepted in the Western world as a form of relaxation and exercise. It has been of interest for people with schizophrenia as an alternative or adjunctive treatment. To systematically assess the effects of yoga versus non-standard care for people with schizophrenia. The Information Specialist of the Cochrane Schizophrenia Group searched their specialised Trials Register (latest 30 March 2017), which is based on regular searches of MEDLINE, PubMed, Embase, CINAHL, BIOSIS, AMED, PsycINFO, and registries of clinical trials. We searched the references of all included studies. There are no language, date, document type, or publication status limitations for inclusion of records in the register. All randomised controlled trials (RCTs) including people with schizophrenia and comparing yoga with non-standard care. We included trials that met our selection criteria and reported useable data. The review team independently selected studies, assessed quality, and extracted data. For binary outcomes, we calculated risk ratio (RR) and its 95% confidence interval (CI), on an intention-to-treat basis. For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. We employed a fixed-effect models for analyses. We examined data for heterogeneity (I 2 technique), assessed risk of bias for included studies, and created a 'Summary of findings' table for seven main outcomes of interest using GRADE (Grading of Recommendations Assessment, Development and Evaluation). We were able to include six studies (586 participants). Non-standard care consisted solely of another type of exercise programme. All outcomes were short term (less than six months). There was a clear difference in the outcome leaving the study early (6 RCTs, n=586, RR 0.64 CI 0.49 to 0.83, medium quality evidence) in favour of the yoga group. There were no clear differences between groups for the remaining outcomes

  5. DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this technical standards list are those recorded as of May 1, 1999.

  6. Heavy-ion interactions in relativistic mean-field models

    International Nuclear Information System (INIS)

    Rashdan, M.

    1996-01-01

    The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)

  7. Continuous Non-malleable Codes

    DEFF Research Database (Denmark)

    Faust, Sebastian; Mukherjee, Pratyay; Nielsen, Jesper Buus

    2014-01-01

    or modify it to the encoding of a completely unrelated value. This paper introduces an extension of the standard non-malleability security notion - so-called continuous non-malleability - where we allow the adversary to tamper continuously with an encoding. This is in contrast to the standard notion of non...... is necessary to achieve continuous non-malleability in the split-state model. Moreover, we illustrate that none of the existing constructions satisfies our uniqueness property and hence is not secure in the continuous setting. We construct a split-state code satisfying continuous non-malleability. Our scheme...... is based on the inner product function, collision-resistant hashing and non-interactive zero-knowledge proofs of knowledge and requires an untamperable common reference string. We apply continuous non-malleable codes to protect arbitrary cryptographic primitives against tampering attacks. Previous...

  8. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  9. Majorana neutrinos in a warped 5D standard model

    International Nuclear Information System (INIS)

    Huber, S.J.; Shafi, Q.

    2002-05-01

    We consider neutrino oscillations and neutrinoless double beta decay in a five dimensional standard model with warped geometry. Although the see-saw mechanism in its simplest form cannot be implemented because of the warped geometry, the bulk standard model neutrinos can acquire the desired (Majorana) masses from dimension five interactions. We discuss how large mixings can arise, why the large mixing angle MSW solution for solar neutrinos is favored, and provide estimates for the mixing angle U e3 . Implications for neutrinoless double beta decay are also discussed. (orig.)

  10. Probing physics beyond the standard model in diatomic molecules

    International Nuclear Information System (INIS)

    Denis, M.

    2017-01-01

    Nowadays, the incompleteness of the Standard Model of particles (SM) is largely acknowledged. One of its most obvious shortcomings is the lack of explanation for the huge surplus of matter over antimatter in the universe, the so-called baryon asymmetry of the universe. New CP (charge conjugation and spatial parity) violations absent in the SM are assumed to be responsible for this asymmetry. Such a violation could be observed, in ordinary matter through a set of interactions violating both parity and time-reversal symmetries (P, T -odd) among which the preponderant ones are the electron Electric Dipole Moment (eEDM), the electron-nucleon scalar-pseudoscalar (enSPS) and the nuclear magnetic quadrupole moment (nMQM) interactions. Hence, an experimental evidence of a non-zero P, T -odd interaction constant would be a probe of this New Physics beyond the Standard Model. The calculation of the corresponding molecular parameters is performed by making use of an elaborate four-component relativistic configuration interaction approach in polar diatomic molecules containing an actinide, that are particularly adequate systems for eEDM experiments, such as ThO that allowed for assigning the most constraining upper bound on the eEDM and ThF"+ that will be used in a forthcoming experiment. Those results will be of crucial importance in the interpretation of the measurements since the fundamental constants can only be evaluated if one combines both experimental energy shift measurements and theoretical molecular parameters. This manuscript proceeds as follows, after an introduction to the general background of the search of CP-violations and its consequences for the understanding of the Universe (Chapter 1), a presentation of the underlying theory of the evidence of such violation in ordinary matter, namely the P, T -odd sources of the Electric Dipole Moment of a many-electron system, as well as the relevant molecular parameters is given in Chapter 2. A similar introduction to

  11. Local properties of analytic functions and non-standard analysis

    International Nuclear Information System (INIS)

    O'Brian, N.R.

    1976-01-01

    This is an expository account which shows how the methods of non-standard analysis can be applied to prove the Nullstellensatz for germs of analytic functions. This method of proof was discovered originally by Abraham Robinson. The necessary concepts from model theory are described in some detail and the Nullstellensatz is proved by investigating the relation between the set of infinitesimal elements in the complex n-plane and the spectrum of the ring of germs of analytic functions. (author)

  12. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  13. Specific non-monotonous interactions increase persistence of ecological networks.

    Science.gov (United States)

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  14. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  15. Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model

    Science.gov (United States)

    Borcherding, Daniel; Frahm, Holger

    2018-05-01

    The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.

  16. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  17. An Optimal Non-Interactive Message Authentication Protocol

    OpenAIRE

    Pasini, Sylvain; Vaudenay, Serge

    2006-01-01

    Vaudenay recently proposed a message authentication protocol which is interactive and based on short authenticated strings (SAS). We study here SAS-based non-interactive message authentication protocols (NIMAP). We start by the analysis of two popular non-interactive message authentication protocols. The first one is based on a collision-resistant hash function and was presented by Balfanz et al. The second protocol is based on a universal hash function family and was proposed by Gehrmann, Mi...

  18. Neutrons and the new Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey-Musolf, M.J., E-mail: mjrm@physics.wisc.ed [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-11

    Fundamental symmetry tests with neutrons can provide unique information about whatever will be the new Standard Model of fundamental interactions. I review two aspects of this possibility: searches for the permanent electric dipole moment of the neutron and its relation to the origin of baryonic matter, and precision studies of neutron decay that can probe new symmetries. I discuss the complementarity of these experiments with other low-energy precision tests and high energy collider searches for new physics.

  19. Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model

    Science.gov (United States)

    Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang

    2018-02-01

    Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.

  20. Solving non-standard packing problems by global optimization and heuristics

    CERN Document Server

    Fasano, Giorgio

    2014-01-01

    This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploit...

  1. Supersymmetric standard model from the heterotic string (II)

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.

    2006-06-01

    We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  2. Higher Education in Non-Standard Wage Contracts

    Science.gov (United States)

    Rosti, Luisa; Chelli, Francesco

    2012-01-01

    Purpose: The purpose of this paper is to verify whether higher education increases the likelihood of young Italian workers moving from non-standard to standard wage contracts. Design/methodology/approach: The authors exploit a data set on labour market flows, produced by the Italian National Statistical Office, by interviewing about 85,000…

  3. Non-Abelian tensor gauge fields and higher-spin extension of standard model

    International Nuclear Information System (INIS)

    Savvidy, G.

    2006-01-01

    We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document and to DOE Order 1300.2A. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this TSL are those recorded as of July 1, 1996.

  5. Lateral interactions and non-equilibrium in surface kinetics

    Science.gov (United States)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  6. More than a meal: integrating non-feeding interactions into food webs

    Science.gov (United States)

    Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich

    2012-01-01

    Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.

  7. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  8. Quantum gravity and Standard-Model-like fermions

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Lippoldt, Stefan

    2017-01-01

    We discover that chiral symmetry does not act as an infrared attractor of the renormalization group flow under the impact of quantum gravity fluctuations. Thus, observationally viable quantum gravity models must respect chiral symmetry. In our truncation, asymptotically safe gravity does, as a chiral fixed point exists. A second non-chiral fixed point with massive fermions provides a template for models with dark matter. This fixed point disappears for more than 10 fermions, suggesting that an asymptotically safe ultraviolet completion for the standard model plus gravity enforces chiral symmetry.

  9. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  10. LATIS3D The Gold Standard for Laser-Tissue-Interaction Modeling

    CERN Document Server

    London, R A; Gentile, N A; Kim, B M; Makarewicz, A M; Vincent, L; Yang, Y B

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  11. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    International Nuclear Information System (INIS)

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications

  12. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  13. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Lykken, Joseph D.

    2010-01-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen

  14. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest

  15. Higgs-gauge boson interactions in the economical 3-3-1 model

    International Nuclear Information System (INIS)

    Phung Van Dong; Hoang Ngoc Long; Dang Van Soa

    2006-01-01

    Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3) C xSU(3) L xU(1) X gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W ± , and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G X 0 is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H 1 0 and the neutral non-Hermitian bilepton X 0 are dependent on a coefficient of Higgs self-coupling (λ 1 ). Similarly, masses of the singly charged Higgs boson H 2 ± and of the charged bilepton Y ± are proportional through a coefficient of Higgs self-interaction (λ 4 ). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb

  16. Statistical mechanics and dynamics of solvable models with long-range interactions

    International Nuclear Information System (INIS)

    Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano

    2009-01-01

    For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The

  17. Flavour physics beyond the standard model in top and bottom quarks

    International Nuclear Information System (INIS)

    Stamou, Emmanuel

    2013-01-01

    The Large Hadron Collider is currently exploring dynamics at high energies where we expect physics beyond the standard model to emerge as an answer to at least some of the questions the standard model cannot address. We consider the low-energy flavour signatures of a model with a dynamical explanation of quark masses and mixings, construct a model with new strong interactions that account for the anomalously large measurement of an asymmetry in top antitop production at Tevatron, and compute next-to-leading-order electroweak corrections to the recently observed rare decay B s →μ + μ - .

  18. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.

    2013-11-01

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ- final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb-1 of proton–proton collisions at √s = 7 TeV, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. Finally, the results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2.

  19. Nuclear anapole moment and tests of the standard model

    International Nuclear Information System (INIS)

    Flambaum, V. V.

    1999-01-01

    There are two sources of parity nonconservation (PNC) in atoms: the electron-nucleus weak interaction and the magnetic interaction of electrons with the nuclear anapole moment. A nuclear anapole moment has recently been observed. This is the first discovery of an electromagnetic moment violating fundamental symmetries--the anapole moment violates parity and charge-conjugation invariance. We describe the anapole moment and how it can be produced. The anapole moment creates a circular magnetic field inside the nucleus. The interesting point is that measurements of the anapole allow one to study parity violation inside the nucleus through atomic experiments. We use the experimental result for the nuclear anapole moment of 133 Cs to find the strengths of the parity violating proton-nucleus and meson-nucleon forces. Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. The weak charge and nuclear anapole moment can be measured in the same experiment. The weak charge gives the mean value of the PNC effect while the anapole gives the difference of the PNC effects for the different hyperfine components of an electromagnetic transition. The interaction between atomic electrons and the nuclear anapole moment may be called the ''PNC hyperfine interaction.''

  20. Interacting entropy-corrected new agegraphic dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2010-08-15

    Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.

  1. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  2. The Standard Model

    International Nuclear Information System (INIS)

    Sutton, Christine

    1994-01-01

    The initial evidence from Fermilab for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. In this specially commissioned overview, physics writer Christine Sutton explains the Standard Model

  3. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  4. Domain walls in the extensions of the Standard Model

    Science.gov (United States)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2018-05-01

    Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.

  5. Non-standard employment relations and wages among school-leavers in the Netherlands

    NARCIS (Netherlands)

    de Vries, M.R.; Wolbers, M.H.J.

    2005-01-01

    Non-standard (alternatively, flexible) employment has become common in the Netherlands, and viewed as an important weapon for combating youth unemployment. However, if such jobs are 'bad', non-standard employment becomes a matter of concern. In addition, non-standard employment may hit the least

  6. Theoretical status of weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, L. K.

    1980-07-01

    An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.

  7. Quasi-chemical approach for adsorption of mixtures with non-additive lateral interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, O.A. [Instituto de Bionanotecnología (INBIONATEC-CONICET), Universidad Nacional de Santiago de Estero, RN 9 Km 1125 Villa el Zanjón, Santiago del Estero G4206XCP (Argentina); Pasinetti, P.M., E-mail: pmp@unsl.edu.ar [Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis—CONICET, Ejército de los Andes 950, D5700BWS San Luis (Argentina); Ramirez-Pastor, A.J. [Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis—CONICET, Ejército de los Andes 950, D5700BWS San Luis (Argentina)

    2017-01-15

    Highlights: • The classical quasi-chemical approach is generalized to model non-additive mixtures. • The formalism allows to obtain the partial isotherms and the differential heat of adsorption. • A rich variety of low-temperature phases is observed in the adsorbed layer. • Theoretical results show a good agreement with Monte Carlo simulations. - Abstract: The statistical thermodynamics of binary mixtures with non-additive lateral interactions was developed on a generalization in the spirit of the lattice-gas model and the classical quasi-chemical approximation (QCA). The traditional assumption of a strictly pairwise additive nearest-neighbors interaction is replaced by a more general one, namely that the bond linking a certain atom with any of its neighbors depends considerably on how many of them are actually present (or absent) on the sites in the first coordination shell of the atom. The total and partial adsorption isotherms are given for both attractive and repulsive lateral interactions between the adsorbed species. Interesting behaviors are observed and discussed in terms of the low-temperature phases formed in the system. Comparisons with Monte Carlo simulations are performed in order to test the validity of the theoretical model.

  8. The joy of interactive modeling

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; van Dam, Arthur; Jagers, Bert

    2013-04-01

    The conventional way of working with hydrodynamical models usually consists of the following steps: 1) define a schematization (e.g., in a graphical user interface, or by editing input files) 2) run model from start to end 3) visualize results 4) repeat any of the previous steps. This cycle commonly takes up from hours to several days. What if we can make this happen instantly? As most of the research done using numerical models is in fact qualitative and exploratory (Oreskes et al., 1994), why not use these models as such? How can we adapt models so that we can edit model input, run and visualize results at the same time? More and more, interactive models become available as online apps, mainly for demonstration and educational purposes. These models often simplify the physics behind flows and run on simplified model geometries, particularly when compared with state-of-the-art scientific simulation packages. Here we show how the aforementioned conventional standalone models ("static, run once") can be transformed into interactive models. The basic concepts behind turning existing (conventional) model engines into interactive engines are the following. The engine does not run the model from start to end, but is always available in memory, and can be fed by new boundary conditions, or state changes at any time. The model can be run continuously, per step, or up to a specified time. The Hollywood principle dictates how the model engine is instructed from 'outside', instead of the model engine taking all necessary actions on its own initiative. The underlying techniques that facilitate these concepts are introspection of the computation engine, which exposes its state variables, and control functions, e.g. for time stepping, via a standardized interface, such as BMI (Peckam et. al., 2012). In this work we have used a shallow water flow model engine D-Flow Flexible Mesh. The model was converted from executable to a library, and coupled to the graphical modelling

  9. Towards a standard on evaluation of tactile/haptic interactions

    NARCIS (Netherlands)

    Sinclair, I.; Carter, J.; Kassner, S.; Erp, J.B.F. van; Weber, G.; Elliott, L.; Andrew, I.

    2012-01-01

    Tactile and haptic interaction is becoming increasingly important; ergonomic standards can ensure that systems are designed with sufficient concern for ergonomics and interoperability. ISO (through working group TC159/SC4/WG9) is developing international standards in this subject area, dual-tracked

  10. Yukawa couplings in Superstring derived Standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1991-01-01

    I discuss Yukawa couplings in Standard-like models which are derived from Superstring in the free fermionic formulation. I introduce new notation for the construction of these models. I show how choice of boundary conditions selects a trilevel Yukawa coupling either for +2/3 charged quark or for -1/3 charged quark. I prove this selection rule. I make the conjecture that in this class of standard-like models a possible connection may exist between the requirements of F and D flatness at the string level and the heaviness of the top quark relative to lighter quarks and leptons. I discuss how the choice of boundary conditions determines the non vanishing mass terms for quartic order terms. I discuss the implication on the mass of the top quark. (author)

  11. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  12. Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Huitu, Katri [Department of Physics, and Helsinki Institute of Physics,P.O.B 64 (Gustaf Hällströmin katu 2), FI-00014 University of Helsinki (Finland); Niyogi, Saurabh [The Institute of Mathematical Sciences,CIT Campus, Chennai (India)

    2016-07-04

    We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z{sub 3} symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W{sup ±} boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb{sup −1} at the LHC center of mass energy of 13 and 14 TeV.

  13. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  14. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  15. Proceedings of standard model at the energy of present and future accelerators

    International Nuclear Information System (INIS)

    Csikor, F.; Pocsik, G.; Toth, E.

    1992-01-01

    This book contains the proceedings of the Workshop on The Standard Model at the Energy of the Present and Future Accelerators, 27 June - 1 July 1989, Budapest. The Standard Model of strong and electro-weak interactions providing essential insights into the fundamental structure of matter and being the basic building block of further generalizations has a rich content. The Workshop was devoted to discussing topical problems of testing the Standard Model in high energy reactions such as jet physics and fragmentation, new applications and tests of perturbative QCD, CP-violation, B-meson physics and developments in weak decays, some of the future experimental plans and related topics

  16. Non-consensus Opinion Models on Complex Networks

    Science.gov (United States)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not

  17. The strong interactions beyond the standard model of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.

  18. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    Science.gov (United States)

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new

  19. Precision Electroweak Measurements and Constraints on the Standard Model

    CERN Document Server

    ,

    2010-01-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and DØ at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-$Q^2$ interactions, and used to predict results in low-$Q^2$ experiments, such as atomic parity violation, Møller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  20. The Standard Model and the neutron beta-decay

    CERN Document Server

    Abele, H

    2000-01-01

    This article reviews the relationship between the observables in neutron beta-decay and the accepted modern theory of particle physics known as the Standard Model. Recent neutron-decay measurements of various mixed American-British-French-German-Russian collaborations try to shed light on the following topics: the coupling strength of charged weak currents, the universality of the electroweak interaction and the origin of parity violation.

  1. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  2. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  3. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    Porto, Stefano

    2015-06-01

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  4. Stability of the electroweak ground state in the Standard Model and its extensions

    International Nuclear Information System (INIS)

    Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni

    2016-01-01

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  5. Stability of the electroweak ground state in the Standard Model and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2016-02-10

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  6. Premise for Standardized Sepsis Models.

    Science.gov (United States)

    Remick, Daniel G; Ayala, Alfred; Chaudry, Irshad; Coopersmith, Craig M; Deutschman, Clifford; Hellman, Judith; Moldawer, Lyle; Osuchowski, Marcin

    2018-06-05

    Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health (NIH) mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step towards creating standardized models, we suggest 1) standardizing the technical standards of the widely used cecal ligation and puncture model and 2) creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.

  7. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  8. Penguin-like diagrams from the standard model

    International Nuclear Information System (INIS)

    Ping, Chia Swee

    2015-01-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated

  9. Penguin-like diagrams from the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  10. Non-Fermi liquid behaviour in an extended Anderson model

    International Nuclear Information System (INIS)

    Liu Yuliang; Su Zhaobin; Yu Lu.

    1996-08-01

    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs

  11. Beyond the standard model

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    The standard model of particle physics is highly successful, although it is obviously not a complete or final theory. In this presentation the author argues that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Essentially, this presentation is a record of the author's own judgement of what the central clues for physics beyond the standard model are, and also it is an attempt at some pedagogy. 14 refs., 6 figs

  12. Analysis of approaches to classification of forms of non-standard employment

    Directory of Open Access Journals (Sweden)

    N. V. Dorokhova

    2017-01-01

    Full Text Available Currently becoming more widespread non-standard forms of employment. If this is not clear approach to the definition and maintenance of non-standard employment. In the article the analysis of diverse interpretations of the concept, on what basis, the author makes a conclusion about the complexity and contradictory nature of precarious employment as an economic category. It examines different approaches to classification of forms of precarious employment. The main forms of precarious employment such as flexible working year, flexible working week, flexible working hours, remote work, employees on call, shift forwarding; Agency employment, self-employment, negotiator, underemployment, over employment, employment on the basis of fixed-term contracts employment based on contract of civil-legal nature, one-time employment, casual employment, temporary employment, secondary employment and part-time. The author’s approach to classification of non-standard forms of employment, based on identifying the impact of atypical employment on the development of human potential. For the purpose of classification of non-standard employment forms from the standpoint of their impact on human development as the criteria of classification proposed in the following: working conditions, wages and social guarantees, possibility of workers ' participation in management, personal development and self-employment stability. Depending on what value each of these criteria, some form of non-standard employment can be attributed to the progressive or regressive. Classification of non-standard forms of employment should be the basis of the state policy of employment management.

  13. Topological phases in the Haldane model with spin–spin on-site interactions

    Science.gov (United States)

    Rubio-García, A.; García-Ripoll, J. J.

    2018-04-01

    Ultracold atom experiments allow the study of topological insulators, such as the non-interacting Haldane model. In this work we study a generalization of the Haldane model with spin–spin on-site interactions that can be implemented on such experiments. We focus on measuring the winding number, a topological invariant, of the ground state, which we compute using a mean-field calculation that effectively captures long-range correlations and a matrix product state computation in a lattice with 64 sites. Our main result is that we show how the topological phases present in the non-interacting model survive until the interactions are comparable to the kinetic energy. We also demonstrate the accuracy of our mean-field approach in efficiently capturing long-range correlations. Based on state-of-the-art ultracold atom experiments, we propose an implementation of our model that can give information about the topological phases.

  14. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  15. submitter Flavour-changing neutral currents making and breaking the standard model

    CERN Document Server

    Archilli, F; Owen, P; Petridis, K A

    2017-01-01

    The standard model of particle physics is our best description yet of fundamental particles and their interactions, but it is known to be incomplete. As yet undiscovered particles and interactions might exist. One of the most powerful ways to search for new particles is by studying processes known as flavour-changing neutral current decays, whereby a quark changes its flavour without altering its electric charge. One example of such a transition is the decay of a beauty quark into a strange quark. Here we review some intriguing anomalies in these decays, which have revealed potential cracks in the standard model—hinting at the existence of new phenomena.

  16. A fashion model with social interaction

    Science.gov (United States)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  17. Superconnections: an interpretation of the standard model

    Directory of Open Access Journals (Sweden)

    Gert Roepstorff

    2000-07-01

    Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.

  18. Multimodal interaction with W3C standards toward natural user interfaces to everything

    CERN Document Server

    2017-01-01

    This book presents new standards for multimodal interaction published by the W3C and other standards bodies in straightforward and accessible language, while also illustrating the standards in operation through case studies and chapters on innovative implementations. The book illustrates how, as smart technology becomes ubiquitous, and appears in more and more different shapes and sizes, vendor-specific approaches to multimodal interaction become impractical, motivating the need for standards. This book covers standards for voice, emotion, natural language understanding, dialog, and multimodal architectures. The book describes the standards in a practical manner, making them accessible to developers, students, and researchers. Comprehensive resource that explains the W3C standards for multimodal interaction clear and straightforward way; Includes case studies of the use of the standards on a wide variety of devices, including mobile devices, tablets, wearables and robots, in applications such as assisted livi...

  19. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    2012-01-01

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  20. Review of the standard model

    International Nuclear Information System (INIS)

    Treille, D.

    1992-01-01

    The goal of this review is not to make one more celebration of the accuracy of LEP results, but rather to put them in a broader perspective. This set of measurements are compared with what they could and should be in the future if the various options available at LEP are exploited properly, and show that much is left to be done. Then various classes of non-LEP results are discussed which are already remarkable and still prone to improvements, which bring complementary information on the Standard Model, by probing it in widely different domains of applicability. (author) 46 refs.; 29 figs.; 12 tabs

  1. Mechanical characteristics of historic mortars from tests on small-sample non-standard on small-sample non-standard specimens

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2008-01-01

    Roč. 17, č. 1 (2008), s. 20-29 ISSN 1407-7353 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : small-sample non-standard testing * lime * historic mortar Subject RIV: AL - Art, Architecture, Cultural Heritage

  2. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  3. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  4. A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field

    International Nuclear Information System (INIS)

    Castro-Alvaredo, Olalla A; Fring, Andreas

    2009-01-01

    We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry, we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turn out to be unique with the sole assumption that the Dyson map is Hermitian. Finally, we analyse the magnetization of the chain in the z- and x-direction.

  5. A nested observation and model approach to non linear groundwater surface water interactions.

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  6. Public-Key Encryption with Non-interactive Opening

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Hofheinz, Dennis; Kiltz, Eike

    2008-01-01

    We formally define the primitive of public-key encryption with non-interactive opening (PKENO), where the receiver of a ciphertext C can, convincingly and without interaction, reveal what the result was of decrypting C, without compromising the scheme’s security. This has numerous applications...

  7. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  8. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  9. Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions

    CERN Document Server

    Ellis, Jonathan Richard; Zwirner, F; Ellis, John; Ridolfi, Giovanni; Zwirner, Fabio

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models.

  10. Higgs boson properties in the Standard Model and its supersymmetric extensions

    International Nuclear Information System (INIS)

    Ellis, J.; Ridolfi, G.; Zwirner, F.

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its 5 physical Higgs bosons. Finally, we discuss some non-minimal models. (authors)

  11. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches

    International Nuclear Information System (INIS)

    Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David

    2014-01-01

    A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance

  12. Double transitions, non-Ising criticality and the critical absorbing phase in an interacting monomer–dimer model on a square lattice

    International Nuclear Information System (INIS)

    Nam, Keekwon; Kim, Bongsoo; Park, Sangwoong; Lee, Sung Jong

    2011-01-01

    We present a numerical study on an interacting monomer–dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is observed to exhibit two nearby continuous transitions: the Z 2 symmetry-breaking order–disorder transition and the absorbing transition with directed percolation criticality. We find that the symmetry-breaking transition shows a non-Ising critical behavior, and that the absorbing phase becomes critical, in the sense that the critical decay of the dimer density observed at the absorbing transition persists even within the absorbing phase. Our findings call for further studies on microscopic models and the corresponding continuum description belonging to the generalized voter university class. (letter)

  13. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  14. Effects of a non-standard W± magnetic moment in W± production via deep inelastic e-P scattering

    International Nuclear Information System (INIS)

    Boehm, M.; Rosado, A.

    1989-01-01

    We calculate the production of charged bosons in deep inelastic e - P scattering in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the dependence of the cross section on the anomalous magnetic dipole moment κ of the W ± . We find for energies available at HERA that even small deviations from the standard model value of κ imply observable deviations in the W ± production rates. We also show that the contributions from heavy boson exchange diagrams are very important. (orig.)

  15. Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction

    International Nuclear Information System (INIS)

    Sakiyama, Yukinori; Graves, David B.

    2009-01-01

    Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: 'What plasma-generated agents are responsible for the observed biological effects?' Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction

  16. Non-topological soliton bag model

    International Nuclear Information System (INIS)

    Wilets, L.

    1986-01-01

    The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs

  17. Beyond The Standard Model Higgs Physics with Photons with the CMS Detector

    CERN Document Server

    Teixeira de Lima, Rafael

    The experimental discovery of the Higgs boson is one of the latest successes of the Standard Model of particle physics. Although all measurements have confirmed that this newly discovered particle is the Higgs boson predicted by the Standard Model, with no deviations to suggest otherwise, the Higgs boson can guide us to new models which modify the electroweak symmetry breaking mechanism or predict new states that couple to the Higgs. Therefore, it's paramount to directly look for modifications of our current model with the help of the recently discovered particle. In this thesis, two analyses involving beyond the Standard Model physics tied to the Higgs sector will be explored. First, looking at exotic Higgs decays, an analysis searching for the final state with photons and missing transverse energy will be presented. Then, the search for Higgs pair production, both resonantly and non-resonantly (a process predicted by the Standard Model, albeit at very low rates), in the final state with two bottom quark je...

  18. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  19. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  20. Momentum distribution of non-interacting fermions enclosed in a box

    International Nuclear Information System (INIS)

    Krivine, H.

    1985-01-01

    This is a study of: the finite size effect on the momentum distribution n(/sup →/k) of an ensemble of A non-interacting fermions enclosed in a box. Analytical expressions are obtained in the two limiting cases the Fermi momentum. The result is to analyze the convergence of toward the standard step function in the infinite medium. Applying results to the nuclear case, changes are compared in n(/sup →/k) generated by the finite size of actual nuclei to those due to short range correlations. Both effects are shown to be of same order of magnitude. The next step is to take into account the short range correlations in finite systems

  1. Lorentz-violating theories in the standard model extension

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Manoel Messias [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil)

    2012-07-01

    Full text: Lorentz-violating theories have been an issue of permanent interest in the latest years. Many of these investigations are developed under the theoretical framework of the Standard Model Extension (SME), a broad extension of the minimal Standard Model embracing Lorentz-violating (LV) terms, generated as vacuum expectation values of tensor quantities, in all sectors of interaction. In this talk, we comment on some general properties of the SME, concerning mainly the gauge and fermion sectors, focusing in new phenomena induced by Lorentz violation. The LV terms are usually separated in accordance with the behavior under discrete symmetries, being classified as CPT-odd or CPT-even, parity-even or parity-odd. We follow this classification scheme discussing some features and new properties of the CPT-even and CPT-odd parts of the gauge and fermion sectors. We finalize presenting some upper bounds imposed on the corresponding LV coefficients. (author)

  2. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  3. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  4. Landau level broadening without disorder, non-integer plateaus without interactions- an alternative model of the quantum Hall effect

    International Nuclear Information System (INIS)

    Kramer, T.

    2006-01-01

    I review some aspects of an alternative model of the quantum Hall effect, which is not based on the presence of disorder potentials. Instead, a quantization of the electronic drift current in the presence of crossed electric and magnetic fields is employed to construct a non-linear transport theory. Another important ingredient of the alternative theory is the coupling of the two-dimensional electron gas to the leads and the applied voltages. By working in a picture where the external voltages fix the chemical potential in the 2D subsystem, the experimentally observed linear relation between the voltage and the location of the quantum Hall plateaus finds an natural explanation. Also, the classical Hall effect emerges as a natural limit of the quantum Hall effect. For low temperatures (or high currents), a non-integer substructure splits higher Landau levels into sublevels. The appearance of substructure and non-integer plateaus in the resistivity is not linked to electron-electron interactions, but caused by the presence of a (linear) electric field. Some of the resulting fractions correspond exactly to half-integer plateaus. (Author)

  5. Stable Asymptotically Free Extensions (SAFEs) of the Standard Model

    International Nuclear Information System (INIS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2015-01-01

    We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.

  6. Search for the Standard Model Higgs boson in the $H\\rightarrow W^{+}W^{-}\\rightarrow\\ell^{+}\

    CERN Document Server

    Schmidt, Evelyn

    2013-06-06

    Modern particle physics research is dedicated to study the fundamental constituents of matter and their interactions. Scientific research findings on both theoretical and experimental sides during the past decades have been condensed in the Standard Model of particle physics. In this model, the interactions between fundamental particles are described by gauge fields and the exchange of corresponding gauge bosons. The Standard Model contains several such bosons, for example the massive and charged W bosons and a neutral Z boson, that have been observed experimentally. The simplest and most popular implementation of electroweak symmetry breaking to attribute mass to the W and Z bosons is the Higgs mechanism. This mechanism implies the existence of one additional particle, the Higgs boson, that is the only remaining particle of the Standard Model to be established experimentally. In July 2012, the discovery of a new neutral boson with a measured mass of about 126 GeV was announced by the ATLAS and CMS collaborat...

  7. A two-level solvable model involving competing pairing interactions

    International Nuclear Information System (INIS)

    Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J.; Evans, J.A.

    1986-01-01

    A model is considered consisting of nucleons moving in two non-degenerate l-shells and interacting through two pairing residual interactions with (S, T) = (1, 0) and (0, 1). These, together with the single particle hamiltonian induce mutually destructive correlations, giving rise to various collective pictures that can be discussed as representing a two-dimensional space of phases. The model is solved exactly using an O(8)xO(8) group theoretical classification scheme. The transfer of correlated pairs and quartets is also discussed. (orig.)

  8. Non-separable pairing interaction kernels applied to superconducting cuprates

    International Nuclear Information System (INIS)

    Haley, Stephen B.; Fink, Herman J.

    2014-01-01

    Highlights: • Non-separable interaction kernels with weak interactions produces HTS. • A probabilistic approach is used in filling the electronic states in the unit cell. • A set of coupled equations is derived which describes the energy gap. • SC properties of separable with non-separable interactions are compared. • There is agreement with measured properties of the SC and normal states. - Abstract: A pairing Hamiltonian H(Γ) with a non-separable interaction kernel Γ produces HTS for relatively weak interactions. The doping and temperature dependence of Γ(x,T) and the chemical potential μ(x) is determined by a probabilistic filling of the electronic states in the cuprate unit cell. A diverse set of HTS and normal state properties is examined, including the SC phase transition boundary T C (x), SC gap Δ(x,T), entropy S(x,T), specific heat C(x,T), and spin susceptibility χ s (x,T). Detailed x,T agreement with cuprate experiment is obtained for all properties

  9. Non-Power Reactor Operator Licensing Examiner Standards

    International Nuclear Information System (INIS)

    1994-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  10. Baryogenesis and standard model CP violation

    International Nuclear Information System (INIS)

    Huet, P.

    1994-08-01

    The standard model possesses a natural source of CP violation contained in the phase of the CKM matrix. Whether the latter participated to the making of the matter-antimatter asymmetry of the observable universe is a fundamental question which has been addressed only recently. The generation of a CP observable occurs through interference of quantum paths along which a sequence of flavor mixings and chirality flips take place. The coherence of this phenomenon in the primeval plasma is limited by the fast quark-gluon interactions. At the electroweak era, this phenomenon of decoherence forbids a successful baryogenesis based on the sole CP violation of the CKM matrix

  11. Interactions between non-physician clinicians and industry: a systematic review.

    Directory of Open Access Journals (Sweden)

    Quinn Grundy

    2013-11-01

    Full Text Available BACKGROUND: With increasing restrictions placed on physician-industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician-industry interactions in clinical practice. METHODS AND FINDINGS: We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry "information," attended sponsored "education," and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect "promotion" while benefiting from industry "information." Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the

  12. Interactions between non-physician clinicians and industry: a systematic review.

    Science.gov (United States)

    Grundy, Quinn; Bero, Lisa; Malone, Ruth

    2013-11-01

    With increasing restrictions placed on physician-industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician-industry interactions in clinical practice. We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry "information," attended sponsored "education," and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect "promotion" while benefiting from industry "information." Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the first to our knowledge to provide a descriptive analysis

  13. General formulation of standard model the standard model is in need of new concepts

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh.

    2001-01-01

    The phenomenological basis for formulation of the Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced: To look for not fundamental particles but fundamental symmetries. By searching of more general theory it is natural to search first of all global symmetries and than to learn consequence connected with the localisation of this global symmetries like wise of the standard Model

  14. Weak ωNN coupling in the non-linear chiral model

    International Nuclear Information System (INIS)

    Shmatikov, M.

    1988-01-01

    In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7

  15. Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation.

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    Full Text Available GTP cyclohydrolase 1 (GTPCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4. GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131 in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.

  16. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  17. Influence of magnetic dipole and magnetoelastic interactions on the phase states of 2D non-Heisenberg ferromagnetic with complex exchange interactions

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Matunin, D.A.; Klevets, Ph.N.; Kosmachev, O.A.

    2009-01-01

    The phase states of the 2D non-Heisenberg ferromagnetic with anisotropic bilinear and biquadratic exchange interactions are investigated. The limiting cases of the system under consideration are the two-dimensional XY-model with biquadratic exchange interaction and the isotropic Heisenberg ferromagnetic. The account of the magnetic dipole interaction leads to the realization of spatially inhomogeneous quadrupolar phase. The stability regions of various phase transitions for different values of the material parameters are studied. The phase diagram is built. Besides, the temperature phase transitions are investigated. The influence of the magnetoelastic interaction on the formation of the long-range quadrupolar order is determined.

  18. New natural shapes of non-Gaussianity from high-derivative interactions and their optimal limits from WMAP 9-year data

    International Nuclear Information System (INIS)

    Behbahani, Siavosh R.; Mirbabayi, Mehrdad; Senatore, Leonardo; Smith, Kendrick M.

    2014-01-01

    Given the fantastic experimental effort, it is important to thoroughly explore the signature space of inflationary models. The fact that higher derivative operators do not renormalize lower derivative ones allows us to find a large class of technically natural single-clock inflationary models where, in the context of the Effective Field Theory of Inflation, the leading interactions have many derivatives. We systematically explore the 3-point function induced by these models and their overlap with the standard equilateral and orthogonal templates. We find that in order to satisfactorily cover the signature space of these models, two new additional templates need to be included. We then perform the optimal analysis of the WMAP 9-year data for the resulting four templates, finding that the overall significance of a non-zero signal is between 2–2.5σ, depending on the choice of parameter space, partially driven by the preference for nonzero f NL orth in WMAP9

  19. Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies.

  20. Strong Sector in non-minimal SUSY model

    Directory of Open Access Journals (Sweden)

    Costantini Antonio

    2016-01-01

    Full Text Available We investigate the squark sector of a supersymmetric theory with an extended Higgs sector. We give the mass matrices of stop and sbottom, comparing the Minimal Supersymmetric Standard Model (MSSM case and the non-minimal case. We discuss the impact of the extra superfields on the decay channels of the stop searched at the LHC.

  1. Beyond the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1994-01-01

    The search for physics laws beyond the standard model is discussed in a general way, and also some topics on supersymmetry theories. An approach is made on recent possibilities rise in the leptonic sector. Finally, models with SU(3) c X SU(2) L X U(1) Y symmetry are considered as alternatives for the extensions of the elementary particles standard model. 36 refs., 1 fig., 4 tabs

  2. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  3. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  4. Interviewer-Respondent Interactions in Conversational and Standardized Interviewing

    Science.gov (United States)

    Mittereder, Felicitas; Durow, Jen; West, Brady T.; Kreuter, Frauke; Conrad, Frederick G.

    2018-01-01

    Standardized interviewing (SI) and conversational interviewing are two approaches to collect survey data that differ in how interviewers address respondent confusion. This article examines interviewer-respondent interactions that occur during these two techniques, focusing on requests for and provisions of clarification. The data derive from an…

  5. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  6. Geometrical Aspects of non-gravitational interactions

    OpenAIRE

    Roldan, Omar; Barros Jr, C. C.

    2016-01-01

    In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...

  7. How Non-Gaussian Shocks Affect Risk Premia in Non-Linear DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper studies how non-Gaussian shocks affect risk premia in DSGE models approximated to second and third order. Based on an extension of the results in Schmitt-Grohé & Uribe (2004) to third order, we derive propositions for how rare disasters, stochastic volatility, and GARCH affect any risk...... premia in a wide class of DSGE models. To quantify these effects, we then set up a standard New Keynesian DSGE model where total factor productivity includes rare disasters, stochastic volatility, and GARCH. We …find that rare disasters increase the mean level of the 10-year nominal term premium, whereas...

  8. Collider constraints on interactions of dark energy with the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, A.C.; Seery, D. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Weltman, A. (eds.) [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Cape Town Univ. (South Africa). Dept. of Mathematics and Applied Mathematics

    2009-04-15

    We study models in which a light scalar dark energy particle couples to the gauge fields of the electroweak force, the photon, Z, and W{sup {+-}} bosons. Our analysis applies to a large class of interacting dark energy models, including those in which the dark energy mass can be adjusted to evade fifth-force bounds by the so-called ''chameleon'' mechanism. We conclude that - with the usual choice of Higgs sector - electroweak precision observables are screened from the indirect effects of dark energy, making such corrections effectively unobservable at present-day colliders, and limiting the dark energy discovery potential of any future International Linear Collider. We show that a similar screening effect applies to processes mediated by flavour-changing neutral currents, which can be traced to the Glashow-Iliopoulos-Maiani mechanism. However, Higgs boson production at the Large Hadron Collider via weak boson fusion may receive observable corrections. (orig.)

  9. Non-standard employment relationship and the gender dimension

    OpenAIRE

    Mihaela-Emilia Marica

    2015-01-01

    Besides influences economic, political and social on the standard form of individual employment contract, which led to a more flexible regulatory framework in the field of labor relations, an important factor that marked trend evolving contract atypical employment is the number of women who entered the labor market in recent decades. Because most strongly feminized form of employment non-standard employment relationship part-time, this article captures the issues most important about the r...

  10. Experiment and numerical simulation on the characteristics of fluid–structure interactions of non-rigid airships

    Directory of Open Access Journals (Sweden)

    Xiaocui Wu

    2015-11-01

    Full Text Available Fluid–structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid–structure interaction is noticeable and should be considered for non-rigid airships. Flow-induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximately 60% compared with that of the rigid model under a high angle of attack.

  11. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  12. Near-field soil-structure interaction analysis using nonlinear hybrid modeling

    International Nuclear Information System (INIS)

    Katayama, I.; Chen, C.; Lee, Y.J.; Jean, W.Y.; Penzien, J.

    1989-01-01

    The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH

  13. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  14. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  15. Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2014-01-01

    We calculate the complete order y^2 and y^4 terms of the 59 x 59 one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory, where y is a generic Yukawa coupling. These terms, together with the terms of order lambda, lambda^2 and lambda y^2 depending on the Standard Model Higgs self-coupling lambda which were calculated in a previous work, yield the complete one-loop anomalous dimension matrix in the limit of vanishing gauge couplings. The Yukawa contributions result in non-trivial flavor mixing in the various operator sectors of the Standard Model effective theory.

  16. CPT non-invariance and weak interactions

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1973-01-01

    In this talk, I will describe a possible violation of CPT invariance in the domain of weak interactions. One can construct a model of weak interactions which, in order to be consistent with all experimental data, must violate CPT maximally. The model predicts many specific results for decay processes which could be tested in the planned neutral hyperon beam or neutrino beam at NAL. The motivations and the physical idea in the model are explained and the implications of the model are discussed. (U.S.)

  17. Collapse models with non-white noises

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo

    2007-01-01

    We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise

  18. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  19. Searches for Physics Beyond Standard Model at LHC with ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2013-01-01

    This contribution summarises some of the recent results on the searches for physics beyond the Standard Model using the pp-collision data collected at Large Hadron Collider (LHC) with ATLAS detector at centre-of-mass energy of sqrt{s} = 8 TeV. The search for supersymmetry (SUSY) is carried out in a large variety of production modes such as strong production of squarks and gluinos, weak production of sleptons and gauginos os production of massive long-lived particles through R-parity violation. No excess above the Standard Model background expectation is observed and exclusion limits are derived on the production of new physics. The results are interpreted as lower limits on sparticle masses in SUSY breaking scenarios. Searches for new exotic phenomena such as dark matter, large extra dimensions and black holes are also performed at ATLAS. As in the case of SUSY searches, no new exotic phenomena is observed and results are presented as upper limits on event yields from non-Standard-Model processes in a model i...

  20. AIC, BIC, Bayesian evidence against the interacting dark energy model

    International Nuclear Information System (INIS)

    Szydlowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michal

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  1. A Simple Symmetry as a Guide Towards New Physics Beyond the Standard Model

    Directory of Open Access Journals (Sweden)

    Stefano eMoretti

    2013-09-01

    Full Text Available There exists one experimental result that cannot be explained by the Standard Model (SM, the current theoretical framework for particle physics: non-zero masses for the neutrinos (elementary particles travelling close to light speed, electrically neutral and weakly interacting. The SM assumes that they are massless. Therefore, particle physicists are now exploring new physics beyond the SM. There is strong anticipation that we are about to unravel it, in the form of new matter and/or forces, at the Large Hadron Collider (LHC, presently running at CERN. We discuss a minimal extension of the SM, based on a somewhat larger version of its symmetry structure and particle content, that can naturally explain the existence of neutrino masses while also predicting novel signals accessible at the LHC, including a light Higgs boson, as evidenced by current data.

  2. Scale genesis and gravitational wave in a classically scale invariant extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Jisuke [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Yamada, Masatoshi [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-12-01

    We assume that the origin of the electroweak (EW) scale is a gauge-invariant scalar-bilinear condensation in a strongly interacting non-abelian gauge sector, which is connected to the standard model via a Higgs portal coupling. The dynamical scale genesis appears as a phase transition at finite temperature, and it can produce a gravitational wave (GW) background in the early Universe. We find that the critical temperature of the scale phase transition lies above that of the EW phase transition and below few O(100) GeV and it is strongly first-order. We calculate the spectrum of the GW background and find the scale phase transition is strong enough that the GW background can be observed by DECIGO.

  3. Comparison of air-standard rectangular cycles with different specific heat models

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2016-01-01

    Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.

  4. RESPONSE OF PLANT-BACTERIA INTERACTION MODELS TO NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Giuliano Degrassi

    2012-07-01

    Full Text Available The aim of this study was to evaluate the possibility of using some models developed to study the plant-bacteria interaction mechanisms for the assessment of the impact of chronic exposure to nanoparticles. Rice-associated bacteria showed that some models are sensitive to the presence of NPs and allow a quantification of the effects. Further work needs to be performed in order to set appropriate reference baselines and standards to assess the impact of NPs on the proposed biological systems.

  5. Search for primarily non-interacting decay modes of the upsilon

    International Nuclear Information System (INIS)

    Leffler, J.S.

    1986-03-01

    The hadronic transition UPSILON(2S) → π 0 π 0 UPSILON(1S) is utilized to search for the reactions: UPSILON(1S) → non-interacting particles and UPSILON(1S) → γ + non-interacting particles. 44 pb -1 of UPSILON(2S) data were taken by the Crystal Ball detector at the DORIS II storage ring in order to perform this study. An upper limit of BR(UPSILON → Unseen) -1 of UPSILON(2S) data was available for this study. An upper limit on the branching ratio BR(UPSILON → γ + Unseen) is measured for photon energies in the range 500 MeV -3 (90% C.L.), is obtained. The compact size of the Crystal Ball detector enhances the observable branching ratio for noninteracting particles with short lifetimes such as massive axions. The identification of the recent Darmstadt events with a 1.6 MeV axion is excluded by the present result assuming the minimal Peccei-Quinn model. Limits on the spontaneous supersymmetry breaking mass scale are also derived as a function of gravitino mass

  6. The minimal extension of the Standard Model with S3 symmetry

    International Nuclear Information System (INIS)

    Lee, C.E.; Lin, C.; Yang, Y.W.

    1991-01-01

    In this paper the two Higgs-doublet extension of the standard electroweak model with S 3 symmetry is presented. The flavour changing neutral Higgs interaction are automatically absent. A permutation symmetry breaking scheme is discussed. The correction to the Bjorken's approximation and the CP-violation factor J are given within this scheme

  7. Reducing matrix effect error in EDXRF: Comparative study of using standard and standard less methods for stainless steel samples

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muhammad; Wilfred, P.

    2013-01-01

    Even though EDXRF analysis has major advantages in the analysis of stainless steel samples such as simultaneous determination of the minor elements, analysis can be done without sample preparation and non-destructive analysis, the matrix issue arise from the inter element interaction can make the the final quantitative result to be in accurate. The paper relates a comparative quantitative analysis using standard and standard less methods in the determination of these elements. Standard method was done by plotting regression calibration graphs of the interested elements using BCS certified stainless steel standards. Different calibration plots were developed based on the available certified standards and these stainless steel grades include low alloy steel, austenitic, ferritic and high speed. The standard less method on the other hand uses a mathematical modelling with matrix effect correction derived from Lucas-Tooth and Price model. Further improvement on the accuracy of the standard less method was done by inclusion of pure elements into the development of the model. Discrepancy tests were then carried out for these quantitative methods on different certified samples and the results show that the high speed method is most reliable for determining of Ni and the standard less method for Mn. (Author)

  8. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  9. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  10. Search for Exotic Physics Beyond the Standard Model with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287508; The ATLAS collaboration

    2017-01-01

    A summary is given of non-SUSY searches for New Physics with the ATLAS detector at the LHC. Shown results use a data sample collected with a center-of-mass energy of ${\\sqrt{s}=8}$ TeV and an integrated luminosity of around $20$ fb$^{-1}$ in proton-proton collisions. Four recent searches using leptons, photons, missing transverse energy, and jets are presented. No significant deviations from Standard Model expectations are observed, hence new limits on a wide set of predictions for several Standard Model extensions are set.

  11. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  12. Interaction of dependent and non-dependent regions of the acutely injured lung during a stepwise recruitment manoeuvre

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Rettig, Jordan S; Arnold, John H; Wolf, Gerhard K; Smallwood, Craig D; Boyd, Theonia K

    2013-01-01

    The benefit of treating acute lung injury with recruitment manoeuvres is controversial. An impediment to settling this debate is the difficulty in visualizing how distinct lung regions respond to the manoeuvre. Here, regional lung mechanics were studied by electrical impedance tomography (EIT) during a stepwise recruitment manoeuvre in a porcine model with acute lung injury. The following interaction between dependent and non-dependent regions consistently occurred: atelectasis in the most dependent region was reversed only after the non-dependent region became overdistended. EIT estimates of overdistension and atelectasis were validated by histological examination of lung tissue, confirming that the dependent region was primarily atelectatic and the non-dependent region was primarily overdistended. The pulmonary pressure–volume equation, originally designed for modelling measurements at the airway opening, was adapted for EIT-based regional estimates of overdistension and atelectasis. The adaptation accurately modelled the regional EIT data from dependent and non-dependent regions (R 2 > 0.93, P < 0.0001) and predicted their interaction during recruitment. In conclusion, EIT imaging of regional lung mechanics reveals that overdistension in the non-dependent region precedes atelectasis reversal in the dependent region during a stepwise recruitment manoeuvre. (paper)

  13. Modeling of interaction effects in granular systems

    CERN Document Server

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  14. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  15. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)

    2015-01-14

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.

  16. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  17. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    Science.gov (United States)

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  18. A model-independent description of few-body system with strong interaction

    International Nuclear Information System (INIS)

    Simenog, I.V.

    1985-01-01

    In this contribution, the authors discuss the formulation of equations that provide model-independent description of systems of three and more nucleons irrespective of the details of the interaction, substantiate the approach, estimate the correction terms with respect to the force range, and give basic qualitative results obtained by means of the model-independent procedure. They consider three nucleons in the doublet state (spin S=I/2) taking into account only S-interaction. The elastic nd-scattering amplitude may be found from the model-independent equations that follow from the Faddeev equations in the short-range-force limit. They note that the solutions of several model-independent equations and basic results obtained with the use of this approach may serve both as a standard solution and starting point in the discussion of various conceptions concerning the details of nuclear interactions

  19. Estimating structural equation models with non-normal variables by using transformations

    NARCIS (Netherlands)

    Montfort, van K.; Mooijaart, A.; Meijerink, F.

    2009-01-01

    We discuss structural equation models for non-normal variables. In this situation the maximum likelihood and the generalized least-squares estimates of the model parameters can give incorrect estimates of the standard errors and the associated goodness-of-fit chi-squared statistics. If the sample

  20. Do native brown trout and non-native brook trout interact reproductively?

    Science.gov (United States)

    Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.

    2008-07-01

    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.

  1. Standard Model CP-violation and baryon asymmetry

    CERN Document Server

    Gavela, M.B.; Orloff, J.; Pene, O.

    1994-01-01

    Simply based on CP arguments, we argue against a Standard Model explanation of the baryon asymmetry of the universe in the presence of a first order phase transition. A CP-asymmetry is found in the reflection coefficients of quarks hitting the phase boundary created during the electroweak transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. The building blocks are similar in both cases: Kobayashi-Maskawa CP-violation, CP-even phases in the reflection coefficients of quarks, and physical transitions due to fermion self-energies. In both cases an effect is present at order $\\alpha_W^2$ in rate. A standard GIM behaviour is found as intuitively expected. In the finite temperature case, a crucial role is played by the damping rate of quasi-particles in a hot plasma, which is a relevant scale together with $M_W$ and the temperature. The effect is many orders of magnitude below what observation requires, and indicates that non standard physics is ...

  2. CHANGES AND MODIFICATIONS OF THE TROUSERS PATENS FOR NON-STANDARD FIGURES

    Directory of Open Access Journals (Sweden)

    SUDACEVSCHI SVETLANA

    2015-12-01

    Full Text Available Among the problems faced by the constructors of clothing goods are the non-standard figures of the human body. The present article examines the possibilities of modifying the curve of women’s trousers. The author proposes methods of chang­ing the basic drawing of the women’s trousers for figures with non-standard figures and to use these methods in the process of training in specialized educational institutions.

  3. Non interacting control by measurement feedback

    NARCIS (Netherlands)

    Woude, van der J.W.

    1987-01-01

    In this paper we shall solve the problem of non interacting control by measurement feedback for systems that in addition to a control input and a measurement output have two exogenous inputs and two exogenous outputs. That is, we shall derive necessary and sufficient conditions that can actually be

  4. Dynamical analysis of a model of social behavior: Criminal vs non-criminal population

    International Nuclear Information System (INIS)

    Abbas, Syed; Tripathi, Jai Prakash; Neha, A.A.

    2017-01-01

    Highlights: • A new social model of interaction between criminal and non-criminal population is proposed • The effect of law enforcement is studied • Many real life situations are analyzed • List of open problems is given for future work. - Abstract: In this paper, we construct a model motivated by the well known predator-prey model to study the interaction between criminal population and non-criminal population. Our aim is to study various possibilities of interactions between them. First we model it using simple predator-prey model, then we modify it by considering the logistic growth of non-criminal population. We clearly deduce that the model with logistic growth is better than classical one. More precisely, the role of carrying capacity on the dynamics of criminal minded population is discussed. Further, we incorporate law enforcement term in the model and study its effect. The result obtained suggest that by incorporating enforcement law, the criminal population reduces from the very beginning, which resembles with real life situation. Our result indicates that the criminal minded population exist as long as coefficient of enforcement l_c does not cross a threshold value and after this value the criminal minded population extinct. In addition, we also discuss the occurrence of saddle-node bifurcation in case of model system with law enforcement. Numerical examples and simulations are presented to illustrate the obtained results.

  5. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  6. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    Science.gov (United States)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  7. Multipartite interacting scalar dark matter in the light of updated LUX data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Poulose, Poulose, E-mail: subhab@iitg.ernet.in, E-mail: p.ghosh@iitg.ernet.in, E-mail: poulose@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2017-04-01

    We explore constraints on multipartite dark matter (DM) framework composed of singlet scalar DM interacting with the Standard Model (SM) through Higgs portal coupling. We compute relic density and direct search constraints including the updated LUX bound for two component scenario with non-zero interactions between two DM components in Z{sub 2} × Z{sub 2}{sup '} framework in comparison with the one having O(2) symmetry. We point out availability of a significantly large region of parameter space of such a multipartite model with DM-DM interactions.

  8. Physics at the LHC - From Standard Model measurements to Searches for New Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, Karl [Freiburg University (Germany)

    2014-07-01

    The successful operation of the Large Hadron Collider (LHC) during the past two years allowed to explore particle interaction in a new energy regime. Measurements of important Standard Model processes like the production of high-p{sub T} jets, W and Z bosons and top and b-quarks were performed by the LHC experiments. In addition, the high collision energy allowed to search for new particles in so far unexplored mass regions. Important constraints on the existence of new particles predicted in many models of physics beyond the Standard Model could be established. With integrated luminosities reaching values around 5 fb{sup −1} in 2011, the experiments reached as well sensitivity to probe the existence of the Standard Model Higgs boson over a large mass range. In the present report the major physics results obtained by the two general-purpose experiments ATLAS and CMS are summarized.

  9. Timing Interactions in Social Simulations: The Voter Model

    Science.gov (United States)

    Fernández-Gracia, Juan; Eguíluz, Víctor M.; Miguel, Maxi San

    The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.

  10. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  11. A Meta-study of musicians' non-verbal interaction

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer; Marchetti, Emanuela

    2010-01-01

    interruptions. Hence, despite the fact that the skill to engage in a non-verbal interaction is described as tacit knowledge, it is fundamental for both musicians and teachers (Davidson and Good 2002). Typical observed non-verbal cues are for example: physical gestures, modulations of sound, steady eye contact...

  12. Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy

    International Nuclear Information System (INIS)

    Das, Sudipta; Mamon, Abdulla Al; Debnath, Ujjal

    2015-01-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)

  13. Interactions in Generalized Linear Models: Theoretical Issues and an Application to Personal Vote-Earning Attributes

    Directory of Open Access Journals (Sweden)

    Tsung-han Tsai

    2013-05-01

    Full Text Available There is some confusion in political science, and the social sciences in general, about the meaning and interpretation of interaction effects in models with non-interval, non-normal outcome variables. Often these terms are casually thrown into a model specification without observing that their presence fundamentally changes the interpretation of the resulting coefficients. This article explains the conditional nature of reported coefficients in models with interactions, defining the necessarily different interpretation required by generalized linear models. Methodological issues are illustrated with an application to voter information structured by electoral systems and resulting legislative behavior and democratic representation in comparative politics.

  14. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  15. Testing the standard model

    International Nuclear Information System (INIS)

    Gordon, H.; Marciano, W.; Williams, H.H.

    1982-01-01

    We summarize here the results of the standard model group which has studied the ways in which different facilities may be used to test in detail what we now call the standard model, that is SU/sub c/(3) x SU(2) x U(1). The topics considered are: W +- , Z 0 mass, width; sin 2 theta/sub W/ and neutral current couplings; W + W - , Wγ; Higgs; QCD; toponium and naked quarks; glueballs; mixing angles; and heavy ions

  16. Standard Model-like corrections to Dilatonic Dynamics

    DEFF Research Database (Denmark)

    Antipin, Oleg; Krog, Jens; Mølgaard, Esben

    2013-01-01

    the same non-abelian global symmetries as a technicolor-like theory with matter in a complex representation of the gauge group. We then embed the electroweak gauge group within the global flavor structure and add also ordinary quark-like states to mimic the effects of the top. We find that the standard...... model-like induced corrections modify the original phase diagram and the details of the dilatonic spectrum. In particular, we show that the corrected theory exhibits near-conformal behavior for a smaller range of flavors and colors. For this range of values, however, our results suggest that near...

  17. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  18. Standard model baryogenesis through four-fermion operators in braneworlds

    International Nuclear Information System (INIS)

    Chung, Daniel J.H.; Dent, Thomas

    2002-01-01

    We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the standard model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks

  19. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  20. Boosted dark matter signals uplifted with self-interaction

    OpenAIRE

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul

    2018-01-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in l...

  1. Starting the universe: Stable violation of the null energy condition and non-standard cosmologies

    International Nuclear Information System (INIS)

    Creminelli, P.; Luty, M.A.; Nicolis, A.; Senatore, L.

    2006-06-01

    We present a consistent effective theory that violates the null energy condition (NEC) without developing any instabilities or other pathological features. The model is the ghost condensate with the global shift symmetry softly broken by a potential. We show that this system can drive a cosmological expansion with H-dot > 0. Demanding the absence of instabilities in this model requires H-dot or approx. H 2 . We then construct a general low-energy effective theory that describes scalar fluctuations about an arbitrary FRW background, and argue that the qualitative features found in our model are very general for stable systems that violate the NEC. Violating the NEC allows dramatically non- standard cosmological histories. To illustrate this, we construct an explicit model in which the expansion of our universe originates from an asymptotically flat state in the past, smoothing out the big-bang singularity within control of a low- energy effective theory. This gives an interesting alternative to standard inflation for solving the horizon problem. We also construct models in which the present acceleration has w < -1; a periodic ever-expanding universe; and a model with a smooth 'bounce' connecting a contracting and expanding phase. (author)

  2. Beyond the Standard Model [2011 European School of High-Energy Physics

    International Nuclear Information System (INIS)

    Dobrescu, B A

    2014-01-01

    Despite the success of the standard model in describing a wide range of data, there are reasons to believe that additional phenomena exist, which would point to new theoretical structures. Some of these phenomena may be discovered in particle physics experiments in the near future. These lectures overview hypothetical particles, solutions to the hierarchy problem, theories of dark matter, and new strong interactions

  3. Charge quantization in the standard model and some of its extensions

    International Nuclear Information System (INIS)

    Foot, R.; Joshi, G.C.; Lew, H.; Volkas, R.R.

    1990-01-01

    Recent advances in the theoretical understanding of electric charge quantization in the Standard Model and some of its extensions are reviewed. The roles played by classical constraints, gauge and mixed gauge-gravitational anomaly cancellation and the demand of vector-like electromagnetic interactions, are discussed. An attempt is made to clearly explain and contrast the points of view of various authors. 17 refs

  4. Beyond the Standard Model [2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, B A [Fermilab (United States)

    2014-07-01

    Despite the success of the standard model in describing a wide range of data, there are reasons to believe that additional phenomena exist, which would point to new theoretical structures. Some of these phenomena may be discovered in particle physics experiments in the near future. These lectures overview hypothetical particles, solutions to the hierarchy problem, theories of dark matter, and new strong interactions.

  5. Evidence for dark matter interactions in cosmological precision data?

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin

    2016-01-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN fluid and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ 8 . We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons

  6. EVENT GENERATION OF STANDARD MODEL HIGGS DECAY TO DIMUON PAIRS USING PYTHIA SOFTWARE

    CERN Document Server

    Yusof, Adib

    2015-01-01

    My project for CERN Summer Student Programme 2015 is on Event Generation of Standard Model Higgs Decay to Dimuon Pairs using Pythia Software. Briefly, Pythia or specifically, Pythia 8.1 is a program for the generation of high-energy Physics events that is able to describe the collisions at any given energies between elementary particles such as Electron, Positron, Proton as well as anti-Proton. It contains theory and models for a number of Physics aspects, including hard and soft interactions, parton distributions, initial-state and final-state parton showers, multiparton interactions, fragmentation and decay. All programming code is to be written in C++ language for this version (the previous version uses FORTRAN) and can be linked to ROOT software for displaying output in form of histogram. For my project, I need to generate events for standard model Higgs Boson into Muon and anti-Muon pairs (H→μ+ μ) to study the expected significance value for this particular process at centre-of-mass energy of 13 TeV...

  7. A Model for Semantic IS Standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; Oude Luttighuis, Paul; van Hillegersberg, Jos

    2011-01-01

    We argue that, in order to suggest improvements of any kind to semantic information system (IS) standards, better understanding of the conceptual structure of semantic IS standard is required. This study develops a model for semantic IS standard, based on literature and expert knowledge. The model

  8. Non-Covalent Interactions and Impact of Charge Penetration Effects in Linear Oligoacene Dimers and Single Crystals

    KAUST Repository

    Ryno, Sean

    2016-05-18

    Non-covalent interactions determine in large part the thermodynamic aspects of molecular packing in organic crystals. Using a combination of symmetry-adapted perturbation theory (SAPT) and classical multipole electrostatics, we describe the interaction potential energy surfaces for dimers of the oligoacene family, from benzene to hexacene. An analysis of these surfaces and a thorough assessment of dimers extracted from the reported crystal structures underline that high-order interactions (i.e., three-body non-additive interactions) must be considered in order to rationalize the details of the crystal structures. A comparison of the SAPT electrostatic energy with the multipole interaction energy demonstrates the importance of the contribution of charge penetration, which is shown to account for up to 50% of the total interaction energy in dimers extracted from the experimental single crystals; in the case of the most stable co-facial model dimers, this contribution is even larger than the total interaction energy. Our results highlight the importance of taking account of charge penetration in studies of the larger oligoacenes.

  9. On the interaction of non-ionizing radiation with people. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.A.; MacDonald, G.J.

    1980-03-01

    This report examines the physical basis for many of the thermal and non-thermal interactions between microwaves and the human body. Although a microwave beam incident on the human body dissipates, on the average, about the same amount of heat as does normal metabolism, it can actually dissipate considerably more heat in certain local regions of the body because of strong beam focusing effects (e.g., within the brain), flow of induced currents through small, constricted areas of the body (e.g., ankle, neck) and differences in electrical properties among body tissues. Since relatively large heat dissipation can occur on a local level, it would appear more rational to determine a maximum permissive radiation exposure in terms of maximum allowed dissipation in a specific sensitive part of the body rather than, as is presently done, in terms of external beam intensity (the present U.S. standard is 10 milliwatts/sq cm). For non-thermal processes, no special biological process or structure has been identified as likely to be especially sensitive to microwave fields or frequencies. The experimental results designed to explore the non-thermal effect of microwaves were studied. The results of all experiments purporting to demonstrate a significant non-thermal biological effect have been disputed; in fact, very few experiments in the entire field have ever been replicated -- a situation which should be rectified.

  10. Non-Higgsable clusters for 4D F-theory models

    International Nuclear Information System (INIS)

    Morrison, David R.; Taylor, Washington

    2015-01-01

    We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3)×SU(2), that can be realized through 4D non-Higgsable clusters. There are also more complicated configurations involving more than two gauge factors; in particular, the collection of gauge group factors with jointly charged matter can exhibit branchings, loops, and long linear chains.

  11. Relationship between non-standard work arrangements and work-related accident absence in Belgium.

    Science.gov (United States)

    Alali, Hanan; Braeckman, Lutgart; Van Hecke, Tanja; De Clercq, Bart; Janssens, Heidi; Wahab, Magd Abdel

    2017-03-28

    The main objective of this study is to examine the relationship between indicators of non-standard work arrangements, including precarious contract, long working hours, multiple jobs, shift work, and work-related accident absence, using a representative Belgian sample and considering several socio-demographic and work characteristics. This study was based on the data of the fifth European Working Conditions Survey (EWCS). For the analysis, the sample was restricted to 3343 respondents from Belgium who were all employed workers. The associations between non-standard work arrangements and work-related accident absence were studied with multivariate logistic regression modeling techniques while adjusting for several confounders. During the last 12 months, about 11.7% of workers were absent from work because of work-related accident. A multivariate regression model showed an increased injury risk for those performing shift work (OR 1.546, 95% CI 1.074-2.224). The relationship between contract type and occupational injuries was not significant (OR 1.163, 95% CI 0.739-1.831). Furthermore, no statistically significant differences were observed for those performing long working hours (OR 1.217, 95% CI 0.638-2.321) and those performing multiple jobs (OR 1.361, 95% CI 0.827-2.240) in relation to work-related accident absence. Those who rated their health as bad, low educated workers, workers from the construction sector, and those exposed to biomechanical exposure (BM) were more frequent victims of work-related accident absence. No significant gender difference was observed. Indicators of non-standard work arrangements under this study, except shift work, were not significantly associated with work-related accident absence. To reduce the burden of occupational injuries, not only risk reduction strategies and interventions are needed but also policy efforts are to be undertaken to limit shift work. In general, preventive measures and more training on the job are needed to

  12. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Science.gov (United States)

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  13. Cosmological constraints on interacting light particles

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Christopher [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON, N2L 2Y5 Canada (Canada); Cui, Yanou [Department of Physics and Astronomy, University of California, 900 University Ave, Riverside, CA, 92521 (United States); Sigurdson, Kris, E-mail: cbrust@perimeterinstitute.ca, E-mail: yanou.cui@ucr.edu, E-mail: krs@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 Canada (Canada)

    2017-08-01

    Cosmological observations are becoming increasingly sensitive to the effects of light particles in the form of dark radiation (DR) at the time of recombination. The conventional observable of effective neutrino number, N {sub eff}, is insufficient for probing generic, interacting models of DR. In this work, we perform likelihood analyses which allow both free-streaming effective neutrinos (parametrized by N {sub eff}) and interacting effective neutrinos (parametrized by N {sub fld}). We motivate an alternative parametrization of DR in terms of N {sub tot} (total effective number of neutrinos) and f {sub fs} (the fraction of effective neutrinos which are free-streaming), which is less degenerate than using N {sub eff} and N {sub fld}. Using the Planck 2015 likelihoods in conjunction with measurements of baryon acoustic oscillations (BAO), we find constraints on the total amount of beyond the Standard Model effective neutrinos (both free-streaming and interacting) of Δ N {sub tot} < 0.39 at 2σ. In addition, we consider the possibility that this scenario alleviates the tensions between early-time and late-time cosmological observations, in particular the measurements of σ{sub 8} (the amplitude of matter power fluctuations at 8 h {sup −1} Mpc), finding a mild preference for interactions among light species. We further forecast the sensitivities of a variety of future experiments, including Advanced ACTPol (a representative CMB Stage-III experiment), CMB Stage-IV, and the Euclid satellite. This study is relevant for probing non-standard neutrino physics as well as a wide variety of new particle physics models beyond the Standard Model that involve dark radiation.

  14. Can the superstring inspire the standard model?

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-01-01

    We discuss general features of models in which the E 8 xE' 8 heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m I to the standard model group SU(3) C x SU(2) L x U(1) Y , as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m I > or approx. 10 16 GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ΔL ≠ 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions. (orig.)

  15. On dark matter interactions with the Standard Model through an anomalous Z'

    Science.gov (United States)

    Ismail, Ahmed; Katz, Andrey; Racco, Davide

    2017-10-01

    We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous Z'. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the Z ' is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into W + W -, ZZ, Zγ and possibly into gg and γγ. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected Z' models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous Z'-mediated DM model with arbitrary charges.

  16. Models of the atomic nucleus. With interactive software

    International Nuclear Information System (INIS)

    Cook, N.D.

    2006-01-01

    This book-and-CD-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus, a largely non-technical introduction to nuclear theory, explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously ''non-visual'' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on the accompanying CD. (orig.)

  17. Field theory and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E [Orsay, LPT (France)

    2014-07-01

    This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.

  18. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    Science.gov (United States)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.

  19. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    International Nuclear Information System (INIS)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave–plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra. (paper)

  20. NPR Lenses : Interactive Tools for Non-photorealistic Line Drawings

    NARCIS (Netherlands)

    Neumann, Petra; Isenberg, Tobias; Carpendale, Sheelagh

    2007-01-01

    NPR Lenses is an interactive technique for producing expressive non-photorealistic renderings. It provides an intuitive visual interaction tool for illustrators, allowing them to seamlessly apply a large variety of emphasis techniques. Advantages of 3D scene manipulation are combined with the

  1. Secluded and putative flipped dark matter and Stueckelberg extensions of the standard model

    Science.gov (United States)

    Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.

    2018-02-01

    We consider here three dark matter models with the gauge symmetry of the standard model plus an additional local U(1)D factor. One model is truly secluded and the other two models begin flipped, but end up secluded. All of these models include one dark fermion and one vector boson that gains mass via the Stueckelberg mechanism. We show that the would be flipped models provide an example dark matter composed of "almost least interacting particles" (ALIPs). Such particles are therefore compatible with the constraints obtained from both laboratory measurements and astrophysical observations.

  2. Secluded and Putative Flipped Dark Matter and Stueckelberg Extensions of the Standard Model

    Science.gov (United States)

    Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.

    2018-01-01

    We consider here three dark matter models with the gauge symmetry of the standard model plus an additional local U(1)D factor. One model is truly secluded and the other two models begin flipped, but end up secluded. All of these models include one dark fermion and one vector boson that gains mass via the Stueckelberg mechanism. We show that the would be flipped models provide an example dark matter composed of "almost least interacting particles" (ALIPs). Such particles are therefore compatible with the constraints obtained from both laboratory measurements and astrophysical observations.

  3. On the standard model group in F-theory

    International Nuclear Information System (INIS)

    Choi, Kang-Sin

    2014-01-01

    We analyze the standard model gauge group SU(3) x SU(2) x U(1) constructed in F-theory. The non-Abelian part SU(3) x SU(2) is described by a surface singularity of Kodaira type. Blow-up analysis shows that the non-Abelian part is distinguished from the naive product of SU(3) and SU(2), but that it should be a rank three group along the chain of E n groups, because it has non-generic gauge symmetry enhancement structure responsible for desirablematter curves. The Abelian part U(1) is constructed from a globally valid two-form with the desired gauge quantum numbers, using a similar method to the decomposition (factorization) method of the spectral cover. This technique makes use of an extra section in the elliptic fiber of the Calabi-Yau manifold, on which F-theory is compactified. Conventional gauge coupling unification of SU(5) is achieved, without requiring a threshold correction from the flux along the hypercharge direction. (orig.)

  4. Collectivism versus individualism: performance-related pay and union coverage for non-standard workers in Britain

    OpenAIRE

    Booth, Alison L.; Francesconi, Marco

    2000-01-01

    This paper documents the extent of union coverage and performance-related pay (PRP) - the latter representing one aspect of pay flexibility - across standard and non-standard workers in Britain, using the first seven waves of the British Household Panel Survey, 1991-1997. We find there is no evidence of expansion of either union coverage or PRP towards any type of non-standard employment in the 1990s. Thus union rhetoric about a 'strategy of enlargement' towards non-standard workers remains j...

  5. SARAH goes left and right looking beyond the Standard Model and meets SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Opferkuch, Toby Oliver

    2017-07-07

    Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.

  6. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  7. Caracterisation, modelisation et validation du transfert radiatif d'atmospheres non standard; impact sur les corrections atmospheriques d'images de teledetection

    Science.gov (United States)

    Zidane, Shems

    This study is based on data acquired with an airborne multi-altitude sensor on July 2004 during a nonstandard atmospheric event in the region of Saint-Jean-sur-Richelieu, Quebec. By non-standard atmospheric event we mean an aerosol atmosphere that does not obey the typical monotonic, scale height variation employed in virtually all atmospheric correction codes. The surfaces imaged during this field campaign included a diverse variety of targets : agricultural land, water bodies, urban areas and forests. The multi-altitude approach employed in this campaign allowed us to better understand the altitude dependent influence of the atmosphere over the array of ground targets and thus to better characterize the perturbation induced by a non-standard (smoke) plume. The transformation of the apparent radiance at 3 different altitudes into apparent reflectance and the insertion of the plume optics into an atmospheric correction model permitted an atmospheric correction of the apparent reflectance at the two higher altitudes. The results showed consistency with the apparent validation reflectances derived from the lowest altitude radiances. This approach effectively confirmed the accuracy of our non-standard atmospheric correction approach. This test was particularly relevant at the highest altitude of 3.17 km : the apparent reflectances at this altitude were above most of the plume and therefore represented a good test of our ability to adequately correct for the influence of the perturbation. Standard atmospheric disturbances are obviously taken into account in most atmospheric correction models, but these are based on monotonically decreasing aerosol variations with increasing altitude. When the atmospheric radiation is affected by a plume or a local, non-standard pollution event, one must adapt the existing models to the radiative transfer constraints of the local perturbation and to the reality of the measurable parameters available for ingestion into the model. The

  8. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  9. Non-prescription medicines: a process for standards development and testing in community pharmacy.

    Science.gov (United States)

    Benrimoj, Shalom Charlie I; Gilbert, Andrew; Quintrell, Neil; Neto, Abilio C de Almeida

    2007-08-01

    The objective of the study was to develop and test standards of practice for handling non-prescription medicines. In consultation with pharmacy registering authorities, key professional and consumer groups and selected community pharmacists, standards of practice were developed in the areas of Resource Management; Professional Practice; Pharmacy Design and Environment; and Rights and Needs of Customers. These standards defined and described minimum professional activities required in the provision of non-prescription medicines at a consistent and measurable level of practice. Seven standards were described and further defined by 20 criteria, including practice indicators. The Standards were tested in 40 community pharmacies in two States and after further adaptation, endorsed by all Australian pharmacy registering authorities and major Australian pharmacy and consumer organisations. The consultation process effectively engaged practicing pharmacists in developing standards to enable community pharmacists meet their legislative and professional responsibilities. Community pharmacies were audited against a set of standards of practice for handling non-prescription medicines developed in this project. Pharmacies were audited on the Standards at baseline, mid-intervention and post-intervention. Behavior of community pharmacists and their staff in relation to these standards was measured by conducting pseudo-patron visits to participating pharmacies. The testing process demonstrated a significant improvement in the quality of service delivered by staff in community pharmacies in the management of requests involving non-prescription medicines. The use of pseudo-patron visits, as a training tool with immediate feedback, was an acceptable and effective method of achieving changes in practice. Feedback from staff in the pharmacies regarding the pseudo-patron visits was very positive. Results demonstrated the methodology employed was effective in increasing overall

  10. Skewness of the standard model possible implications

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-09-01

    In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)

  11. Neostigmine interactions with non steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Miranda, Hugo F; Sierralta, Fernando; Pinardi, Gianni

    2002-04-01

    1. The common mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of the enzyme cyclo-oxygenase (COX), however, this inhibition is not enough to completely account for the efficacy of these agents in several models of acute pain. 2. It has been demonstrated that cholinergic agents can induce antinociception, but the nature of the interaction between these agents and NSAIDs drugs has not been studied. The present work evaluates, by isobolographic analysis, the interactions between the cholinergic indirect agonist neostigmine (NEO) and NSAIDs drugs, using a chemical algesiometric test. 3. Intraperitoneal (i.p.) or intrathecal (i.t.) administration of NEO and of the different NSAIDs produced dose-dependent antinociception in the acetic acid writhing test of the mouse. 4. The i.p. or i.t. co-administration of fixed ratios of ED(50) fractions of NSAIDs and NEO, resulted to be synergistic or supra-additive for the combinations ketoprofen (KETO) and NEO, paracetamol (PARA) and NEO) and diclofenac (DICLO) and NEO administered i.p. However, the same combinations administered i.t. were only additive. In addition, the combinations meloxicam (MELO) and NEO and piroxicam (PIRO) and NEO, administered either i.p. or i.t., were additive. 5. The results suggest that the co-administration of NEO with some NSAIDs (e.g. KETO, PARA or DICLO) resulted in a synergistic interaction, which may provide evidence of supraspinal antinociception modulation by the increased acetylcholine concentration in the synaptic cleft of cholinergic interneurons. The interaction obtained between neostigmine and the NSAIDs could carry important clinical implications.

  12. Binomial model for measuring expected credit losses from trade receivables in non-financial sector entities

    Directory of Open Access Journals (Sweden)

    Branka Remenarić

    2018-01-01

    Full Text Available In July 2014, the International Accounting Standards Board (IASB published International Financial Reporting Standard 9 Financial Instruments (IFRS 9. This standard introduces an expected credit loss (ECL impairment model that applies to financial instruments, including trade and lease receivables. IFRS 9 applies to annual periods beginning on or after 1 January 2018 in the European Union member states. While the main reason for amending the current model was to require major banks to recognize losses in advance of a credit event occurring, this new model also applies to all receivables, including trade receivables, lease receivables, related party loan receivables in non-financial sector entities. The new impairment model is intended to result in earlier recognition of credit losses. The previous model described in International Accounting Standard 39 Financial instruments (IAS 39 was based on incurred losses. One of the major questions now is what models to use to predict expected credit losses in non-financial sector entities. The purpose of this paper is to research the application of the current impairment model, the extent to which the current impairment model can be modified to satisfy new impairment model requirements and the applicability of the binomial model for measuring expected credit losses from accounts receivable.

  13. Non-adherence to standard treatment guidelines in a rural paediatric hospital in Sierra Leone.

    Science.gov (United States)

    De Bruycker, M; Van den Bergh, R; Dahmane, A; Khogali, M; Schiavetti, B; Nzomukunda, Y; Alders, P; Allaouna, M; Cloquet, C; Enarson, D A; Satyarayanan, S; Magbity, E; Zachariah, R

    2013-06-21

    A rural paediatric hospital in Bo, Sierra Leone. To assess the level of adherence to standard treatment guidelines among clinicians prescribing treatment for children admitted with a diagnosis of malaria and/or lower respiratory tract infection (LRTI), and determine the association between (non) adherence and hospital outcomes, given that non-rational use of medicines is a serious global problem. Secondary analysis of routine programme data. Data were collected for 865 children admitted with an entry diagnosis of malaria and 690 children with LRTI during the period January to April 2011; some patients were classified in both categories. Non-adherence to guidelines comprised use of non-standard drug regimens, dosage variations, non-standard frequency of administration and treatment duration. Cumulative non-adherence to guidelines for LRTI cases was 86%. For malaria, this involved 12% of patients. Potentially harmful non-adherence was significantly associated with an unfavourable hospital outcome, both for malaria and for LRTI cases. Overall non-adherence to standard treatment guidelines by clinicians in a routine hospital setting is very high and influences hospital outcomes. This study advocates for the implementation of routine measures to monitor and improve rational drug use and the quality of clinical care in such hospitals.

  14. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  15. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/ default .htm

  16. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/default.htm

  17. Atomic Ensemble Effects and Non-Covalent Interactions at the Electrode–Electrolyte Interface

    Directory of Open Access Journals (Sweden)

    Angel Cuesta

    2016-09-01

    Full Text Available Cyanide-modified Pt(111 electrodes have been recently employed to study atomic ensemble effects in electrocatalysis. This work, which will be briefly reviewed, reveals that the smallest site required for methanol dehydrogenation and formic acid dehydration is composed of three contiguous Pt atoms. By blocking these trigonal sites, the specific adsorption of anions, such as sulfate and phosphate, can be inhibited, thus increasing the rate of oxygen reduction reaction by one order of magnitude or more. Moreover, alkali metal cations affect hydrogen adsorption on cyanide-modified Pt(111. This effect is attributed to the non-covalent interactions at the electrical double layer between specifically adsorbed anions or dipoles and the alkali metal cations. A systematic investigation is conducted on the effect of the concentration of alkali metal cations. Accordingly, a simple model that reproduces the experimental observations accurately and enables the understanding of the trends in the strength of the interaction between M+ and CNad when moving from Li+ to Cs+, as well as the deviations from the expected trends, is developed. This simple model can also explain the occurrence of super-Nernstian shifts of the equilibrium potential of interfacial proton-coupled electron transfers. Therefore, the model can be generally applied to explain quantitatively the effect of cations on the properties of the electrical double layer. The recently reported effects of alkali metal cations on several electrocatalytic reactions must be mediated by the interaction between these cations and chemisorbed species. As these interactions seem to be adequately and quantitatively described by our model, we expect the model to also be useful to describe, explain, and potentially exploit these effects.

  18. Toward a Strongly Interacting Scalar Higgs Particle

    International Nuclear Information System (INIS)

    Shalaby, Abouzeid M.; El-Houssieny, M.

    2008-01-01

    We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism

  19. Family nonuniversal Z' models with protected flavor-changing interactions

    Science.gov (United States)

    Celis, Alejandro; Fuentes-Martín, Javier; Jung, Martin; Serôdio, Hugo

    2015-07-01

    We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C9,10' ℓ can be tested in b →s ℓ+ℓ- transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.

  20. Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix

    Science.gov (United States)

    White, Alan R.

    2011-04-01

    The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.

  1. Models of information exchange between radio interfaces of Wi-Fi group of standards

    Science.gov (United States)

    Litvinskaya, O. S.

    2018-05-01

    This paper offers models of information exchange between radio interfaces of the Wi-Fi group of standards by the example of a real facility management system for the oil and gas industry. Interaction between the MU-MIMO and MIMO technologies is analyzed. An optimal variant of information exchange is proposed.

  2. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  3. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  4. JPL Thermal Design Modeling Philosophy and NASA-STD-7009 Standard for Models and Simulations - A Case Study

    Science.gov (United States)

    Avila, Arturo

    2011-01-01

    The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.

  5. Early universe cosmology. In supersymmetric extensions of the standard model

    International Nuclear Information System (INIS)

    Baumann, Jochen Peter

    2012-01-01

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the

  6. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  7. Index of Non-Government Standards on Human Engineering Design Criteria and Program Requirements/Guidelines. Version 3

    National Research Council Canada - National Science Library

    Poston, Alan

    2002-01-01

    .... Since the designation of documents as standards by non-government standards bodies tends to be somewhat flexible, the scope of non-government standards for the Index was kept quite loose and includes...

  8. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  9. Non-Markovianity in the collision model with environmental block

    Science.gov (United States)

    Jin, Jiasen; Yu, Chang-shui

    2018-05-01

    We present an extended collision model to simulate the dynamics of an open quantum system. In our model, the unit to represent the environment is, instead of a single particle, a block which consists of a number of environment particles. The introduced blocks enable us to study the effects of different strategies of system–environment interactions and states of the blocks on the non-Markovianities. We demonstrate our idea in the Gaussian channels of an all-optical system and derive a necessary and sufficient condition of non-Markovianity for such channels. Moreover, we show the equivalence of our criterion to the non-Markovian quantum jump in the simulation of the pure damping process of a single-mode field. We also show that the non-Markovianity of the channel working in the strategy that the system collides with environmental particles in each block in a certain order will be affected by the size of the block and the embedded entanglement and the effects of heating and squeezing the vacuum environmental state will quantitatively enhance the non-Markovianity.

  10. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  11. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES: PESTICIDES ON RUTILE AND ORGANO-RUTILE SURFACES

    Science.gov (United States)

    Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...

  12. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  13. Modeling of interaction effects in granular systems

    International Nuclear Information System (INIS)

    El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops

  14. Boosted dark matter signals uplifted with self-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyoungchul, E-mail: kckong@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Mohlabeng, Gopolang, E-mail: mohlabeng319@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Park, Jong-Chul, E-mail: log1079@gmail.com [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-04-09

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  15. Customizing Standard Software as a Business Model in the IT Industry

    DEFF Research Database (Denmark)

    Kautz, Karlheinz; Rab, Sameen M.; Sinnet, Michael

    2011-01-01

    This research studies a new business model in the IT industry, the customization of standard software as the sole foundation for a software company’s earnings. Based on a theoretical background which combines the concepts of inter-organizational networks and open innovation we provide an interpre......This research studies a new business model in the IT industry, the customization of standard software as the sole foundation for a software company’s earnings. Based on a theoretical background which combines the concepts of inter-organizational networks and open innovation we provide...... an interpretive case study of a small software company which customizes a standard product. We investigate the company’s interactions with a large global software company which is the producer of the original software product and with other companies which are involved in the software customization process. We...... primarily on complex, formal partnerships, in which also opportunistic behavior occurs and where informal relations are invaluable sources of knowledge. In addition, the original software producer’s view and treatment of these companies has a vital impact on the customizing company’s practice which...

  16. Can the superstring inspire the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-02-01

    We discuss general features of models in which the E/sub 8/xE'/sub 8/ heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m/sub I/ to the standard model group SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub Y/, as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m/sub I/ > or approx. 10/sup 16/ GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ..delta..L not = 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions.

  17. Particle ratios from AGS to RHIC in an interacting hadronic model

    International Nuclear Information System (INIS)

    Zschiesche, D; Zeeb, G; Paech, K; Schramm, S; Stoecker, H

    2004-01-01

    The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) σ-ωapproach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, 'freezing' of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out to differ up to 150 MeV from their vacuum values

  18. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  19. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  20. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)

    2017-03-15

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  1. Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models

    Directory of Open Access Journals (Sweden)

    Maria Cecília Gomes

    2012-12-01

    Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.

  2. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  3. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    International Nuclear Information System (INIS)

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  4. Perturbative extension of the standard model with a 125 GeV Higgs and Magnetic Dark Matter

    DEFF Research Database (Denmark)

    Dissauer, Karin; Frandsen, Mads Toudal; Hapola, Tuomas

    2012-01-01

    among several direct dark matter search experiments. We further constrain the parameters of the underlying theory using results from the Large Hadron Collider. The extension can accommodate the recently observed properties of the Higgs-like state and leads to interesting predictions. Finally we show......We introduce a perturbative extension of the standard model featuring a new dark matter sector together with a 125 GeV Higgs. The new sector consists of a vector-like heavy electron E, a complex scalar electron S and a standard model singlet Dirac fermion \\chi. The interactions among the dark...... matter candidate \\chi and the standard model particles occur via loop-induced processes involving the operator SE\\chi y, with y being the Yukawa-like coupling. The model is an explicit underlying realization of the light magnetic dark matter effective model introduced earlier to alleviate the tension...

  5. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods.

    Science.gov (United States)

    Bordenave, Nicolas; Hamaker, Bruce R; Ferruzzi, Mario G

    2014-01-01

    Many of the potential health benefits of flavonoids have been associated with their specific chemical and biological properties including their ability to interact and bind non-covalently to macronutrients in foods. While flavonoid-protein interactions and binding have been the subject of intensive study, significantly less is understood about non-covalent interactions with carbohydrates and lipids. These interactions with macronutrients are likely to impact both the flavonoid properties in foods, such as their radical scavenging activity, and the food or beverage matrix itself, including their taste, texture and other sensorial properties. Overall, non-covalent binding of flavonoids with macronutrients is primarily driven by van der Waals interactions. From the flavonoid perspective, these interactions are modulated by characteristics such as degree of polymerization, molecular flexibility, number of external hydroxyl groups, or number of terminal galloyl groups. From the macronutrient standpoint, electrostatic and ionic interactions are generally predominant with carbohydrates, while hydrophobic interactions are generally predominant with lipids and mainly limited to interactions with flavonols. All of these interactions are involved in flavonoid-protein interactions. While primarily associated with undesirable characteristics in foods and beverages, such as astringency, negative impact on macronutrient digestibility and hazing, more recent efforts have attempted to leverage these interactions to develop controlled delivery systems or strategies to enhance flavonoids bioavailability. This paper aims at reviewing the fundamental bases for non-covalent interactions, their occurrence in food and beverage systems and their impact on the physico-chemical, organoleptic and some nutritional properties of food.

  6. An exotic k-essence interpretation of interactive cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-01-15

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)

  7. An exotic k-essence interpretation of interactive cosmological models

    International Nuclear Information System (INIS)

    Forte, Monica

    2016-01-01

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)

  8. Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection.

    Science.gov (United States)

    Eiras, J N; Monzó, J; Payá, J; Kundu, T; Popovics, J S

    2014-02-01

    Dynamic non-classical nonlinear analyses show promise for improved damage diagnostics in materials that exhibit such structure at the mesoscale, such as concrete. In this study, nonlinear non-classical dynamic material behavior from standard vibration test data, using pristine and frost damaged cement mortar bar samples, is extracted and quantified. The procedure is robust and easy to apply. The results demonstrate that the extracted nonlinear non-classical parameters show expected sensitivity to internal damage and are more sensitive to changes owing to internal damage levels than standard linear vibration parameters.

  9. Particle physics and cosmology beyond the Standard Model: inflation, dark matter and flavour

    International Nuclear Information System (INIS)

    Heurtier, L.

    2015-01-01

    This thesis has been focusing on beyond the Standard Model aspects of particle physics and their implication in cosmology. We have gone through this work along the timeline of the Universe History focusing on three major topics that are the inflationary period, the dark matter relic density production and detection, and finally the question of flavor changing constraints on low energy supersymmetric theories. In the first part of this thesis, after reviewing the theoretical and phenomenological aspects of both the Big Bang theory and the theory of Inflation we will study in detail how describing Inflation in a high energy supersymmetric theory. The second part of this thesis is dedicated to dark matter. We have studied phenomenological aspects of simple models, extending the present Standard Model with simple abelian symmetries, by assuming that the constituent of dark matter would be able to exchange information with the visible sector by the help of a mediator particle. We have studied in particular possible interactions of heavy or light dark matter with respectively the strong and the electroweak sectors of the Standard Model. Our models are strongly constrained of course by experiments. The third part of this work will be dedicated to a different aspect of beyond Standard Model theories, that is the treatment of the flavour changing processes of particle physics. The Minimal Supersymmetric Standard Model (MSSM), as one of these possible enlargement of the Standard Model, introduces new processes of flavour changing that are highly constrained by experiment. We present some works in which we consider the possibility of adding so called Dirac Gauginos to the MSSM to render flavour changing weaker in the theory, and propose different flavour patterns theories

  10. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  11. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems

    International Nuclear Information System (INIS)

    Musielak, Z.E.

    2009-01-01

    Equations of motion describing dissipative dynamical systems with coefficients varying either in time or in space are considered. To identify the equations that admit a Lagrangian description, two classes of non-standard Lagrangians are introduced and general conditions required for the existence of these Lagrangians are determined. The conditions are used to obtain some non-standard Lagrangians and derive equations of motion resulting from these Lagrangians.

  12. Explaining Macroeconomic and Term Structure Dynamics Jointly in a Non-linear DSGE Model

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper shows how a standard DSGE model can be extended to reproduce the dynamics in the 10 year yield curve for the post-war US economy with a similar degree of precision as in reduced form term structure models. At the same time, we are able to reproduce the dynamics of four key macro...... variables almost perfectly. Our extension of a standard DSGE model is to introduce three non-stationary shocks which allow us to explain interest rates with medium and long maturities without distorting the dynamics of the macroeconomy....

  13. Forward Physics at the LHC within and beyond the Standard Model

    CERN Document Server

    d'Enterria, David

    2008-01-01

    We review the detection capabilities in the forward direction of the various LHC experiments together with the associated physics programme. A selection of measurements accessible with near-beam instrumentation in various sectors (and extensions) of the Standard Model is outlined, including QCD (diffractive and elastic scattering, low-x parton dynamics, hadronic Monte Carlos for cosmic-rays), electroweak processes in gamma-gamma interactions, and Higgs physics (vector-boson-fusion and central exclusive production).

  14. Holographik, the k-essential approach to interactive models with modified holographic Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-12-15

    We make a scalar representation of interactive models with cold dark matter and modified holographic Ricci dark energy through unified models driven by scalar fields with non-canonical kinetic term. These models are applications of the formalism of exotic k-essences generated by the global description of cosmological models with two interactive fluids in the dark sector and in these cases they correspond to the usual k-essences. The formalism is applied to the cases of constant potential in Friedmann-Robertson-Walker geometries. (orig.)

  15. On dark degeneracy and interacting models

    International Nuclear Information System (INIS)

    Carneiro, S.; Borges, H.A.

    2014-01-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter

  16. Contribution to concrete modelling towards aging and durability: interactions between creep deformations and non-linear behaviour of the material

    International Nuclear Information System (INIS)

    Berthollet, A.

    2003-10-01

    Concrete structures are examined during their lifetime and often present important cracking states, which can progress with time and lead to change the structural behavior. The civil engineering works that the main function corresponds to protection's wall are very sensitive to this damage and its evolution. The growth of the time - dependent cracks represents an aging pathology linked with interaction between creep mechanism and the non-linear behavior of the material. In this thesis, a modeling for these mechanisms and their coupling are proposed. It based on creep strains analysis under different load levels, on the influence of the rate effect to the mechanical behavior. A stress limit is put on prominent manner, where beyond it, the creep - cracking interaction becomes important with the introduction of the ultimate tertiary creep kinetic. This level of strength is identified for infinitely slow loading rates and is also called intrinsic strength. It defines the limit on this side the viscous behavior of the cement paste limits the irreversibility processes as cracking. Thus, a constitutive law of viscoelastic - viscoplastic behavior with a high coupling between the cracking mechanism and the creep strains is proposed. The developments of the model are built on DUVAUT - LIONS approach integrated a generalized MAXWELL chain model. For one part, the viscoelastic behavior translates the creep mechanism under low stresses. For a second part, it associated with the viscoplastic behavior, which allows introducing both creep effect under high stresses and rate effect acting on micro-cracked zones. The cracking mechanism is described throughout a plasticity theory with multi-criteria, which induce a property of anisotropy for hardening. Qualitatively, ails of the creep kinetics are reproduced. An additional validation is based on experimental tests in compression, traction and flexion where the main parameters of the modeling are detailed. Thus, we can conclude on the

  17. Custom v. Standardized Risk Models

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-05-01

    Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.

  18. Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)

    2017-11-15

    The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)

  19. NUMERICAL MODELLING AS NON-DESTRUCTIVE METHOD FOR THE ANALYSES AND DIAGNOSIS OF STONE STRUCTURES: MODELS AND POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Nataša Štambuk-Cvitanović

    1999-12-01

    Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.

  20. Even zinc isotopes in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; McCullen, J.D.; Duval, P.D.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics)

    1982-11-01

    The interacting boson model is applied to the even zinc isotopes /sup 62/Zn-/sup 72/Zn. Two boson configurations are used to account for the behaviour of excited O/sup +/ states; one is the usual particle boson configuration and the other a configuration representing proton excitation from the /sup 56/Ni core. The parameter variation in the model is constrained as much as possible to agree with calculations from a non-degenerate multi-shell fermion basis for the bosons. Energy levels, quadrupole moments and B(E2) values are calculated. Values obtained compare favourably with experiment and with other calculations.

  1. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS; RAOUL, GAË L

    2010-01-01

    .r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive

  2. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    International Nuclear Information System (INIS)

    Artymowski, Michał; Lewicki, Marek; Wells, James D.

    2017-01-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  3. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewicki, Marek [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Wells, James D. [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-13

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  4. Testing the Standard Model by precision measurement of the weak charges of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  5. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  6. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    Science.gov (United States)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  7. Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects

    Science.gov (United States)

    Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo

    2017-12-01

    This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.

  8. Principles of interactions in non-aqueous electrolyte solutions

    NARCIS (Netherlands)

    Lyklema, J.

    2013-01-01

    In this paper a review is presented on the molecular interactions in non-aqueous media of low dielectric permittivity. Qualitative and quantitative distinctions with aqueous solutions are emphasized. The reviewed themes include dispersion forces, dissociation and association equilibria,

  9. Molecular Modeling, Docking, Dynamics and simulation of Gefitinib and its derivatives with EGFR in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara

    2018-02-27

    Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The standard model 30 years of glory

    International Nuclear Information System (INIS)

    Lefrancois, J.

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e + ,e - ), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e + e - experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  11. The standard model 30 years of glory

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, J

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e{sup +},e{sup -}), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e{sup +}e{sup -} experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  12. SLHAplus: A library for implementing extensions of the standard model

    Science.gov (United States)

    Bélanger, G.; Christensen, Neil D.; Pukhov, A.; Semenov, A.

    2011-03-01

    We provide a library to facilitate the implementation of new models in codes such as matrix element and event generators or codes for computing dark matter observables. The library contains an SLHA reader routine as well as diagonalisation routines. This library is available in CalcHEP and micrOMEGAs. The implementation of models based on this library is supported by LanHEP and FeynRules. Program summaryProgram title: SLHAplus_1.3 Catalogue identifier: AEHX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6283 No. of bytes in distributed program, including test data, etc.: 52 119 Distribution format: tar.gz Programming language: C Computer: IBM PC, MAC Operating system: UNIX (Linux, Darwin, Cygwin) RAM: 2000 MB Classification: 11.1 Nature of problem: Implementation of extensions of the standard model in matrix element and event generators and codes for dark matter observables. Solution method: For generic extensions of the standard model we provide routines for reading files that adopt the standard format of the SUSY Les Houches Accord (SLHA) file. The procedure has been generalized to take into account an arbitrary number of blocks so that the reader can be used in generic models including non-supersymmetric ones. The library also contains routines to diagonalize real and complex mass matrices with either unitary or bi-unitary transformations as well as routines for evaluating the running strong coupling constant, running quark masses and effective quark masses. Running time: 0.001 sec

  13. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

    Directory of Open Access Journals (Sweden)

    Rami Ahmad El-Nabulsi

    2015-08-01

    Full Text Available Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.

  14. The circumnuclear environment of nearby non-interacting Seyfert galaxies

    International Nuclear Information System (INIS)

    Pogge, R.W.

    1988-01-01

    An investigation into the physical conditions prevailing in the regions immediately surrounding the active nuclei in 20 nearby, non-interacting Seyfert galaxies is reported. CCD interference-band images isolating the bright emission lines of Hα + [N II] λλ6548, 6583 and [O III] λ5007 have been obtained to search for spatially extended circumnuclear emission regions. Long-slit, low resolution spectrophotometry of interesting cases was used to probe the ionization state of the extended emission regions. For comparison, a CCD Hα + [N II] interference-band imaging survey of a statistically significant sample of 91 bright non-Seyfert spiral galaxies meeting the same non-interaction criteria has been carried out. Only three out of nine Seyfert 1s have spatially extended ionized gas regions compared with eight out of eleven Seyfert 2s. Enhanced circumnuclear star formation is uncommon to both Seyfert 1s and 2s. Extended emission in Seyfert 1s has essentially the same morphology in both Hα + [N II] and [O III] emission. In the Seyfert 2s, the Hα + [N II] and [O III] images show different extended emission morphologies. The [O III] emission regions appear as either one- or two-sided structures, four of which are resolved into two distinct cones of high-ionization gas emanating from the active nucleus. The morphology and ionization of these regions suggest collimation of the nuclear ionizing radiation field. The 91 non-interacting non-Seyfert spiral galaxies exhibit a rich variety of nuclear and circumnuclear emission-line structures ranging from no emission detected to bright stellar nuclei with complicated circumnuclear emission regions extending for many kiloparsecs

  15. Quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert

    2011-01-01

    Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should

  16. Is neutrino produced in standard weak interactions a Dirac or Majorana particle?

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2010-01-01

    This work considers the following problem: what type (Dirac or Majorana) of neutrinos is produced in standard weak interactions? It is concluded that only Dirac neutrinos but not Majorana neutrinos can be produced in these interactions. Then neutrino interacts with W ± and Z bosons but neutrinoless double beta decay is absent. It means that this neutrino will be produced in another type of interaction. Namely, Majorana neutrino will be produced in the interaction which differentiates spin projections but cannot differentiate neutrino (particle) from antineutrino (antiparticle). Then neutrino will interact with W ± bosons and neutrinoless double beta decay will arise. But interaction with Z boson will be absent. Such an interaction has not been discovered yet. Therefore, experiments with very high precision are important to detect the neutrinoless double decays if they are realized in the Nature

  17. Biclustering with Flexible Plaid Models to Unravel Interactions between Biological Processes.

    Science.gov (United States)

    Henriques, Rui; Madeira, Sara C

    2015-01-01

    Genes can participate in multiple biological processes at a time and thus their expression can be seen as a composition of the contributions from the active processes. Biclustering under a plaid assumption allows the modeling of interactions between transcriptional modules or biclusters (subsets of genes with coherence across subsets of conditions) by assuming an additive composition of contributions in their overlapping areas. Despite the biological interest of plaid models, few biclustering algorithms consider plaid effects and, when they do, they place restrictions on the allowed types and structures of biclusters, and suffer from robustness problems by seizing exact additive matchings. We propose BiP (Biclustering using Plaid models), a biclustering algorithm with relaxations to allow expression levels to change in overlapping areas according to biologically meaningful assumptions (weighted and noise-tolerant composition of contributions). BiP can be used over existing biclustering solutions (seizing their benefits) as it is able to recover excluded areas due to unaccounted plaid effects and detect noisy areas non-explained by a plaid assumption, thus producing an explanatory model of overlapping transcriptional activity. Experiments on synthetic data support BiP's efficiency and effectiveness. The learned models from expression data unravel meaningful and non-trivial functional interactions between biological processes associated with putative regulatory modules.

  18. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    International Nuclear Information System (INIS)

    Izvekov, Sergei; Rice, Betsy M.

    2014-01-01

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  19. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-03-14

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  20. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism.

    Science.gov (United States)

    Haghiri, Saeed; Ahmadi, Arash; Saif, Mehrdad

    2017-02-01

    Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.