WorldWideScience

Sample records for non-selective phosphodiesterase pde

  1. Ibudilast: a non-selective phosphodiesterase inhibitor in brain disorders

    Directory of Open Access Journals (Sweden)

    Joanna Schwenkgrub

    2017-03-01

    Full Text Available Ibudilast (IBD is a non-selective (3, 4, 10, 11 phosphodiesterase (PDE inhibitor, used mainly as a bronchodilator for the treatment of bronchial asthma. PDE play a central role in cellular function (e.g. differentiation, synaptic plasticity and inflammatory response by metabolizing cyclic nucleotides. The results from preclinical and clinical studies indicate that IBD has a broader range of action through suppression of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, toll-like receptor 4 blockade (TLR-4, inhibition of a macrophage migration inhibitory factor (MIF, up-regulation the anti-inflammatory cytokine (IL-10, and promotion of neurotrophic factors (GDNF, NGF, NT-4. Recent data indicate that the efficacy of IBD appears to be independent from PDE inhibition activity and rather linked to glial activity attenuation. Additional advantages of IBD, such as crossing the blood–brain barrier, good tolerance and activity by oral administration, makes it a promising therapeutic candidate for treating neuroinflammatory conditions, where the currently available treatment remains unsatisfying due to poor tolerability and/or sub-optimal efficacy. IBD has no direct receptor affinity with exemption of some undefined effect on adenosine receptors that makes the drug devoid of its receptors-mediated adverse effects. Current article provides an overview of the pharmacology of IBD with a focus on preclinical and clinical data supporting its potential neuroprotective benefits for neurological conditions, including multiple sclerosis, neuropathic pain, medication overuse headache, stroke, opioid, alcohol and methamphetamine abuse.

  2. Effects of the non-selective phosphodiesterase inhibitor pentoxifylline on regional cerebral blood flow and large arteries in healthy subjects

    DEFF Research Database (Denmark)

    Kruuse, Christina; Jacobsen, T B; Thomsen, Lars Lykke

    2000-01-01

    -inhalation SPECT. High-frequency ultrasound was used for measurements of temporal and radial artery diameter. Cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) concentrations were assessed in plasma. Except for increased heart rate (P blood pressure (P ... or to other mechanisms is not clear. In the present double-blind crossover study, 10 healthy subjects received pentoxifylline 300 mg or placebo intravenously on separate days. Blood flow velocity in the middle cerebral artery (V(mca)) was recorded by transcranial Doppler and rCBF was measured using (133)Xenon......The vasodilating properties of the non-selective phosphodiesterase (PDE) inhibitor pentoxifylline were evaluated. Pentoxifylline has been reported to increase cerebral blood flow (CBF) and improve recovery rate of stroke patients. Whether these results are due to a dilating effect on arteries...

  3. Identification and characterization of DdPDE3, a cGMP-selective phosphodiesterase from Dictyostelium

    NARCIS (Netherlands)

    Kuwayama, H; Snippe, H; Derks, M; Roelofs, J; van Haastert, PJM

    2001-01-01

    In Dictyostelium cAMP and cGMP have important functions as first and second messengers in chemotaxis and development. Two cyclic-nucleotide phosphodiesterases (DdPDE 1 and 2) have been identified previously, an extracellular dual-specificity enzyme and an intracellular cAMP-specific enzyme (encoded

  4. Phosphodiesterase 5 inhibitors (PDE5i) and pulmonary embolism

    NARCIS (Netherlands)

    Gerritsen, R.F.; Bijl, A.; Van Puijenbroek, E.P.

    2009-01-01

    Introduction: PDE5i-related arterial thromboembolism is described in literature. Published venous thrombotic events are limited to one case of pulmonary embolism (tadalafil) and of recurrent deep venous thrombosis (DVT) related to sildenafil. Aim of the study: Presentation of two cases of vardenafil

  5. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s).

    Science.gov (United States)

    Xie, Moses; Blackman, Brigitte; Scheitrum, Colleen; Mika, Delphine; Blanchard, Elise; Lei, Tao; Conti, Marco; Richter, Wito

    2014-05-01

    PDE4s (type 4 cyclic nucleotide phosphodiesterases) are divided into long and short forms by the presence or absence of conserved N-terminal domains termed UCRs (upstream conserved regions). We have shown previously that PDE4D2, a short variant, is a monomer, whereas PDE4D3, a long variant, is a dimer. In the present study, we have determined the apparent molecular masses of various long and short PDE4 variants by size-exclusion chromatography and sucrose density-gradient centrifugation. Our results indicate that dimerization is a conserved property of all long PDE4 forms, whereas short forms are monomers. Dimerization is mediated by the UCR domains. Given their high sequence conservation, the UCR domains mediate not only homo-oligomerization, but also hetero-oligomerization of distinct PDE4 long forms as detected by co-immunoprecipitation assays and FRET microscopy. Endogenous PDE4 hetero-oligomers are, however, low in abundance compared with homo-dimers, revealing the presence of mechanisms that predispose PDE4s towards homo-oligomerization. Oligomerization is a prerequisite for the regulatory properties of the PDE4 long forms, such as their PKA (protein kinase A)-dependent activation, but is not necessary for PDE4 protein-protein interactions. As a result, individual PDE4 protomers may independently mediate protein-protein interactions, providing a mechanism whereby PDE4s contribute to the assembly of macromolecular signalling complexes.

  6. Leptin receptor expressing neurons express phosphodiesterase-3B (PDE3B) and leptin induces STAT3 activation in PDE3B neurons in the mouse hypothalamus.

    Science.gov (United States)

    Sahu, Maitrayee; Sahu, Abhiram

    2015-11-01

    Leptin signaling in the hypothalamus is critical for normal food intake and body weight regulation. Cumulative evidence suggests that besides the signal transducer and activator of transcription-3 (STAT3) pathway, several non-STAT3 pathways including the phosphodiesterase-3B (PDE3B) pathway mediate leptin signaling in the hypothalamus. We have shown that PDE3B is localized in various hypothalamic sites implicated in the regulation of energy homeostasis and that the anorectic and body weight reducing effects of leptin are mediated by the activation of PDE3B. It is still unknown if PDE3B is expressed in the long form of the leptin-receptor (ObRb)-expressing neurons in the hypothalamus and whether leptin induces STAT3 activation in PDE3B-expressing neurons. In this study, we examined co-localization of PDE3B with ObRb neurons in various hypothalamic nuclei in ObRb-GFP mice that were treated with leptin (5mg/kg, ip) for 2h. Results showed that most of the ObRb neurons in the arcuate nucleus (ARC, 93%), ventromedial nucleus (VMN, 94%), dorsomedial nucleus (DMN, 95%), ventral premammillary nucleus (PMv, 97%) and lateral hypothalamus (LH, 97%) co-expressed PDE3B. We next examined co-localization of p-STAT3 and PDE3B in the hypothalamus in C57BL6 mice that were treated with leptin (5mg/kg, ip) for 1h. The results showed that almost all p-STAT3 positive neurons in different hypothalamic nuclei including ARC, VMN, DMN, LH and PMv areas expressed PDE3B. These results suggest the possibility for a direct role for the PDE3B pathway in mediating leptin action in the hypothalamus. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity.

    Science.gov (United States)

    Gebska, Milena A; Stevenson, Blake K; Hemnes, Anna R; Bivalacqua, Trinity J; Haile, Azeb; Hesketh, Geoffrey G; Murray, Christopher I; Zaiman, Ari L; Halushka, Marc K; Krongkaew, Nispa; Strong, Travis D; Cooke, Carol A; El-Haddad, Hazim; Tuder, Rubin M; Berkowitz, Dan E; Champion, Hunter C

    2011-05-01

    It has been well demonstrated that phosphodiesterase-5A (PDE5A) is expressed in smooth muscle cells and plays an important role in regulation of vascular tone. The role of endothelial PDE5A, however, has not been yet characterized. The present study was undertaken to determine the presence, localization, and potential physiologic significance of PDE5A within vascular endothelial cells. We demonstrate primary location of human, mouse, and bovine endothelial PDE5A at or near caveolae. We found that the spatial localization of PDE5A at the level of caveolin-rich lipid rafts allows for a feedback loop between endothelial PDE5A and nitric oxide synthase (NOS3). Treatment of human endothelium with PDE5A inhibitors resulted in a significant increase in NOS3 activity, whereas overexpression of PDE5A using an adenoviral vector, both in vivo and in cell culture, resulted in decreased NOS3 activity and endothelium-dependent vasodilation. The molecular mechanism responsible for these interactions is primarily regulated by cGMP-dependent second messenger. PDE5A overexpression also resulted in a significant decrease in protein kinase 1 (PKG1) activity. Overexpression of PKG1 rapidly activated NOS3, whereas silencing of the PKG1 gene with siRNA inhibited both NOS3 phosphorylation (S1179) and activity, indicating a novel role for PKG1 in direct regulation of NOS3. Our data collectively suggest another target for PDE5A inhibition in endothelial dysfunction and provide another physiologic significance for PDE5A in the modulation of endothelial-dependent flow-mediated vasodilation. Using both in vitro and in vivo models, as well as human data, we show that inhibition of endothelial PDE5A improves endothelial function.

  8. Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington's disease.

    Science.gov (United States)

    Leuti, Alessandro; Laurenti, Daunia; Giampà, Carmela; Montagna, Elena; Dato, Clemente; Anzilotti, Serenella; Melone, Mariarosa A B; Bernardi, Giorgio; Fusco, Francesca R

    2013-04-01

    In Huntington's disease (HD) mutant huntingtin protein impairs the function of several transcription factors, in particular the cAMP response element-binding protein (CREB). CREB activation can be increased by targeting phosphodiesterases such as phospohodiesterase 4 (PDE4) and phosphodiesterase 10A (PDE10A). Indeed, both PDE4 inhibition (DeMarch et al., 2008) and PDE10A inhibition (Giampà et al., 2010) proved beneficial in the R6/2 mouse model of HD. However, Hebb et al. (2004) reported PDE10A decline in R6/2 mice. These findings raise the issue of how PDE10A inhibition is beneficial in HD if such enzyme is lost. R6/2 mice and their wild type littermates were treated with the PDE10A inhibitor TP10 (a gift from Pfizer) or saline, sacrificed at 5, 9, and 13 weeks of age, and single and double label immunohistochemistry and western blotting were performed. PDE10A increased dramatically in the spiny neurons of R6/2 compared to the wild type mice. Conversely, in the striatal cholinergic interneurons, PDE10A was lower and it did not change significantly with disease progression. In the other subsets of striatal interneurons (namely, parvalbuminergic, somatostatinergic, and calretininergic interneurons) PDE10A immunoreactivity was higher in the R6/2 compared to the wild-type mice. In the TP10 treated R6/2, PDE10A levels were lower than in the saline treated mice in the medium spiny neurons, whereas they were higher in all subsets of striatal interneurons except for the cholinergic ones. However, in the whole striatum densitometry studies, PDE10A immunoreactivity was lower in the R6/2 compared to the wild-type mice. Our study demonstrates that PDE10A is increased in the spiny neurons of R6/2 mice striatum. Thus, the accumulation of PDE10A in the striatal projection neurons, by hydrolyzing greater amounts of cyclic nucleotides, is likely to contribute to cell damage in HD. Consequently, the beneficial effect of TP10 in HD models (Giampà et al., 2009, 2010) is explained

  9. Sildenafil and analogous phosphodiesterase type 5 (PDE-5) inhibitors in herbal food supplements sampled on the Dutch market.

    Science.gov (United States)

    Reeuwijk, N M; Venhuis, B J; de Kaste, D; Hoogenboom, L A P; Rietjens, I M C M; Martena, M J

    2013-01-01

    Herbal food supplements, claiming to enhance sexual potency, may contain deliberately added active pharmacological ingredients (APIs) that can be used for the treatment of erectile dysfunction (ED). The aim of this study was to determine whether herbal food supplements on the Dutch market indeed contain APIs that inhibit phosphodiesterase type 5 (PDE-5) inhibitors, such as sildenafil and analogous PDE-5 inhibitors. Herbal food supplements intended to enhance sexual potency (n = 71), and two soft drinks, were sampled from 2003 up to and including 2012. In 23 herbal supplements, nine different PDE-5 inhibitors were identified; in a few cases (n = 3), more than one inhibitor was indentified. The presence of these APIs was however not stated on the label. The concentrations of PDE-5 inhibitors per dose unit were analysed. Furthermore, the potential pharmacologically active properties of the detected PDE-5 inhibitors were estimated by using data from the scientific and patent literature regarding (1) in vitro PDE-5 activity, (2) reported effective doses of registered drugs with PDE-5 inhibitor activity and (3) similarity to other structural analogues. It was concluded that 18 of the 23 herbal food supplements, when used as recommended, would have significant pharmacological effects due to added APIs. Adequate use of existing regulation and control measures seems necessary to protect consumers against the adverse effects of these products.

  10. Sex-differential genetic effect of phosphodiesterase 4D (PDE4D on carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Guo Yuh-Cherng

    2010-06-01

    Full Text Available Abstract Background The phosphodiesterase 4D (PDE4D gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis. Methods Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men. Genotype distribution was compared among the high-risk (plaque index ≥ 4, low-risk (index = 1-3, and reference (index = 0 groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect. Results In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034 for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008. For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032 for a thicker IMT at the common carotid artery compared with the (AA + AT genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025 but not in women (p = 0

  11. 1-(2-Ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase 5 (PDE5) inhibitors.

    Science.gov (United States)

    Tollefson, Michael B; Acker, Brad A; Jacobsen, E J; Hughes, Robert O; Walker, John K; Fox, David N A; Palmer, Michael J; Freeman, Sandra K; Yu, Ying; Bond, Brian R

    2010-05-15

    1H-Pyrazolo[4,3-d]pyrimidines are a class of potent and selective second generation phosphodiesterase 5 (PDE5) inhibitors. This work explores the potency, selectivity and efficacy of 1-(2-ethoxyethyl)-1H-pyrazolo[4,5-d]pyrimidines as PDE5 inhibitors resulting in the advancement of a clinical candidate.

  12. 1-(2-(2,2,2-trifluoroethoxy)ethyl-1H-pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase 5 (PDE5) inhibitors.

    Science.gov (United States)

    Tollefson, Michael B; Acker, Brad A; Jacobsen, E J; Hughes, Robert O; Walker, John K; Fox, David N A; Palmer, Michael J; Freeman, Sandra K; Yu, Ying; Bond, Brian R

    2010-05-15

    1H-Pyrazolo[4,3-d]pyrimidines were previously disclosed as a potent second generation class of phosphodiesterase 5 (PDE5) inhibitors. This work explores the advancement of more selective and potent PDE5 inhibitors resulting from the substitution of 2-(2,2,2-trifluoroethoxy)ethyl at the 1 position in the so-called alkoxy pocket.

  13. Development of a New Radiofluorinated Quinoline Analog for PET Imaging of Phosphodiesterase 5 (PDE5 in Brain

    Directory of Open Access Journals (Sweden)

    Jianrong Liu

    2016-04-01

    Full Text Available Phosphodiesterases (PDEs are enzymes that play a major role in cell signalling by hydrolysing the secondary messengers cyclic adenosine monophosphate (cAMP and/or cyclic guanosine monophosphate (cGMP throughout the body and brain. Altered cyclic nucleotide-mediated signalling has been associated with a wide array of disorders, including neurodegenerative disorders. Recently, PDE5 has been shown to be involved in neurodegenerative disorders such as Alzheimer’s disease, but its precise role has not been elucidated yet. To visualize and quantify the expression of this enzyme in brain, we developed a radiotracer for specific PET imaging of PDE5. A quinoline-based lead compound has been structurally modified resulting in the fluoroethoxymethyl derivative ICF24027 with high inhibitory activity towards PDE5 (IC50 = 1.86 nM. Radiolabelling with fluorine-18 was performed by a one-step nucleophilic substitution reaction using a tosylate precursor (RCY(EOB = 12.9% ± 1.8%; RCP > 99%; SA(EOS = 70–126 GBq/μmol. In vitro autoradiographic studies of [18F]ICF24027 on different mouse tissue as well as on porcine brain slices demonstrated a moderate specific binding to PDE5. In vivo studies in mice revealed that [18F]ICF24027 was metabolized under formation of brain penetrable radiometabolites making the radiotracer unsuitable for PET imaging of PDE5 in brain.

  14. Discovery of [¹¹C]MK-8193 as a PET tracer to measure target engagement of phosphodiesterase 10A (PDE10A) inhibitors.

    Science.gov (United States)

    Cox, Christopher D; Hostetler, Eric D; Flores, Broc A; Evelhoch, Jeffrey L; Fan, Hong; Gantert, Liza; Holahan, Marie; Eng, Waisi; Joshi, Aniket; McGaughey, Georgia; Meng, Xiangjun; Purcell, Mona; Raheem, Izzat T; Riffel, Kerry; Yan, Youwei; Renger, John J; Smith, Sean M; Coleman, Paul J

    2015-11-01

    Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.

  15. Expression and distribution of key enzymes of the cyclic GMP signaling in the human clitoris: relation to phosphodiesterase type 5 (PDE5).

    Science.gov (United States)

    Ückert, S; Oelke, M; Albrecht, K; Breitmeier, D; Kuczyk, M A; Hedlund, P

    2011-01-01

    The clitoris contributes to the normal female sexual response cycle. A significance of cyclic guanosine monophosphate (GMP) has been assumed in the control of clitoral vascular smooth muscle. As only a few investigations on the physiology of the vascular and non-vascular clitoral tissue have been carried out, knowledge on the mechanisms controlling this particular female genital organ is still vague. It has been suggested that human clitoral corpus cavernosum smooth muscle is regulated by nitric oxide (NO)/cyclic GMP and related key enzymes, such as NO synthases (NOSs) and the phosphodiesterase type 5 (PDE5). The present study evaluated in the human clitoris, by means of immunohistochemistry, the expression and distribution of key enzymes of the cyclic GMP pathway, such as the endothelial NOS, PDE2, PDE11 and cyclic GMP-dependent protein kinase type I (cGKI) in relation to the PDE5. Immunohistochemistry revealed the presence of PDE2, PDE5 and cGKI in the smooth muscle wall of blood vessels transversing the supepithelial and stromal space. Immunosignals specific for PDE2 were also identified in interstitial-like cells located in the basal epithelial layer. Staining for PDE11A was observed in single nerve trunks located in the clitoral stroma. The results are in favor of a role of the cyclic GMP signaling in the control of clitoral blood flow. It seems likely that PDE2 and PDE11 are also involved in the mechanism of local (neuro)transmission in the clitoris.

  16. Phosphodiesterase 11A (PDE11A), Enriched in Ventral Hippocampus Neurons, is Required for Consolidation of Social but not Nonsocial Memories in Mice.

    Science.gov (United States)

    Hegde, Shweta; Capell, Will R; Ibrahim, Baher A; Klett, Jennifer; Patel, Neema S; Sougiannis, Alexander T; Kelly, Michy P

    2016-11-01

    The capacity to form long-lasting social memories is critical to our health and survival. cAMP signaling in the ventral hippocampal formation (VHIPP) appears to be required for social memory formation, but the phosphodiesterase (PDE) involved remains unknown. Previously, we showed that PDE11A, which degrades cAMP and cGMP, is preferentially expressed in CA1 and subiculum of the VHIPP. Here, we determine whether PDE11A is expressed in neurons where it could directly influence synaptic plasticity and whether expression is required for the consolidation and/or retrieval of social memories. In CA1, and possibly CA2, PDE11A4 is expressed throughout neuronal cell bodies, dendrites (stratum radiatum), and axons (fimbria), but not astrocytes. Unlike PDE2A, PDE9A, or PDE10A, PDE11A4 expression begins very low at postnatal day 7 (P7) and dramatically increases until P28, at which time it stabilizes to young adult levels. This expression pattern is consistent with the fact that PDE11A is required for social long-term memory (LTM) formation during adolescence and adulthood. Male and female PDE11 knockout (KO) mice show normal short-term memory (STM) for social odor recognition (SOR) and social transmission of food preference (STFP), but no LTM 24 h post training. Importantly, PDE11A KO mice show normal LTM for nonsocial odor recognition. Deletion of PDE11A may impair memory consolidation by impairing requisite protein translation in the VHIPP. Relative to WT littermates, PDE11A KO mice show reduced expression of RSK2 and lowered phosphorylation of S6 (pS6-235/236). Together, these data suggest PDE11A is selectively required for the proper consolidation of recognition and associative social memories.

  17. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype.

    Science.gov (United States)

    Libé, Rossella; Horvath, Anelia; Vezzosi, Delphine; Fratticci, Amato; Coste, Joel; Perlemoine, Karine; Ragazzon, Bruno; Guillaud-Bataille, Marine; Groussin, Lionel; Clauser, Eric; Raffin-Sanson, Marie-Laure; Siegel, Jennifer; Moran, Jason; Drori-Herishanu, Limor; Faucz, Fabio Rueda; Lodish, Maya; Nesterova, Maria; Bertagna, Xavier; Bertherat, Jerome; Stratakis, Constantine A

    2011-01-01

    Carney complex (CNC) is an autosomal dominant multiple neoplasia, caused mostly by inactivating mutations of the regulatory subunit 1A of the protein kinase A (PRKAR1A). Primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine manifestation of CNC with a great inter-individual variability. Germline, protein-truncating mutations of phosphodiesterase type 11A (PDE11A) have been described to predispose to a variety of endocrine tumors, including adrenal and testicular tumors. Our objective was to investigate the role of PDE11A as a possible gene modifier of the phenotype in a series of 150 patients with CNC. A higher frequency of PDE11A variants in patients with CNC compared with healthy controls was found (25.3 vs. 6.8%, P CNC patients, those with PPNAD were significantly more frequently carriers of PDE11A variants compared with patients without PPNAD (30.8 vs. 13%, P = 0.025). Furthermore, men with PPNAD were significantly more frequently carriers of PDE11A sequence variants (40.7%) than women with PPNAD (27.3%) (P CNC patients, a high frequency of PDE11A variants, suggesting that PDE11A is a genetic modifying factor for the development of testicular and adrenal tumors in patients with germline PRKAR1A mutation.

  18. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Science.gov (United States)

    Martin, Tamara P.; Hortigon-Vinagre, Maria P.; Findlay, Jane E.; Elliott, Christina; Currie, Susan; Baillie, George S.

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  19. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy.

    Science.gov (United States)

    Martin, Tamara P; Hortigon-Vinagre, Maria P; Findlay, Jane E; Elliott, Christina; Currie, Susan; Baillie, George S

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20-phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20-PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  20. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Directory of Open Access Journals (Sweden)

    Tamara P. Martin

    2014-01-01

    Full Text Available Phosphorylated heat shock protein 20 (HSP20 is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  1. Identification of PDE9 as a cGMP-specific phosphodiesterase in germinal vesicle oocytes: A proposed role in the resumption of meiosis

    Science.gov (United States)

    Hanna, Carol B.; Yao, Shan; Wu, Xuemei; Jensen, Jeffrey T.

    2012-01-01

    Objective To identify a cGMP-specific phosphodiesterase (PDE) in non-human primate germinal vesicle (GV) oocytes and establish a proposed effect on oocyte maturation through preliminary experiments in mouse GV oocytes. Design Controlled non-human primate and rodent experiments. Setting Academic research institution. Animals Rhesus macaques and B6/129F1 mice. Interventions Rhesus macaques were stimulated with FSH to collect GV oocytes and cumulus for gene expression analysis. Female mice were stimulated with PMSG to collect GV oocytes. Main Outcome Measures PDE transcript expression in primate GV oocytes and cumulus cells. Fluorescence polarization (FP) measurements of PDE3A activity. Spontaneous resumption of meiosis in mouse GV oocytes. Results Five PDE transcripts were detected in Rhesus GV oocytes, only PDE9A was cGMP-specific. FP assays indicated cGMP has an inhibitory effect on PDE3A while the PDE9 inhibitor, BAY73-6691, did not. Similarly, BAY73-6691, had little effect on preventing spontaneous maturation in oocytes, but did augment the inhibitory effects of cGMP. Inclusion of 0µM (control), 10µM, 100µM, and 1 mM BAY73-6691 significantly increased the proportion of mouse oocytes maintaining GV arrest in the presence of the cGMP analog 8-Br-cGMP at: 100µM (8.8%, 11.4%, 18.8%, and 28%), 500µM (21.1%, 38.1%, 74.5%,and 66.5%), and 1 mM (57.8%, 74.5%, 93.9%, and 94.0%) respectively, when P<0.05. Conclusions PDE9 is a cGMP-specific hydrolyzing enzyme present in primate oocytes, and PDE9 antagonists augment the inhibitory effect of cGMP during spontaneous in vitro maturation of GV mouse oocytes. PMID:22704629

  2. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases.

    Science.gov (United States)

    Abbott-Banner, Katharine H; Page, Clive P

    2014-05-01

    Selective phosphodiesterase (PDE) 4 and dual PDE3/4 inhibitors have attracted considerable interest as potential therapeutic agents for the treatment of respiratory diseases, largely by virtue of their anti-inflammatory (PDE4) and bifunctional bronchodilator/anti-inflammatory (PDE3/4) effects. Many of these agents have, however, failed in early development for various reasons, including dose-limiting side effects when administered orally and lack of sufficient activity when inhaled. Indeed, only one selective PDE4 inhibitor, the orally active roflumilast-n-oxide, has to date received marketing authorization. The majority of the compounds that have failed were, however, orally administered and non-selective for either PDE3 (A,B) or PDE4 (A,B,C,D) subtypes. Developing an inhaled dual PDE3/4 inhibitor that is rapidly cleared from the systemic circulation, potentially with subtype specificity, may represent one strategy to improve the therapeutic index and also exhibit enhanced efficacy versus inhibition of either PDE3 or PDE4 alone, given the potential positive interactions with regard to anti-inflammatory and bronchodilator effects that have been observed pre-clinically with dual inhibition of PDE3 and PDE4 compared with inhibition of either isozyme alone. This MiniReview will summarize recent clinical data obtained with PDE inhibitors and the potential for these drugs to treat COPD and other inflammatory airways diseases such as asthma and cystic fibrosis.

  3. Design and synthesis of 4,5,6,7-tetrahydro-1H-1,2-diazepin-7-one derivatives as a new series of Phosphodiesterase 4 (PDE4) inhibitors.

    Science.gov (United States)

    Guariento, Sara; Karawajczyk, Anna; Bull, James A; Marchini, Gessica; Bielska, Martyna; Iwanowa, Xenia; Bruno, Olga; Fossa, Paola; Giordanetto, Fabrizio

    2017-01-01

    Phosphodiesterase 4 (PDE4) inhibitors have attractive therapeutic potential in respiratory, inflammatory, metabolic and CNS disorders. The present work details the design, chemical exploration and biological profile of a novel PDE4 inhibitor chemotype. A diazepinone ring was identified as an under-represented heterocyclic system fulfilling a set of PDE4 structure-based design hypotheses. Rapid exploration of the structure activity relationships for the series was enabled by robust and scalable two/three-steps parallel chemistry protocols. The resulting compounds demonstrated PDE4 inhibitory activity in cell free and cell-based assays comparable to the Zardaverine control used, suggesting potential avenues for their further development.

  4. The high-affinity phosphodiesterase BcPde2 has impact on growth, differentiation and virulence of the phytopathogenic ascomycete Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Karin Harren

    Full Text Available Components of the cAMP signaling pathway, such as the adenylate cyclase Bac and the protein kinase A (PKA were shown to affect growth, morphogenesis and differentiation as well as virulence of the phytopathogenic fungus Botrytis cinerea. While loss of Bac caused drastically reduced intracellular cAMP levels, deletion of the PKA resulted in extremely increased cAMP concentrations. To regulate the intracellular level of the second messenger cAMP, a balance between its biosynthesis through adenylate cyclase activity and its hydrolysis by phosphodiesterases (PDEs is crucial. Here, we report the functional characterization of the two PDEs in the ascomycete B. cinerea, BcPde1 and BcPde2. While deletion of bcpde2 resulted in severely affected vegetative growth, conidiation, germination and virulence, the bcpde1 deletion strain displayed a wild-type-like phenotype. However, the double bcpde1/2 deletion mutant exhibited an even stronger phenotype. Localization studies revealed that BcPde2 accumulates at the plasma membrane, but is also localized in the cytoplasm. BcPde1 was shown to be distributed in the cytoplasm as well, but also accumulates in so far unknown mobile vesicles. Overexpression of bcpde1 in the Δbcpde2 background rescued the deletion phenotype, and in addition an increased transcript level of bcpde1 in the Δbcpde2 strain was observed, indicating redundant functions of both PDEs and an interdependent gene expression.

  5. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase.

    Science.gov (United States)

    Spence, S; Rena, G; Sullivan, M; Erdogan, S; Houslay, M D

    1997-01-01

    Chinese hamster ovary cells (CHO cells) do not exhibit any Ca2+/calmodulin-stimulated cAMP phosphodiesterase (PDE1) activity. Challenge of CHO cells with agonists for endogenous P2-purinoceptors, lysophosphatidic acid receptors and thrombin receptors caused a similar rapid transient induction of PDE1 activity in each instance. This was also evident on noradrenaline challenge of a cloned CHO cell line transfected so as to overexpress alpha 1B-adrenoceptors. This novel PDE1 activity appeared within about 15 min of exposure to ligands, rose to a maximum value within 30 min to 1 h and then rapidly decreased. In each case, the expression of novel PDE1 activity was blocked by the transcriptional inhibitor actinomycin D. Challenge with insulin of either native CHO cells or a CHO cell line transfected so as to overexpress the human insulin receptor failed to induce PDE1 activity. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1C isoform, did not amplify any fragment from RNA preparations of CHO cells expressing PDE1 activity, although they did so from the human thyroid carcinoma FTC133 cell line. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1A and PDE1B isoforms, successfully amplified a fragment of the predicted size from RNA preparations of both CHO cells expressing PDE1 activity and human Jurkat T-cells. Sequencing of the PCR products, generated using the PDE1A/B primers, yielded a novel sequence which, by analogy with sequences reported for bovine and murine PDE1B forms, suggests that the PDE1 species induced in CHO cells through protein kinase C activation and that expressed in Jurkat T-cells are PDE1B forms.

  6. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    Full Text Available BACKGROUND: Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeutic approach, we investigated whether inhibition of the striatal-specific cyclic nucleotide phosphodiesterase PDE10A would alleviate neurological deficits and brain pathology in a highly utilized model system, the R6/2 mouse. METHODOLOGY/PRINCIPAL FINDINGS: R6/2 mice were treated with the highly selective PDE10A inhibitor TP-10 from 4 weeks of age until euthanasia. TP-10 treatment significantly reduced and delayed the development of the hind paw clasping response during tail suspension, deficits in rotarod performance, and decrease in locomotor activity in an open field. Treatment prolonged time to loss of righting reflex. These effects of PDE10A inhibition on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal and cortical cell loss, the formation of striatal neuronal intranuclear inclusions, and the degree of microglial activation that occurs in response to the mutant huntingtin-induced brain damage. Striatal and cortical levels of phosphorylated CREB and BDNF were significantly elevated. CONCLUSIONS/SIGNIFICANCE: Our findings provide experimental support for targeting the cAMP and CREB signaling pathways and more broadly transcriptional dysregulation as a therapeutic approach to Huntington's disease. It is noteworthy that PDE10A inhibition in the R6/2 mice reduces striatal pathology, consistent with the localization of the enzyme in medium spiny neurons, and also cortical pathology and the formation of neuronal nuclear inclusions. These latter findings suggest that striatal pathology may

  7. The Discovery of a Novel Phosphodiesterase (PDE) 4B-preferring Radioligand for Positron Emission Tomography (PET) Imaging.

    Science.gov (United States)

    Zhang, Lei; Chen, Laigao; Beck, Elizabeth M; Chappie, Thomas A; Coelho, Richard V; Doran, Shawn D; Fan, Kuo-Hsien; Humphrey, John M; Hughes, Zoe; Kuszpit, Kyle; Lachapelle, Erik A; Lazzaro, John T; Mather, Robert J; Patel, Nandini C; Skaddan, Marc B; Sciabola, Simone; Verhoest, Patrick R; Young, Joseph Michael; Zasadny, Kenneth; Villalobos, Anabella

    2017-09-28

    As part of our effort in identifying PDE4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (Bmax) and bio-distribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study. In subsequent non-human primate (NHP) PET imaging studies, [18F]8 showed rapid brain uptake and high target specificity, indicating that [18F]8 is a promising PDE4B-preferring radioligand for clinical PET imaging.

  8. Effect of Icariin on Cyclic GMP Levels and on the mRNA Expression of cGMP-binding cGMP-specific Phosphodiesterase (PDE5) in Penile Cavernosum

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaojian; HU Benrong; WANG Jialing; TANG Qiang; TAN Yan; XIANG Jizhou; LIU Juyan

    2006-01-01

    To further investigate the mechanisms of action of icariin (ICA), we assessed the effects of ICA on the in vitro formation of cGMP and cAMP in isolated rabbit corpus cavernosum. Isolated segments of rabbit corpus cavernosum were exposed to increasing concentrations of ICA and the dose-dependent accumulation of cGMP and cAMP was determined in the tissues samples by means of 125I radioimmunoassay. Responses of the isolated tissues preparations to ICA were compared with those obtained with the reference compounds sildenafil (Sild). Furthermore, the effects of ICA on the mRNA expression of specific cGMP-binding phosphodiesterase type V (PDE5) in rat penis were also observed. After incubation with ICA for 6 h or 14 h respectively, the levels of PDE5 mRNA were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The results showed that ICA increased cGMP concentrations directly (P<0.05), but there was no significant effect on cAMP concentrations (P>0.05). In the presence of sodium nitroprusside (SNP), a stimulatory agent of cGMP,both ICA and Sild increased cGMP concentrations with increasing dose (P<0.01). Their EC50 was 4.62 (ICA) and 0.42 (Sild) μmol/L respectively. Under the same condition, ICA and Sild unaltered cAMP level significantly (P>0.05). There were PDE5A1 and PDE5A2 mRNA expressions in rat corpus cavernosum with PDE5A2 being the dominant isoform. ICA could obviously inhibit these two isoforms mRNA expression in rat penis, and decrease PDE5A1 more pronouncedly (P< 0.01). The present study indicated that the aphrodisiac mechanisms of icariin involved the NO-cGMP signal transduction pathway, with increasing cGMP levels in the corpus cavernosum smooth muscle. The inhibitory effect of icariin on PDE5 mRNA expression, especially on PDE5A1, might account for its molecular mechanisms for its long-term activity.

  9. Lipolytic effect of a polyphenolic citrus dry extract of red orange, grapefruit, orange (SINETROL) in human body fat adipocytes. Mechanism of action by inhibition of cAMP-phosphodiesterase (PDE).

    Science.gov (United States)

    Dallas, Constantin; Gerbi, Alain; Tenca, Guillaume; Juchaux, Franck; Bernard, François-Xavier

    2008-10-01

    The present study investigated the lipolytic (break of fat stored) effect of a citrus-based polyphenolic dietary supplement (SINETROL) at human adipocytes (ex vivo), body fat (clinical) and biochemical levels (inhibition of phosphodiesterase). Free fatty acids (FFA) release was used as indicator of human adipocyte lipolysis and SINETROL activity has been compared with known lipolytic products (isoproterenol, theopylline and caffeine). SINETROL stimulated significantly the lipolytic activity in a range of 6 fold greater than the control. Moreover, SINETROL has 2.1 greater activity than guarana 12% caffeine while its content in caffeine is 3 times lower. Clinically, two groups of 10 volunteers with BMI relevant of overweight were compared during 4 and 12 weeks with 1.4 g/day SINETROL and placebo supplementation. In the SINETROL Group the body fat (%) decreased with a significant difference of 5.53% and 15.6% after 4 and 12 weeks, respectively, while the body weight (kg) decreased with a significant difference of 2.2 and 5.2 kg after 4 and 12 weeks, respectively. These observed effects are linked to SINETROL polyphenolic composition and its resulting synergistic activity. SINETROL is a potent inhibitor of cAMP-phosphodiesterase (PDE) (97%) compared to other purified compounds (cyanidin-3 glycoside, narangin, caffeine). These results suggest that SINETROL has a strong lipolytic effect mediated by cAMP-PDE inhibition. SINETROL may serve to prevent obesity by decreasing BMI.

  10. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A).

    Science.gov (United States)

    Hu, Essa; Kunz, Roxanne K; Chen, Ning; Rumfelt, Shannon; Siegmund, Aaron; Andrews, Kristin; Chmait, Samer; Zhao, Sharon; Davis, Carl; Chen, Hang; Lester-Zeiner, Dianna; Ma, Ji; Biorn, Christopher; Shi, Jianxia; Porter, Amy; Treanor, James; Allen, Jennifer R

    2013-11-14

    Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.

  11. Investigation of a Putative Estrogen-Imprinting Gene, Phosphodiesterase Type IV Variant (PDE4D4), in Determining Prostate Cancer Risk

    Science.gov (United States)

    2007-04-01

    Rapid amplification of cDNA ends (5’RACE) to characterize...June 1, 2006 5¶- Rapid amplification of cDNA ends . The first-strand cDNA of PDE4D4 was amplified using a reverse specific primer (5¶-AAAGACGA...PDE4D4 was first identified by 5¶- rapid amplification of cDNA ends and a 700-bp CpG island with 60 CpG sites was found to encompass its transcrip- tion

  12. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors.

    Science.gov (United States)

    Cichero, Elena; D'Ursi, Pasqualina; Moscatelli, Marco; Bruno, Olga; Orro, Alessandro; Rotolo, Chiara; Milanesi, Luciano; Fossa, Paola

    2013-12-01

    Phosphodiesterase 11 (PDE11) is the latest isoform of the PDEs family to be identified, acting on both cyclic adenosine monophosphate and cyclic guanosine monophosphate. The initial reports of PDE11 found evidence for PDE11 expression in skeletal muscle, prostate, testis, and salivary glands; however, the tissue distribution of PDE11 still remains a topic of active study and some controversy. Given the sequence similarity between PDE11 and PDE5, several PDE5 inhibitors have been shown to cross-react with PDE11. Accordingly, many non-selective inhibitors, such as IBMX, zaprinast, sildenafil, and dipyridamole, have been documented to inhibit PDE11. Only recently, a series of dihydrothieno[3,2-d]pyrimidin-4(3H)-one derivatives proved to be selective toward the PDE11 isoform. In the absence of experimental data about PDE11 X-ray structures, we found interesting to gain a better understanding of the enzyme-inhibitor interactions using in silico simulations. In this work, we describe a computational approach based on homology modeling, docking, and molecular dynamics simulation to derive a predictive 3D model of PDE11. Using a Graphical Processing Unit architecture, it is possible to perform long simulations, find stable interactions involved in the complex, and finally to suggest guideline for the identification and synthesis of potent and selective inhibitors.

  13. Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry.

    Science.gov (United States)

    Brandon, Nicholas J

    2016-07-01

    Nearly 10years ago the laboratory of Miles Houslay was part of a collaboration which identified and characterized the interaction between Disrupted in Schizophrenia 1 and phosphodiesterase type 4. This work has had significant impact on our thinking of psychiatric illness causation and the potential for therapeutics.

  14. Protein Expression Change of Phosphodiesterase 2 and Phosphodiesterase 3 in Gastric Smooth Muscle of Diabetic Gastroparesis Rats%糖尿病胃动力障碍大鼠胃窦平滑肌中PDE2和PDE3蛋白表达变化

    Institute of Scientific and Technical Information of China (English)

    金政; 张默函; 姜京植; 朴丽花; 蔡英兰

    2016-01-01

    为了观察糖尿病胃动力障碍大鼠胃窦平滑肌组织中PDE2和PDE3的蛋白含量变化,由腹腔注射STZ制备糖尿病动物模型,利用多道生理信号记录系统记录糖尿病大鼠胃窦平滑肌收缩活动,将发生胃窦平滑肌收缩活动紊乱的大鼠列入糖尿病胃动力障碍模型,再采用免疫组织化学方法观察糖尿病胃动力障碍组大鼠胃窦平滑肌中PDE2和PDE3的分布。结果发现,糖尿病发病胃动力障碍大鼠与正常对照组相比,胃窦平滑肌组织PDE2表达无明显差异,但PDE3表达明显减少( P<0.05)。因此,糖尿病大鼠发生胃动力障碍可能与胃窦平滑肌中PDE3下调有关,糖尿病大鼠胃cGMP-PDE3的改变可能参与胃动力障碍的发生。%In order to observe the changes of PDE2 and PDE3 in gastric smooth muscle of diabetic gastropare-sis rats, rat model of diabetes mellitus was induced by injected streptozotocin ( STZ ) . To record gastric smooth muscle contraction of diabetes rat with multichannel physiology signal recording system. Diabetes rats with gastric smooth muscle contraction indiscriminate were identified as diabetic gastroparesis model. Then to observe content of PDE2 and PDE3 in diabetic gastroparesis rats gastric smooth muscle by immunohistochemistry. Compared with con-trol group rats, PDE2 content in gastroparesis rat gastric smooth muscle was not significantly different, but PDE3 content increased significantly (P<0. 05). Thus, Gastroparesis of diabetes rats may be correlated with PDE3 down-regulation in gastric smooth muscle, and cGMP-PDE3 signal system may be involved in the pathogenesis and development of diabetic gastropathy of gastroparesis.

  15. Two phosphodiesterases from Ustilago maydis share structural and biochemical properties with non-fungal phosphodiesterases

    Directory of Open Access Journals (Sweden)

    Charu eAgarwal

    2010-11-01

    Full Text Available The dependence of Protein Kinase A (PKA activity on cAMP levels is an important facet of the dimorphic switch between budding and filamentous growth as well as for pathogenicity in some fungi. To better understand these processes in the pathogenic fungus Ustilago maydis, we characterized the structure and biochemical functions of two phosphodiesterase (PDE genes. Phosphodiesterases are enzymes involved in cAMP turnover and thus, contribute to the regulation of the cAMP-PKA signaling pathway. Two predicted homologues of PDEs were identified in the genome of U. maydis and hypothesized to be involved in cAMP turnover, thus regulating activity of the PKA catalytic subunit. Both umpde1 and umpde2 genes contain domains associated with phosphodiesterase activity predicted by InterPro analysis. Biochemical characterization of recombinantly produced UmPde1 (U. maydis Phosphodiesterase I and UmPde2 demonstrated that both enzymes have phosphodiesterase activity in vitro, yet neither was inhibited by the phosphodiesterase inhibitor IBMX. Moreover, UmPde1 is specific for cAMP, while UmPde2 has broader substrate specificity, utilizing cAMP and cGMP as substrates. In addition, UmPde2 was also found to have nucleotide phosphatase activity that was higher with GMP compared to AMP. These results demonstrate that UmPde1 is a bona fide phosphodiesterase, while UmPde2 has more general activity as a cyclic nucleotide phosphodiesterase and/or GMP/AMP phosphatase. Thus, UmPde1 and UmPde2 likely have important roles in cell morphology and development and share some characteristics with a variety of non-fungal phosphodiesterases.

  16. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) determination of stimulants, anorectic drugs and phosphodiesterase 5 inhibitors (PDE5I) in food supplements.

    Science.gov (United States)

    Strano-Rossi, Sabina; Odoardi, Sara; Castrignanò, Erika; Serpelloni, Giovanni; Chiarotti, Marcello

    2015-03-15

    The paper describes a liquid chromatography/high resolution mass spectrometry LC/HRMS method for the simultaneous identification and quantification of stimulants (ephedrines, caffeine, anorectic drugs such as phentermine, phendimetrazine, phenmetrazine, fenfluramine, benfluorex, mephentermine, fencanfamine, sibutramine) and PDE5I (sildenafil, vardenafil and tadalafil) in food supplements using a benchtop Orbitrap mass spectrometer. The mass detector, with a nominal resolving power of 100,000 (FWHM at m/z 200), operated in full scan mode in ESI positive ionization mode. Analytes were identified by retention times, accurate masses and correspondence of experimental and calculated isotopic patterns. The limits of detection (LOD) obtained varied from 1 to 25 ng g(-1) and limits of quantification (LOQ) were 50 ng g(-1) for all compounds. The method was linear for all the analytes in the ranges from 50 to 2000 ng g(-1), giving correlation coefficients>0.99. Accuracy (intended as %E) and repeatability (% CV) were always lower than 15%. The method was applied to the analysis of 36 dietary supplements, revealing the presence of ephedrine and/or pseudoephedrine in four of them, caffeine in eight of them and sildenafil in four of them. In one case, ephedrine was not reported on the label of the dietary supplement, as well as for caffeine in other two cases. A further confirmation of the analytes identity in positive samples was obtained through in-source fragmentation and comparison of the obtained fragments and their relative abundances with those from certified standards. As the acquisition mode is full scan, it would be also possible to re-process a previously acquired datafile for the investigation of untargeted analytes.

  17. Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development.

    Science.gov (United States)

    Kayık, Gülru; Tüzün, Nurcan Ş; Durdagi, Serdar

    2017-12-01

    The essential biological function of phosphodiesterase (PDE) type enzymes is to regulate the cytoplasmic levels of intracellular second messengers, 3',5'-cyclic guanosine monophosphate (cGMP) and/or 3',5'-cyclic adenosine monophosphate (cAMP). PDE targets have 11 isoenzymes. Of these enzymes, PDE5 has attracted a special attention over the years after its recognition as being the target enzyme in treating erectile dysfunction. Due to the amino acid sequence and the secondary structural similarity of PDE6 and PDE11 with the catalytic domain of PDE5, first-generation PDE5 inhibitors (i.e. sildenafil and vardenafil) are also competitive inhibitors of PDE6 and PDE11. Since the major challenge of designing novel PDE5 inhibitors is to decrease their cross-reactivity with PDE6 and PDE11, in this study, we attempt to identify potent tadalafil-like PDE5 inhibitors that have PDE5/PDE6 and PDE5/PDE11 selectivity. For this aim, the similarity-based virtual screening protocol is applied for the "clean drug-like subset of ZINC database" that contains more than 20 million small compounds. Moreover, molecular dynamics (MD) simulations of selected hits complexed with PDE5 and off-targets were performed in order to get insights for structural and dynamical behaviors of the selected molecules as selective PDE5 inhibitors. Since tadalafil blocks hERG1 K channels in concentration dependent manner, the cardiotoxicity prediction of the hit molecules was also tested. Results of this study can be useful for designing of novel, safe and selective PDE5 inhibitors.

  18. PDE9A, PDE10A, and PDE11A expression in rat trigeminovascular pain signalling system

    DEFF Research Database (Denmark)

    Kruse, Lars S; Møller, Morten; Tibaek, Maiken

    2009-01-01

    Activation of the trigeminovascular pain signalling system, including cerebral arteries, meninges, trigeminal ganglion, and brain stem, is involved in migraine. Furthermore, stimulation of cyclic nucleotide (cAMP and cGMP) production as well as inhibition of phosphodiesterases (PDEs) induces head......, the expression of PDE9A, PDE10A, and PDE11A in the trigeminovascular system. The functional implications are yet unknown, but their localisation indicates that they may have a role in the pain pathway of migraine as well as trigeminal neuralgia and trigeminal autonomic cephalalgias....

  19. Phosphodiesterase inhibitors: history of pharmacology.

    Science.gov (United States)

    Schudt, Christian; Hatzelmann, Armin; Beume, Rolf; Tenor, Hermann

    2011-01-01

    The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.

  20. A yeast-based chemical screen identifies a PDE inhibitor that elevates steroidogenesis in mouse Leydig cells via PDE8 and PDE4 inhibition.

    Directory of Open Access Journals (Sweden)

    Didem Demirbas

    Full Text Available A cell-based high-throughput screen (HTS was developed to detect phosphodiesterase 8 (PDE8 and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA-stimulated growth in 5-fluoro orotic acid (5FOA medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC₅₀ value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems.

  1. Identification and Characterization of a Novel Phosphodiesterase from the Metagenome of an Indian Coalbed

    Science.gov (United States)

    Singh, Durgesh Narain; Gupta, Ankush; Singh, Vijay Shankar; Mishra, Rajeev; Kateriya, Suneel; Tripathi, Anil Kumar

    2015-01-01

    Phosphoesterases are involved in the degradation of organophosphorus compounds. Although phosphomonoesterases and phosphotriesterases have been studied in detail, studies on phosphodiesterases are rather limited. In our search to find novel phosphodiesterases using metagenomic approach, we cloned a gene encoding a putative phosphodiesterase (PdeM) from the metagenome of the formation water collected from an Indian coal bed. Bioinformatic analysis showed that PdeM sequence possessed the characteristic signature motifs of the class III phosphodiesterases and phylogenetic study of PdeM enabled us to identify three distinct subclasses (A, B, and C) within class III phosphodiesterases, PdeM clustering in new subclass IIIB. Bioinformatic, biochemical and biophysical characterization of PdeM further revealed some of the characteristic features of the phosphodiesterases belonging to newly described subclass IIIB. PdeM is a monomer of 29.3 kDa, which exhibits optimum activity at 25°C and pH 8.5, but low affinity for bis(pNPP) as well as pNPPP. The recombinant PdeM possessed phosphodiesterase, phosphonate-ester hydrolase and nuclease activity. It lacked phosphomonoesterase, phosphotriesterase, and RNAse activities. Overexpression of PdeM in E.coli neither affected catabolite respression nor did the recombinant protein hydrolyzed cAMP in vitro, indicating its inability to hydrolyze cAMP. Although Mn2+ was required for the activity of PdeM, but addition of metals (Mn2+ or Fe3+) did not induce oligomerization. Further increase in concentration of Mn2+ upto 3 mM, increased α-helical content as well as the phosphodiesterase activity. Structural comparison of PdeM with its homologs showed that it lacked critical residues required for dimerization, cAMP hydrolysis, and for the high affinity binding of bis(pNPP). PdeM, thus, is a novel representative of new subclass of class III phosphodiesterases. PMID:25658120

  2. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition.

    Science.gov (United States)

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire

    2015-02-01

    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition.

  3. Phosphodiesterases in the rat ovary

    DEFF Research Database (Denmark)

    Petersen, Tonny Studsgaard; Stahlhut, Martin; Andersen, Claus Yding

    2015-01-01

    Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested...... that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal...... and PDE2A in the corpora lutea. Incubating neonatal rat ovaries with PDE4 inhibitors did not increase primordial follicle activation or change the expression of the developing follicle markers Gdf9, Amh, Inha, the proliferation marker Mki67 or the primordial follicle marker Tmeff2. In addition, the cAMP...

  4. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia

    DEFF Research Database (Denmark)

    Grau, Tanja; Artemyev, Nikolai O; Rosenberg, Thomas

    2011-01-01

    characterization of six missense mutations applying the baculovirus system to express recombinant mutant and wildtype chimeric PDE6C/PDE5 proteins in Sf9 insect cells. Purified proteins were analyzed using Western blotting, phosphodiesterase (PDE) activity measurements as well as inhibition assays by zaprinast...

  5. Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines.

    Science.gov (United States)

    Miyamoto, K; Kurita, M; Sakai, R; Sanae, F; Wakusawa, S; Takagi, K

    1994-09-15

    In this study the phosphodiesterase (PDE) isoenzymes in guinea-pig trachealis smooth muscle were separated by DEAE-Sepharose anion exchange chromatography, identified, and characterized. Furthermore the effect of theophylline and 1-n-butyl-3-n-propylxanthine (BPX) on the isolated PDE isoenzymes and on their tracheal relaxant effect were investigated and compared with the nonxanthine PDE inhibitors amrinone and Ro 20-1724. We identified five distinct isoenzymes in guinea-pig tracheal muscle; calcium/calmodulin-stimulated cyclic AMP PDE (PDE I), cyclic GMP-stimulated cyclic AMP PDE (PDE II), cyclic GMP-inhibited and amrinone-sensitive cyclic AMP PDE (PDE III), cyclic AMP-specific and Ro 20-1724-sensitive PDE (PDE IV), and cyclic GMP-specific PDE (PDE V). BPX strongly inhibited the PDE IV isoenzyme with high selectivity, while the inhibitory effect of theophylline was weak. The PDE IV inhibitors BPX and Ro 20-1724 synergistically increased the relaxant effect of the beta 2-adrenoceptor agonist salbutamol in carbachol-contracted trachea much more strongly than theophylline. In contrast, amrinone, a PDE III inhibitor, hardly influenced the relaxant effect of salbutamol, suggesting that the PDE IV isoenzyme is functionally associated with beta 2-adrenoceptors in guinea-pig trachea and that inhibition of this enzyme potentiates the ability of salbutamol to increase the intracellular cyclic AMP content. These results indicate that the PDE IV isoenzyme plays a significant role in alkylxanthine-mediated relaxation of guinea-pig trachea.

  6. cGMP-PDE3-cAMP signal pathway involved in the inhibitory effect of CNP on gastric motility in rat.

    Science.gov (United States)

    Cai, Ying-Lan; Sun, Qian; Huang, Xu; Jiang, Jing-Zhi; Zhang, Mo-Han; Piao, Li-Hua; Jin, Zheng; Xu, Wen-Xie

    2013-01-10

    In the present study, we investigated the mechanism of C-type natriuretic peptide (CNP)-induced inhibitory effect on spontaneous contraction of gastric antral smooth muscle to clarify CNP-NPR-B/pGC-cGMP downstream signal transduction pathway using organ bath and ELISA methods in rat. CNP significantly reduced the amplitude of the spontaneous contraction and increased the contents of cGMP and cAMP in the gastric antral smooth muscle tissue. In the presence of IBMX, a non-selective phosphodiesterase (PDE) inhibitor, the inhibitory effect of CNP on spontaneous contraction was significantly suppressed; however, the production of cGMP but not cAMP was still increased by CNP. EHNA, a PDE2 inhibitor, did not affect both CNP-induced inhibition of the contraction and CNP-induced increase of cGMP and cAMP generations in gastric smooth muscle tissue, while milrinone, a PDE3 inhibitor, similar to IBMX, attenuated the CNP-induced inhibitory effect on spontaneous contraction and increased the content of cGMP but not cAMP. The results suggest that cGMP-PDE3-cAMP signal pathway is also involved in the CNP-induced inhibition of gastric motility in rat.

  7. Alterations of Phosphodiesterases in Adrenocortical Tumors

    Directory of Open Access Journals (Sweden)

    Fady Hannah-Shmouni

    2016-08-01

    Full Text Available Alterations in the cyclic (c AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs causing Cushing syndrome (CS. Phosphodiesterases (PDEs are enzymes that regulate cyclic nucleotide levels, including cAMP. Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, down-regulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs.

  8. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5

    DEFF Research Database (Denmark)

    Schankin, Christoph J; Kruse, Lars S; Reinisch, Veronika M;

    2010-01-01

    line containing such PDEs. METHODS: Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after......OBJECTIVE: To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. BACKGROUND: Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic...... adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell...

  9. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yang, Fenghuan; Tian, Fang; Sun, Lei; Chen, Huamin; Wu, Maosen; Yang, Ching-Hong; He, Chenyang

    2012-10-01

    Two-component systems (TCS) consisting of histidine kinases (HK) and response regulators (RR) play essential roles in bacteria to sense environmental signals and regulate cell functions. One type of RR is involved in metabolism of cyclic diguanylate (c-di-GMP), a ubiquitous bacterial second messenger. Although genomic studies predicted a large number of them existing in different bacteria, only a few have been studied. In this work, we characterized a novel TCS consisting of PdeK(PXO_01018)/PdeR(PXO_ 01019) from Xanthomonas oryzae pv. oryzae, which causes the bacterial leaf blight of rice. PdeR (containing GGDEF, EAL, and REC domains) was shown to have phosphodiesterase (PDE) activity in vitro by colorimetric assays and high-performance liquid chromatography analysis. The PDE activity of full-length PdeR needs to be triggered by HK PdeK. Deletion of pdeK or pdeR in X. oryzae pv. oryzae PXO99(A) had attenuated its virulence on rice. ΔpdeK and ΔpdeR secreted less exopolysaccharide than the wild type but there were no changes in terms of motility or extracellular cellulase activity, suggesting the activity of PdeK/PdeR might be specific.

  10. In vitro pharmacology of R 80122, a novel phosphodiesterase inhibitor

    NARCIS (Netherlands)

    Wilhelm, D.; Wilffert, B.; Janssens, W.J.; Leidig, A.; Meuter, C.; Ebbert, M.; Peters, Thies

    1992-01-01

    The cardiac in vitro effects of R 80122, a novel phosphodiesterase (PDE) inhibitor, were investigated and compared with those of the reference compound milrinone and of the calcium-sensitizer adibendan. In guinea pig left atria, both milrinone and R 80122 increased contractile force; 10 μM milrinone

  11. Traumatic brain injury upregulates phosphodiesterase expression in the hippocampus

    Directory of Open Access Journals (Sweden)

    Nicole M Wilson

    2016-02-01

    Full Text Available Traumatic brain injury (TBI results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3',5'-cyclic adenosine monophosphate (cAMP, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 hr and 6 hr after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6 and 24 hr after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 hr after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 hr after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of LTP into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive dysfunction acutely after TBI.

  12. William Harvey Research Conference on PDE inhibitors: drugs with an expanding range of therapeutic uses.

    Science.gov (United States)

    O'Donnell

    2000-03-01

    Presentations at the William Harvey Research Conference on PDE Inhibitors described the molecular biology, biochemical regulation. pharmacology, and therapeutic utility of inhibitors of cyclic nucleotide phosphodiesterases (PDEs). Most of the talks focused on PDE4 and PDE5. two members of the 11-member PDE family that have attracted much interest over the last several years. These enzymes have been shown to be targets for drugs with wide-ranging clinical utility, including treatment of inflammation, depression, and male erectile dysfunction. The continued investigation of PDEs and the development of potent and selective inhibitors should provide even more therapeutic agents in years to come.

  13. Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples

    DEFF Research Database (Denmark)

    Kähler, Anna K; Otnaess, Mona K; Wirgenes, Katrine V;

    2010-01-01

    The phosphodiesterase 4B (PDE4B), which is involved in cognitive function in animal models, is a candidate susceptibility gene for schizophrenia (SZ) and bipolar disorder (BP). Variations in PDE4B have previously been associated with SZ, with a suggested gender-specific effect. We have genotyped...

  14. The emperor's new clothes: PDE5 and the heart.

    Directory of Open Access Journals (Sweden)

    Chantal V Degen

    Full Text Available Phosphodiesterase-5 (PDE5 is highly expressed in the pulmonary vasculature, but its expression in the myocardium is controversial. Cyclic guanosine monophosphate (cGMP activates protein kinase G (PKG, which has been hypothesized to blunt cardiac hypertrophy and negative remodeling in heart failure. Although PDE5 has been suggested to play a significant role in the breakdown of cGMP in cardiomyocytes and hence PKG regulation in the myocardium, the RELAX trial, which tested effect of PDE5 inhibition on exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF failed to show a beneficial effect. These results highlight the controversy regarding the role and expression of PDE5 in the healthy and failing heart. This study used one- and two-dimensional electrophoresis and Western blotting to examine PDE5 expression in mouse (before and after trans-aortic constriction, dog (control and HFpEF as well as human (healthy and failing heart. We were unable to detect PDE5 in any cardiac tissue lysate, whereas PDE5 was present in the murine and bovine lung samples used as positive controls. These results indicate that if PDE5 is expressed in cardiac tissue, it is present in very low quantities, as PDE5 was not detected in either humans or any model of heart failure examined. Therefore in cardiac muscle, it is unlikely that PDE5 is involved the regulation of cGMP-PKG signaling, and hence PDE5 does not represent a suitable drug target for the treatment of cardiac hypertrophy. These results highlight the importance of rigorous investigation prior to clinical trial design.

  15. Treatment of Cognitive Impairment in Schizophrenia: Potential Value of Phosphodiesterase Inhibitors in Prefrontal Dysfunction.

    Science.gov (United States)

    Duinen, Marlies Van; Reneerkens, Olga A H; Lambrecht, Lena; Sambeth, Anke; Rutten, Bart P F; Os, Jim Van; Blokland, Arjan; Prickaerts, Jos

    2015-01-01

    No pharmacological treatment is available to date that shows satisfactory effects on cognitive symptoms in patients diagnosed with schizophrenia. Phosphodiesterase inhibitors (PDE-Is) improve neurotransmitter signaling by interfering in intracellular second messenger cascades. By preventing the breakdown of cAMP and/or cGMP, central neurotransmitter activity is maintained. Different PDE families exist with distinct characteristics among which substrate specificity and regional distribution. Preclinical data is promising especially with regard to inhibition of PDE2, PDE4, PDE5 and PDE10. In addition, cognitive improvement has been reported in both elderly and/or non-impaired young human subjects after PDE1 or PDE4 inhibition. Moreover, some of these studies show effects on cognitive domains relevant to schizophrenia, in particular memory. The current review incorporates an overview of the distinct molecular characteristics of the different PDE families and their relationship to the neurobiological mechanisms related to cognitive dysfunction in schizophrenia. So far, procognitive effects of only three types of PDE-Is have been assessed in patients diagnosed with schizophrenia inhibiting PDE3, PDE5 and PDE10. However, the limited data available do not allow to draw firm conclusions on the value of PDE-Is as cognitive enhancers in schizophrenia yet. The field is still in its infancy, but nevertheless different PDE-Is seem promising as candidate to optimise neural communication in the prefrontal cortex favouring cognitive functioning in patients diagnosed with schizophrenia, in particular dual inhibitors including PDE1-Is, PDE3-Is and PDE10A-Is.

  16. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S

    1995-01-01

    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  17. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation

    NARCIS (Netherlands)

    Prickaerts, L.; Sik, A.; Staay, van der F.J.; Vente, de J.; Blokland, A.

    2005-01-01

    Rationale Phosphodiesterase enzyme type 5 (PDE5) inhibitors and acetylcholinesterase (AChE) inhibitors have cognition-enhancing properties. However, it is not known whether these drug classes affect the same memory processes. Objective We investigated the memory-enhancing effects of the PDE5 inhibit

  18. Effects of alkyl substituents of xanthine on phosphodiesterase isoenzymes.

    Science.gov (United States)

    Miyamoto, K; Sakai, R; Kurita, M; Ohmae, S; Sanae, F; Sawanishi, H; Hasegawa, T; Takagi, K

    1995-03-01

    The structure-activity relationships of a series of alkylxanthine derivatives were investigated. The partition coefficient of alkylxanthines enlarged with an elongation of the alkyl chain at the 1-, 3-, or 7-position of xanthine. There was a mild correlation between the apparent partition coefficient and the tracheal relaxant activity or the inhibitory activity on phosphodiesterase (PDE) IV isoenzyme, while the tracheal relaxant activity closely correlated with the PDE IV inhibitory activity. Regarding substituents at different positions, the alkylation at the 3-position increased the inhibitory activity on every PDE isoenzyme. The alkylation at the 1-position potentiated the inhibitory activity on PDE IV with the alkyl chain length, but decreased the activities on other PDE isoenzymes. The alkylation at the 7-position was characteristic in its decrease in inhibitory activity on PDE III. These results suggested that the potency of the inhibitory activity of xanthine derivatives on PDE isoenzymes is not dependent simply upon their hydrophobicity but upon change in the affinity for the active sites on PDE isoenzymes by the introduction of the alkyl group at particular positions of the xanthine skeleton.

  19. PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells.

    Science.gov (United States)

    Sponziello, Marialuisa; Verrienti, Antonella; Rosignolo, Francesca; De Rose, Roberta Francesca; Pecce, Valeria; Maggisano, Valentina; Durante, Cosimo; Bulotta, Stefania; Damante, Giuseppe; Giacomelli, Laura; Di Gioia, Cira Rosaria Tiziana; Filetti, Sebastiano; Russo, Diego; Celano, Marilena

    2015-11-01

    Recent studies have revealed in normal thyroid tissue the presence of the transcript of several phosphodiesterases (PDEs), enzymes responsible for the hydrolysis of cyclic nucleotides. In this work, we analyzed the expression of PDE5 in a series of human papillary thyroid carcinomas (PTCs) presenting or not BRAF V600E mutation and classified according to ATA risk criteria. Furthermore, we tested the effects of two PDE5 inhibitors (sildenafil, tadalafil) against human thyroid cancer cells. PDE5 gene and protein expression were analyzed in two different cohorts of PTCs by real-time PCR using a TaqMan micro-fluid card system and Western blot. MTT and migration assay were used to evaluate the effects of PDE5 inhibitors on proliferation and migration of TPC-1, BCPAP, and 8505C cells. In a first series of 36 PTCs, we found higher expression levels of PDE5A in tumors versus non-tumor (normal) tissues. PTCs with BRAF mutation showed higher levels of mRNA compared with those without mutation. No significant differences were detected between subgroups with low and intermediate ATA risk. Upregulation of PDE5 was also detected in tumor tissue proteins. Similar results were obtained analyzing the second cohort of 50 PTCs. Moreover, all tumor tissues with high PDE5 levels showed reduction of Thyroglobulin, TSH receptor, Thyroperoxidase, and NIS transcripts. In thyroid cancer cells in vitro, sildenafil and tadalafil determined a reduction of proliferation and cellular migration. Our findings demonstrate for the first time an overexpression of PDE5 in PTCs, and the ability of PDE5 inhibitors to block the proliferation of thyroid cancer cells in culture, therefore, suggesting that specific inhibition of PDE5 may be proposed for the treatment of these tumors.

  20. PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER.

    Directory of Open Access Journals (Sweden)

    Amanda G Vang

    Full Text Available BACKGROUND: Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs is a prerequisite for effector T (Teff cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS: We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER. Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE: Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.

  1. Differential expression and function of PDE8 and PDE4 in effector T cells: Implications for PDE8 as a drug target in inflammation.

    Directory of Open Access Journals (Sweden)

    Amanda G. Vang

    2016-08-01

    Full Text Available Abolishing the inhibitory signal of intracellular cAMP is a prerequisite for effector T (Teff cell function. The regulation of cAMP within leukocytes critically depends on its degradation by cyclic nucleotide phosphodiesterases (PDEs. We have previously shown that PDE8A, a PDE isoform with 40-100-fold greater affinity for cAMP than PDE4, is selectively expressed in Teff versus regulatory T (Treg cells and controls CD4+ Teff cell adhesion and chemotaxis. Here, we determined PDE8A expression and function in CD4+ Teff cell populations in vivo. Using magnetic bead separation to purify leukocyte populations from the lung draining hilar lymph node (HLN in a mouse model of ovalbumin-induced allergic airway disease (AAD, we found by Western immunoblot and quantitative (qRT-PCR that PDE8A protein and gene expression are enhanced in the CD4+ T cell fraction over the course of the acute inflammatory disease and recede at the late tolerant non-inflammatory stage. To evaluate PDE8A as a potential drug target, we compared the selective and combined effects of the recently characterized highly potent PDE8-selective inhibitor PF-04957325 with the PDE4-selective inhibitor piclamilast (PICL. As previously shown, PF-04957325 suppresses T cell adhesion to endothelial cells. In contrast, we found that PICL alone increased firm T cell adhesion to endothelial cells by approximately 20% and significantly abrogated the inhibitory effect of PF-04957325 on T cell adhesion by over 50% when cells were co-exposed to PICL and PF-04957325. Despite its robust effect on T cell adhesion, PF-04957325 was over two orders of magnitude less efficient than PICL in suppressing polyclonal Teff cell proliferation, and showed no effect on cytokine gene expression in these cells. More importantly, PDE8 inhibition did not suppress proliferation and cytokine production of myelin-antigen reactive proinflammatory Teff cells in vivo and in vitro. Thus, targeting PDE8 through PF-04957325

  2. Discovery and Early Clinical Development of 2-{6-[2-(3,5-Dichloro-4-pyridyl)acetyl]-2,3-dimethoxyphenoxy}-N-propylacetamide (LEO 29102), a Soft-Drug Inhibitor of Phosphodiesterase 4 for Topical Treatment of Atopic Dermatitis

    DEFF Research Database (Denmark)

    Felding, Jakob; D. Sørensen, Morten; Poulsen, Tina D.;

    2014-01-01

    Development of orally available phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory drugs has been going on for decades. However, only roflumilast has received FDA approval. One key challenge has been the low therapeutic window observed in the dinic for PDE4 inhibitors, primarily due to PDE4...

  3. Thiophene inhibitors of PDE4: crystal structures show a second binding mode at the catalytic domain of PDE4D2.

    Science.gov (United States)

    Nankervis, Jacob L; Feil, Susanne C; Hancock, Nancy C; Zheng, Zhaohua; Ng, Hooi-Ling; Morton, Craig J; Holien, Jessica K; Ho, Patricia W M; Frazzetto, Mark M; Jennings, Ian G; Manallack, David T; Martin, T John; Thompson, Philip E; Parker, Michael W

    2011-12-01

    PDE4 inhibitors have been identified as therapeutic targets for a variety of conditions, particularly inflammatory diseases. We have serendipitously identified a novel class of phosphodiesterase 4 (PDE4) inhibitor during a study to discover antagonists of the parathyroid hormone receptor. X-ray crystallographic studies of PDE4D2 complexed to four potent inhibitors reveal the atomic details of how they inhibit the enzyme and a notable contrast to another recently reported thiophene-based inhibitor. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Targeting PDE10A GAF Domain with Small Molecules: A Way for Allosteric Modulation with Anti-Inflammatory Effects.

    Science.gov (United States)

    García, Ana M; Brea, José; González-García, Alejandro; Pérez, Concepción; Cadavid, María Isabel; Loza, María Isabel; Martinez, Ana; Gil, Carmen

    2017-09-04

    Phosphodiesterase (PDE) enzymes regulate the levels of cyclic nucleotides, cAMP, and/or cGMP, being attractive therapeutic targets. In order to modulate PDE activity in a selective way, we focused our efforts on the search of allosteric modulators. Based on the crystal structure of the PDE10A GAF-B domain, a virtual screening study allowed the discovery of new hits that were also tested experimentally, showing inhibitory activities in the micromolar range. Moreover, these new PDE10A inhibitors were able to decrease the nitrite production in LPS-stimulated cells, thus demonstrating their potential as anti-inflammatory agents.

  5. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    Science.gov (United States)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  6. PDE-5 Inhibitors for BPH-Associated LUTS.

    Science.gov (United States)

    Brousil, Philip; Shabbir, Majid; Zacharakis, E; Sahai, Arun

    2015-01-01

    Lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH-LUTS) are a highly prevalent problem, and with considerable burden to quality of life. Evidence has emerged that a strong correlation exists in men suffering both BPH-LUTS and erectile dysfunction (ED). Phosphodiesterase type 5 inhibitors (PDE5i) have been shown to be highly effective in treating ED and more recently there is evidence that men with LUTS also benefit. In this review article we discuss the common pathogenic pathways of ED and LUTS, the scientific basis of PDE5i use, the efficacy of PDE5i in LUTS either as monotherapy or in combination with other established medications used in LUTS.

  7. Novel PDE4 inhibitors derived from Chinese medicine forsythia.

    Directory of Open Access Journals (Sweden)

    Tiffany A Coon

    Full Text Available Cyclic adenosine monophosphate (cAMP is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response.

  8. Novel PDE4 Inhibitors Derived from Chinese Medicine Forsythia

    Science.gov (United States)

    Coon, Tiffany A.; McKelvey, Alison C.; Weathington, Nate M.; Birru, Rahel L.; Lear, Travis; Leikauf, George D.; Chen, Bill B.

    2014-01-01

    Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response. PMID:25549252

  9. Optimization with PDE constraints

    CERN Document Server

    Pinnau, Rene

    2008-01-01

    Presents an introduction of pde constrained optimization. This book provides a precise functional analytic treatment via optimality conditions and a non-smooth algorithmical framework. It also presents structure-exploiting discrete concepts and large scale, practically relevant applications.

  10. Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity.

    Science.gov (United States)

    Agarwal, Charu; Aulakh, Kavita B; Edelen, Kaly; Cooper, Michael; Wallen, R Margaret; Adams, Seth; Schultz, David J; Perlin, Michael H

    2013-05-01

    Components of the cAMP (cyclic AMP) signalling cascades are conserved from fungi to humans, and are particularly important for fungal dimorphism and pathogenicity. Previous work has described two phosphodiesterases, UmPde1 and UmPde2, in Ustilago maydis which show strong phosphodiesterase activity. We further characterized the biological function(s) of these phosphodiesterases in U. maydis. Specifically, we examined their possible role(s) in regulation of the cAMP-dependent protein kinase A (PKA) pathway and their roles in filamentous growth and pathogenicity. We found that UmPde1, which shares 35 % similarity with Cryptococcus neoformans Pde1, also displays functional homology with this enzyme. UmPde1 complements the capsule-formation defect of C. neoformans strains deleted for Pde1. In U. maydis, the cell morphology of the umpde1 deletion mutant resembled the multiple budding phenotypes seen with the ubc1 mutant, which lacks the regulatory subunit of PKA. Interestingly, on low-ammonium medium, umpde2 deletion strains showed a reduction in filamentation that was comparable to that of ubc1 deletion strains; however, umpde1 deletion strains showed normal filamentation on low-ammonium medium. Furthermore, both the ubc1 deletion strain in which the PKA pathway was constitutively active and the umpde1 deletion strains were significantly reduced in pathogenicity, while the umpde2 deletion strains showed a trend for reduced pathogenicity compared with wild-type strains. These data support a role for the phosphodiesterases UmPde1 and UmPde2 in regulating the U. maydis cAMP-dependent PKA pathway through modulation of cAMP levels, thus affecting dimorphic growth and pathogenicity.

  11. Distribution of PDE8A in the nervous system of the Sprague-Dawley rat

    DEFF Research Database (Denmark)

    Kruse, Lars Schack; Møller, Morten; Kruuse, Christina

    2011-01-01

    Phosphodiesterases (PDEs) are essential regulators of cyclic nucleotide signaling. Little is known of the distribution and function of the cyclic adenosine monophosphate (cAMP) hydrolyzing PDE8A family. Employing immunohistochemistry and Western blots this study maps the distribution of PDE8A...... in the brain of adult male Sprague-Dawley rats and in the trigeminal ganglion. PDE8A was confined to neuronal perikaryal cytoplasm and to processes extending from those perikarya. The neurons exhibiting PDE8A-immunoreactivity were widely distributed in the forebrain, brain stem, and cerebellum. Strongly...... immunoreactive neurons were located in the olfactory bulb, the septal area, zona incerta, and reticular nucleus of the thalamus. Less immunoreactivity was seen in the hippocampus and cerebral cortex. Intense staining was detected in both the substantia nigra and the sensory trigeminal nucleus. In cerebellum PDE8...

  12. PDE8 controls CD4(+) T cell motility through the PDE8A-Raf-1 kinase signaling complex.

    Science.gov (United States)

    Basole, Chaitali P; Nguyen, Rebecca K; Lamothe, Katie; Vang, Amanda; Clark, Robert; Baillie, George S; Epstein, Paul M; Brocke, Stefan

    2017-08-26

    The levels of cAMP are regulated by phosphodiesterase enzymes (PDEs), which are targets for the treatment of inflammatory disorders. We have previously shown that PDE8 regulates T cell motility. Here, for the first time, we report that PDE8A exerts part of its control of T cell function through the V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase signaling pathway. To examine T cell motility under physiologic conditions, we analyzed T cell interactions with endothelial cells and ligands in flow assays. The highly PDE8-selective enzymatic inhibitor PF-04957325 suppresses adhesion of in vivo myelin oligodendrocyte glycoprotein (MOG) activated inflammatory CD4(+) T effector (Teff) cells to brain endothelial cells under shear stress. Recently, PDE8A was shown to associate with Raf-1 creating a compartment of low cAMP levels around Raf-1 thereby protecting it from protein kinase A (PKA) mediated inhibitory phosphorylation. To test the function of this complex in Teff cells, we used a cell permeable peptide that selectively disrupts the PDE8A-Raf-1 interaction. The disruptor peptide inhibits the Teff-endothelial cell interaction more potently than the enzymatic inhibitor. Furthermore, the LFA-1/ICAM-1 interaction was identified as a target of disruptor peptide mediated reduction of adhesion, spreading and locomotion of Teff cells under flow. Mechanistically, we observed that disruption of the PDE8A-Raf-1 complex profoundly alters Raf-1 signaling in Teff cells. Collectively, our studies demonstrate that PDE8A inhibition by enzymatic inhibitors or PDE8A-Raf-1 kinase complex disruptors decreases Teff cell adhesion and migration under flow, and represents a novel approach to target T cells in inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. COVER FIGURE in Nucleic Acids Research (Volume 39, Issue 9) entitled "The involvement of the nuclear-encoded human 2'-phosphodiesterase in mitochondrial RNA turnover"

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    (English) Cover: The involvement of the nuclear-encoded human 2'-phosphodiesterase (2'-PDE) in mitochondrial RNA turnover. The 2'-PDE precursor (upper left corner) gets directed into the mitochondrial matrix by an N-terminal mitochondrial signaling peptide (blue). Inside the matrix, this signalin...

  14. Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy

    Science.gov (United States)

    Diggle, Christine P.; Sukoff Rizzo, Stacey J.; Popiolek, Michael; Hinttala, Reetta; Schülke, Jan-Philip; Kurian, Manju A.; Carr, Ian M.; Markham, Alexander F.; Bonthron, David T.; Watson, Christopher; Sharif, Saghira Malik; Reinhart, Veronica; James, Larry C.; Vanase-Frawley, Michelle A.; Charych, Erik; Allen, Melanie; Harms, John; Schmidt, Christopher J.; Ng, Joanne; Pysden, Karen; Strick, Christine; Vieira, Päivi; Mankinen, Katariina; Kokkonen, Hannaleena; Kallioinen, Matti; Sormunen, Raija; Rinne, Juha O.; Johansson, Jarkko; Alakurtti, Kati; Huilaja, Laura; Hurskainen, Tiina; Tasanen, Kaisa; Anttila, Eija; Marques, Tiago Reis; Howes, Oliver; Politis, Marius; Fahiminiya, Somayyeh; Nguyen, Khanh Q.; Majewski, Jacek; Uusimaa, Johanna; Sheridan, Eamonn; Brandon, Nicholas J.

    2016-01-01

    Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species. PMID:27058446

  15. Synthesis of sildenafil analogues from anacardic acid and their phosphodiesterase-5 inhibition.

    Science.gov (United States)

    Paramashivappa, R; Phani Kumar, P; Subba Rao, P V; Srinivasa Rao, A

    2002-12-18

    Anacardic acid (6-pentadecylsalicylic acid), a major component of cashew nut shell liquid, consists of a heterogeneous mixture of monoenes, dienes, and trienes. The enes mixture of anacardic acid was hydrogenated to a saturated compound. Using saturated anacardic acid as a starting material, analogues of sildenafil [a potent phosphodiesterase-5 (PDE(5)) inhibitor and an orally active drug for the treatment of erectile dysfunction] were synthesized, to observe the effect of the pentadecyl side chain on PDE(5) inhibition. The synthesized compounds were characterized by spectral studies and tested for PDE(5) inhibition, and the results were compared with those obtained with sildenafil.

  16. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors.

    Science.gov (United States)

    Thompson, Cecil Stanley

    2013-08-15

    The importance of nitric oxide (NO) in vascular physiology is irrefutable; it stimulates the intracellular production of cyclic guanosine monophosphate (cGMP), initiating vascular smooth muscle relaxation. This biochemical process increases the diameter of small arteries, regulating blood flow distribution between arterioles and the microvasculature. The kidney is no exception, since NO predominantly dilates the glomerular afferent arterioles. It is now evident that the vascular production of cGMP can be augmented by inhibitors of phosphodiesterase type 5 (PDE 5), the enzyme which breakdowns this cyclic nucleotide. This has clinical relevance, since diabetic nephropathy (DN) a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease, increases intraglomerular capillary pressure, leading to glomerular hypertension. PDE 5 inhibitors may have, therefore, the potential to reduce glomerular hypertension. This review describes the use of PDE 5 inhibitors to improve the metabolic, haemodynamic and inflammatory pathways/responses, all of which are dysfunctional in DN.

  17. Therapeutic utility of Phosphodiesterase type I inhibitors in neurological conditions.

    Directory of Open Access Journals (Sweden)

    Alexandre Esteves Medina

    2011-02-01

    Full Text Available Neuronal plasticity is an essential property of the brain that is impaired in different neurological conditions. Phosphodiesterase type 1 (PDE1 inhibitors can enhance levels of the second messengers cAMP/cGMP leading to the expression of neuronal plasticity-related genes, neurotrophic factors and neuroprotective molecules. These neuronal plasticity enhancement properties make PDE1 inhibitors good candidates as therapeutic agents in many neurological conditions. However, the lack of specificity of the drugs currently available poses a challenge to the systematic evaluation of the beneficial effect of these agents. The development of more specific drugs may pave the way for the use of PDE1 inhibitors as therapeutic agents in cases of neurodevelopmental conditions such as fetal alcohol spectrum disorders and in degenerative disorders such as Alzheimer’s and Parkinson’s.

  18. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation

    DEFF Research Database (Denmark)

    Kruuse, C; Rybalkin, S D; Khurana, T S;

    2001-01-01

    The aim was to investigate the presence and activity of cGMP hydrolysing phosphodiesterases in guinea pig basilar arteries and the effect of selective and non-selective phosphodiesterase inhibitors on cerebral artery dilatation involving the nitric oxide (NO)-guanosine cyclic 3'5-monophosphate (c...... by cGMP-independent mechanisms. Targeting the phosphodiesterases present in cerebral arteries, with selective inhibitors or activators of phosphodiesterase, may be a possible new way of treating cerebrovascular disease.......The aim was to investigate the presence and activity of cGMP hydrolysing phosphodiesterases in guinea pig basilar arteries and the effect of selective and non-selective phosphodiesterase inhibitors on cerebral artery dilatation involving the nitric oxide (NO)-guanosine cyclic 3'5-monophosphate (c......GMP) pathway. Immunoreactivity to phosphodiesterases 1A, 1B and 5, but not phosphodiesterase 1C was found in fractions of homogenised cerebral arteries eluted by high-pressure liquid chromatography (HPLC). Both the phosphodiesterase 1 inhibitor 8-methoxymethyl-1-methyl-3-(2methylpropyl)-xanthine (8-MM...

  19. Phosphodiesterase 4B genetic variants are not associated with antipsychotic-induced tardive dyskinesia.

    Science.gov (United States)

    Souza, Renan P; Remington, Gary; Meltzer, Herbert Y; Lieberman, Jeffrey A; Kennedy, James L; Wong, Albert H C

    2010-09-01

    Phosphodiesterase 4B (PDE4B) has been evaluated as a genetic risk factor for schizophrenia. Selective PDE4 inhibitor drugs have antipsychotic-like effects and reduce tardive dyskinesia-like movements in animal models. We investigated whether PDE4B genetic variants are associated with antipsychotic-induced tardive dyskinesia incidence and severity in schizophrenia patients. Our sample consisted of 169 Caucasian patients taking typical antipsychotic medication for at least 1 year. We found two PDE4B gene variants to be nominally associated with tardive dyskinesia (rs1338719 and rs7528545) in the overall population and two other variants nominally associated with the presence of tardive dyskinesia and severity in female patients (rs1890196 and rs783036). None of these results survived correction for multiple testing. Overall, our results do not support a genetic association between tardive dyskinesia and PDE4B.

  20. Neuronal nitric oxide synthase supports Renin release during sodium restriction through inhibition of phosphodiesterase 3

    DEFF Research Database (Denmark)

    Sällström, Johan; Jensen, Boye L; Skøtt, Ole

    2010-01-01

    NOS supports renin release by cyclic guanosine monophosphate (cGMP)-mediated inhibition of cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase 3 (PDE3) in juxtaglomerular (JG) cells. METHODS: The experiments were performed in conscious nNOS⁻(/)⁻ and wild types after 10 days on a low-sodium diet...

  1. Phosphodiesterase 4 D Gene Polymorphism in Relation to Intracranial and Extracranial Atherosclerosis in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Jayantee Kalita

    2011-01-01

    Full Text Available In ischemic stroke, extracranial MR angiography (ECMRA is more frequently abnormal in Caucasians and intracranial (ICMRA in Asians which may have a genetic basis. We report phosphodiesterase (PDE4D gene polymorphism and its correlation with MRA findings in patients with ischemic stroke.

  2. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera

    DEFF Research Database (Denmark)

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just;

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have...

  3. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts

    Institute of Scientific and Technical Information of China (English)

    Yuan James RAO; Lei XI

    2009-01-01

    Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyo-cyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE in-hibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve car-diac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.

  4. PDEs1-5 activity and expression in tissues of cirrhotic rats reveal a role for aortic PDE3 in NO desensitization.

    Science.gov (United States)

    Tahseldar-Roumieh, Rima; Keravis, Thérèse; Maarouf, Suha; Justiniano, Hélène; Sabra, Ramzi; Lugnier, Claire

    2009-12-01

    Liver cirrhosis is associated with increased nitric oxide (NO) production in the vasculature. We have previously demonstrated that aorta from rats with liver cirrhosis have a reduced relaxant response to NO donors that is corrected by DMPPO, a PDE5-specific inhibitor. Vasodilator responses to DMPPO itself were also reduced in rings from cirrhotic rats. These results supported previous suggestions that upregulation of PDE5 in liver cirrhosis might contribute to renal sodium retention, and consequently modulate vascular reactivity in the context of increased NO production (Tahseldar-Roumieh et al. in Am. J. Physiol. Heart Circ. Physiol. 290, H481-H488, 2006). Here, we investigated the possible alteration in activity and expression of cyclic nucleotide phosphodiesterase PDE1-PDE5 in kidney and vascular tissues in rats 4 weeks after bile duct ligation. The kidney of rats with cirrhosis had increased activity of PDE1 and PDE4 but not PDE5, and increased expression of PDE1A. Unexpectedly and interestingly, there was no change in cirrhotic aorta PDE5, but an increase in PDE3 and PDE4 activity associated with increased expression of PDE3A and PDE3B. Cilostamide, a specific PDE3 inhibitor, corrected the decreased response to an NO donor in isolated aorta from cirrhotic rats, suggesting that the difference in response to NO donors was due to differences in PDE3-induced hydrolysis of cGMP or to cGMP-induced inhibition of PDE3, rather than to differences in PDE5 contribution. In conclusion, these changes in PDE isozymes could greatly contribute to NO desensitization and to the regulation of vascular and renal function in liver cirrhosis.

  5. Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Weissmann Norbert

    2005-07-01

    Full Text Available Abstract Inhaled prostanoids and phosphodiesterase (PDE inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor, motapizone (PDE3 inhibitor or 8-Methoxymethyl-IBMX (PDE1 inhibitor synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor.

  6. Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors

    Science.gov (United States)

    Al-Ameri, H; Kloner, R A

    2009-01-01

    The phosphodiesterase type 5 (PDE-5) inhibitors are effective in treating erectile dysfunction (ED). ED and heart failure (HF) share similar risk factors, and commonly present together. This association has led to questions ranging from the safety and efficacy of PDE-5 inhibitors in HF patients to a possible role for this class of medication to treat HF patients with or without ED. In addition to endothelial dysfunction, there are causes of ED specific to patients with HF including low exercise tolerance, depression and HF medications. Before treating HF patients with PDE-5 inhibitors, patients should be assessed for their risk of a cardiac event during sexual activity. PDE-5 inhibitors are safe and effective in treating ED in HF patients. An improvement in erectile function by PDE-5 inhibitors was associated with an improvement in quality of life and reduction in depression. Several studies demonstrated the effect of PDE-5 inhibitors on HF per se. PDE-5 inhibitors improved endothelial dysfunction, increased exercise tolerance, decreased pulmonary vascular resistance and pulmonary artery pressure, and increased cardiac index. Several mechanisms whereby PDE-5 inhibitors improve HF have been proposed. PDE-5 inhibitors already have a role in treating primary pulmonary hypertension; however additional studies are needed to determine if they will become a standard therapy for HF patients. PMID:19387454

  7. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin.

    Science.gov (United States)

    Wensel, T G; Stryer, L

    1986-09-01

    The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.

  8. Distinct patterns of compartmentalization and proteolytic stability of PDE6C mutants linked to achromatopsia.

    Science.gov (United States)

    Cheguru, Pallavi; Majumder, Anurima; Artemyev, Nikolai O

    2015-01-01

    Phosphodiesterase-6 (PDE6) is an essential effector enzyme in vertebrate photoreceptor cells. Mutations in rod and cone PDE6 cause recessive retinitis pigmentosa and achromatopsia, respectively. The mechanisms of missense PDE6 mutations underlying severe visual disorders are poorly understood. To probe these mechanisms, we expressed seven known missense mutants of cone PDE6C in rods of transgenic Xenopus laevis and examined their stability and compartmentalization. PDE6C proteins with mutations in the catalytic domain, H602L and E790K, displayed modestly reduced proteolytic stability, but they were properly targeted to the outer segment of photoreceptor cells. Mutations in the regulatory GAF domains, R104W, Y323N, and P391L led to a proteolytic degradation of the proteins involving a cleavage in the GAFb domain. Lastly, the R29W and M455V mutations residing outside the conserved PDE6 domains produced a pattern of subcellular compartmentalization different from that of PDE6C. Thus, our results suggest a spectrum of mechanisms of missense PDE6C mutations in achromatopsia including catalytic defects, protein mislocalization, or a specific sequence of proteolytic degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia.

    Science.gov (United States)

    Charych, Erik I; Jiang, Li-Xin; Lo, Frederick; Sullivan, Kelly; Brandon, Nicholas J

    2010-07-07

    Phosphodiesterase 10A (PDE10A) is a striatum-enriched, dual-specific cyclic nucleotide phosphodiesterase that has gained considerable attention as a potential therapeutic target for psychiatric disorders such as schizophrenia. As such, a PDE10A-selective inhibitor compound, MP-10, has recently entered clinical testing. Since little is known about the cellular regulation of PDE10A, we sought to elucidate the mechanisms that govern its subcellular localization in striatal medium spiny neurons. Previous reports suggest that PDE10A is primarily membrane bound and is transported throughout medium spiny neuron axons and dendrites. Moreover, it has been shown in PC12 cells that the localization of the major splice form, PDE10A2, may be regulated by protein kinase A phosphorylation at threonine 16 (Thr-16). Using an antibody that specifically recognizes phosphorylated Thr-16 (pThr-16) of PDE10A2, we provide evidence that phosphorylation at Thr-16 is critical for the regulation of PDE10A subcellular localization in vivo. Furthermore, we demonstrate in primary mouse striatal neuron cultures that PDE10A membrane association and transport throughout dendritic processes requires palmitoylation of cysteine 11 (Cys-11) of PDE10A2, likely by the palmitoyl acyltransferases DHHC-7 and -19. Finally, we show that Thr-16 phosphorylation regulates PDE10A trafficking and localization by preventing palmitoylation of Cys-11 rather than by interfering with palmitate-lipid interactions. These data support a model whereby PDE10A trafficking and localization can be regulated in response to local fluctuations in cAMP levels. Given this, we propose that excessive striatal dopamine release, as occurs in schizophrenia, might exert differential effects on the regulation of PDE10A localization in the two striatal output pathways.

  10. Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium.

    Directory of Open Access Journals (Sweden)

    Rui Hua

    Full Text Available Phosphodiesterases (PDEs are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca(2+ current (I(Ca,L is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP properties and I(Ca,L in the sinoatrial node (SAN and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on I(Ca,L in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA, the PDE3 inhibitor milrinone (Mil and the PDE4 inhibitor rolipram (Rol. In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased I(Ca,L in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate I(Ca,L in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased I(Ca,L in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial I(Ca,L. In complete contrast, no selective PDE inhibitors increased I(Ca,L in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.

  11. The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target.

    Science.gov (United States)

    Kunz, Stefan; Balmer, Vreni; Sterk, Geert Jan; Pollastri, Michael P; Leurs, Rob; Müller, Norbert; Hemphill, Andrew; Spycher, Cornelia

    2017-09-01

    Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, and treatment options are limited. According to the Center for Disease Control and Prevention, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the adult population in the developed world. This study describes the single cyclic nucleotide-specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new generation of anti-giardial drugs. An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE. The predicted protein sequence was analyzed in-silico to characterize its domain structure and catalytic domain. Enzymatic activity of GlPDE was established by complementation of a PDE-deficient Saccharomyces cerevisiae strain, and enzyme kinetics were characterized in soluble yeast lysates. The potency of known PDE inhibitors was tested against the activity of recombinant GlPDE expressed in yeast and against proliferating Giardia trophozoites. Finally, the localization of epitope-tagged and ectopically expressed GlPDE in Giardia cells was investigated. Giardia encodes a class I PDE. Catalytically important residues are fully conserved between GlPDE and human PDEs, but sequence differences between their catalytic domains suggest that designing Giardia-specific inhibitors is feasible. Recombinant GlPDE hydrolyzes cAMP with a Km of 408 μM, and cGMP is not accepted as a substrate. A number of drugs exhibit a high degree of correlation between their potency against the recombinant enzyme and their inhibition of trophozoite proliferation in culture. Epitope-tagged GlPDE localizes as dots in a pattern reminiscent of mitosomes and to the perinuclear region in Giardia. Our data strongly suggest that inhibition of G. lamblia PDE activity leads to a profound inhibition of parasite proliferation and that GlPDE is a promising target for developing novel anti-giardial drugs.

  12. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O. (GSK)

    2012-05-03

    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  13. Phosphodiesterases in the rat ovary: effect of cAMP in primordial follicles.

    Science.gov (United States)

    Petersen, Tonny Studsgaard; Stahlhut, Martin; Andersen, Claus Yding

    2015-07-01

    Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal rat ovaries was also evaluated. We found varied expression of all eight families in the ovary with Pde7b and Pde8a having the highest expression each accounting for more than 20% of the total PDE mRNA. PDE4 accounted for 15-26% of the total PDE activity. Immunoreactive PDE11A was found in the oocytes and PDE2A in the corpora lutea. Incubating neonatal rat ovaries with PDE4 inhibitors did not increase primordial follicle activation or change the expression of the developing follicle markers Gdf9, Amh, Inha, the proliferation marker Mki67 or the primordial follicle marker Tmeff2. In addition, the cAMP analogue 8-bromo-cAMP did not increase AKT1 or FOXO3A phosphorylation associated with follicle activation or increase the expression of Kitlg known to be associated with follicle differentiation but did increase the Tmeff2, Mki67 and Inha expression in a dose-dependent manner. In conclusion, this study shows that both Pde7b and Pde8a are highly expressed in the rodent ovary and that PDE4 inhibition does not cause an increase in primordial follicle activation. © 2015 Society for Reproduction and Fertility.

  14. Overexpression of phosphodiesterase-4 subtypes involved in surgery-induced neuroinflammation and cognitive dysfunction in mice.

    Science.gov (United States)

    Wang, Wei; Zhang, Xiao-Ying; Feng, Ze-Guo; Wang, Dong-Xin; Zhang, Hao; Sui, Bo; Zhang, Yong-Yi; Zhao, Wei-Xing; Fu, Qiang; Xu, Zhi-Peng; Mi, Wei-Dong

    2017-02-21

    Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments in patients after surgery. Hippocampal neuroinflammation induced by surgery is highly associated with POCD. Phosphodiesterase-4 (PDE4) is an enzyme that specifically hydrolyses cyclic adenosine monophosphate (cAMP), which plays an important role during neuroinflammation and the process of learning and memory. However, the role of PDE4 in the development of POCD remains unclear. Male 14-month-old C57BL/6 mice received carotid artery exposure to mimic POCD. First, we evaluated cognitive performance by a Morris water maze (MWM) and fear conditioning system (FCS) test after surgery. The expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were investigated. Then, we used rolipram, a PDE4 inhibitor, to block the effects of PDE4. The cognitive performance of the mice and the expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were examined again. Mice displayed learning and memory impairment, overexpression of PDE4B and PDE4D, elevation of pro-inflammatory cytokines, and reduction in the expression of p-CREB, PSD95 and cAMP levels after surgery. The expression of PDE4B and PDE4D in the hippocampus decreased following blocking of PDE4 by rolipram. Meanwhile, rolipram attenuated the cognitive impairment and the elevation of pro-inflammatory cytokines induced by surgery. Moreover, rolipram reversed the reduction of p-CREB and PSD95. These results indicate that PDE4 subtype overexpression may be involved in the development of surgery-induced cognitive dysfunction in mice.

  15. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors

    Science.gov (United States)

    Cardozo, Suzana Vanessa S.; Carvalho, Vinicius de Frias; Romeiro, Nelilma Correia; Silva, Patrícia Machado Rodrigues e; Martins, Marco Aurélio; Barreiro, Eliezer J.; Lima, Lídia Moreira

    2016-01-01

    Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma. PMID:27695125

  16. Kinetic and Structural Studies of Phosphodiesterase-8A and Implication on the Inhibitor Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Yan, Z; Yang, S; Cai, J; Robinson, H; Ke, H

    2008-01-01

    Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 Angstroms resolutions, respectively. The PDE8A1 catalytic domain has a KM of 1.8 eM, Vmax of 6.1 emol/min/mg, a kcat of 4.0 s-1 for cAMP, and a KM of 1.6 mM, Vmax of 2.5 emol/min/mg, a kcat of 1.6 s-1 for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by KM. The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC50 = 700 eM). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several nonselective or family selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties but also guidelines for design of PDE8 selective inhibitors.

  17. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.

    Science.gov (United States)

    Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr

    2012-02-01

    A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Moschos MM

    2016-10-01

    Full Text Available Marilita M Moschos, Eirini Nitoda 1st Department of Ophthalmology, Medical School, National & Kapodistrian University of Athens, Athens, Greece Aim: The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders.Method: This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors.Results: PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG, conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of nonarteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion.Discussion: So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists. Keywords: erectile dysfunction, pathophysiological mechanisms, phosphodiesterase inhibitors, PDE5, visual disorders

  19. PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain.

    Science.gov (United States)

    Hegde, Shweta; Ji, Hao; Oliver, David; Patel, Neema S; Poupore, Nicolas; Shtutman, Michael; Kelly, Michy P

    2016-10-29

    Despite the fact that appropriate social behaviors are vital to thriving in one's environment, little is understood of the molecular mechanisms controlling social behaviors or how social experience sculpts these signaling pathways. Here, we determine if Phosphodiesterase 11A (PDE11A), an enzyme that is enriched in the ventral hippocampal formation (VHIPP) and that breaks down cAMP and cGMP, regulates social behaviors. PDE11 wild-type (WT), heterozygous (HT), and knockout (KO) mice were tested in various social approach assays and gene expression differences were measured by RNA sequencing. The effect of social isolation on PDE11A4 compartmentalization and subsequent social interactions and social memory was also assessed. Deletion of PDE11A triggered age- and sex-dependent deficits in social approach in specific social contexts but not others. Mice appear to detect altered social behaviors of PDE11A KO mice, because C57BL/6J mice prefer to spend time with a sex-matched PDE11A WT vs. its KO littermate; whereas, a PDE11A KO prefers to spend time with a novel PDE11A KO vs. its WT littermate. Not only is PDE11A required for intact social interactions, we found that 1month of social isolation vs. group housing decreased PDE11A4 protein expression specifically within the membrane fraction of VHIPP. This isolation-induced decrease in PDE11A4 expression appears functional because social isolation impairs subsequent social approach behavior and social memory in a PDE11A genotype-dependent manner. Pathway analyses following RNA sequencing suggests PDE11A is a key regulator of the oxytocin pathway and membrane signaling, consistent with its pivotal role in regulating social behavior.

  20. PDE4在DISC1突变诱发的精神分裂症中的作用%The role of PDE4 in DISC1 mutation-induced schizophrenia

    Institute of Scientific and Technical Information of China (English)

    张舒; 王允山

    2012-01-01

    精神分裂症断裂基因1 (disrupted in schizophrenia 1,DISC1)是多种精神疾病中的一个关键的遗传学危险因素.DISC1能够与磷酸二酯酶4 (phosphodiesterase 4,PDE4)相互作用形成复合物,这可能是一些精神疾病的关键分子机制.PDE4能够水解cAMP,DISC1可通过调节PDE4的活性进而发挥调节cAMP在细胞内的信号转导功能.已有研究证实,在一些精神疾病患者中,DISC1和PDE4基因表达均发生了变化.DISC1突变导致其表达产物与PDE4的相互作用减弱,结果之一是降低脑PDE4的活性.DISC1与PDE4之间的相互作用的改变可能是精神分裂症及抑郁症等疾病症状产生的基础.%Disrupted in schizophrenia 1 (DISC1) is an important genetic risk factor for many mental diseases. DISC1 interacts directly with phosphodiesterase 4 (PDE4), and DISC1-PDE4 complexes are therefore likely to be involved in molecular mechanisms underlying psychiatric illnesses. PDE4 hydrolyses cAMP, and DISCI may regulate cAMP signalling through modulating PDE4 activity. There is evidence that the expression of both genes (DISCI and PDE4) is altered in some psychiatric patients. The mutation in DISCI reduces the interaction between DISCI and PDE4, and results in reduction of the activity of brain PDE4. Altered DISC1-PDE4 interaction may underlie the symptoms of schizophrenia and depression.

  1. Terascale Optimal PDE Simulations

    Energy Technology Data Exchange (ETDEWEB)

    David Keyes

    2009-07-28

    The Terascale Optimal PDE Solvers (TOPS) Integrated Software Infrastructure Center (ISIC) was created to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. These simulations often involve the solution of partial differential equations (PDEs) on terascale computers. The TOPS Center researched, developed and deployed an integrated toolkit of open-source, optimal complexity solvers for the nonlinear partial differential equations that arise in many DOE application areas, including fusion, accelerator design, global climate change and reactive chemistry. The algorithms created as part of this project were also designed to reduce current computational bottlenecks by orders of magnitude on terascale computers, enabling scientific simulation on a scale heretofore impossible.

  2. Characterization of phosphodiesterase 2A in human malignant melanoma PMP cells.

    Science.gov (United States)

    Morita, Hiroshi; Murata, Taku; Shimizu, Kasumi; Okumura, Kenya; Inui, Madoka; Tagawa, Toshiro

    2013-04-01

    The prognosis for malignant melanoma is poor; therefore, new diagnostic methods and treatment strategies are urgently needed. Phosphodiesterase 2 (PDE2) is one of 21 phosphodiesterases, which are divided into 11 families (PDE1-PDE11). PDE2 hydrolyzes cyclic AMP (cAMP) and cyclic GMP (cGMP), and its binding to cGMP enhances the hydrolysis of cAMP. We previously reported the expression of PDE1, PDE3 and PDE5 in human malignant melanoma cells. However, the expression of PDE2 in these cells has not been investigated. Herein, we examined the expression of PDE2A and its role in human oral malignant melanoma PMP cells. Sequencing of RT-PCR products revealed that PDE2A2 was the only variant expressed in PMP cells. Four point mutations were detected; one missense mutation at nucleotide position 734 (from C to T) resulted in the substitution of threonine with isoleucine at amino acid position 214. The other three were silent mutations. An in vitro migration assay and a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay revealed that suppressing PDE2 activity with its specific inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), had no impact on cell motility or apoptosis. Furthermore, the cytotoxicity of EHNA, assessed using a trypan blue exclusion assay, was negligible. On the other hand, assessment of cell proliferation by BrdU incorporation and cell cycle analysis by flow cytometry revealed that EHNA treatment inhibited DNA synthesis and increased the percentage of G2/M-arrested cells. Furthermore, cyclin A mRNA expression was downregulated, while cyclin E mRNA expression was upregulated in EHNA-treated cells. Our results demonstrated that the PDE2A2 variant carrying point mutations is expressed in PMP cells and may affect cell cycle progression by modulating cyclin A expression. Thus, PDE2A2 is a possible new molecular target for the treatment of malignant melanoma.

  3. Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders.

    Science.gov (United States)

    Sharma, Sorabh; Kumar, Kushal; Deshmukh, Rahul; Sharma, Pyare Lal

    2013-08-15

    Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.

  4. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin

    OpenAIRE

    DiPilato, Lisa M.; Ahmad, Faiyaz; Harms, Matthew; Seale, Patrick; Manganiello, Vincent; Birnbaum, Morris J.

    2015-01-01

    Inhibition of adipocyte lipolysis by insulin is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance and type 2 diabetes mellitus. The main target of the antilipolytic action of insulin is believed to be phosphodiesterase 3B (PDE3B), whose phosphorylation by Akt leads to accelerated degradation of the prolipolytic second messenger cyclic AMP (cAMP). To test this hypothesis genetically, brown adipocytes lacking...

  5. From Age-Related Cognitive Decline to Alzheimer's Disease : A Translational Overview of the Potential Role for Phosphodiesterases

    NARCIS (Netherlands)

    Heckman, Pim R A; Blokland, Arjan; Prickaerts, Jos; Zhang, Han-Ting; Xu, Ying; O'Donnell, James M.

    2017-01-01

    Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both

  6. Phosphodiesterases inhibitors and airway disease%磷酸二酯酶抑制剂与呼吸道疾病

    Institute of Scientific and Technical Information of China (English)

    李庆玲; 解卫平

    2008-01-01

    磷酸二酯酶(PDE)存在于许多炎症细胞及结构细胞中,目前已发现11种.PDE抑制剂主要抑制体内环磷酸腺苷(cAMP)及环磷酸鸟苷(cGMP)水解,使细胞内cAMP及cGMP浓度增加,引起一系列生理功能,如平滑肌舒张、减轻细胞炎症及免疫反应等.PDE4特异性水解cAMP,选择性PDE4抑制剂具有广泛抗炎作用,如抑制细胞趋化,抑制中性粒细胞、嗜酸粒细胞、巨噬细胞及T细胞细胞因子及化学趋化物质释放.第二代PDE4抑制剂Cilomilast和Roflumilast已进入临床实验阶段,并已证实对支气管哮喘(简称哮喘)及慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)有效.由于胃肠道副作用,这类药物临床应用受到一定限制.PDE5可特异性水解cGMP,对缺氧性肺动脉高压和血管重塑有效.PDE3和PDE7特异性水解cAMP,PDE7参与T细胞激活.目前其他PDE抑制剂与PDE4抑制剂混合制剂正在研发中.PDE4-PDE7双重抑制剂可能对哮喘及COPD更有效.PDE3-PDE4双重抑制剂具有更强的支气管舒张作用及气道保护作用.%Phosphodiesterases exist as 11 families in a variety of inflammatory and structural cells.They hydrolyse intracellular cyclic adenosine monophosphate(cAMP)and cyclic guanosine monophosphate (cGMP)into inactive state.So PDE inhibitors allow the elevation of cAMP and cGMP which lead to a variety of cellular effects including airway smooth muscle relaxation and inhibition of cellular inflanlmation or of immune responses.PDE4 inhibitors specifically prevent the hydrolysis of cAMP.Selective PDE4 inhibitors have broad spectrum anti-inflammatory effects such as inhibition of cell trafficking,cytokine and chemokine release from inflammatory cells.The new type PDE4 inhibitors,Cilomilast and Roflumilast,have reached clinical trial stage and were demonstrated to have beneficial effects in asthma and chronic obstructive pulmonary disease(COPD).The side effects of these PDE4 inhibitors may limit their

  7. Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases

    Science.gov (United States)

    Bingaman, Susan; Huxley, Virginia H.

    2010-01-01

    The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability (Ps) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094–H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1–5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, Ps, was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer Ps did not differ between XY (1.7 ± 0.2 × 10−6 cm/s; n = 8) and XX (1.8 ± 0.1 × 10−6 cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) Ps in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism in

  8. Cyclic nucleotide specific phosphodiesterases of Leishmania major

    Directory of Open Access Journals (Sweden)

    Linder Markus

    2006-03-01

    Full Text Available Abstract Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range

  9. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease.

    Science.gov (United States)

    Tanaka, Motomasa; Ishizuka, Koko; Nekooki-Machida, Yoko; Endo, Ryo; Takashima, Noriko; Sasaki, Hideyuki; Komi, Yusuke; Gathercole, Amy; Huston, Elaine; Ishii, Kazuhiro; Hui, Kelvin Kai-Wan; Kurosawa, Masaru; Kim, Sun-Hong; Nukina, Nobuyuki; Takimoto, Eiki; Houslay, Miles D; Sawa, Akira

    2017-04-03

    Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.

  10. Reduced Airway Hyperresponsiveness by Phosphodiesterase 3 and 4 Inhibitors in Guinea-Pigs

    Directory of Open Access Journals (Sweden)

    Nöella Germain

    1999-01-01

    Full Text Available The aim of the present study was to compare the effects of selective phosphodiesterase (PDE 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg, and studied 48 h after OA, a significant reduction (p<0.01 of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg. Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg also elicited a significant reduction (p<0.01 of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.

  11. Clinical and preclinical treatment of urologic diseases with phosphodiesterase isoenzymes 5 inhibitors: an update

    Directory of Open Access Journals (Sweden)

    Wen-Hao Zhang

    2016-01-01

    Full Text Available Phosphodiesterase isoenzymes 5 inhibitors (PDE5-Is are the first-line therapy for erectile dysfunction (ED. The constant discoveries of nitric oxide (NO/cyclic guanosine monophosphate (cGMP cell-signaling pathway for smooth muscle (SM control in other urogenital tracts (UGTs make PDE5-Is promising pharmacologic agents against other benign urological diseases. This article reviews the literature and contains some previously unpublished data about characterizations and activities of PDE5 and its inhibitors in treating urological disorders. Scientific discoveries have improved our understanding of cell-signaling pathway in NO/cGMP-mediated SM relaxation in UGTs. Moreover, the clinical applications of PDE5-Is have been widely recognized. On-demand PDE5-Is are efficacious for most cases of ED, while daily-dosing and combination with testosterone are recommended for refractory cases. Soluble guanylate cyclase (sGC stimulators also have promising role in the management of severe ED conditions. PDE5-Is are also the first rehabilitation strategy for postoperation or postradiotherapy ED for prostate cancer patients. PDE5-Is, especially combined with α-adrenoceptor antagonists, are very effective for benign prostatic hyperplasia (BPH except on maximum urinary flow rate (Q max with tadalafil recently proved for BPH with/without ED. Furthermore, PDE5-Is are currently under various phases of clinical or preclinical researches with promising potential for other urinary and genital illnesses, such as priapism, premature ejaculation, urinary tract calculi, overactive bladder, Peyronie′s disease, and female sexual dysfunction. Inhibition of PDE5 is expected to be an effective strategy in treating benign urological diseases. However, further clinical studies and basic researches investigating mechanisms of PDE5-Is in disorders of UGTs are required.

  12. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin.

    Science.gov (United States)

    DiPilato, Lisa M; Ahmad, Faiyaz; Harms, Matthew; Seale, Patrick; Manganiello, Vincent; Birnbaum, Morris J

    2015-08-01

    Inhibition of adipocyte lipolysis by insulin is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance and type 2 diabetes mellitus. The main target of the antilipolytic action of insulin is believed to be phosphodiesterase 3B (PDE3B), whose phosphorylation by Akt leads to accelerated degradation of the prolipolytic second messenger cyclic AMP (cAMP). To test this hypothesis genetically, brown adipocytes lacking PDE3B were examined for their regulation of lipolysis. In Pde3b knockout (KO) adipocytes, insulin was unable to suppress β-adrenergic receptor-stimulated glycerol release. Reexpressing wild-type PDE3B in KO adipocytes fully rescued the action of insulin against lipolysis. Surprisingly, a mutant form of PDE3B that ablates the major Akt phosphorylation site, murine S273, also restored the ability of insulin to suppress lipolysis. Taken together, these data suggest that phosphorylation of PDE3B by Akt is not required for insulin to suppress adipocyte lipolysis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Selective PDE4 inhibitors as potent anti-inflammatory drugs for the treatment of airway diseases

    Directory of Open Access Journals (Sweden)

    Vincent Lagente

    2005-03-01

    Full Text Available Phosphodiesterases (PDEs are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.

  14. Discovery of novel PDE10 inhibitors by a robust homogeneous screening assay

    Institute of Scientific and Technical Information of China (English)

    Qun-yi LI; Ming-kai XU; Gang LIU; Claus Tornby CHRISTOFFERSEN; Ming-wei WANG

    2013-01-01

    Aim:To develop a homogeneous assay for high-throughput screening (HTS) of inhibitors of phosphodiesterase 10 (PDE10).Methods:Purified human PDE10 enzyme derived from E coli,[3H]-cAMP and yttrium silicate microbeads were used to develop an HTS assay based on the scintillation proximity assay (SPA) technology.This method was applied to a large-scale screening campaign against a diverse compound library and subsequent confirmation studies.Preliminary structure-activity relationship (SAR) studies were initiated through limited structural modifications of the hits.Results:The IC50 value of the control compound (papaverine) assessed with the SPA approach was comparable and consistent with that reported in the literature.Signal to background (S/B) ratio and Z' factor of the assay system were evaluated to be 5.24 and 0.71,respectively.In an HTS campaign of 71 360 synthetic and natural compounds,67 hits displayed reproducible PDE10 inhibition,of which,8 were chosen as the scaffold for structural modifications and subsequent SAR analysis.Conclusion:The homogeneous PDE10 SPA assay is an efficient and robust tool to screen potential PDE10 inhibitors.Preliminary SAR studies suggest that potent PDE10 inhibitors could be identified and developed through this strategy.

  15. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction.

    Science.gov (United States)

    Spiwoks-Becker, Isabella; Wolloscheck, Tanja; Rickes, Oliver; Kelleher, Debra K; Rohleder, Nils; Weyer, Veronika; Spessert, Rainer

    2011-01-01

    The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal spiny projection neurons and represents a therapeutic target for the treatment of psychotic symptoms. As reported previously [J Biol Chem 2009; 284:7606-7622], in this study PDE10A was seen to be additionally expressed in the pineal gland where the levels of PDE10A transcript display daily changes. As with the transcript, the amount of PDE10A protein was found to be under daily and seasonal regulation. The observed cyclicity in the amount of PDE10A mRNA persists under constant darkness, is blocked by constant light and is modulated by the lighting regime. It therefore appears to be driven by the master clock in the suprachiasmatic nucleus (SCN). Since adrenergic agonists and dibutyryl-cAMP induce PDE10A mRNA, the in vitro clock-dependent control of Pde10a appears to be mediated via a norepinephrine → β-adrenoceptor → cAMP/protein kinase A signaling pathway. With regard to the physiological role of PDE10A in the pineal gland, the specific PDE10A inhibitor papaverine was seen to enhance the adrenergic stimulation of the second messenger cAMP and cGMP. This indicates that PDE10A downregulates adrenergic cAMP and cGMP signaling by decreasing the half-life of both nucleotides. Consistent with its effect on cAMP, PDE10A inhibition also amplifies adrenergic induction of the cAMP-inducible gene arylalkylamine N-acetyltransferase (Aanat) which codes the rate-limiting enzyme in pineal melatonin formation. The findings of this study suggest that Pde10a expression is under circadian and seasonal regulation and plays a modulatory role in pineal signal transduction and gene expression.

  16. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    Science.gov (United States)

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  17. Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M is more important than phosphodiesterase localization.

    Directory of Open Access Journals (Sweden)

    Karina Matthiesen

    Full Text Available The intracellular second messenger cyclic AMP (cAMP is degraded by phosphodiesterases (PDE. The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations.

  18. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction.

    Science.gov (United States)

    Thieme, Manuel; Sivritas, Sema H; Mergia, Evanthia; Potthoff, Sebastian A; Yang, Guang; Hering, Lydia; Grave, Katharina; Hoch, Henning; Rump, Lars C; Stegbauer, Johannes

    2017-03-01

    Changes in renal hemodynamics have a major impact on blood pressure (BP). Angiotensin (Ang) II has been shown to induce vascular dysfunction by interacting with phosphodiesterase (PDE)1 and PDE5. The predominant PDE isoform responsible for renal vascular dysfunction in hypertension is unknown. Here, we measured the effects of PDE5 (sildenafil) or PDE1 (vinpocetine) inhibition on renal blood flow (RBF), BP, and renal vascular function in normotensive and hypertensive mice. During acute short-term Ang II infusion, sildenafil decreased BP and increased RBF in C57BL/6 (WT) mice. In contrast, vinpocetine showed no effect on RBF and BP. Additionally, renal cGMP levels were significantly increased after acute sildenafil but not after vinpocetine infusion, indicating a predominant role of PDE5 in renal vasculature. Furthermore, chronic Ang II infusion (500 ng·kg(-1)·min(-1)) increased BP and led to impaired NO-dependent vasodilation in kidneys of WT mice. Additional treatment with sildenafil (100 mg·kg(-1)·day(-1)) attenuated Ang II-dependent hypertension and improved NO-mediated vasodilation. During chronic Ang II infusion, urinary nitrite excretion, a marker for renal NO generation, was increased in WT mice, whereas renal cGMP generation was decreased and restored after sildenafil treatment, suggesting a preserved cGMP signaling after PDE5 inhibition. To investigate the dependency of PDE5 effects on NO/cGMP signaling, we next analyzed eNOS-KO mice, a mouse model characterized by low vascular NO/cGMP levels. In eNOS-KO mice, chronic Ang II infusion increased BP but did not impair NO-mediated vasodilation. Moreover, sildenafil did not influence BP or vascular function in eNOS-KO mice. These results highlight PDE5 as a key regulator of renal hemodynamics in hypertension. Copyright © 2017 the American Physiological Society.

  19. Involvement of phosphodiesterase 4 in beta-adrenoceptor agonist-induced amylase release in parotid acinar cells.

    Science.gov (United States)

    Satoh, Keitaro; Guo, Ming-Yu; Sairenji, Nakayasu

    2009-06-01

    beta-Adrenoceptor activation increases intracellular cAMP levels and consequently induces exocytotic amylase release in parotid acinar cells. Phosphodiesterase (PDE) catalyses the hydrolysis of cAMP, which terminates the downstream signaling of this second messenger. We investigated the involvement of PDE4, a cAMP-PDE, in beta-adrenoceptor agonist-induced amylase release in mouse, rat and rabbit parotid acinar cells by using the specific PDE4 inhibitor rolipram. cAMP-PDE activity was detected in mouse, rat and rabbit parotid acinar cells. In the presence of rolipram, cAMP-PDE activity was reduced by about 31%, 38% and 33% in mouse, rat and rabbit parotid acinar cells, respectively. The increase in cAMP levels induced by the beta-adrenoceptor agonist isoproterenol was enhanced in the presence of rolipram in mouse, rat and rabbit parotid acinar cells. Isoproterenol-induced amylase release, but not constitutive amylase release, was also enhanced in the presence of rolipram in mouse, rat and rabbit parotid acinar cells. These results suggest that the rolipram-sensitive cAMP-PDE, PDE4, is involved in beta-adrenoceptor agonist-induced amylase release in parotid acinar cells.

  20. Development of highly potent phosphodiesterase 4 inhibitors with anti-neuroinflammation potential: Design, synthesis, and structure-activity relationship study of catecholamides bearing aromatic rings.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Zhong, Qiu-Ping; Huang, Chang; Cheng, Yu-Fang; Yang, Xue-Mei; Wang, Hai-Tao; Xu, Jiang-Ping

    2016-11-29

    In this study, catecholamides (7a-l) bearing different aromatic rings (such as pyridine-2-yl, pyridine-3-yl, phenyl, and 2-chlorophenyl groups) were synthesized as potent phosphodiesterase (PDE) 4 inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4A4, PDE4B1, PDE4C1, and PDE4D7 enzymes, and other PDE family members. Eight of the synthesized compounds were identified as having submicromolar IC50 values in the mid-to low-nanomolar range. Careful analysis on the structure-activity relationship of compounds 7a-l revealed that the replacement of the 4-methoxy group with the difluoromethoxy group improved inhibitory activities. More interesting, 4-difluoromethoxybenzamides 7i and 7j exhibited preference for PDE4 with higher selectivities of about 3333 and 1111-fold over other PDEs, respectively. In addition, compound 7j with wonderful PDE4D7 inhibitory activities inhibited LPS-induced TNF-α production in microglia.

  1. Expression of cAMP and cGMP-phosphodiesterase isoenzymes 3, 4, and 5 in the human clitoris: immunohistochemical and molecular biology study.

    Science.gov (United States)

    Oelke, Matthias; Hedlund, Petter; Albrecht, Knut; Ellinghaus, Peter; Stief, Christian G; Jonas, Udo; Andersson, Karl-Erik; Uckert, Stefan

    2006-05-01

    Only a little research has focused on the evaluation of female sexual function. With sexual stimulation, the clitoris becomes engorged with blood and tumescent. Nevertheless, only little is known about the significance of the cyclic nucleotide-mediated signal transduction in the control of this process. We sought to elucidate the presence of the phosphodiesterase (PDE) isoenzymes 3, 4, and 5 in the human clitoris using immunohistochemical and molecular biology methods. Thin sections of clitoral specimens were incubated with primary antibodies directed against PDE isoenzymes 3, 4, and 5. Next, the sections were incubated with either Texas red or fluorescein isothiocyanate-labeled secondary antibodies, and visualization was done using laser microscopy. The expression of mRNA encoding for various PDE isoenzymes was evaluated using reverse transcriptase polymerase chain reaction. Immunofluorescence indicating the presence of PDE4 (cyclic adenosine monophosphate-PDE) was observed in the nonvascular smooth musculature of the corpus cavernosum clitoris, sinusoidal endothelial and subendothelial layers, and nerve fibers innervating the tissue. Immunoreactivity specific for PDE5 (cyclic guanosine monophosphate-PDE) was limited to the smooth muscle of the clitoral erectile tissue. The fluorescein isothiocyanate reaction indicating the expression of PDE3 (cyclic adenosine monophosphate-PDE) was registered to a certain degree only in the clitoral epidermis. In the reverse transcriptase polymerase chain reaction studies, a predominant expression of mRNA encoding for PDE1A was registered, but only small amounts of mRNA encoding for PDE4 and PDE5 were detected. Our results have demonstrated the presence of cyclic adenosine monophosphate-PDE and cyclic guanosine monophosphate-PDE in the human clitoris and may indicate a regulatory function of these enzymes in the cyclic nucleotide-mediated control of smooth muscle tone.

  2. Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases.

    Science.gov (United States)

    Wang, Zhen-Zhen; Zhang, Yi; Zhang, Han-Ting; Li, Yun-Feng

    2015-01-01

    Phosphodiesterases (PDEs) are the only known enzymes to degrade intracellular cyclic AMP and/or cyclic GMP. The PDE superfamily consists of 11 families (PDE1- PDE11), each of which has 1 to 4 subtypes. Some of the subtypes may have multiple splice variants (e.g. PDE4D1-PDE4D11), leading to a total of more than 100 known proteins to date. Growing attention has been paid to the potential of PDEs as therapeutic targets for mood disorders and/or diseases affecting cognitive activity by controlling the rate of hydrolysis of the two aforementioned second messengers in recent years. The loss of cognitive functions is one of the major complaints most patients with CNS diseases face; it has an even more prominent negative impact on the quality of daily life. Cognitive dysfunction is usually a prognosis in patients suffering from neuropsychiatric and neurodegenerative diseases, including depression, schizophrenia, and Alzheimer's disease. This review will focus on the contributions of PDEs to the interface between cognitive deficits and neuropsychiatric and neurodegenerative disorders. It is expected to make for the understanding and discovery that selective PDE inhibitors have the therapeutic potential for cognitive dysfunctions associated with neuropsychiatric and neurodegenerative disorders.

  3. Anchored PDE4 regulates chloride conductance in wild-type and ΔF508-CFTR human airway epithelia.

    Science.gov (United States)

    Blanchard, Elise; Zlock, Lorna; Lao, Anna; Mika, Delphine; Namkung, Wan; Xie, Moses; Scheitrum, Colleen; Gruenert, Dieter C; Verkman, Alan S; Finkbeiner, Walter E; Conti, Marco; Richter, Wito

    2014-02-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 μA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 μA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.

  4. Effects of PDE4 inhibitors on lipopolysaccharide-induced priming of superoxide anion production from human mononuclear cells

    Directory of Open Access Journals (Sweden)

    Noëlla Germain

    2001-01-01

    Full Text Available Aims: Phosphodiesterase 4 (PDE4 inhibitors have been described as potent anti-inflammatory compounds, involving an increase in intracellular levels of cyclic 3',5'-adenosine monophosphate (AMP. The aim of this study was to compare the effects of selective PDE4 inhibitors, rolipram and RP 73-401 with the cell permeable analogue of cyclic AMP, dibutyryl-cyclic AMP (db-cAMP and the anti-inflammatory cytokine interleukin-10 (IL-10 on superoxide anion production from peripheral blood mononuclear cells preincubated with lipopolysaccharide (LPS.

  5. Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Afzal Saliha

    2006-01-01

    Full Text Available Abstract Background Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI2 analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs, which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4, responsible for cAMP hydrolysis. Methods Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12. Responses to platelet-derived growth factor-BB (5–10 ng/ml, serum, PGI2 analogues (cicaprost, iloprost and PDE4 inhibitors (roflumilast, rolipram, cilomilast were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9 production. Results Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5 of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%, PDE2 (15.8 ± 3.4% or PDE1 activity (14.5 ± 4.2%. Intracellular cAMP levels were increased by PGI2 analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition, rolipram (37 ± 6% and cilomilast (30 ± 4% and, in the presence of 5 nM cicaprost, these compounds exhibited EC50 values of 4.4 (2.6–6.1 nM (Mean and 95% confidence interval, 59 (36–83 nM and 97 (66–130 nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9 production and promoted the anti-proliferative effects of PGI2 analogues. The cAMP activators iloprost and forskolin also induced apoptosis

  6. Eukaryotic-type Ser/Thr protein kinase mediated phosphorylation of mycobacterial phosphodiesterase affects its localization to the cell wall

    Directory of Open Access Journals (Sweden)

    Neha eMalhotra

    2016-02-01

    Full Text Available Phosphodiesterase enzymes, involved in cAMP hydrolysis reaction, are present throughout phylogeny and their phosphorylation mediated regulation remains elusive in prokaryotes. In this context, we focused on this enzyme from Mycobacterium tuberculosis. The gene encoded by Rv0805 was PCR amplified and expressed as a histidine-tagged protein (mPDE utilizing Escherichia coli based expression system. In kinase assays, upon incubation with mycobacterial Clade I eukaryotic-type Ser/Thr kinases (PknA, PknB and PknL, Ni-NTA purified mPDE protein exhibited transphosphorylation ability albeit with varying degree. When mPDE was co-expressed one at a time with these kinases in E. coli, it was also recognized by an anti-phosphothreonine antibody, which further indicates its phosphorylating ability. Mass spectrometric analysis identified Thr-309 of mPDE as a phosphosite. In concordance with this observation, anti-phosphothreonine antibody marginally recognized mPDE-T309A mutant protein; however, such alteration did not affect the enzymatic activity. Interestingly, mPDE expressed in Mycobacterium smegmatis yielded a phosphorylated protein that preferentially localized to cell wall. In contrast, mPDE-T309A, the phosphoablative variant of mPDE, did not show such behaviour. On the other hand, phosphomimics of mPDE (T309D or T309E, exhibited similar cell wall anchorage as was observed with the wild-type. Thus, our results provide credence to the fact that eukaryotic-type Ser/Thr kinase mediated phosphorylation of mPDE renders negative charge to the protein, promoting its localization on cell wall. Furthermore, multiple sequence alignment revealed that Thr-309 is conserved among mPDE orthologs of M. tuberculosis complex, which presumably emphasizes evolutionary significance of phosphorylation at this residue.

  7. The inhibition of phosphodiesterase type 5 as a novel target for antidepressant action

    DEFF Research Database (Denmark)

    Liebenberg, Nico

    2010-01-01

    therapy of depression. A recent study from our laboratory reported an antidepressant-like response in the rat forced swim test (FST) following chronic (11 day) co-administration of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the muscarinic acetylcholine (mACh) receptor antagonist atropine......-related, suggesting that it may differentially affect the regulation of neurotransmission associated with antidepressant and depressogenic responses at different doses. Unlike the mood-regulating responses, however, the anxiolytic-like responses following chronic PDE5 inhibition does not appear to involve...... not involve up-regulation of frontal cortical and hippocampal mACh receptors. In summary, this project emphasises the potential of PDE5 inhibition as a novel antidepressant and anxiolytic strategy, and provides important insight into the specific neuronal mechanism(s) that may be involved...

  8. Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012

    Directory of Open Access Journals (Sweden)

    Susann Schröder

    2016-05-01

    Full Text Available Cyclic nucleotide phosphodiesterases (PDEs are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP. Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.

  9. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Freya M. Mowat

    2017-06-01

    Full Text Available Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29–44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies.

  10. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis.

    Science.gov (United States)

    Lynch, Danielle C; Dyment, David A; Huang, Lijia; Nikkel, Sarah M; Lacombe, Didier; Campeau, Philippe M; Lee, Brendan; Bacino, Carlos A; Michaud, Jacques L; Bernier, Francois P; Parboosingh, Jillian S; Innes, A Micheil

    2013-01-01

    Acrodysostosis is characterized by nasal hypoplasia, peripheral dysostosis, variable short stature, and intellectual impairment. Recently, mutations in PRKAR1A were reported in patients with acrodysostosis and hormone resistance. Subsequently, mutations in a phosphodiesterase gene (PDE4D) were identified in seven sporadic cases. We sequenced PDE4D in seven acrodysostosis patients from five families. Missense mutations were identified in all cases. Families showed de novo inheritance except one family with three affected children whose father was subsequently found to have subtle features of acrodysostosis. There were no recurrent mutations. Short stature and endocrine resistance are rare in this series; however, cognitive involvement and obesity were frequent. This last finding is relevant given PDE4D is insulin responsive and potentially involved in lipolysis. PDE4D encodes a cyclic AMP regulator and places PDE4D-related acrodysostosis within the same family of diseases as pseudohypoparathyroidism, pseudopseudohypoparathyroidism, PRKAR1A-related acrodysostosis and brachydactyly-mental retardation syndrome; all characterized by cognitive impairment and short distal extremities.

  11. PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Irene Paterniti

    Full Text Available BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs, which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score, and TNF-α, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.

  12. Phosphodiesterase-5 activity exerts a coronary vasoconstrictor influence in awake swine that is mediated in part via an increase in endothelin production

    NARCIS (Netherlands)

    Z. Zhou (Zhichao); V.J. de Beer (Vincent Jacob); S.B. Bender (Shawn ); A.H.J. Danser (Jan); D. Merkus (Daphne); H. Laughlin (Harold); D.J.G.M. Duncker (Dirk)

    2014-01-01

    textabstractNitric oxide (NO)-induced coronary vasodilation is mediated through production of cyclic guanosine monophosphate (cGMP) and through inhibition of the endothelin-1 (ET) system. We previously demonstrated that phosphodiesterase-5 (PDE5)-mediated cGMP breakdown and ET each exert a vasoconst

  13. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo.

    Science.gov (United States)

    Morales-Garcia, Jose A; Echeverry-Alzate, Victor; Alonso-Gil, Sandra; Sanz-SanCristobal, Marina; Lopez-Moreno, Jose A; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2017-02-01

    The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.

  14. Phosphodiesterase 5a Inhibition with Adenoviral Short Hairpin RNA Benefits Infarcted Heart Partially through Activation of Akt Signaling Pathway and Reduction of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Longhu Li

    Full Text Available Treatment with short hairpin RNA (shRNA interference therapy targeting phosphodiesterase 5a after myocardial infarction (MI has been shown to mitigate post-MI heart failure. We investigated the mechanisms that underpin the beneficial effects of PDE5a inhibition through shRNA on post-MI heart failure.An adenoviral vector with an shRNA sequence inserted was adopted for the inhibition of phosphodiesterase 5a (Ad-shPDE5a in vivo and in vitro. Myocardial infarction (MI was induced in male C57BL/6J mice by left coronary artery ligation, and immediately after that, the Ad-shPDE5a was injected intramyocardially around the MI region and border areas.Four weeks post-MI, the Ad-shPDE5a-treated mice showed significant mitigation of the left ventricular (LV dilatation and dysfunction compared to control mice. Infarction size and fibrosis were also significantly reduced in Ad-shPDE5a-treated mice. Additionally, Ad-shPDE5a treatment decreased the MI-induced inflammatory cytokines interleukin (IL-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β1, which was confirmed in vitro in Ad-shPDE5a transfected myofibroblasts cultured under oxygen glucose deprivation. Finally, Ad-shPDE5a treatment was found to activate the myocardial Akt signaling pathway in both in vivo and in vitro experiments.These findings indicate that PDE5a inhibition by Ad-shPDE5a via the Akt signal pathway could be of significant value in the design of future therapeutics for post-MI heart failure.

  15. Characterization of binding and inhibitory properties of TAK-063, a novel phosphodiesterase 10A inhibitor.

    Directory of Open Access Journals (Sweden)

    Akina Harada

    Full Text Available Phosphodiesterase 10A (PDE10A inhibition is a novel and promising approach for the treatment of central nervous system disorders such as schizophrenia and Huntington's disease. A novel PDE10A inhibitor, TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-ylphenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl-pyridazin-4(1H-one] has shown high inhibitory activity and selectivity for human recombinant PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity over other phosphodiesterases (PDEs was more than 15000-fold. TAK-063 at 10 µM did not show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In vitro autoradiography (ARG studies using rat brain sections revealed that [3H]TAK-063 selectively accumulated in the caudate putamen (CPu, nucleus accumbens (NAc, globus pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. This [3H]TAK-063 accumulation was almost entirely blocked by an excess amount of MP-10, a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of Pde10a-knockout mice. In rat brain sections, [3H]TAK-063 bound to a single high-affinity site with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc shell, respectively. Orally administered [14C]TAK-063 selectively accumulated in PDE10A expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by TAK-063 in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o. was calculated to produce 50% occupancy in rats. Translational studies with TAK-063 and other PDE10A inhibitors such as those presented here will help us better understand the pharmacological profile of this class of potential central nervous system drugs.

  16. [Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism].

    Science.gov (United States)

    Makuch, Edyta; Matuszyk, Janusz

    2012-07-20

    PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme's intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  17. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Nawrocki, Andrea R; Rodriguez, Carlos G; Toolan, Dawn M; Price, Olga; Henry, Melanie; Forrest, Gail; Szeto, Daphne; Keohane, Carol Ann; Pan, Yie; Smith, Karen M; Raheem, Izzat T; Cox, Christopher D; Hwa, Joyce; Renger, John J; Smith, Sean M

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.

  18. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The

  19. Rolipram Attenuates Bile Duct Ligation–Induced Liver Injury in Rats: A Potential Pathogenic Role of PDE4

    Science.gov (United States)

    Barve, Shirish; Breitkopf-Heinlein, Katja; Li, Yan; Zhang, JingWen; Avila, Diana V.; Dooley, Steven; McClain, Craig J.

    2013-01-01

    Anti-inflammatory and antifibrotic effects of the broad spectrum phosphodiesterase (PDE) inhibitor pentoxifylline have suggested an important role for cyclic nucleotides in the pathogenesis of hepatic fibrosis; however, studies examining the role of specific PDEs are lacking. Endotoxemia and Toll-like receptor 4 (TLR4)-mediated inflammatory and profibrotic signaling play a major role in the development of hepatic fibrosis. Because cAMP-specific PDE4 critically regulates lipopolysaccharide (LPS)-TLR4–induced inflammatory cytokine expression, its pathogenic role in bile duct ligation-induced hepatic injury and fibrogenesis in Sprague-Dawley rats was examined. Initiation of cholestatic liver injury and fibrosis was accompanied by a significant induction of PDE4A, B, and D expression and activity. Treatment with the PDE4-specific inhibitor rolipram significantly decreased liver PDE4 activity, hepatic inflammatory and profibrotic cytokine expression, injury, and fibrosis. At the cellular level, in relevance to endotoxemia and inflammatory cytokine production, PDE4B was observed to play a major regulatory role in the LPS-inducible tumor necrosis factor (TNF) production by isolated Kupffer cells. Moreover, PDE4 expression was also involved in the in vitro activation and transdifferentiation of isolated hepatic stellate cells (HSCs). Particularly, PDE4A, B, and D upregulation preceded induction of the HSC activation marker α-smooth muscle actin (α-SMA). In vitro treatment of HSCs with rolipram effectively attenuated α-SMA, collagen expression, and accompanying morphologic changes. Overall, these data strongly suggest that upregulation of PDE4 expression during cholestatic liver injury plays a potential pathogenic role in the development of inflammation, injury, and fibrosis. PMID:23887098

  20. Chronic lymphocytic leukemia and B and T cells differ in their response to cyclic nucleotide phosphodiesterase inhibitors.

    Science.gov (United States)

    Meyers, John A; Su, Derrick W; Lerner, Adam

    2009-05-01

    Phosphodiesterase (PDE)4 inhibitors, which activate cAMP signaling by reducing cAMP catabolism, are known to induce apoptosis in B lineage chronic lymphocytic leukemia (CLL) cells but not normal human T cells. The explanation for such differential sensitivity remains unknown. In this study, we report studies contrasting the response to PDE4 inhibitor treatment in CLL cells and normal human T and B cells. Affymetrix gene chip analysis in the three cell populations following treatment with the PDE4 inhibitor rolipram identified a set of up-regulated transcripts with unusually high fold changes in the CLL samples, several of which are likely part of compensatory negative feedback loops. The high fold changes were due to low basal transcript levels in CLL cells, suggesting that cAMP-mediated signaling may be unusually tightly regulated in this cell type. Rolipram treatment augmented cAMP levels and induced ATF-1/CREB serine 63/133 phosphorylation in both B lineage cell types but not T cells. As treatment with the broad-spectrum PDE inhibitor 3-isobutyl-1-methylxanthine induced T cell CREB phosphorylation, we tested a series of family-specific PDE inhibitors for their ability to mimic 3-isobutyl-1-methylxanthine-induced ATF-1/CREB phosphorylation. Whereas PDE3 inhibitors alone had no effect, the combination of PDE3 and PDE4 inhibitors induced ATF-1/CREB serine 63/133 phosphorylation in T cells. Consistent with this observation, PDE3B transcript and protein levels were low in CLL cells but easily detectable in T cells. Combined PDE3/4 inhibition did not induce T cell apoptosis, suggesting that cAMP-mediated signal transduction that leads to robust ATF-1/CREB serine 63/133 phosphorylation is not sufficient to induce apoptosis in this lymphoid lineage.

  1. Design and synthesis of potent and selective pyridazin-4(1H)-one-based PDE10A inhibitors interacting with Tyr683 in the PDE10A selectivity pocket.

    Science.gov (United States)

    Yoshikawa, Masato; Hitaka, Takenori; Hasui, Tomoaki; Fushimi, Makoto; Kunitomo, Jun; Kokubo, Hironori; Oki, Hideyuki; Nakashima, Kosuke; Taniguchi, Takahiko

    2016-08-15

    Utilizing structure-based drug design techniques, we designed and synthesized phosphodiesterase 10A (PDE10A) inhibitors based on pyridazin-4(1H)-one. These compounds can interact with Tyr683 in the PDE10A selectivity pocket. Pyridazin-4(1H)-one derivative 1 was linked with a benzimidazole group through an alkyl spacer to interact with the OH of Tyr683 and fill the PDE10A selectivity pocket. After optimizing the linker length, we identified 1-(cyclopropylmethyl)-5-[3-(1-methyl-1H-benzimidazol-2-yl)propoxy]-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (16f) as having highly potent PDE10A inhibitory activity (IC50=0.76nM) and perfect selectivity against other PDEs (>13,000-fold, IC50=>10,000nM). The crystal structure of 16f bound to PDE10A revealed that the benzimidazole moiety was located deep within the PDE10A selectivity pocket and interacted with Tyr683. Additionally, a bidentate interaction existed between the 5-alkoxypyridazin-4(1H)-one moiety and the conserved Gln716 present in all PDEs.

  2. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator.

    Science.gov (United States)

    Phippen, Curtis William; Mikolajek, Halina; Schlaefli, Henry George; Keevil, Charles William; Webb, Jeremy Stephen; Tews, Ivo

    2014-12-20

    Diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively synthesise and hydrolyse the secondary messenger cyclic dimeric GMP (c-di-GMP), and both activities are often found in a single protein. Intracellular c-di-GMP levels in turn regulate bacterial motility, virulence and biofilm formation. We report the first structure of a tandem DGC-PDE fragment, in which the catalytic domains are shown to be active. Two phosphodiesterase states are distinguished by active site formation. The structures, in the presence or absence of c-di-GMP, suggest that dimerisation and binding pocket formation are linked, with dimerisation being required for catalytic activity. An understanding of PDE activation is important, as biofilm dispersal via c-di-GMP hydrolysis has therapeutic effects on chronic infections.

  3. Domain mapping of the retinal cyclic GMP phosphodiesterase gamma-subunit. Function of the domains encoded by the three exons of the gamma-subunit gene.

    Science.gov (United States)

    Takemoto, D J; Hurt, D; Oppert, B; Cunnick, J

    1992-02-01

    Retinal rod-outer-segment phosphodiesterase (PDE) is a heterotetramer consisting of two similar, but not identical, catalytic subunits (alpha and beta) and two identical inhibitory subunits (gamma 2). Previously, we have reported that the site of PDE alpha/beta interaction with PDE gamma is located within residues 54-87 [Cunnick, Hurt, Oppert, Sakamoto & Takemoto (1990) Biochem. J. 271, 721-727]. The site for PDE gamma interaction with transducin alpha (T alpha) was found to encompass residues 24-45 of PDE gamma [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. In order to identify binding sites and other functional domains of PDE gamma, the three peptides which are encoded by the three exons of the PDE gamma gene were synthesized chemically. These exons encode for residues 1-49, 50-62 and 63-87 of bovine PDE gamma [Piriev, Purishko, Khramtsov & Lipkin (1990) Dokl. Akad. Nauk. SSSR 315, 229-230]. The peptide encompassing residues 63-87 was inhibitory in a PDE assay, whereas peptides 1-49 and 50-62 had no effect. However, both peptides 1-49 and 63-87 bound to PDE alpha/beta in a solid-phase binding assay. Only peptide 1-49 bound to T alpha.GTP[S] (GTP[S] is guanosine 5'-[gamma-thio]triphosphate). These data confirm that the inhibitory region of PDE gamma is encoded by exon 3 (residues 63-87), whereas a separate binding site for PDE alpha/beta and for T alpha.GTP[S] is encoded by exon 1 (residues 1-49). To study further the structure-function relationship of PDE gamma, this entire protein and two mutants were chemically synthesized. One mutant (-CT) lacked residues 78-87, whereas another replaced tyrosine-84 with glycine (TYR-84). Whereas the synthetic PDE gamma inhibited PDE alpha/beta catalytic activity, the -CT and TVR-84 mutants did not. All three synthetic proteins bound to both PDE alpha/beta and and T alpha.GTP[S]. These data confirm the presence of an alternative binding site on PDE gamma and demonstrate the importance of tyrosine

  4. Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro

    Directory of Open Access Journals (Sweden)

    Alessandra C Alves

    1997-12-01

    Full Text Available In the present study, we have performed a comparative analysis of the effect of selective inhibitors of phosphodiesterase (PDE type III, IV and V on eosinophil chemotaxis triggered by platelet activating factor (PAF and leukotriene B4 (LTB4 in vitro. The effect of the analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (Bt2 cyclic AMP and N2-2'-O- dibutyrylguanosine 3':5' cyclic monophosphate (Bt2 cyclic GMP has also been determined. The eosinophils were obtained from the peritoneal cavity of naive Wistar rats and purified in discontinuous Percoll gradients to 85-95% purity. We observed that pre-incubation of eosinophils with the PDE type IV inhibitor rolipram suppressed the chemotactic response triggered by PAF and LTB4, in association with an increase in the intracellular levels of cyclic AMP. In contrast, neither zaprinast (type V inhibitor nor type III inhibitors milrinone and SK&F 94836 affected the eosinophil migration. Only at the highest concentration tested did the analogue Bt2 cyclic AMP suppress the eosinophil chemotaxis, under conditions where Bt2 cyclic GMP was ineffective. We have concluded that inhibition of PDE IV, but not PDE III or V, was able to block the eosinophil chemotaxis in vitro, suggesting that the suppressive activity of selective PDE IV inhibitors on tissue eosinophil accumulation may, at least, be partially dependent on their ability to directly inhibit the eosinophil migration.

  5. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction

    Science.gov (United States)

    Moschos, Marilita M; Nitoda, Eirini

    2016-01-01

    Aim The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE) inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders. Method This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors. Results PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG), conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of non-arteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion. Discussion So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists. PMID:27799745

  6. Identification and Localization of the Cyclic Nucleotide Phosphodiesterase 10A in Bovine Testis and Mature Spermatozoa

    Science.gov (United States)

    Goupil, Serge; Maréchal, Loïze; El Hajj, Hassan; Tremblay, Marie-Ève; Richard, François J.

    2016-01-01

    In mammals, adenosine 3’, 5’-cyclic monophosphate (cAMP) is known to play highly important roles in sperm motility and acrosomal exocytosis. It is known to act through protein phosphorylation via PRKA and through the activation of guanine nucleotide exchange factors like EPAC. Sperm intracellular cAMP levels depend on the activity of adenylyl cyclases, mostly SACY, though transmembrane-containing adenylyl cyclases are also present, and on the activity of cyclic nucleotide phosphodiesterases (PDE) whose role is to degrade cAMP into 5’-AMP. The PDE superfamily is subdivided into 11 families (PDE1 to 11), which act on either cAMP or cGMP, or on both cAMP and cGMP although with different enzymatic properties. PDE10, which is more effective on cAMP than cGMP, has been known for almost 15 years and is mostly studied in the brain where it is associated with neurological disorders. Although a high level of PDE10A gene expression is observed in the testis, information on the identity of the isoforms or on the cell type that express the PDE10 protein is lacking. The objective of this study was to identify the PDE10A isoforms expressed in the testis and germ cells, and to determine the presence and localization of PDE10A in mature spermatozoa. As a sub-objective, since PDE10A transcript variants were reported strictly through analyses of bovine genomic sequence, we also wanted to determine the nucleotide and amino acid sequences by experimental evidence. Using RT-PCR, 5’- and 3’-RACE approaches we clearly show that PDE10A transcript variants X3 and X5 are expressed in bovine testis as well as in primary spermatocytes and spermatids. We also reveal using a combination of immunological techniques and proteomics analytical tools that the PDE10A isoform X4 is present in the area of the developing acrosome of spermatids and of the acrosome of mature spermatozoa. PMID:27548062

  7. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    Science.gov (United States)

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  8. Unfractionated and low-molecular-weight heparin and the phosphodiesterase inhibitors, IBMX and cilostazol, block ex vivo Equid Herpesvirus type-1-induced platelet activation

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    2016-11-01

    Full Text Available Equid herpes virus type-1 (EHV-1 is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins or platelet inhibitors that impede post-receptor thrombin signaling (phosphodiesterase [PDE] antagonists would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque forming unit/cell in the presence or absence of unfractionated heparin (UFH, low-molecular-weight (LMWH heparin or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1 to 0.2 U/mL anti-Factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX or isoenzyme-3 selective (cilostazol PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  9. Phosphodiesterase type 5 inhibitors and risk of melanoma: A meta-analysis.

    Science.gov (United States)

    Tang, Huilin; Wu, Wenting; Fu, Shuangshuang; Zhai, Suodi; Song, Yiqing; Han, Jiali

    2017-09-01

    The association between phosphodiesterase type 5 (PDE5) inhibitors and melanoma risk is controversial. We quantify the association between use of PDE5 inhibitors and melanoma. We systematically searched PubMed, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, and ClinicalTrials.gov for studies that were conducted up to July 13, 2016, and evaluated the association between PDE5 inhibitors and skin cancer. Random effects meta-analyses were used to calculate the adjusted odds ratio (OR) with the 95% confidence interval (CI). Five observational studies were included. Compared with PDE5 inhibitor nonuse, PDE5 inhibitor use was slightly but significantly associated with an increased risk for development of melanoma (OR, 1.12; 95% CI, 1.03-1.21) and basal cell carcinoma (OR, 1.14; 95% CI, 1.09-1.19) but not squamous cell carcinoma. For melanoma risk, none of the prespecified factors (dose of PDE5 inhibitor, study design, and study region) significantly affected the results (P > .05). Our sensitivity analysis confirmed the stability of the results. We included only observational studies, which had some heterogeneities and inconsistent controlling for potential confounders. Use of PDE5 inhibitors may be associated with a slightly increased risk for development of melanoma and basal cell carcinoma but not squamous cell carcinoma. However, further large well-conducted prospective studies with adequate adjustment for potential confounders are required for confirmation. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  10. PET measurements of cAMP-mediated phosphodiesterase-4 with (R)-[11C]rolipram.

    Science.gov (United States)

    Kenk, Miran; Thomas, Adam; Lortie, Mireille; Dekemp, Rob; Beanlands, Rob S; Dasilva, Jean N

    2011-01-01

    Cyclic adenosine monophosphate (cAMP) is the common second messenger in signal-transduction cascades originating at a number of monoamine receptors involved in neurotransmission, cardiac function and smooth muscle contraction. Altered regulation of cAMP synthesis (at receptors, G-protein subunits or adenylyl cyclase) and breakdown by phosphodiesterase (PDE) enzymes have been implicated in a number of pathologies. The PDE4 inhibitor (R)-rolipram, and the less active (S)- enantiomer, have been labeled with carbon-11 and characterized by in vivo and in vitro experiments for use in the evaluation of altered PDE4 levels in the brain and cardiac tissues. (R)-[11C]Rolipram has been shown to bind selectively to PDE4 over other PDE isozymes, with specific binding reflecting approximately 80 and 40% of the total detected radioactivity in the rat brain and the heart, respectively. Tracer retention in PDE4-rich tissues is increased by cAMP-elevating treatments, as detected by in vivo PET studies and ex vivo biodistribution experiments. In vivo PET imaging studies display strong region-specific signal in the brain and heart, as evaluated in rats, pigs, monkeys and humans. Impaired cAMP-mediated signaling was observed in animal models of aging, obesity, anthracycline-induced cardiotoxicity and myocardial infarction using (R)-[11C]rolipram. Given the critical role of cAMP in multiple hormonal pathways, the good safety profile and well-characterized pharmacokinetics, (R)-[11C]rolipram PET imaging provides a novel tool for serial monitoring of cAMP-mediated signaling at the PDE4 level, yielding insight into pathological progression with potential for directing therapy.

  11. Usage and perceptions of phosphodiesterase type 5 inhibitors among the male partners of infertile couples.

    Science.gov (United States)

    Song, Seung-Hun; Kim, Dong Suk; Shim, Sung Han; Lim, Jung Jin; Yang, Seung Choul

    2016-03-01

    We aimed to investigate the prevalence of erectile dysfunction (ED) and the usage of phosphodiesterase type 5 (PDE5) inhibitors for ED treatment in infertile couples. A total of 260 male partners in couples reporting infertility lasting at least 1 year were included in this study. In addition to an evaluation of infertility, all participants completed the International Index of Erectile Function (IIEF)-5 questionnaire to evaluate their sexual function. The participants were asked about their use of PDE5 inhibitors while trying to conceive during their partner's ovulatory period and about their concerns regarding the risks of PDE5 inhibitor use to any eventual pregnancy and/or the fetus. Based on the IIEF-5 questionnaire, 41.5% of the participants (108/260) were classified as having mild ED (an IIEF-5 score of 17-21), while 10.4% of the participants (27/260) had greater than mild ED (an IIEF-5 score of 16 or less). The majority (74.2%, 193/260) of male partners of infertile couples had a negative perception of the safety of using a PDE5 inhibitor while trying to conceive. Only 11.1% of men (15/135) with ED in infertile couples had used a PDE5 inhibitor when attempting conception. ED was found to be common in the male partners of infertile couples, but the use of PDE5 inhibitors among these men was found to be very low. The majority of male partners were concerned about the risks of using PDE5 inhibitors when attempting to conceive. Appropriate counseling about this topic and treatment when necessary would likely be beneficial to infertile couples in which the male partner has ED.

  12. Synthesis and characterization of related substances and metabolite of tadalafil, a PDE-5 inhibitor

    Directory of Open Access Journals (Sweden)

    Goverdhan Gilla

    2013-03-01

    Full Text Available Tadalafil (Cialis is a potent and selective inhibitor of cyclic guanosine monophosphate (cGMP-specific phosphodiesterase type-5 (PDE-5 and it is administered orally for the treatment of erectile dysfunction (ED. Two synthetic schemes were evaluated to study the impurity profile of tadalafil. Six impurities were detected in the bulk substance (prepared by two methods at a level of 0.1-0.15%. Identification, synthesis, characterization of impurities (related substances and metabolite and origin of their formation is described .

  13. Pulmonary Hypertension Therapy and a Systematic Review of Efficacy and Safety of PDE-5 Inhibitors.

    Science.gov (United States)

    Unegbu, Chinwe; Noje, Corina; Coulson, John D; Segal, Jodi B; Romer, Lewis

    2017-03-01

    Pulmonary hypertension (PH) is a syndrome that is of growing concern to pediatricians worldwide. Recent data led to concerns about the safety of phosphodiesterase type 5 (PDE5) inhibitors in children and a US Food and Drug Administration safety advisory. Our objective is to provide insight into therapies for PH in children and to systematically review the comparative effectiveness and safety of PDE5 inhibitors in the management of pediatric patients with PH. We searched the following databases through February 2015: Medline, Embase, SCOPUS, and the Cochrane Central Register of Controlled Trials. We included studies that examined PDE5 inhibitor use in children with PH. Allowed comparators were either no medication or other classes of medication for management of PH. Study inclusion was via a 2-stage process with 2 reviewers and a predesigned form. Of 1270 papers identified by the literature search, 21 were included: 8 randomized controlled trials and 13 observational studies (9 retrospective, 4 prospective). There is strong evidence that PDE5 inhibitor use improves echocardiography measurements, cardiac catheterization parameters, and oxygenation compared with baseline or placebo in pediatric patients with PH. Evidence suggests that low- and moderate-dose sildenafil are safe regimens for children. There are a relatively small number of randomized controlled trials that address use of PDE5 inhibitors in pediatric patients with PH. PDE5 inhibitors are effective agents for cardiovascular and oxygenation end points in pediatric PH and important components of a multimodal pharmacotherapeutic approach to this growing challenge. Additional studies are needed to define optimal PH therapy in childhood.

  14. PDE5 Inhibitors As Potential Tools In The Treatment Of Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Sabrina eNoel

    2012-09-01

    Full Text Available Despite great advances in the understanding of the genetics and pathophysiology of cystic fibrosis (CF, there is still no cure for the disease. Using phosphodiesterase type 5 (PDE5 inhibitors, we and others have provided evidence of rescued F508del-CFTR trafficking and corrected deficient chloride transport activity. Studies using PDE5 inhibitors in mice homozygous for the clinically relevant F508del mutation have been conducted with the aim of restoring F508del-CFTR protein function. We demonstrated, by measuring transepithelial nasal potential difference in F508del mice following intraperitoneal injection of sildenafil, vardenafil or taladafil at clinical doses are able to restore the decreased CFTR-dependent chloride transport across the nasal mucosa. Moreover, vardenafil, but not sildenafil, stimulates chloride transport through the normal CFTR protein. We developed a specific nebulizer setup for mice, with which we demonstrated, through a single inhalation of PDE5 inhibitors, local activation of CFTR protein in CF. Significant potential advantages of inhalation drug therapy over oral or intravenous routes include rapid onset of pharmacological action, reduced systemic secondary effects and reduced effective drug doses compared to the drug delivered orally; this underlines the relevance and impact of our work for translational science. More recently, we analyzed the bronchoalveolar lavage of CF and wild-type mice for cell infiltrates and expression of pro-inflammatory cytokines and chemokines; we found that the CFTR activating effect of vardenafil, selected as a representative long-lasting PDE5 inhibitor, breaks the vicious circle of lung inflammation which plays a major role in morbi-mortality in CF. Our data highlight the potential use of PDE5 inhibitors in CF. Therapeutic approaches using clinically approved PDE5 inhibitors to address F508del-CFTR defects could speed up the development of new therapies for CF.

  15. The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice.

    Directory of Open Access Journals (Sweden)

    Florian Rieder

    Full Text Available OBJECTIVE: The specific inhibition of phosphodiesterase (PDE4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS-induced colitis model. METHODS: The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days receiving either roflumilast (1 or 5 mg/kg body weight/d p.o. or pumafentrine (1.5 or 5 mg/kg/d p.o. were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ production and CD69 expression. RESULTS: Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding, colon length, and local tumor necrosis factor-α (TNFα production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. CONCLUSIONS: These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice.

  16. Synthesis and bioactivity of pyrazole and triazole derivatives as potential PDE4 inhibitors.

    Science.gov (United States)

    Li, Ya-Sheng; Tian, Hao; Zhao, Dong-Sheng; Hu, De-Kun; Liu, Xing-Yu; Jin, Hong-Wei; Song, Gao-Peng; Cui, Zi-Ning

    2016-08-01

    A series of pyrazole and triazole derivatives containing 5-phenyl-2-furan functionality were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds exhibited considerable inhibitory activity against PDE4B and blockade of LPS-induced TNFα release. Meanwhile, the activity of compounds containing 1,2,4-triazole (series II) was higher than that of pyrazole-attached derivatives (series I). The primary structure-activity relationship study and docking results showed that the 1,2,4-triazole moiety of compound IIk played a key role to form integral hydrogen bonds and π-π stacking interaction with PDE4B protein while the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4. Compound IIk would be great promise as a hit compound for further study based on the preliminary structure-activity relationship and molecular modeling studies.

  17. The effect of levamisole on phosphodiesterase activity.

    Science.gov (United States)

    Constantopoulos, A; Kafasi, V; Doulas, N; Liakakos, D; Matsaniotis, N

    1977-03-15

    Phosphodiesterase activity of mouse liver homogenates was estimated in presence and absence of levamisole. The enzyme activity was 1394 and 1399 nmoles/mg protein/30 min respectively. Our data show that levamisole does not affect the phosphodiesterase activity.

  18. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism.

    Science.gov (United States)

    Berger, Karin; Lindh, Rebecka; Wierup, Nils; Zmuda-Trzebiatowska, Emilia; Lindqvist, Andreas; Manganiello, Vincent C; Degerman, Eva

    2009-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor gamma, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes.

  19. Phosphodiesterase 4B in the cardiac L-type Ca²⁺ channel complex regulates Ca²⁺ current and protects against ventricular arrhythmias in mice.

    Science.gov (United States)

    Leroy, Jérôme; Richter, Wito; Mika, Delphine; Castro, Liliana R V; Abi-Gerges, Aniella; Xie, Moses; Scheitrum, Colleen; Lefebvre, Florence; Schittl, Julia; Mateo, Philippe; Westenbroek, Ruth; Catterall, William A; Charpentier, Flavien; Conti, Marco; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2011-07-01

    β-Adrenergic receptors (β-ARs) enhance cardiac contractility by increasing cAMP levels and activating PKA. PKA increases Ca²⁺-induced Ca²⁺ release via phosphorylation of L-type Ca²⁺ channels (LTCCs) and ryanodine receptor 2. Multiple cyclic nucleotide phosphodiesterases (PDEs) regulate local cAMP concentration in cardiomyocytes, with PDE4 being predominant for the control of β-AR-dependent cAMP signals. Three genes encoding PDE4 are expressed in mouse heart: Pde4a, Pde4b, and Pde4d. Here we show that both PDE4B and PDE4D are tethered to the LTCC in the mouse heart but that β-AR stimulation of the L-type Ca²⁺ current (ICa,L) is increased only in Pde4b-/- mice. A fraction of PDE4B colocalized with the LTCC along T-tubules in the mouse heart. Under β-AR stimulation, Ca²⁺ transients, cell contraction, and spontaneous Ca²⁺ release events were increased in Pde4b-/- and Pde4d-/- myocytes compared with those in WT myocytes. In vivo, after intraperitoneal injection of isoprenaline, catheter-mediated burst pacing triggered ventricular tachycardia in Pde4b-/- mice but not in WT mice. These results identify PDE4B in the CaV1.2 complex as a critical regulator of ICa,L during β-AR stimulation and suggest that distinct PDE4 subtypes are important for normal regulation of Ca²⁺-induced Ca²⁺ release in cardiomyocytes.

  20. Effects of phosphodiesterase 5 inhibitors on sperm parameters and fertilizing capacity

    Institute of Scientific and Technical Information of China (English)

    F. Dimitriadis; I. Georgiou; M. Saito; T. Watanabe; I. Miyagawa; N. Sofikitis; D. Giannakis; N. Pardalidis; K. Zikopoulos; E. Paraskevaidis; N. Giotitsas; V. Kalaboki; P. Tsounapi; D. Baltogiannis

    2008-01-01

    The aim of this review study is to elucidate the effects that phosphodiesterase 5 (PDE5) inhibitors exert on spermatozoa motility, capacitation process and on their ability to fertilize the oocyte. Second messenger systems such as the cAMP/adenylate cyclase (AC) system and the cGMP/guanylate cyclase (GC) system appear to regulate sperm functions. Increased levels of intracytosolic cAMP result in an enhancement of sperm motility and viability.The stimulation of GC by low doses of nitric oxide (NO) leads to an improvement or maintenance of sperm motility,whereas higher concentrations have an adverse effect on sperm parameters. Several in vivo and in vitro studies have been carried out in order to examine whether PDE5 inhibitors affect positively or negatively sperm parameters and sperm fertilizing capacity. The results of these studies are controversial. Some of these studies demonstrate no significant effects of PDE5 inhibitors on the motility, viability, and morphology of spermatozoa collected from men that have been treated with PDE5 inhibitors. On the other hand, several studies demonstrate a positive effect of PDE5 inhibitors on sperm motility both in vivo and in vitro. In vitro studies of sildenafil citrate demonstrate a stimulatory effect on sperm motility with an increase in intracellular cAMP suggesting an inhibitory action of sildenafil citrate on a PDE isoform other than the PDE5. On the other hand, tadalafil's actions appear to be associated with the inhibitory effect of this compound on PDE11. In vivo studies in men treated with vardenafil in a daily basis demonstrated a significantly larger total number of spermatozoa per ejaculate, quantitative sperm motility, and qualitative sperm motility; it has been suggested that vardenafil administration enhances the secretory function of the prostate and subsequently increases the qualitative and quantitative motility of spermatozoa. The effect that PDE5 inhibitors exert on sperm parameters may lead to the

  1. Economic analysis of use of counterfeit drugs: health impairment risk of counterfeit phosphodiesterase type 5 inhibitor taken as an example.

    Science.gov (United States)

    Sugita, Minoru; Miyakawa, Michiko

    2010-07-01

    The size of the market for counterfeit drugs throughout the world is considerable. Many cases of health impairment due to counterfeits have been reported. The market share of counterfeits in drug markets in developed countries is smaller than that in developing countries. However, the size of the market for counterfeits of phosphodiesterase type 5 inhibitors (PDE5Is) used as anti-erectile-dysfunction drugs is not small. The purpose of the present study was to analyze the health impairment risk of taking the counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, using an economic methodology in order to work out countermeasures for reducing the health impairment risk. Information was obtained by interviewing employees of pharmaceutical and chemical corporations in Japan. The size of the market for counterfeit PDE5Is in Japan was recently estimated to be about 2.5 times larger than that of genuine PDE5Is. The price of the counterfeits in their market is reported to be nearly equal to that of the genuine PDE5Is. An outbreak of severe hypoglycemia among users of counterfeit PDE5Is containing an antidiabetic drug in Singapore was reported in 2008, and seven patients remained comatose as a result of prolonged neuroglycopenia. Four of them subsequently died, so the health impairment risk due to counterfeit PDE5Is should not be ignored. In order to obtain a genuine PDE5I in Japan, a patient must be examined and have a prescription written at a medical institution, and buy it at a dispensing pharmacy. Focusing on the health impairment risk due to counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, we analyzed the effects on the prices and quantities of PDE5Is in the market from demand and supply curves, using an economic methodology. From the analysis, it was shown that the health impairment risk due to the counterfeits is underestimated in the market in Japan. Physicians should warn their patients not to buy counterfeit

  2. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair.

    Science.gov (United States)

    Knott, Eric P; Assi, Mazen; Rao, Sudheendra N R; Ghosh, Mousumi; Pearse, Damien D

    2017-03-24

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.

  3. Recreational Use of Phosphodiesterase 5 Inhibitors and Its Associated Factors among Undergraduate Male Students in an Ethiopian University: A Cross-Sectional Study

    Science.gov (United States)

    Bhagavathula, Akshaya Srikanth; Gebresillassie, Begashaw Melaku; Tefera, Yonas Getaye; Belachew, Sewunet Admasu; Erku, Daniel Asfaw

    2016-01-01

    Purpose To assess the prevalence of phosphodiesterase 5 (PDE5) inhibitor use and associated factors among University of Gondar undergraduate students. Materials and Methods An institution-based, cross-sectional study, using a survey questionnaire, was conducted from October to December 2015 to assess PDE5 inhibitor use and associated factors among male students at the University of Gondar. A Self-Esteem and Relationship questionnaire (14 items), an International Index of Erectile Function questionnaire (15 items) and a questionnaire on PDE5 inhibitor use (14 items) were included in the survey. Results Across all respondents (age, 21.9±1.88 years), more than half (55.7%, n=233) had heard about PDE5 inhibitors, but only 23 men (5.5%) reported trying a PDE5 inhibitor drug at least once. Older students were more likely to use PDE5 inhibitors compared to younger students (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.109~1.768). Those students who were smokers were 5.15 times more likely to use PDE5 inhibitors as compared to their non-smoking counterparts (AOR, 5.15; 95% CI, 2.096~12.687). In addition, multivariate logistic regression showed that being in a relationship, alcohol use, greater number of cigarettes smoked per day, and more sexual partners were significantly associated with PDE5 inhibitor use. Conclusions The prevalence of PDE5 inhibitor use among undergraduate students was 5.5%. Cigarette smoking and other substance use, older age, and greater number of sexual partners were significantly associated factors for PDE5 inhibitor use. These findings suggest that restricting access to PDE5 inhibitor drugs is essential to curtailing misuse among university students. PMID:28053948

  4. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.

    Science.gov (United States)

    Clauss, François; Charloux, Anne; Piquard, François; Doutreleau, Stéphane; Talha, Samy; Zoll, Joffrey; Lugnier, Claire; Geny, Bernard

    2015-08-01

    We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats.

  5. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene

    Science.gov (United States)

    Chang, Bo; Grau, Tanja; Dangel, Susann; Hurd, Ron; Jurklies, Bernhard; Sener, E. Cumhur; Andreasson, Sten; Dollfus, Helene; Baumann, Britta; Bolz, Sylvia; Artemyev, Nikolai; Kohl, Susanne; Heckenlively, John; Wissinger, Bernd

    2009-01-01

    Retinal cone photoreceptors mediate fine visual acuity, daylight vision, and color vision. Congenital hereditary conditions in which there is a lack of cone function in humans cause achromatopsia, an autosomal recessive trait, characterized by low vision, photophobia, and lack of color discrimination. Herein we report the identification of mutations in the PDE6C gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase as a cause of autosomal recessive achromatopsia. Moreover, we show that the spontaneous mouse mutant cpfl1 that features a lack of cone function and rapid degeneration of the cone photoreceptors represents a homologous mouse model for PDE6C associated achromatopsia. PMID:19887631

  6. Phosphodiesterase type 5 inhibitor abuse: a critical review.

    Science.gov (United States)

    Lowe, Gregory; Costabile, Raymond

    2011-06-01

    Abuse of sildenafil has been reported since its introduction in 1999 and commonly documented in combination with illicit drugs among men and women of all ages. Increased risks of sexually transmissible diseases including HIV have been associated with sildenafil use in men who have sex with men. Recognizing the abuse potential of phosphodiesterase type 5 inhibitors (PDE5), we aim to summarize the current knowledge of this abuse. An investigation of EMBASE, PubMed, the Food and Drug Administration (FDA) website, MedWatch, and search engines was performed to evaluate information regarding sildenafil, tadalafil, and vardenafil abuse. The EMBASE search provided 46 articles fitting the search criteria and evaluation led to 21 separate publications with specific information regarding PDE5 abuse. A PubMed search found 10 additional publications. MedWatch reported 44 separate warnings since 2000, most of which reported contamination of herbal products with active drug components. Few reports of abuse were among the 14,818 reports in the FDA AERS for sildenafil. A search for "internet drug store" revealed 6.4 million hits and of 7000 internet pharmacies identified by the Verified Internet Pharmacy Practice Sites Program (VIPPS) only 4% were in proper compliance. The role internet pharmacies play in counterfeit PDE5 or abuse is not well documented; however based on easy access, direct patient marketing, and low advertised cost it is likely this role is underreported. Currently the best recommendation for providers is to recognize the possibility of abuse and to educate patients on risks of this behavior.

  7. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population.

  8. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    Science.gov (United States)

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  9. Noncatalytic cGMP-binding sites of amphibian rod cGMP phosphodiesterase control interaction with its inhibitory gamma-subunits. A putative regulatory mechanism of the rod photoresponse.

    Science.gov (United States)

    Arshavsky, V Y; Dumke, C L; Bownds, M D

    1992-12-05

    The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range

  10. PHOSPHODIESTERASE-5 INHIBITORS USE IN PATIENTS WITH ERECTILE DYSFUNCTION AND CARDIOVASCULAR DISEASE IN CLINICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2010-01-01

    Full Text Available About 150 million men worldwide and about 50% of men aged 40-88 y.o. in outpatient practice suffer from erectile dysfunction (ED. There is a linear relation between the age and ED rate. The main reason of ED in the majority of men (about 80% of patients is cardiovascular diseases (atherosclerosis, hypertension, diabetes mellitus, as well as certain risk factors (smoking, alcohol abuse, physical inactivity etc.. The problem of ED in cardiac outpatients and modern pharmacotherapy is discussed. The phosphodiesterase-5 (PDE5 inhibitors increase the relaxing effect of nitric oxide and increase cyclic GMP levels during sexual arousal. It results in increase of cavernosum blood flow, contributing to the physiological erection. Three PDE5 inhibitors (sildenafil, tadalafil, vardenafil are used in clinical practice nowadays.

  11. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera].

    Science.gov (United States)

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just; Kelve, Merike; Uriz, Maria Jesus

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2',5'-oligoadenylate synthetase (OAS). The components of the antiviral 2',5'-oligoadenylate (2-5A) system (OAS, 2'-Phosphodiesterase (2'-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2'-PDE activity, which highlights the probable existence of a premature 2-5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2-5A degrading activity. Upon this finding, two out of three elements forming the 2-5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.

  12. Cardiac effects of r-79595 and its isomers (r-80122 and r-80123) in an acute heart-failure model - a new class of cardiotonic agents with highly selective phosphodiesterase-iii inhibitory properties

    NARCIS (Netherlands)

    SCHNEIDER, J; BECK, E; HEERS, C; CONRAD, C; DECOURCELLES, DD; WILFFERT, B; Peters, Thies

    1992-01-01

    R 79595 (N-cyclohexyl-N-methyl-2-[[[phenyl (1,2,3,5-tetrahydro-2 oxoimidazo [2,1-b]-quinazolin-7-yl) methylene] amin] oxy] acetamide) and its isomers represent a novel class of compounds with phosphodiesterase (PDE) inhibitory and cardiotonic (positive inotropic) actions. The cardiac effects of this

  13. Incidence rate of prostate cancer in men treated for erectile dysfunction with phosphodiesterase type 5 inhibitors: retrospective analysis

    Institute of Scientific and Technical Information of China (English)

    Anthony H Chavez; K Scott Coffield; M Hasan Rajab; Chanhee Jo

    2013-01-01

    The purpose of this study was to determine the incidence rate of prostate cancer among men with erectile dysfunction (ED) treated with phosphodiesterase type 5 inhibitors (PDE-5i) over a 7-year period vs.men with ED of the same age and with similar risk factors who were not treated with PDE-5i.In a retrospective review of electronic medical records and billing databases between the years 2000 and 2006,men with ED between the ages of 50 and 69 years and no history of prostate cancer prior to 2000 were identified.These individuals were divided into two groups:2362 men who had treatment with PDE-5i,and 2612 men who did not have treatment.Demographic data in each group were compared.During the study period,97 (4.1%) men with ED treated with PDE-5i were diagnosed with prostate cancer compared with 258 (9.9%) men with ED in the non-treated group (P<00001).A higher percentage of African Americans were treated with PDE-5i vs.those who were not (10.5% vs.7.1%; P<0.0001).The PDE-5i group had lower documented diagnosis of elevated prostate-specific antigen (10.0% vs.13.1%; P=0.0008) and higher percentage of benign prostatic hyperplasia (38.4% vs.35.1%; P=0.0149).Men with ED treated with PDE-5i tended to have less chance (adjusted odds ratio:0.4; 95% confidence intervals:0.3-0.5; P<0.0001) of having prostate cancer.Our data suggest that men with ED treated with PDE-5i tended to have less of a chance of being diagnosed with prostate cancer.Further research is warranted.

  14. Erektile Dysfunktion, Phosphodiesterase-5-Hemmer und KHK - die Sicht des Kardiologen

    Directory of Open Access Journals (Sweden)

    Schmid P

    2004-01-01

    Full Text Available Die erektile Dysfunktion (ED kommt vermehrt bei Patienten mit koronarer Herzkrankheit (KHK vor und wird üblicherweise mit Phosphodiesterase- 5-Hemmern (PDE-5-Hemmer wie Sildenafil, Vardenafil und Tadalafil behandelt. Dies geht mit einem systemischen Blutdruckabfall von bis zu 10 mmHg systolisch und bis 6 mmHg diastolisch einher. Die Herzfrequenz bleibt gleich oder steigt minimal an, das Doppelprodukt (RR sys x HF als Maß des myokardialen Sauerstoffverbrauches bleibt unverändert oder sinkt ab. Koronarangiographische Untersuchungen bei KHK-Patienten unter Sildenafil ergaben gegenüber Placebo keine Unterschiede in der Hämodynamik. Auch die Koronarreserve, die Blutflußgeschwindigkeit, der Durchmesser der Koronararterien, das Blutflußvolumen und der Koronargefäßwiderstand blieben unbeeinflußt. Die körperliche Leistungsfähigkeit wurde durch Sildenafil und Vardenafil nicht verändert. Eine kardiovaskuläre Exzeßmortalität liegt durch Einnahme von PDE-5-Hemmern nicht vor. Absolute Kontraindikation für eine Therapie mit PDE-5-Hemmern ist die gleichzeitige Gabe von NO-Donatoren (Nitrate, Molsidomin, Nitroprussid-Natrium, relative Kontraindikationen sind eine akute Koronarinsuffizienz, Herzinsuffizienz mit niedrigem Blutdruck, vorbestehende antihypertensive 3- bis 4-fach-Kombinationstherapie, Pharmaka, die den Abbau bzw. die Elimination von PDE-5-Hemmern reduzieren, sowie Antiarrhythmika der Klasse III.

  15. Attenuation of MPTP Neurotoxicity by Rolipram, a Specific Inhibitor of Phosphodiesterase IV

    Science.gov (United States)

    Yang, Lichuan; Calingasan, Noel Y.; Lorenzo, Beverly J.; Beal, M. Flint

    2012-01-01

    Rolipram, a specific inhibitor of the phosphodiesterase IV (PDE IV), has recently been shown to exert neuroprotective effects in an Alzheimer transgenic mouse model and in hypoxic-ischemic damage in the rat brain. It activates the cAMP-dependent protein kinase (PKA)/cAMP regulatory element-binding protein (CREB) signaling pathway and it inhibits inflammation. We tested the neuroprotective effects of the specific PDE IV inhibitor rolipram in C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that rolipram administered at 1.25mg/kg or 2.5mg/kg doses significantly attenuated MPTP-induced dopamine depletion in the striatum, and reduced the loss of tyrosine hydroxylase-positive neurons in the substantia nigra. There was a bell-shaped dose effect with greater efficacy at the 1.25 mg/kg dose than 2.5 mg/kg and a higher dose of rolipram, 5mg/kg, had no protective effect and even increased the mortality of animals when co-administered with MPTP. Rolipram did not interact with MPTP in its absorption into the brain and in its metabolism to 1-methyl-4-phenylpyridinium (MPP+). Our data show a neuroprotective effect of the PDE IV specific inhibitor rolipram against dopaminergic neuron degeneration, suggesting that PDE IV inhibitors might be a potential treatment for Parkinson’s disease. PMID:18328479

  16. Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review.

    Science.gov (United States)

    Travadi, J N; Patole, S K

    2003-12-01

    Persistent pulmonary hypertension of the newborn (PPHN) is a complex syndrome with multiple causes, with an incidence of 0.43-6.8/1,000 live births and a mortality of 10-20%. Survivors have high morbidity in the forms of neurodevelopmental and audiological impairment, cognitive delays, hearing loss, and a high rate of rehospitalization. The optimal approach to the management of PPHN remains controversial. Inhaled nitric oxide (iNO) is currently regarded as the gold standard therapy, but with as many as 30% of cases failing to respond, has not proven to be the single magic bullet. Given the complex pathophysiology of the disease, any such magic bullet is unlikely. A number of recent studies have suggested a role for specific phosphodiesterase (PDE) inhibitors in the management of PPHN. Sildenafil, a specific PDE5 inhibitor, appears the most promising of such agents. We aim to review the current status and limitations of iNO and the potential of PDE inhibitors in the management of PPHN. The reasons why caution is warranted before specific PDE5 inhibitors like sildenafil are labelled as potential magic bullets for PPHN will be discussed. The need for randomized-controlled trials to determine the safety, efficacy, and long-term outcome following treatment with sildenafil in PPHN is emphasized.

  17. Homocysteine and copper interact to promote type 5 phosphodiesterase expression in rabbit cavernosal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Matthew Hotston; Jamie Y.Jeremy; Jonathon Bloor; Nick S.Greaves; Raj Persad; Giarmi Angelini; Nilima Shukla

    2008-01-01

    Aim: To study the effects of homocysteine and copper on type 5 phosphodiesterase (PDE5) expression in cavernosal vascular smooth muscle cells (CVSMCs) and to investigate superoxide (O2) derived from nicotinamide adenine dinucleotide phosphate oxidase as homocysteine and copper generate O2, and O2- upregulates PDE5 expression.Methods: CVSMCs derived from rabbit penis were incubated with homocysteine or copper chloride with or without superoxide dismutase (SOD), catalase, sildenafil citrate, or apocynin (nicotinamide adenine dinucleotide phosphate inhibitor) for 16 h. The expression of PDE5 and of glyceraldehyde-3-phosphate dehydrogenase (internal standard) was assessed using Western blot analysis. In parallel, O2 was measured spectrophotometrically. Results: CuCl2alone (up to 10 μmol/L) and homocysteine alone (up to 100 μmol/L) had no effect on O2 formation in CVSMCs compared to controls. In combination, however, homocysteine and CuCl2 arkedly increased O2 formation, an effect blocked by SOD, catalase, apocynin, and sildenafil (1 μmol/L) when co-incubated over the same time course.PDE5 expression was also significantly increased in CVSMCs incubated with homocysteine and CuCl2, compared to controls. This effect was also negated by 16-h co-incubation with SOD, catalase, apocynin and sildenafil. Conclusion:This represents a novel pathogenic mechanism underlying ED, and indicates that the therapeutic actions of prolonged sildenafil use are mediated in part through inhibition of this pathway.

  18. Altered phosphodiesterase 3-mediated cAMP hydrolysis contributes to a hypermotile phenotype in obese JCR:LA-cp rat aortic vascular smooth muscle cells: implications for diabetes-associated cardiovascular disease.

    Science.gov (United States)

    Netherton, Stuart J; Jimmo, Sandra L; Palmer, Daniel; Tilley, Douglas G; Dunkerley, Heather A; Raymond, Daniel R; Russell, James C; Absher, P Marlene; Sage, E Helene; Vernon, Robert B; Maurice, Donald H

    2002-04-01

    Cardiovascular diseases represent a significant cause of morbidity and mortality in diabetes. Of the many animal models used in the study of non-insulin-dependent (type 2) diabetes, the JCR:LA-cp rat is unique in that it develops insulin resistance in the presence of obesity and manifests both peripheral and coronary vasculopathies. In this animal model, arterial vascular smooth muscle cells (VSMCs) from homozygous obese (cp/cp) rats, but not from age-matched healthy (+/+ or + /cp, collectively defined +/?) littermates, display an " activated" phenotype in vitro and in vivo and have an elevated level of cAMP phosphodiesterase (PDE) activity. In this report, we confirm that cp/cp rat aortic VSMCs have an elevated level of PDE3 activity and show that only particulate PDE3 (PDE3B) activity is elevated. In marked contrast to results obtained in + /? VSMCs, simultaneous activation of adenylyl cyclase and inhibition of PDE3 activity in cp/cp VSMCs synergistically increased cAMP. Although PDE3 inhibition did not potentiate the antimigratory effects of forskolin on +/? VSMCs, PDE3 inhibition did markedly potentiate the forskolin-induced inhibition of migration of cp/cp-derived VSMCs. Although PDE3 activity was elevated in cp/cp rat aortic VSMCs, levels of expression of cytosolic PDE3 (PDE3A) and PDE3B in +/? and cp/cp VSMCs, as well as activation of these enzymes following activation of the cAMP-protein kinase A signaling cascade, were not different. Our data are consistent with an increased role for PDE3 in regulating cAMP-dependent signaling in cp/cp VSMCs and identify PDE3 as a cellular activity potentially responsible for the phenotype of cp/cp VSMCs.

  19. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses.

    Science.gov (United States)

    Vanmierlo, Tim; Creemers, Pim; Akkerman, Sven; van Duinen, Marlies; Sambeth, Anke; De Vry, Jochen; Uz, Tolga; Blokland, Arjan; Prickaerts, Jos

    2016-04-15

    Enhancement of central availability of the second messenger cAMP is a promising approach to improve cognitive function. Pharmacological inhibition of phosphodiesterase type 4 (PDE4), a group of cAMP hydrolyzing enzymes in the brain, has been shown to improve cognitive performances in rodents and monkeys. However, inhibition of PDE4 is generally associated with severe emetic side-effects. Roflumilast, an FDA-approved PDE4 inhibitor for treatment of chronic obstructive pulmonary disease (COPD), is yielding only mild emetic side effects. In the present study we investigate the potential of roflumilast as a cognition enhancer and to determine the potential coinciding emetic response in comparison to rolipram, a classic PDE4 inhibitor with pronounced emetic effects. Cognition enhancement was evaluated in mice and it was found that both roflumilast and rolipram enhanced memory in an object location task (0.03mg/kg), whereas only roflumilast was effective in a spatial Y-maze (0.1mg/kg). Emetic potential was measured using competition of PDE4 inhibition for α2-adrenergic receptor antagonism in which recovery from xylazine/ketamine-mediated anesthesia is used as a surrogate marker. While rolipram displayed emetic properties at a dose 10 times the memory-enhancing dose, roflumilast only showed increased emetic-like properties at a dose 100 times the memory-enhancing dose. Moreover, combining sub-efficacious doses of the approved cognition-enhancer donepezil and roflumilast, which did not improve memory when given alone, fully restored object recognition memory deficit in rats induced by the muscarinic receptor antagonist scopolamine. These findings suggest that roflumilast offers a more favorable window for treatment of cognitive deficits compared to rolipram.

  20. Phosphodiesterase-10A Inverse Changes in Striatopallidal and Striatoentopeduncular Pathways of a Transgenic Mouse Model of DYT1 Dystonia.

    Science.gov (United States)

    D'Angelo, Vincenza; Castelli, Valentina; Giorgi, Mauro; Cardarelli, Silvia; Saverioni, Ilaria; Palumbo, Francesca; Bonsi, Paola; Pisani, Antonio; Giampà, Carmela; Sorge, Roberto; Biagioni, Stefano; Fusco, Francesca R; Sancesario, Giuseppe

    2017-02-22

    We report that changes of phosphodiesterase-10A (PDE10A) can map widespread functional imbalance of basal ganglia circuits in a mouse model of DYT1 dystonia overexpressing mutant torsinA. PDE10A is a key enzyme in the catabolism of second messenger cAMP and cGMP, whose synthesis is stimulated by D1 receptors and inhibited by D2 receptors preferentially expressed in striatoentopeducuncular/substantia nigra or striatopallidal pathways, respectively. PDE10A was studied in control mice (NT) and in mice carrying human wild-type torsinA (hWT) or mutant torsinA (hMT). Quantitative analysis of PDE10A expression was assessed in different brain areas by rabbit anti-PDE10A antibody immunohistochemistry and Western blotting. PDE10A-dependent cAMP hydrolyzing activity and PDE10A mRNA were also assessed. Striatopallidal neurons were identified by rabbit anti-enkephalin antibody.In NT mice, PDE10A is equally expressed in medium spiny striatal neurons and in their projections to entopeduncular nucleus/substantia nigra and to external globus pallidus. In hMT mice, PDE10A content selectively increases in enkephalin-positive striatal neuronal bodies; moreover, PDE10A expression and activity in hMT mice, compared with NT mice, significantly increase in globus pallidus but decrease in entopeduncular nucleus/substantia nigra. Similar changes of PDE10A occur in hWT mice, but such changes are not always significant. However, PDE10A mRNA expression appears comparable among NT, hWT, and hMT mice.In DYT1 transgenic mice, the inverse changes of PDE10A in striatoentopeduncular and striatopallidal projections might result over time in an imbalance between direct and indirect pathways for properly focusing movement. The decrease of PDE10A in the striatoentopeduncular/nigral projections might lead to increased intensity and duration of D1-stimulated cAMP/cGMP signaling; conversely, the increase of PDE10A in the striatopallidal projections might lead to increased intensity and duration of D2

  1. Research progress of PDE4 in the central nervous system%磷酸二酯酶-4的中枢功能研究进展

    Institute of Scientific and Technical Information of China (English)

    文睿婷; 张汉霆; 冯婉玉; 梁建辉

    2014-01-01

    磷酸二酯酶-4(phosphodiesterase-4, PDE4)对细胞内环腺苷酸( cyclic adenosine monophosphate, cAMP)浓度及其下行信号传导具有重要调控作用,是近年来备受关注的新型药物治疗靶点。 PDE4在中枢神经系统具有广泛表达,其4个亚型的分布和功能各具特征。国内外近期研究发现, PDE4在抑郁、认知记忆障碍、药物依赖、神经损伤等疾病进程中发挥重要作用。特异性PDE4抑制剂的研发,可为上述疾病的治疗提供新的路径。该文就近年来PDE4中枢功能的研究进展作一简要综述,并探讨其作为神经精神疾病新型治疗靶点的应用前景。%Phosphodiesterase-4 ( PDE4 ) has been one of the most popular drug targets during recent years due to its critical role in the control of intracellular cyclic adenosine monophos-phate ( cAMP ) concentration and downstream signal transduc-tion. PDE4 is widely distributed in the central nervous system ( CNS) with different expression levels of its four subtypes. Re-cent data indicate that altered PDE4 expression and/or activity is relevant to multiple CNS disorders, such as depression, memory deficiency, drug dependence, and neural lesion. Selective PDE4 inhibitors exhibit therapeutic effects on these disorders and might be a promising pharmacotherapy. The paper highlights recent re-search progress in the roles of PDE4 in CNS function, and dis-cusses the prospects of PDE4 as a novel therapeutic target for CNS disorders.

  2. Effects of PDE5 Inhibitors and sGC Stimulators in a Rat Model of Artificial Ureteral Calculosis.

    Directory of Open Access Journals (Sweden)

    Peter Sandner

    Full Text Available Urinary colics from calculosis are frequent and intense forms of pain whose current pharmacological treatment remains unsatisfactory. New and more effective drugs are needed to control symptoms and improve stone expulsion. Recent evidence suggested that the Nitric Oxide (NO / cyclic guanosine monophosphate (cGMP/phosphodiesterase type 5 (PDE5 system may contribute to ureteral motility influencing stone expulsion. We investigated if PDE5 inhibitors and sGC stimulators influence ureteral contractility, pain behaviour and stone expulsion in a rat model of ureteral calculosis. We investigated: a the sex-specific PDE5 distribution in the rat ureter; b the functional in vitro effects of vardenafil and sildenafil (PDE5 inhibitors and BAY41-2272 (sGC stimulator on induced ureteral contractility in rats and c the in vivo effectiveness of vardenafil and BAY41-2272, alone and combined with ketoprofen, vs hyoscine-N-butylbromide alone or combined with ketoprofen, on behavioural pain indicators and stone expulsion in rats with artificial calculosis in one ureter. PDE5 was abundantly expressed in male and female rats' ureter. In vitro, both vardenafil and BAY41-2272 significantly relaxed pre-contracted ureteral strips. In vivo, all compounds significantly reduced number and global duration of "ureteral crises" and post-stone lumbar muscle hyperalgesia in calculosis rats. The highest level of reduction of the pain behaviour was observed with BAY41-2272 among all spasmolytics administered alone, and with the combination of ketoprofen with BAY41-2272. The percentage of stone expulsion was maximal in the ketoprofen+BAY41-2272 group. The NO/cGMP/PDE5 pathway is involved in the regulation of ureteral contractility and pain behaviour in urinary calculosis. PDE5 inhibitors and sGC stimulators could become a potent new option for treatment of urinary colic pain.

  3. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon;

    2015-01-01

    Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young......- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P

  4. Efficacy of selective PDE4D negative allosteric modulators in the object retrieval task in female cynomolgus monkeys (Macaca fascicularis.

    Directory of Open Access Journals (Sweden)

    Jane S Sutcliffe

    Full Text Available Cyclic adenosine monophosphate (cAMP signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The phosphodiesterase (PDE type 4 inhibitor rolipram has shown significant pro-cognitive effects in neurological disease models, both in rodents and primates. However, competitive non-isoform selective PDE4 inhibitors have a low therapeutic index which has stalled their clinical development. Here, we demonstrate the pro-cognitive effects of selective negative allosteric modulators (NAMs of PDE4D, D159687 and D159797 in female Cynomolgous macaques, in the object retrieval detour task. The efficacy displayed by these NAMs in a primate cognitive task which engages the corticostriatal circuitry, together with their suitable pharmacokinetic properties and safety profiles, suggests that clinical development of these allosteric modulators should be considered for the treatment of a variety of brain disorders associated with cognitive decline.

  5. Radiosynthesis and Radiotracer Properties of a 7-(2-[18F]Fluoroethoxy-6-methoxypyrrolidinylquinazoline for Imaging of Phosphodiesterase 10A with PET

    Directory of Open Access Journals (Sweden)

    Detlef Briel

    2012-02-01

    Full Text Available Phosphodiesterase 10A (PDE10A is a key enzyme of intracellular signal transduction which is involved in the regulation of neurotransmission. The molecular imaging of PDE10A by PET is expected to allow a better understanding of physiological and pathological processes related to PDE10A expression and function in the brain. The aim of this study was to develop a new 18F-labeled PDE10A ligand based on a 6,7-dimethoxy-4-pyrrolidinylquinazoline and to evaluate its properties in biodistribution studies. Nucleophilic substitution of the 7-tosyloxy-analogue led to the 7-[18F]fluoroethoxy-derivative [18F]IV with radiochemical yields of 25% ± 9% (n = 9, high radiochemical purity of ≥99% and specific activities of 110–1,100 GBq/μmol. [18F]IV showed moderate PDE10A affinity (KD,PDE10A = 14 nM and high metabolic stability in the brain of female CD-1 mice, wherein the radioligand entered rapidly with a peak uptake of 2.3% ID/g in striatum at 5 min p.i. However, ex vivo autoradiographic and in vivo blocking studies revealed no target specific accumulation and demonstrated [18F]IV to be inapplicable for imaging PDE10A with PET.

  6.  Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism

    Directory of Open Access Journals (Sweden)

    Edyta Makuch

    2012-07-01

    Full Text Available  PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme’s intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  7. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment.

    Science.gov (United States)

    Maiga, Mamoudou; Ammerman, Nicole C; Maiga, Mariama C; Tounkara, Anatole; Siddiqui, Sophia; Polis, Michael; Murphy, Robert; Bishai, William R

    2013-08-01

    Shortening tuberculosis treatment could significantly improve patient adherence and decrease the development of drug resistance. Phosphodiesterase inhibitors (PDE-Is) have been shown to be beneficial in animal models of tuberculosis. We assessed the impact of PDE-Is on the duration of treatment in tuberculous mice. We analyzed the time to death in Mycobacterium tuberculosis-infected mice receiving type 4 PDE-Is (rolipram and cilomilast) and the impact on bacterial burden, time to clearance, and relapse when types 3 and 5 PDE-Is (cilostazol and sildenafil, respectively) and rolipram were added to the standard treatment. We investigated pharmacokinetic interactions between PDE-Is (cilostazol and sildenafil) and rifampin. The type 4 PDE-Is rolipram and cilomilast accelerated the time to death in tuberculous mice. The addition of rolipram to standard tuberculosis treatment increased bacterial burden and did not decrease the time to bacterial clearance in the lung, while the addition of the cilostazol and sildenafil reduced the time to clearance by 1 month. Cilostazol and sildenafil did not have negative pharmacokinetic interactions with rifampin. Type 4 PDE-Is may increase the severity of tuberculosis and should be carefully investigated for use in patients with latent or active tuberculosis. Cilostazol and sildenafil may benefit tuberculosis patients by shortening the duration of therapy.

  8.  Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism

    OpenAIRE

    Edyta Makuch; Janusz Matuszyk

    2012-01-01

     PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regio...

  9. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  10. PDE inhibitors--Second William Harvey Research Conference. Drugs with an expanding range of therapeutic uses. 1-3 December 1999, Nice, France.

    Science.gov (United States)

    Torphy, T J

    2000-02-01

    This meeting underscored advances in the exploitation of cyclic nucleotide phosphodiesterases (PDEs) as drug targets. One highlight of the meeting was the disclosure of a new PDE isozyme, bringing to 11 the total number of genetically distinct isozyme families thus far identified. Also reported was the phenotypic characterization of a PDE4D murine genetic knockout. With respect to drug discovery and development, the most encouraging information presented centered on advances in targeting PDE4 with therapeutically useful inhibitors. Historically, the therapeutic utility of isozyme-selective PDE4 inhibitors has been limited by class-associated side effects, namely nausea and dyspepsia. New PDE4 inhibitors are being designed with the specific intent of improving upon the therapeutic ratio of first-generation agents. The profiles of two second-generation PDE4 inhibitors, SB-207499 (Ariflo; Smithkline Beecham plc) and PD-189659, were presented. SB-207499 demonstrated marked efficacy in phase II clinical trials in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), a disease of very high unmet medical need. PD-189659 has yet to enter clinical trials, but its preclinical profile indicates that this agent can produce substantial anti-inflammatory effects without producing class-associated side effects in animal models. A number of presentations were also given on the utility of PDE5 inhibitors in the treatment of male erectile dysfunction (MED). The widespread use of Viagra (sildenafil; Pfizer Inc) over the last year has reinforced the perception that PDE5 inhibitors are safe and effective agents for the treatment of MED. The overall tenor of the meeting was distinctly upbeat, with most participants believing that PDE isozymes are becoming ever more accessible as targets for drug discovery in a variety of therapeutic areas.

  11. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells.

    Science.gov (United States)

    Makuch, Edyta; Kuropatwa, Marianna; Kurowska, Ewa; Ciekot, Jaroslaw; Klopotowska, Dagmara; Matuszyk, Janusz

    2014-07-05

    Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells.

  12. Patient preference and satisfaction in erectile dysfunction therapy: a comparison of the three phosphodiesterase-5 inhibitors sildenafil, vardenafil and tadalafil

    Directory of Open Access Journals (Sweden)

    Amr Abdel Raheem

    2009-04-01

    Full Text Available Amr Abdel Raheem1, Philip Kell21St. Peter’s Andrology Department, The Institute of Urology, London, and Cairo University, Egypt; 2St. Peter’s Andrology Department, The Institute of Urology, London, UKAbstract: Erectile dysfunction (ED is a problem that may affect up to 52% of men between the ages of 40 and 70. It can be distressing because of its negative effect on self-esteem, quality of life, and interpersonal relationships. Oral phosphodiesterase-5 inhibitors (PDE5 inhibitors are now the first choice of treatment in ED. The availability of three (sildenafil citrate, tadalafil, and vardenafil well tolerated and effective oral PDE5 inhibitors gives treatment options for men with ED. Although the mechanism of action is the same for the three drugs, they differ in their pharmacokinetics. Several preference studies were conducted between the three PDE5 inhibitors but they were not free from bias. Because of the lack of overwhelming reliable data showing that one PDE5 inhibitor is superior to another, current opinion is that the individual patient should have the opportunity to test all three drugs and then select the one that best suits him and his partner.Keywords: erectile dysfunction, PDE5 inhibitors, patient preference

  13. A new structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors.

    Science.gov (United States)

    Dong, Xialan; Zheng, Weifan

    2008-11-06

    We describe the application of a new QSAR (quantitative structure-activity relationship) formalism to the analysis and modeling of PDE-4 inhibitors. This new method takes advantage of the X-ray structural information of the PDE-4 enzyme to characterize the small molecule inhibitors. It calculates molecular descriptors based on the matching of their pharmacophore feature pairs with those (the reference) of the target binding pocket. Since the reference is derived from the X-ray crystal structures of the target under study, these descriptors are target-specific and easy to interpret. We have analyzed 35 indole derivative-based PDE-4 inhibitors where Partial Least Square (PLS) analysis has been employed to obtain the predictive models. Compared to traditional QSAR methods such as CoMFA and CoMSIA, our models are more robust and predictive measured by statistics for both the training and test sets of molecules. Our method can also identify critical pharmacophore features that are responsible for the inhibitory potency of the small molecules. Thus, this structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors. The success of this study has also laid a solid foundation for systematic QSAR modeling of the PDE family of enzymes, which will ultimately contribute to chemical genomics research and drug discovery targeting the PDE enzymes.

  14. Modulation of signaling through GPCR-cAMP-PKA pathways by PDE4 depends on stimulus intensity: Possible implications for the pathogenesis of acrodysostosis without hormone resistance.

    Science.gov (United States)

    Motte, Emmanuelle; Le Stunff, Catherine; Briet, Claire; Dumaz, Nicolas; Silve, Caroline

    2017-02-15

    In acrodysostosis without hormone resistance, a disease caused by phosphodiesterase (PDE)-4D mutations, increased PDE activity leads to bone developmental defects but with normal renal responses to PTH. To identify potential mechanisms for these disparate responses, we compared the effect of PDE activity on hormone signaling through the GPCR-Gsα-cAMP-PKA pathway in cells from two lineages, HEK-293 cells stably overexpressing PTH1R (HEKpthr) and human dermal fibroblasts, including studies evaluating cAMP levels using an Epac-based BRET-sensor for cAMP (CAMYEL). For ligand-induced responses inducing strong cAMP accumulation, the inhibition of PDE4 activity resulted in relatively small further increases. In contrast, when ligand-induced cAMP accumulation was of lesser intensity, the inhibition of PDE4 had a more pronounced effect. Similar results were obtained evaluating downstream events (cellular CREB phosphorylation and CRE-luciferase activity). Thus, the ability of PDE4 to modulate signaling through GPCR-cAMP-PKA pathways can depend on the cell type and stimulus intensity.

  15. Development of a Scintillation Proximity Assay (SPA) Based, High Throughput Screening Feasible Method for the Identification of PDE12 Activity Modulators.

    Science.gov (United States)

    Mang, Samuel; Bucher, Hannes; Nickolaus, Peter

    2016-01-01

    The scintillation proximity assay (SPA) technology has been widely used to establish high throughput screens (HTS) for a range of targets in the pharmaceutical industry. PDE12 (aka. 2'- phosphodiesterase) has been published to participate in the degradation of oligoadenylates that are involved in the establishment of an antiviral state via the activation of ribonuclease L (RNAse-L). Degradation of oligoadenylates by PDE12 terminates these antiviral activities, leading to decreased resistance of cells for a variety of viral pathogens. Therefore inhibitors of PDE12 are discussed as antiviral therapy. Here we describe the use of the yttrium silicate SPA bead technology to assess inhibitory activity of compounds against PDE12 in a homogeneous, robust HTS feasible assay using tritiated adenosine-P-adenylate ([3H]ApA) as substrate. We found that the used [3H]ApA educt, was not able to bind to SPA beads, whereas the product [3H]AMP, as known before, was able to bind to SPA beads. This enables the measurement of PDE12 activity on [3H]ApA as a substrate using a wallac microbeta counter. This method describes a robust and high throughput capable format in terms of specificity, commonly used compound solvents, ease of detection and assay matrices. The method could facilitate the search for PDE12 inhibitors as antiviral compounds.

  16. Preliminary Determination of Epicenters (PDE) Bulletin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The NEIC global earthquake bulletin is called the Preliminary Determination of Epicenters or PDE, and is one of many discrete products in the ANSS Comprehensive...

  17. Genetic association study of phosphodiesterase 8B gene with subclinical hypothyroidism in pregnant women.

    Science.gov (United States)

    Yang, Shuai; Tao, Jun; Zhang, Junyu; Fan, Jianxia; Qian, Wei; Shu, Khor

    2015-01-01

    To explore whether phosphodiesterase 8B (PDE8B) gene is involved in the etiology of subclinical hypothyroidism (SCH) in pregnant women. A total of 180 pregnant patients with SCH and 311 healthy, pregnant control subjects were recruited in this study to detect 4 (rs4704397, rs6885099, rs2046045, and rs12514694 in PDE8B) single nucleotide polymorphisms (SNPs). Univariate associations were studied using Pearson's χ(2) test for categorical variables and Student t/ANOVA tests for continuous ones. Nonparametric Kruskal-Wallis test were used to study the associations of TSH level in different genotypes. Genotyping of SNPs was performed by the MassARRAY(®) iPLEX(®) Gold SNP genotyping analysis technique. The SHEsis program was used to analyze the genotyping data. There was a significant difference in the rate of high TSH in three genotypes of rs4704397 in all pregnant women. After adjusting for multiple testing by the program SNPSpD, allelic frequencies of rs4704397 (p = 0.016, OR = 1.692), rs6885099 (p = 0.031, OR = 0.621), and rs2046045 (p = 0.023, OR = 0.602) in PDE8B gene showed significant differences between patients with SCH and control subjects. There were no significant differences of genotype frequencies between patients and controls at any of the analyzed SNPs (p > 0.05).The haplotypes ''A G C G'' (p = 0.002; OR, 1.533; 95% CI, 1.172-2.006) and "G A A G" (p = 0.014; OR, 0.576; 95% CI, 0.369-0.899) in PDE8B were observed to be significantly associated with SCH in pregnant women. Genetic variation of the PDE8B gene may be involved in the etiology of SCH in pregnant women.

  18. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available BACKGROUND: Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05. CONCLUSIONS/SIGNIFICANCE: These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  19. Inhibitory effect of acetamide-45 on airway inflammation and phosphodiesterase 4 in allergic rats

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Jun-chun CHEN; Zhong CHEN

    2005-01-01

    Aim: To determine the effects of acetamide-45 on respiratory function, airway inflammation, and the activity of phosphodiesterase 4 (PDE4) in allergic rats.Methods: Rats were sensitized by a single intramuscular injection with ovalbumin (OVA) and were challenged with ovalbumin applied by using an aerosol repeatedly for 7 d after 2 weeks. Acetamide-45 at concentrations of 5, 10, or 30 mg/kg was then administered by intraperitoneal injection. Changes in dynamic lung compliance and lung resistance, the accumulation of inflammatory cells in bronchoalveolar lavage, PDE4 activity, and the concentration of interleukin-4 in rat lung tissue were determined. Results: Seven days of treatment with acetamide-45 prevented eosinophil accumulation in allergic rats. At doses of 5, 10, and 30 mg/kg, acetamide-45 decreased lung resistance to 0.20±0.04, 0.25±0.07, and 0.22±0.05compliance to 0.41±0.07, 0.39±0.06, and 0.42±0.09 mL/cmH2O (P<0.05 vs OVA).After being treated with different doses of acetamide-45, the PDE4 activities in the concentrations of interleukin-4 in lung tissue were 6.22± 1.13, 5.95± 1.20,and 5.68±2.20 μg/g protein (P<0.05 vs OVA). Conclusions: Acetamide-45 was found to improve respiratory function and inhibit airway inflammation in this animal model, and the PDE4 activity of lung tissue was obviously inhibited.Acetamide-45 was an effective anti-inflammatory agent in respiratory inflammation,and the mechanism of its action might depend on inhibition of PDE4.

  20. PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity.

    Science.gov (United States)

    Fansa, Eyad Kalawy; Kösling, Stefanie Kristine; Zent, Eldar; Wittinghofer, Alfred; Ismail, Shehab

    2016-04-11

    The phosphodiesterase 6 delta subunit (PDE6δ) shuttles several farnesylated cargos between membranes. The cargo sorting mechanism between cilia and other compartments is not understood. Here we show using the inositol polyphosphate 5'-phosphatase E (INPP5E) and the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6δ and the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary homologue Arl2. Structures of PDE6δ/cargo complexes reveal the molecular basis of the sorting signal which depends on the residues at the -1 and -3 positions relative to farnesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6δ and the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting and enrichment at its destination.

  1. Future options for disease intervention: important advances in phosphodiesterase 4 inhibitors

    Directory of Open Access Journals (Sweden)

    R. A. McIvor

    2007-09-01

    Full Text Available Current drug treatments for chronic obstructive pulmonary disease (COPD focus on managing symptoms of the disease and include short- and long-acting beta2-agonists, anticholinergic agents (ipratroprium, tiotropium, methylxanthines (theophylline and inhaled corticosteroids (ICS. Cyclic nucleotide phosphodiesterases (PDEs play a key role in cell signalling by degrading cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate. PDE4 is expressed in inflammatory cells and inhibition of this enzyme enhances the anti-inflammatory effects of cAMP in all key cells involved in COPD. Two PDE4 inhibitors, roflumilast and cilomilast, have been extensively evaluated in patients with COPD. Results from patients with moderate-to-severe and severe-to-very severe COPD have shown that roflumilast significantly improves forced expiratory volume in one second (FEV1 and significantly decreases exacerbations, particularly in patients with severe disease. Roflumilast is well tolerated with a low incidence of gastrointestinal adverse events that declines with continued treatment. Clinical trials with cilomilast have produced more varied results. Significant improvements in FEV1 and reductions in exacerbation rates versus placebo were observed in two of four trials. Cilomilast also has a high risk for gastrointestinal adverse events that does not appear to dissipate over 24 weeks of treatment. While further research is needed to fully determine the place in chronic obstructive pulmonary disease therapy for phosphodiesterase 4 inhibitors, they have several important potential benefits in the treatment of this disease, including convenient once-daily oral administration and freedom from adverse effects associated with corticosteroids. The fact that phosphodiesterase 4 inhibitors have potent anti-inflammatory effects and are administered orally, thereby reaching the systemic circulation, may decrease the severity of systemic comorbidities in chronic

  2. Efficacy and safety of phosphodiesterase type 5 inhibitors on primary premature ejaculation in men receiving selective serotonin reuptake inhibitors therapy: a systematic review and meta-analysis.

    Science.gov (United States)

    Men, C; Yu, L; Yuan, H; Cui, Y

    2016-11-01

    We performed a systematic review and meta-analysis to assess whether selective serotonin reuptake inhibitors (SSRIs) and phosphodiesterase type 5 inhibitors (PDE5-Is) may have an additive therapeutic effect. A literature review was performed to identify all published randomised controlled trials (RCT) that used SSRIs combined with PDE5-Is therapy for the treatment of primary PE. The search included the following databases: EMBASE, MEDLINE and the Cochrane Controlled Trials Register. The reference lists of the retrieved studies were also investigated. Five publications involving a total of 419 patients were used in the analysis, including 5 RCTs that compared PDE5-Is plus SSRIs with SSRIs treating primary PE. Primary efficacy endpoints: IELT (the standardised mean difference (SMD) = 1.07, 95% confidence interval (CI) = 1.00 to 1.14, P < 0.00001) indicated that utilisation of PDE5-Is and SSRIs was more effective than the SSRIs alone for a long time in patients with primary PE. Safety assessments included headache (odds ratio (OR) = 3.16, 95% CI = 1.63 to 6.11, P = 0.0006), and flushing indicated that PDE5-Is plus SSRIs were well tolerated. This meta-analysis indicates that PDE5-Is combined with SSRIs seem to provide significantly better ejaculatory latency time as compared with SSRIs alone in patients with primary PE.

  3. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Anamthathmakula, Prashanth; Sahu, Maitrayee; Sahu, Abhiram

    2015-09-14

    Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

  4. Synthesis, Molecular Modeling, and Biological Evaluation of Novel Tetrahydro-β-Carboline Hydantoin and Tetrahydro-β-Carboline Thiohydantoin Derivatives as Phosphodiesterase 5 Inhibitors

    Directory of Open Access Journals (Sweden)

    Ashraf H. Abadi

    2011-01-01

    Full Text Available Two series of fused tetrahydro-β-carboline hydantoin and tetrahydro-β-carboline thiohydantoin derivatives with a pendant 2,4-dimethoxyphenyl at position 5 were synthesized, and chiral carbons at positions 5 and 11a swing from R,R to R,S, S,R, and S,S. The prepared analogues were evaluated for their capacity to inhibit phosphodiesterase 5 (PDE5 isozyme. The R absolute configuration of C-5 in the β-carboline hydantoin derivatives was found to be essential for the PDE5 inhibition. Chiral carbon derived from amino acid even if of the S configuration (L-tryptophan may lead to equiactive or more active isomers than those derived from amino acid with the R configuration (D-tryptophan. This expands the horizon from which efficient PDE5 inhibitors can be derived and may offer an economic advantage. The thiohydantoin derivatives were less active than their hydantoin congeners.

  5. Design, synthesis, and pharmacological evaluation of N-acylhydrazones and novel conformationally constrained compounds as selective and potent orally active phosphodiesterase-4 inhibitors.

    Science.gov (United States)

    Kümmerle, Arthur E; Schmitt, Martine; Cardozo, Suzana V S; Lugnier, Claire; Villa, Pascal; Lopes, Alexandra B; Romeiro, Nelilma C; Justiniano, Hélène; Martins, Marco A; Fraga, Carlos A M; Bourguignon, Jean-Jacques; Barreiro, Eliezer J

    2012-09-13

    Among a small series of tested N-acylhydrazones (NAHs), the compound 8a was selected as a selective submicromolar phosphodiesterase-4 (PDE4) inhibitor associated with anti-TNF-α properties measured both in vitro and in vivo. The recognition pattern of compound 8a was elucidated through molecular modeling studies based on the knowledge of the 3D-structure of zardaverine, a PDE4 inhibitor resembling the structure of 8a, cocrystallized with the PDE4. Based on further conformational analysis dealing with N-methyl-NAHs, a quinazoline derivative (19) was designed as a conformationally constrained NAH analogue and showed similar in vitro pharmacological profile, compared with 8a. In addition 19 was found active when tested orally in LPS-evoked airway hyperreactivity and fully confirmed the working hypothesis supporting this work.

  6. [The action of émoksipin on the basal activity of cyclic nucleotide phosphodiesterase and on the late receptor potential of the isolated retina].

    Science.gov (United States)

    Shvedova, A A; Polianskiĭ, N B; Akopian, G Kh; Dzhafarov, A I

    1989-09-01

    The influence of emoxypin (derivate of 3-hydroxypyridine) upon the late receptor potential (LRP) and activity of the cyclic 3',5'-nucleotide phosphodiesterase (PDE) have been investigated. The inhibition of PDE and increase of the amplitude of LPR have been shown. The curve (RP as a function of the stimulus light intensity) was moved towards the lesser lighting and the time of the achievement of the maximum was increased. Thus, emoxypin produces an effect on the LRP like classical inhibitors of PDE. It is suggested that increase of the functional activity of the retinae upon the influence of emoxypin in caused by the influence of the one towards the system of the cyclic nucleotides.

  7. A xanthine derivative denbufylline inhibits negative inotropic response to verapamil in guinea pig ventricular papillary muscles, independent of its phosphodiesterase inhibitory activity.

    Science.gov (United States)

    Sanae, F; Ohmae, S; Takagi, K; Miyamoto, K

    1995-11-01

    A phosphodiesterase (PDE) III inhibitor, amrinone, inhibited both the negative inotropic actions of verapamil and nicardipine in guinea pig ventricular papillary muscle; this effect was canceled by the protein kinase A inhibitor H-89. The PDE IV inhibitor 1,3-di-n-butyl-7-(2'-oxopropyl)xanthine (denbufylline), which elicited a negative inotropic action by itself, attenuated the action of verapamil up to 10 microM, without any interaction with nicardipine. The attenuation by denbufylline was not influenced by H-89. This suggests that in the ventricular papillary muscle, denbufylline acts on some verapamil-sensitive site(s) in the membrane and interferes with the calcium channel function without involvement of its PDE inhibitory activity.

  8. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins.

    Science.gov (United States)

    Hengge, Regine

    2016-11-01

    The bacterial second messenger c-di-GMP controls bacterial biofilm formation, motility, cell cycle progression, development and virulence. It is synthesized by diguanylate cyclases (with GGDEF domains), degraded by specific phosphodiesterases (PDEs, with EAL of HD-GYP domains) and sensed by a wide variety of c-di-GMP-binding effectors that control diverse targets. c-di-GMP-binding effectors can be riboswitches as well as proteins with highly diverse structures and functions. The latter include 'degenerate' GGDEF/EAL domain proteins that are enzymatically inactive but still able to bind c-di-GMP. Surprisingly, two enzymatically active 'trigger PDEs', the Escherichia coli proteins PdeR and PdeL, have recently been added to this list of c-di-GMP-sensing effectors. Mechanistically, trigger PDEs are multifunctional. They directly and specifically interact with a macromolecular target (e.g. with a transcription factor or directly with a promoter region), whose activity they control by their binding and degradation of c-di-GMP-their PDE activity thus represents the c-di-GMP sensor or effector function. In this process, c-di-GMP serves as a regulatory ligand, but in contrast to classical allosteric control, this ligand is also degraded. The resulting kinetics and circuitry of control are ideally suited for trigger PDEs to serve as key components in regulatory switches.This article is part of the themed issue 'The new bacteriology'.

  9. Properties of a cyclic 3'5'-nucleotide phosphodiesterase from Vigna mungo.

    Science.gov (United States)

    Lee, C H; Abidin, U Z

    1989-10-01

    Cyclic AMP phosphodiesterase (PDE) partially purified from roots of Vigna mungo exhibited optimum activity at pH 5.5 to 6.0 and maximum enzyme activity at 50 degrees C. Levels of PDE activity in roots remained relatively constant from the first to the eleventh day after germination; on the twelfth day there was a 400% increase in PDE activity. The enzyme was stable for at least 48 hours at 28 degrees C, retaining 92% of its original activity. Plant growth hormones including gibberellic acid, indoleacetic acid and kinetin at 1.0 and 10.0 microM concentrations did not have any significant effect on enzyme activity. Nucleotides tested including cyclic 2'3' AMP, cyclic 2'3' GMP completely abolished enzyme activity at 1.0mM while cyclic 3'5' GMP, cyclic 3'5' GMP, 2'deoxy 5' ATP, 2'deoxy 5'GTP and 5'ADP were also inhibitory to the enzyme. The enzyme was stimulated by Mg2+, Fe2+ and NH4+ while Cu2+ and Fe3+ were inhibitory. Theophylline, caffeine, phosphate, pyrophosphate and EDTA were inhibitory to the enzyme.

  10. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants

    Science.gov (United States)

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions. PMID:27861632

  11. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins

    Science.gov (United States)

    2016-01-01

    The bacterial second messenger c-di-GMP controls bacterial biofilm formation, motility, cell cycle progression, development and virulence. It is synthesized by diguanylate cyclases (with GGDEF domains), degraded by specific phosphodiesterases (PDEs, with EAL of HD-GYP domains) and sensed by a wide variety of c-di-GMP-binding effectors that control diverse targets. c-di-GMP-binding effectors can be riboswitches as well as proteins with highly diverse structures and functions. The latter include ‘degenerate’ GGDEF/EAL domain proteins that are enzymatically inactive but still able to bind c-di-GMP. Surprisingly, two enzymatically active ‘trigger PDEs’, the Escherichia coli proteins PdeR and PdeL, have recently been added to this list of c-di-GMP-sensing effectors. Mechanistically, trigger PDEs are multifunctional. They directly and specifically interact with a macromolecular target (e.g. with a transcription factor or directly with a promoter region), whose activity they control by their binding and degradation of c-di-GMP—their PDE activity thus represents the c-di-GMP sensor or effector function. In this process, c-di-GMP serves as a regulatory ligand, but in contrast to classical allosteric control, this ligand is also degraded. The resulting kinetics and circuitry of control are ideally suited for trigger PDEs to serve as key components in regulatory switches. This article is part of the themed issue ‘The new bacteriology’. PMID:27672149

  12. Localization and activity of tissue bound cyclic nucleotide phosphodiesterase in normal and lack of changes in psoriatic human skin.

    Science.gov (United States)

    Mahrle, G; Organos, C E

    1976-12-01

    This study has been undertaken to elucidate the localization and the activity of cyclic nucleotide phosphodiesterase (PDE) in psoriatic epidermis compared to normal. The results showed that the evaluation of cytochemical methods may be difficult because of the various factors which interfere with the reaction and the considerable amount of background staining. Additionally, only the tissue bound particulate enzyme fraction may be demonstrated by cytochemical means. Nevertheless, the method did reveal that the activity of PDE, if any, is localized on the cytoplasmic membranes of the cells, independent of their origin, and not on the cell surface. Moreover, no differences were found between normal and psoriatic skin. It seems, therefore, that the intracellular degradation of cAMP remains unaltered in psoriasis.

  13. Chemosensitizing acridones: in vitro calmodulin dependent cAMP phosphodiesterase inhibition, docking, pharmacophore modeling and 3D QSAR studies.

    Science.gov (United States)

    Rajendra Prasad, V V S; Deepak Reddy, G; Appaji, D; Peters, G J; Mayur, Y C

    2013-03-01

    Calmodulin inhibitors have proved to play a significant role in sensitizing MDR cancer cells by interfering with cellular drug accumulation. The present investigation focuses on the evaluation of in vitro inhibitory efficacy of chloro acridones against calmodulin dependent cAMP phosphodiesterase (PDE1c). Moreover, molecular docking of acridones was performed with PDE1c in order to identify the possible protein ligand interactions and results thus obtained were compared with in vitro data. In addition an efficient pharmacophore model was developed from a set of 38 chemosensitizing acridones effective against doxorubicin resistant (HL-60/DX) cancer cell lines. Pharmacophoric features such as one hydrogen bond acceptor, one hydrophobic region, a positive ion group and three aromatic rings i.e., AHPRRR have been identified. Ligand based 3D-QSAR was also performed by employing partial least square regression analysis.

  14. Negative inotropic action of denbufylline through interfering with the calcium channel independently of its PDE IV inhibitory activity in guinea pig ventricle papillary muscles.

    Science.gov (United States)

    Sanae, F; Ohmae, S; Kobayashi, D; Takag, K; Miyamoto, K

    1996-04-01

    The inotropic actions of xanthine derivatives with long alkyl chains were investigated in guinea pig ventricular papillary muscle. A potent and nonselective phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine, elicited a positive inotropy and inhibited the negative inotropic effects of calcium channel inhibitors, as did a selective PDE III inhibitor, amrinone, and these effects were canceled by a protein kinase inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89). However, 1,3-di-n-butyl-7-(2'oxopropyl)xanthine (denbufylline) and 1-n-butyl-3-n-propylxanthine (XT-044), which have potent and selective PDE IV-inhibitory activities, showed negative inotropic actions that became more potent in the presence of H-89. Denbufylline abolished the late restoration phase induced by ryanodine. This xanthine derivative attenuated the effects of both the calcium channel acting agents Bay K 8644 and verapamil, without interaction with caffeine and dihydropyridine calcium channel inhibitors, and denbufylline had little direct influence on the specific binding of [(3)H]azidopine and [(3)H]desmethoxyverapamil to cardiac membranes. A nonxanthine PDE IV inhibitor, Ro 20-1724, did not affect the inotropic actions of calcium channel inhibitors. The attenuation by denbufylline or XT-044 of the negative inotropic action of verapamil was not influenced by treatment with H-89. These results suggest that in the ventricular papillary muscle, these xanthine derivatives elicit negative inotropy by acting on a verapamil-sensitive site of the calcium channel without involving their PDE-inhibitory activity.

  15. Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human oocytes and allows subsequent embryonic development.

    Science.gov (United States)

    Nogueira, D; Ron-El, R; Friedler, S; Schachter, M; Raziel, A; Cortvrindt, R; Smitz, J

    2006-01-01

    Controlling nuclear maturation during oocyte culture might improve nuclear-cytoplasmic maturation synchrony. We aimed to evaluate the quality of in vitro-matured, germinal vesicle (GV)-stage human oocytes following a prematuration culture (PMC) with a meiotic arrester, phosphodiesterase 3-inhibitor (PDE3-I). Follicles (diameter, 6-12 mm) were retrieved 34-36 h post-hCG administration from informed, consenting patients who had undergone controlled ovarian stimulation. Cumulus-enclosed oocytes (CEOs) presenting moderate expansion or full compaction were placed in PMC with the PDE3-I, Org9935, for 24 or 48 h. Subsequently, oocytes were removed from PMC, denuded of cumulus cells, matured in vitro, and fertilized, and the resulting embryos were cultured. In the presence of PDE3-I, approximately 98% of the oocytes were arrested at the GV stage. Following PDE3-I removal, oocytes acquired a higher maturation rate than oocytes that were immediately denuded of cumulus cells after retrieval and in vitro matured (67% vs. 46%, P = 0.01). In controls, immature CEOs retrieved with moderate expansion reached higher maturation rates compared to fully compacted CEOs, but in PMC groups, high values of maturation were achieved for both morphological classes of CEOs. No effect of PMC on fertilization was observed. A 24-h PMC period proved to be the most effective in preserving embryonic integrity. Similar proportions of nuclear abnormalities were observed in embryos of all in vitro groups. In summary, PMC with the specific PDE3-I had a beneficial effect on human CEOs by enhancing maturation, benefiting mainly the fully compacted CEOs. This resulted in an increased yield of mature oocytes available for insemination without compromising embryonic development. These results suggest that applying an inhibitor to control the rate of nuclear maturity by regulating intraoocyte PDE3 activity may allow the synchronization of nuclear and ooplasmic maturation.

  16. Peripheral phosphodiesterase 4 inhibition produced by 4-[2-(3,4-Bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]-3-methylpyridine-1-oxide (L-826,141) prevents experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Moore, Craig S.; Earl, Nathalie; Frenette, Richard;

    2006-01-01

    Administration of phosphodiesterase 4 (PDE4) inhibitors suppresses the pathogenesis associated with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In the present study, we compared the effects of rolipram and 4-[2-(3,4-bis-difluoromethoxyphenyl)-2-[4-...

  17. Synthesis, 18F-Radiolabelling and Biological Characterization of Novel Fluoroalkylated Triazine Derivatives for in Vivo Imaging of Phosphodiesterase 2A in Brain via Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Susann Schröder

    2015-05-01

    Full Text Available Phosphodiesterase 2A (PDE2A is highly and specifically expressed in particular brain regions that are affected by neurological disorders and in certain tumors. Development of a specific PDE2A radioligand would enable molecular imaging of the PDE2A protein via positron emission tomography (PET. Herein we report on the syntheses of three novel fluoroalkylated triazine derivatives (TA2–4 and on the evaluation of their effect on the enzymatic activity of human PDE2A. The most potent PDE2A inhibitors were 18F-radiolabelled ([18F]TA3 and [18F]TA4 and investigated regarding their potential as PET radioligands for imaging of PDE2A in mouse brain. In vitro autoradiography on rat brain displayed region-specific distribution of [18F]TA3 and [18F]TA4, which is consistent with the expression pattern of PDE2A protein. Metabolism studies of both [18F]TA3 and [18F]TA4 in mice showed a significant accumulation of two major radiometabolites of each radioligand in brain as investigated by micellar radio-chromatography. Small-animal PET/MR studies in mice using [18F]TA3 revealed a constantly increasing uptake of activity in the non-target region cerebellum, which may be caused by the accumulation of brain penetrating radiometabolites. Hence, [18F]TA3 and [18F]TA4 are exclusively suitable for in vitro investigation of PDE2A. Nevertheless, further structural modification of these promising radioligands might result in metabolically stable derivatives.

  18. Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression.

    Science.gov (United States)

    Liebenberg, Nico; Harvey, Brian H; Brand, Linda; Brink, Christiaan B

    2010-09-01

    We explored the antidepressant-like properties of two phosphodiesterase type 5 (PDE5) inhibitors in a genetic animal model of depression, namely Flinders sensitive line rats. We investigated the dose-dependency of the antidepressant-like action of sildenafil, and its interaction with the cholinergic system and behavioural correlates of monoaminergic neurotransmission, in the forced swim test. Antidepressant-like properties of tadalafil (a structurally distinct PDE5 inhibitor) were also evaluated. Flinders sensitive line rats were treated for 14 days with vehicle, fluoxetine, atropine or PDE5 inhibitors+/-atropine. Immobility, swimming and climbing behaviours were assessed in the forced swim test. In combination with atropine (1 mg/kg), both sildenafil (10, 20 mg/kg) and tadalafil (10 mg/kg) decreased immobility while increasing swimming (serotonergic) and climbing (noradrenergic) behaviours. Interestingly, sildenafil (3 mg/kg) decreased immobility while selectively increasing climbing behaviour in the absence of atropine. These results suggest that the antidepressant-like activity of PDE5 inhibitors involve alterations in monoaminergic neurotransmission, but involve a dependence on inherent cholinergic tone so that the final response is determined by the relative extent of activation of these systems. Furthermore, the behavioural profile of sildenafil alone, and its observed antidepressant-like properties, shows strict dose-dependency, with only higher doses showing an interaction with the cholinergic system.

  19. Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability

    KAUST Repository

    Altawashi, Azza

    2013-07-04

    Background: Cyclic adenosine 3?5?-monophosphate (cAMP) is a key regulator of many cellular processes, including in the neuronal system, and its activity is tuned by Phosphodiesterase (PDE) activation. Further, the CC2D1A protein, consisting of N-Terminal containing four DM14 domains and C-terminal containing C2 domain, was shown to regulate the cAMP-PKA pathway. A human deletion mutation lacking the fourth DM14 and the adjacent C2 domain results in Non Syndromic Intellectual Disability (NSID) also referred to as Non Syndromic Mental Retardation (NSMR). Findings. Here we demonstrate that in Mouse Embryonic Fibroblasts (MEF) CC2D1A co-localizes with PDE4D in the cytosol before cAMP stimulation and on the periphery after stimulation, and that the movement to the periphery requires the full-length CC2D1A. In CC2D1A mouse mutant cells, the absence of three of the four DM14 domains abolishes migration of the complex to the periphery and causes constitutive phosphorylation of PDE4D Serine 126 (Sssup126esup) via the cAMP-dependent protein kinase A (PKA) resulting in PDE4D hyperactivity. Suppressing PDE4D activity with Rolipram in turn restores the down-stream phosphorylation of the "cAMP response element-binding protein" (CREB) that is defective in mouse mutant cells. Conclusion: Our findings suggest that CC2D1A is a novel regulator of PDE4D. CC2D1A interacts directly with PDE4D regulating its activity and thereby fine-tuning cAMP-dependent downstream signaling. Based on our in vitro evidence we propose a model which links CC2D1A structure and function to cAMP homeostasis thereby affecting CREB phosphorylation. We speculate that CC2D1A and/or PDE4D may be promising targets for therapeutic interventions in many disorders with impaired PDE4D function such as NSID. 2013 Al-Tawashi and Gehring; licensee BioMed Central Ltd.

  20. Chemical Principle and PDE of Variational Electrodynamics

    CERN Document Server

    De Luca, Jayme

    2016-01-01

    We study the problem of selecting a bounded two-body orbit exerting a vanishing electrical force on a third charge located outside a core region. The former infinite-dimensional PDE problem is called here the Chemical principle for the hydrogenoid atom of variational electrodynamics. For orbits with velocity discontinuities satisfying mild conditions at breaking points we introduce the delay and synchronization functions and prove a musical Lemma of synchronization-at-a-distance. We derive the leading PDE of the Chemical principle by removing the accelerations using the equations of motion approximated by keeping only the terms with the most singular denominators.

  1. Loss of extra-striatal phosphodiesterase 10A expression in early premanifest Huntington's disease gene carriers.

    Science.gov (United States)

    Wilson, Heather; Niccolini, Flavia; Haider, Salman; Marques, Tiago Reis; Pagano, Gennaro; Coello, Christopher; Natesan, Sridhar; Kapur, Shitij; Rabiner, Eugenii A; Gunn, Roger N; Tabrizi, Sarah J; Politis, Marios

    2016-09-15

    Huntington's disease (HD) is a monogenic neurodegenerative disorder with an underlying pathology involving the toxic effect of mutant huntingtin protein primarily in striatal and cortical neurons. Phosphodiesterase 10A (PDE10A) regulates intracellular signalling cascades, thus having a key role in promoting neuronal survival. Using positron emission tomography (PET) with [(11)C]IMA107, we investigated the in vivo extra-striatal expression of PDE10A in 12 early premanifest HD gene carriers. Image processing and kinetic modelling was performed using MIAKAT™. Parametric images of [(11)C]IMA107 non-displaceable binding potential (BPND) were generated from the dynamic [(11)C]IMA107 scans using the simplified reference tissue model with the cerebellum as the reference tissue for nonspecific binding. We set a threshold criterion for meaningful quantification of [(11)C]IMA107 BPND at 0.30 in healthy control data; regions meeting this criterion were designated as regions of interest (ROIs). MRI-based volumetric analysis showed no atrophy in ROIs. We found significant differences in mean ROIs [(11)C]IMA107 BPND between HD gene carriers and healthy controls. HD gene carriers had significant loss of PDE10A within the insular cortex and occipital fusiform gyrus compared to healthy controls. Insula and occipital fusiform gyrus are important brain areas for the regulation of cognitive and limbic function that is impaired in HD. Our findings suggest that dysregulation of PDE10A-mediated intracellular signalling could be an early phenomenon in the course of HD with relevance also for extra-striatal brain areas.

  2. Phosphodiesterase 4D polymorphisms associate with the short-term outcome in ischemic stroke

    Science.gov (United States)

    Song, Yan-li; Wang, Chun-juan; Wu, Yi-ping; Lin, Jie; Wang, Peng-lian; Du, Wan-liang; Liu, Li; Lin, Jin-xi; Wang, Yi-long; Wang, Yong-jun; Liu, Gai-fen

    2017-01-01

    It has been demonstrated that phosphodiesterase 4D (PDE4D) genetic polymorphism is associated with ischemic stroke. However, the association between PDE4D gene and prognosis after ischemic stroke remains unknown. We consecutively enrolled ischemic stroke patients admitted to Beijing Tiantan Hospital from October 2009 to December 2013. Clinical, laboratory and imaging data upon admission were collected. All patients were followed up 3 months after stroke onset. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the associations of genetic polymorphisms with 3-month outcome after ischemic stroke and different subtypes, under various genetic models. A total of 1447 patients were enrolled, and 3-month follow-up data were obtained from 1388 (95.92%). Multivariate regression analysis showed that SNP87 of PDE4D gene was associated with increased risk of unfavorable outcome after total ischemic stroke (OR = 1.47, 95%CI 1.12–1.93), as well as stroke due to large-artery atherosclerosis (OR = 1.49, 95%CI 1.04–2.11) and small-artery occlusion (OR = 1.76, 95%CI 1.05–2.96) under a recessive model. No association between SNP83 genotype and poor outcome was found. Overall, this study demonstrated that the TT genotype of SNP87 in PDE4D was associated with increased risk of poor outcome after total ischemic stroke, large-artery atherosclerosis and small-artery occlusion, in a Chinese population. PMID:28225001

  3. Inhibition of Uterine Contractility by Thalidomide Analogs via Phosphodiesterase-4 Inhibition and Calcium Entry Blockade

    Directory of Open Access Journals (Sweden)

    Eduardo Fernández-Martínez

    2016-10-01

    Full Text Available Uterine relaxation is crucial during preterm labor. Phosphodiesterase-4 (PDE-4 inhibitors have been proposed as tocolytics. Some thalidomide analogs are PDE-4 inhibitors. The aim of this study was to assess the uterus-relaxant properties of two thalidomide analogs, methyl 3-(4-nitrophthalimido-3-(3,4-dimethoxyphenyl-propanoate (4NO2PDPMe and methyl 3-(4-aminophthalimido-3-(3,4-dimethoxyphenyl-propanoate (4APDPMe and were compared to rolipram in functional studies of spontaneous phasic, K+-induced tonic, and Ca2+-induced contractions in isolated pregnant human myometrial tissues. The accumulation of cAMP was quantified in HeLa cells. The presence of PDE-4B2 and phosphorylated myosin light-chain (pMLC, in addition to the effect of thalidomide analogs on oxytocin-induced pMLC, were assessed in human uterine myometrial cells (UtSMCs. Thalidomide analogs had concentration-dependent inhibitory effects on spontaneous and tonic contractions and inhibited Ca2+-induced responses. Tonic contraction was equipotently inhibited by 4APDPMe and rolipram (IC50 = 125 ± 13.72 and 98.45 ± 8.86 µM, respectively. Rolipram and the thalidomide analogs inhibited spontaneous and tonic contractions equieffectively. Both analogs increased cAMP accumulation in a concentration-dependent manner (p < 0.05 and induced changes in the subcellular localization of oxytocin-induced pMLC in UtSMCs. The inhibitory effects of thalidomide analogs on the contractions of pregnant human myometrium tissue may be due to their PDE-4 inhibitory effect and novel mechanism as calcium-channel blockers.

  4. Hemorheological efficiency of drugs, targeting on intracellular phosphodiesterase activity: in vitro study.

    Science.gov (United States)

    Muravyov, Alexei V; Yakusevich, Vladimir V; Chuchkanov, Fedor A; Maimistova, Alla A; Bulaeva, Svetlana V; Zaitsev, Lev G

    2007-01-01

    This in vitro study was designed to examine changes of red cell microrheological parameters (red cell aggregation and their suspension viscosity) after cell incubation with some drugs having phosphodiesterase (PDE) inhibitory activity (pentoxifylline - 25.0 microg/ml; drotaverine - 10.0 microg/ml; vinpocetine - 5.0 microg/ml; papaverine - 10.0 microg/ml; caffeine - 25.0 microg/ml; 3-isobutyl-1-methylxanthine [IBMX] - 10.0 microg/ml). Concentrations of used drugs for in vitro red cell microrheology study were the similar with those which it could be possible in blood of patient after intravenous therapeutic infusion. Red blood cells were separated from the blood by centrifugation at 1400 g for 15 min and washed 3 times with phosphate buffered saline (PBS). The washed RBCs were then resuspended in PBS at a hematocrit of approximately 40%. In each of the research sessions these RBC suspensions were divided into two aliquots and exposed to: one of the drug at 37 degrees C for 15 min; remaining aliquot (red cell suspension with PBS) was kept at 37 degrees C for 15 min and served as the control. It was found that all of used drugs decreased red cell aggregation and their suspension viscosity significantly. Since IBMX and vinpocetine are the specific inhibitor PDE activity it might be suppose that cellular PDE is molecular target in RBCs for this class of drugs. The obtained data reveals evidence that drugs, acting as PDE inhibitors, might be considered as microrheologically positive remedies.

  5. Effects of PDE type 5 inhibitors on Left Ventricular Diastolic Dysfunction in Resistant Hypertension

    Directory of Open Access Journals (Sweden)

    Ana Paula Cabral de Faria

    2015-01-01

    Full Text Available Resistant hypertension (RHTN is a multifactorial disease characterized by blood pressure (BP levels above goal (140/90 mmHg in spite of the concurrent use of three or more antihypertensive drugs of different classes. Moreover, it is well known that RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD, which leads to increased risk of heart failure progression. This review gathers data from studies evaluating the effects of phosphodiesterase-5 (PDE-5 inhibitors (administration of acute sildenafil and short-term tadalafil on diastolic function, biochemical and hemodynamic parameters in patients with RHTN. Acute study with sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters and diastolic relaxation. In addition, short-term study with the use of tadalafil demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction. No endothelial function changes were observed in the studies. The findings of acute and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD in RHTN patients.

  6. Association between a variation in the phosphodiesterase 4D gene and bone mineral density

    Directory of Open Access Journals (Sweden)

    Sambrook Philip N

    2005-03-01

    Full Text Available Abstract Background Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. Methods We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (2, n = 319 and high (> 1.11 g/cm2, n = 321 BMD at the lumbar spine. Significant findings were verified in two additional sample collections. Results Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (2 and 138 females with high (>1.04 g/cm2 lumbar spine BMD. Odds ratios were 1.5 (P = 0.035 in the original sample and 2.1 (P = 0.018 in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09. We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. Conclusion This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in

  7. Effects of icariin on cGMP—specific PDE5 and cAMP—specific PDE4 activities

    Institute of Scientific and Technical Information of China (English)

    ZCXin; EKKim; CSLin; WJLiu; LTian; YMYuan; JFu

    2003-01-01

    Aim:To clarify the mechanism of the therapeutic action of icariin on erectlile dysfunction(ED).Methods:PDE5 was isolated from the human platelet and PDE4 form the rat liver tissue using the FPLC system (Pharmacia,Milton Keynes,UK)and the Mono Q column.The inhibitory effects of icariin on PDE5 and PDE4 activities were investigated by the two-step radioisotope procedure with [3H]-c GMP/[3H]-cAMP.Papaverine served as the control drug.Results:Icariin and papaverine showed dose-dependent inhibitory effects on PDE5 and PDE4 activities.The IC50 of Icariin and papaverine on PDE5 were 0.432μ mol/L and 0.680μmol/L,respectively and those on PDE4,73.50μmol/L and 3.07μmol/L,respectively.The potencies of selectivity of icariin and papaverine on PDE5(PDE4/PDE5 of IC50)were 167.67 times and 4.54 times,respectively.Conclusion:Icariin is a cGMP-specific PDE5 inhibitor that may be developed into an oral effective agent for the treatment of ED.

  8. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    Science.gov (United States)

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Serum testosterone, testosterone replacement therapy and all-cause mortality in men with type 2 diabetes: retrospective consideration of the impact of PDE5 inhibitors and statins.

    Science.gov (United States)

    Hackett, G; Heald, A H; Sinclair, A; Jones, P W; Strange, R C; Ramachandran, S

    2016-03-01

    Low testosterone levels occur in over 40% of men with type 2 diabetes mellitus (T2DM) and have been associated with increased mortality. Testosterone replacement together with statins and phosphodiesterase 5 inhibitors (PDE5I) are widely used in men with T2DM. To determine the impact of testosterone and testosterone replacement therapy (TRT) on mortality and assess the independence of this effect by adjusting statistical models for statin and PDE5I use. We studied 857 men with T2DM screened from five primary care practices during April 2007-April 2009. Of the 857 men, 175/637 men with serum total testosterone ≤ 12 nmol/l or free testosterone (FT) ≤ 0.25 nmol/l received TU for a mean of 3.8 ± 1.2 (SD) years. PDE5I and statins were prescribed to 175/857 and 662/857 men respectively. All-cause mortality was the primary end-point. Cox regression models were used to compare survival in the three testosterone level/treatment groups, the analysis adjusted for age, statin and PDE5I use, BMI, blood pressure and lipids. Compared with the Low T/untreated group, mortality in the Normal T/untreated (HR: 0.62, CI: 0.41-0.94) or Low T/treated (HR: 0.38, CI: 0.16-0.90) groups was significantly reduced. PDE5I use was significantly associated with reduced mortality (HR: 0.21, CI: 0.066-0.68). After repeating the Cox regression in the 682 men not given a PDE5I, mortality in the Normal T/untreated and Low T/treated groups was significantly lower than that in the reference Low T/untreated group. Mortality in the PDE5I/treated was significantly reduced compared with the PDE5I/untreated group (OR: 0.06, CI: 0.009-0.47). Testosterone replacement therapy is independently associated with reduced mortality in men with T2DM. PDE5I use, included as a confounding factor, was associated with decreased mortality in all patients and, those not on TRT, suggesting independence of effect. The impact of PDE5I treatment on mortality (both HR and OR < 0.25) needs confirmation by independent studies

  10. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A.

    Science.gov (United States)

    Módis, Katalin; Panopoulos, Panagiotis; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-11-01

    Although hydrogen sulfide (H₂S) is generally known as a mitochondrial poison, recent studies show that lower concentrations of H₂S play a physiological role in the stimulation of mitochondrial electron transport and cellular bioenergetics. This effect involves electron donation at Complex II. Other lines of recent studies demonstrated that one of the biological actions of H₂S involves inhibition of cAMP and cGMP phosphodiesterases (PDEs). Given the emerging functional role of the mitochondrial isoform of cAMP PDE (PDE2A) in the regulation of mitochondrial function the current study investigated whether cAMP-dependent mechanisms participate in the stimulatory effect of NaHS on mitochondrial function. In isolated rat liver mitochondria, partial digestion studies localized PDE2A into the mitochondrial matrix. NaHS exerted a concentration-dependent inhibitory effect on recombinant PDE2A enzyme in vitro. Moreover, NaHS induced an elevation of cAMP levels when added to isolated mitochondria and stimulated the mitochondrial electron transport. The latter effect was inhibited by Rp-cAMP, an inhibitor of the cAMP-dependent protein kinase (PKA). The current findings suggest that the direct electron donating effect of NaHS is amplified by an intramitochondrial cAMP system, which may involve the inhibition of PDE2A and subsequent, cAMP-mediated stimulation of PKA.

  11. HPRT-deficiency dysregulates cAMP-PKA signaling and phosphodiesterase 10A expression: mechanistic insight and potential target for Lesch-Nyhan Disease?

    Science.gov (United States)

    Guibinga, Ghiabe-Henri; Murray, Fiona; Barron, Nikki

    2013-01-01

    Lesch-Nyhan Disease (LND) is the result of mutations in the X-linked gene encoding the purine metabolic enzyme, hypoxanthine guanine phosphoribosyl transferase (HPRT). LND gives rise to severe neurological anomalies including mental retardation, dystonia, chorea, pyramidal signs and a compulsive and aggressive behavior to self injure. The neurological phenotype in LND has been shown to reflect aberrant dopaminergic signaling in the basal ganglia, however there are little data correlating the defect in purine metabolism to the neural-related abnormalities. In the present studies, we find that HPRT-deficient neuronal cell lines have reduced CREB (cAMP response element-binding protein) expression and intracellular cyclic AMP (cAMP), which correlates with attenuated CREB-dependent transcriptional activity and a reduced phosphorylation of protein kinase A (PKA) substrates such as synapsin (p-syn I). Of interest, we found increased expression of phosphodiesterase 10A (PDE10A) in HPRT-deficient cell lines and that the PDE10 inhibitor papaverine and PDE10A siRNA restored cAMP/PKA signaling. Furthermore, reconstitution of HPRT expression in mutant cells partly increased cAMP signaling synapsin phosphorylation. In conclusion, our data show that HPRT-deficiency alters cAMP/PKA signaling pathway, which is in part due to the increased of PDE10A expression and activity. These findings suggest a mechanistic insight into the possible causes of LND and highlight PDE10A as a possible therapeutic target for this intractable neurological disease.

  12. Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes.

    Science.gov (United States)

    Wang, Honglan; Kohr, Mark J; Traynham, Christopher J; Ziolo, Mark T

    2009-08-01

    Endothelial nitric oxide synthase (NOS3) regulates the functional response to beta-adrenergic (beta-AR) stimulation via modulation of the L-type Ca(2+) current (I(Ca)). However, the NOS3 signaling pathway modulating I(Ca) is unknown. This study investigated the contribution of soluble guanylate cyclase (sGC) and phosphodiesterase type 5 (PDE5), a cGMP-specific PDE, in the NOS3-mediated regulation of I(Ca). Myocytes were isolated from NOS3 knockout (NOS3(-/-)) and wildtype (WT) mice. We measured I(Ca) (whole-cell voltage-clamp), and simultaneously measured Ca(2+) transients (Fluo-4 AM) and cell shortening (edge detection). Zaprinast (selective inhibitor of PDE5), decreased beta-AR stimulated (isoproterenol, ISO)-I(Ca), and Ca(2+) transient and cell shortening amplitudes in WT myocytes. However, YC-1 (NO-independent activator of sGC) only reduced ISO-stimulated I(Ca), but not cardiac contraction. We further investigated the NOS3/sGC/PDE5 pathway in NOS3(-/-) myocytes. PDE5 is mislocalized in these myocytes and we observed dissimilar effects of PDE5 inhibition and sGC activation compared to WT. That is, zaprinast had no effect on ISO-stimulated I(Ca), or Ca(2+) transient and cell shortening amplitudes. Conversely, YC-1 significantly decreased both ISO-stimulated I(Ca), and cardiac contraction. Further confirming that PDE5 localizes NOS3/cGMP signaling to I(Ca); YC-1, in the presence of zaprinast, now significantly decreased ISO-stimulated Ca(2+) transient and cell shortening amplitudes in WT myocytes. The effects of YC-1 on I(Ca) and cardiac contraction were blocked by KT5823 (a selective inhibitor of the cGMP-dependent protein kinase, PKG). Our data suggests a novel physiological role for PDE5 in restricting the effects of NOS3/sGC/PKG signaling pathway to modulating beta-AR stimulated I(Ca), while limiting effects on cardiac contraction.

  13. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions.

    Science.gov (United States)

    Tetsi, Liliane; Charles, Anne-Laure; Paradis, Stéphanie; Lejay, Anne; Talha, Samy; Geny, Bernard; Lugnier, Claire

    2017-05-01

    Mitochondria play a critical role in skeletal muscle metabolism and function, notably at the level of tissue respiration, which conduct muscle strength as well as muscle survival. Pathological conditions induce mitochondria dysfunctions notably characterized by free oxygen radical production disturbing intracellular signaling. In that way, the second messengers, cyclic AMP and cyclic GMP, control intracellular signaling at the physiological and transcription levels by governing phosphorylation cascades. Both nucleotides are specifically and selectively hydrolyzed in their respective 5'-nucleotide by cyclic nucleotide phosphodiesterases (PDEs), which constitute a multi-genic family differently tissue distributed and subcellularly compartmentalized. These PDEs are presently recognized as therapeutic targets for cardiovascular, pulmonary, and neurologic diseases. However, very few data concerning cyclic nucleotides and PDEs in skeletal muscle, specifically in mitochondria, are reported in the literature. The knowledge of PDE implication in mitochondrial signaling would be helpful for resolving critical mitochondrial dysfunctions in skeletal muscle.

  14. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  15. Ab Initio QM/MM Study Shows a Highly Dissociated SN2 Hydrolysis Mechanism for the cGMP-Specific Phosphodiesterase-5.

    Science.gov (United States)

    Li, Zhe; Wu, Yinuo; Feng, Ling-Jun; Wu, Ruibo; Luo, Hai-Bin

    2014-12-09

    Phosphodiesterases (PDEs) are the sole enzymes hydrolyzing the important second messengers cGMP and cAMP and have been identified as therapeutic targets for several diseases. The most successful examples are PDE5 inhibitors (i.e., sildenafil and tadalafil), which have been approved for the treatment of male erectile dysfunction and pulmonary hypertension. However, the side effects mostly due to nonselective inhibition toward other PDE isoforms, set back the clinical usage of PDE5 inhibitors. Until now, the exact catalytic mechanism of the substrate cGMP by PDE5 is still unclear. Herein, the first computational study on the catalytic hydrolysis mechanism of cGMP for PDE5 (catalytic domain) is performed by employing the state-of-the-art ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. Our simulations show a SN2 type reaction procedure via a highly dissociated transition state with a reaction barrier of 8.88 kcal/mol, which is quite different from the previously suggested hydrolysis mechanism of cAMP for PDE4. Furthermore, the subsequent ligand exchange and the release of the product GMP have also been investigated by binding energy analysis and MD simulations. It is deduced that ligand exchange would be the rate-determining step of the whole reaction, which is consistent with many previous experimental results. The obtained mechanistic insights should be valuable for not only the rational design of more specific inhibitors toward PDE5 but also understanding the general hydrolysis mechanism of cGMP-specific PDEs.

  16. Effect of selective phosphodiesterase 4 inhibitor,rolipram, on cytokine and gelatinase B (MMP-9) release in the whole blood from adult patients with cystic fibrosis.

    Institute of Scientific and Technical Information of China (English)

    JouneauSTEPHANE; BelleguicCHANTAL; EpinceALEXANDRAD; BrinchaultORAZIELLA; DesruesBENOIT; CamusCHRISTOPHE; MichelROUSSEY; LagenteVINCENT; CorinneAEMartin-CHOULY

    2004-01-01

    AIM: Inflammation plays a critical role in lung disease progression in cystic fibrosis being able to be associated with the development of tissue remodeling. These processes are mainly due to pro-inflammatory cytokines release and to an imbalance between proteases and antiproteases involving matrix metalloproteinases (MMP). Phosphodiesterase 4 (PDE4) inhibitors, by elevating intracellular cAMP, are known to be potent inhibitors of

  17. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study.

    Science.gov (United States)

    Bodén, R; Persson, J; Wall, A; Lubberink, M; Ekselius, L; Larsson, E-M; Antoni, G

    2017-03-07

    The enzyme phosphodiesterase 10A (PDE10A) is abundant in striatal medium spiny neurons and has been implicated in the pathophysiology of schizophrenia in animal models and is investigated as a possible new pharmacological treatment target. A reduction of prefrontal cortical thickness is common in schizophrenia, but how this relates to PDE10A expression is unknown. Our study aim was to compare, we believe for the first time, the striatal non-displaceable binding potential (BPND) of the new validated PDE10A ligand [(11)C]Lu AE92686 between patients with schizophrenia and healthy controls. Furthermore, we aimed to assess the correlation of PDE10A BPND to cortical thickness. Sixteen healthy male controls and 10 male patients with schizophrenia treated with clozapine, olanzapine or quetiapine were investigated with positron emission tomography (PET) and magnetic resonance imaging (MRI). Striatal binding potential (BPND) of [(11)C]Lu AE92686 was acquired through dynamic PET scans and cortical thickness by structural MRI. Clinical assessments of symptoms and cognitive function were performed and the antipsychotic dosage was recorded. Patients with schizophrenia had a significantly lower BPND of [(11)C]Lu AE92686 in striatum (P=0.003) than healthy controls. The striatal BPND significantly correlated to cortical thickness in the medial prefrontal cortex and superior frontal gyrus across patients with schizophrenia and healthy controls. No significant correlation was observed between the BPND for [(11)C]Lu AE92686 in striatum and age, schizophrenia symptoms, antipsychotic dosage, coffee consumption, smoking, duration of illness or cognitive function in the patients. In conclusion, PDE10A may be important for functioning in the striato-cortical interaction and in the pathophysiology of schizophrenia.

  18. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice.

    Science.gov (United States)

    Guirguis, Emilia; Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva; Manganiello, Vincent

    2013-09-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.

  19. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    Science.gov (United States)

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  20. Application of phosphodiesterase inhibitor-roflumilast in chronic obstructivepulmonary disease%磷酸二酯酶抑制药——罗氟司特在慢性阻塞性肺疾病治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    祝巍; 陈萍

    2011-01-01

    炎症是慢性阻塞性肺疾病(COPD)发病机制的核心,抗炎治疗在COPD管理中具有重要地位.磷酸二酯酶4 (PDE4)表达于炎症细胞和平滑肌细胞,是抗炎治疗的靶目标.PDE4抑制药能有效拮抗气道炎症,但早期的PDE4抑制药效能低、不良反应多,致使应用受限.新上市的选择性PDE4抑制药——罗氟司特与PDE4有更强的亲和力,能够改善肺功能,减少COPD急性加重,且不良反应轻微,已被2010年COPD防治全球创议推荐用于重度COPD患者的治疗.%Inflammation is the central mechanism of chronic obstructive pulmonary disease (COPD).Anti-inflammaory treatment plays an important role in COPD management. Phosphodiesterase 4 (PDE4) was identified as a therapeutic target for anti-inflammatory agents many years ago, since it is expressed in many inflammatory cells and smooth muscle cells. The application of early PDE4 inhibitors were limited by low potency and hampered by its serious adverse reactions. Current PDE4 inhibitors such as roflumilast have fewer adverse reactions and greater affinity for PDE4, and can improve the lung function, reduce exacerbation rates, make a wide application prospect. GOLD 2010 guideline had recommended its use in the treatment of severe COPD patients.

  1. Discovery of MK-0952, a selective PDE4 inhibitor for the treatment of long-term memory loss and mild cognitive impairment.

    Science.gov (United States)

    Gallant, Michel; Aspiotis, Renee; Day, Stephen; Dias, Rebecca; Dubé, Daniel; Dubé, Laurence; Friesen, Richard W; Girard, Mario; Guay, Daniel; Hamel, Pierre; Huang, Zheng; Lacombe, Patrick; Laliberté, Sebastien; Lévesque, Jean-François; Liu, Susana; Macdonald, Dwight; Mancini, Joseph; Nicholson, Donald W; Styhler, Angela; Townson, Karen; Waters, Kerry; Young, Robert N; Girard, Yves

    2010-11-15

    The structure-activity relationship of a novel series of 8-biarylnaphthyridinones acting as type 4 phosphodiesterase (PDE4) inhibitors for the treatment of long-term memory loss and mild cognitive impairment is described herein. The manuscript describes a new paradigm for the development of PDE4 inhibitor targeting CNS indications. This effort led to the discovery of the clinical candidate MK-0952, an intrinsically potent inhibitor (IC(50)=0.6 nM) displaying limited whole blood activity (IC(50)=555 nM). Supporting in vivo results in two preclinical efficacy tests and one test assessing adverse effects are also reported. The comparative profiles of MK-0952 and two other Merck compounds are described to validate the proposed hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. PDE-SVD Based Audio Denoising

    OpenAIRE

    Baravdish, George; Evangelista, Gianpaolo; Svensson, Olof; Sofya, Faten

    2012-01-01

    In this paper we present a new method for denoising audio signals. The method is based on the Singular Value Decomposition (SVD) of the frame matrix representing the signal inthe Overlap Add decomposition. Denoising is performed by modifying both the singular values, using a tapering model, and the singular vectors of the representation, using a nonlinear PDE method. The performance of the method is evaluated and compared with denoising obtained by filtering.

  3. Aminoalkyl Derivatives of 8-Alkoxypurine-2,6-diones: Multifunctional 5-HT1A /5-HT7 Receptor Ligands and PDE Inhibitors with Antidepressant Activity.

    Science.gov (United States)

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Żmudzki, Paweł; Bucki, Adam; Kołaczkowski, Marcin; Partyka, Anna; Wesołowska, Anna; Kazek, Grzegorz; Głuch-Lutwin, Monika; Siwek, Agata; Starowicz, Gabriela; Pawłowski, Maciej

    2016-12-01

    In the search for potential psychotropic agents, a new series of 3,7-dimethyl- and 1,3-dimethyl-8-alkoxypurine-2,6-dione derivatives of arylpiperazines, perhydroisoquinolines, or tetrahydroisoquinolines with flexible alkylene spacers (5-16 and 21-32) were synthesized and evaluated for 5-HT1A /5-HT7 receptor affinities as well as PDE4B1 and PDE10A inhibitory properties. The 1-(4-(4-(2-hydroxyphenyl)piperazin-1-yl)butyl)-3,7-dimethyl-8-propoxypurine-2,6-dione (16) and 7-(2-hydroxyphenyl)piperazinylalkyl-1,3-dimethyl-8-ethoxypurine-2,6-diones (31 and 32) as potent dual 5-HT1A /5-HT7 receptor ligands with antagonistic activity produced an antidepressant-like effect in the forced swim test in mice. This effect was similar to that produced by citalopram. All the tested compounds were stronger phosphodiesterase isoenzyme inhibitors than theophylline and theobromine. The most potent compounds, 15 and 16, were characterized by 51 and 52% inhibition, respectively, of PDE4B1 activity at a concentration of 10(-5)  M. Concerning the above findings, it may be assumed that the inhibition of PDE4B1 may impact on the signal strength and specificity resulting from antagonism toward the 5-HT1 and 5-HT7 receptors, especially in the case of compounds 15 and 16. This dual receptor and enzyme binding mode was analyzed and explained via molecular modeling studies.

  4. In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5.

    Science.gov (United States)

    Arya, Hemant; Syed, Safiulla Basha; Singh, Sorokhaibam Sureshkumar; Ampasala, Dinakar R; Coumar, Mohane Selvaraj

    2017-06-16

    Understanding the molecular mode of action of natural product is a key step for developing drugs from them. In this regard, this study is aimed to understand the molecular-level interactions of chemical constituents of Clerodendrum colebrookianum Walp., with anti-hypertensive drug targets using computational approaches. The plant has ethno-medicinal importance for the treatment of hypertension and reported to show activity against anti-hypertensive drug targets-Rho-associated coiled-coil protein kinase (ROCK), angiotensin-converting enzyme, and phosphodiesterase 5 (PDE5). Docking studies showed that three chemical constituents (acteoside, martinoside, and osmanthuside β6) out of 21 reported from the plant to interact with the anti-hypertensive drug targets with good glide score. In addition, they formed H-bond interactions with the key residues Met156/Met157 of ROCK I/ROCK II and Gln817 of PDE5. Further, molecular dynamics (MD) simulation of protein-ligand complexes suggest that H-bond interactions between acteoside/osmanthuside β6 and Met156/Met157 (ROCK I/ROCK II), acteoside and Gln817 (PDE5) were stable. The present investigation suggests that the anti-hypertensive activity of the plant is due to the interaction of acteoside and osmanthuside β6 with ROCK and PDE5 drug targets. The identified molecular mode of binding of the plant constituents could help to design new drugs to treat hypertension.

  5. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer’s disease

    Science.gov (United States)

    Su, Tao; Zhang, Tianhua; Xie, Shishun; Yan, Jun; Wu, Yinuo; Li, Xingshu; Huang, Ling; Luo, Hai-Bin

    2016-02-01

    Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer’s disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ1-42 aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu2+-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.

  6. Segregation of Incomplete Achromatopsia and Alopecia Due to PDE6H and LPAR6 Variants in a Consanguineous Family from Pakistan

    Directory of Open Access Journals (Sweden)

    Christeen Ramane J. Pedurupillay

    2016-07-01

    Full Text Available We report on two brothers with visual impairment, and non-syndromic alopecia in the elder proband. The parents were first-degree Pakistani cousins. Whole exome sequencing of the elder brother and parents, followed by Sanger sequencing of all four family members, led to the identification of the variants responsible for the two phenotypes. One variant was a homozygous nonsense variant in the inhibitory subunit of the cone-specific cGMP phosphodiesterase gene, PDE6H:c.35C>G (p.Ser12*. PDE6H is expressed in the cones of the retina, which are involved in perception of color vision. This is the second report of a homozygous PDE6H:c.35C>G variant causing incomplete achromatopsia (OMIM 610024, thus strongly supporting the hypothesis that loss-of-function variants in PDE6H cause this visual deficiency phenotype. The second variant was a homozygous missense substitution in the lysophosphatidic acid receptor 6, LPAR6:c.188A>T (p.Asp63Val. LPAR6 acts as a G-protein-coupled receptor involved in hair growth. Biallelic loss-of-function variants in LPAR6 cause hypotrichosis type 8 (OMIM 278150, with or without woolly hair, a form of non-syndromic alopecia. Biallelic LPAR6:c.188A>T was previously described in five families from Pakistan.

  7. PI3K is an upstream regulator of the PDE3B pathway of leptin signaling that may not involve activation of Akt in the rat hypothalamus

    Science.gov (United States)

    Sahu, Abhiram; Koshinaka, Keiichi; Sahu, Maitrayee

    2012-01-01

    Leptin, the product of the obese gene, regulates energy homeostasis by acting primarily at the level of the hypothalamus. Leptin action through its receptor involves various pathways including the signal transducer and activator of transcription (STAT3), phosphatidylinositol 3-kinase (PI3K), and phosphodiesterase 3B (PDE3B)-cAMP signaling in the CNS and peripheral tissues. In the hypothalamus, leptin stimulates STAT3 activation, and induces PI3K and PDE3B activities, among others. We have previously demonstrated that PDE3B activation in the hypothalamus is critical for transducing anorectic and body weight reducing effects of leptin. Similarly, PI3K has been implicated toplay a critical role in leptin signaling in the hypothalamus. Whereas in insulin signaling pathway, PI3K is known to be an upstream regulator of PDE3B in non-neuronal tissues, it is still unknown whether this is also the case for leptin signaling in the hypothalamus. To address this possibility, the effect of wortmannin, a specific PI3K inhibitor, was examined on the leptin-induced PDE3B activity in the hypothalamus of male rats. Intracerebroventricular (icv) injection of leptin (4 μg) significantly increased PDE3B activity by 2-fold in the hypothalamus as expected. However, prior administration of wortmannin completely reversed the stimulatory effect of leptin on PDE3B activity in the hypothalamus. To demonstrate whether leptin stimulates p-Akt levels and there by a possible upstream regulator of PDE3B, we examined the effects of icv leptin on p-Akt levels in the hypothalamus and compared that with the known stimulatory effect of insulin on p-Akt. We observed that insulin increased p-Akt levels but leptin failed to do so although it increased p-STAT3 levels in the rat hypothalamus. Immunocytochemistry confirmed the biochemical finding in that leptin failed but insulin increased the number of p-Akt positive cells in various hypothalamic nuclei. Altogether these results implicate PI3K but not Akt

  8. A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    Liyun Zhang

    Full Text Available Retinal degeneration is often progressive. This feature has provided a therapeutic window for intervention that may extend functional vision in patients. Even though this approach is feasible, few promising drug candidates are available. The scarcity of new drugs has motivated research to discover novel compounds through different sources. One such example is Schisandrin B (SchB, an active component isolated from the five-flavor fruit (Fructus Schisandrae that is postulated in traditional Chinese medicines to exert prophylactic visual benefit. This SchB benefit was investigated in this study in pde6cw59, a zebrafish retinal-degeneration model. In this model, the pde6c gene (phosphodiesterase 6C, cGMP-specific, cone, alpha prime carried a mutation which caused cone degeneration. This altered the local environment and caused the bystander rods to degenerate too. To test SchB on the pde6cw59 mutants, a treatment concentration was first determined that would not cause morphological defects, and would initiate known physiological response. Then, the mutants were treated with the optimized SchB concentration before the appearance of retinal degeneration at 3 days postfertilization (dpf. The light sensation of animals was evaluated at 6 dpf by the visual motor response (VMR, a visual startle that could be initiated by drastic light onset and offset. The results show that the VMR of pde6cw59 mutants towards light onset was enhanced by the SchB treatment, and that the initial phase of the enhancement was primarily mediated through the mutants' eyes. Further immunostaining analysis indicates that the treatment specifically reduced the size of the abnormally large rods. These observations implicate an interesting hypothesis: that the morphologically-improved rods drive the observed VMR enhancement. Together, these investigations have identified a possible visual benefit of SchB on retinal degeneration, a benefit that can potentially be further developed to

  9. A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration.

    Science.gov (United States)

    Zhang, Liyun; Xiang, Lue; Liu, Yiwen; Venkatraman, Prahatha; Chong, Leelyn; Cho, Jin; Bonilla, Sylvia; Jin, Zi-Bing; Pang, Chi Pui; Ko, Kam Ming; Ma, Ping; Zhang, Mingzhi; Leung, Yuk Fai

    2016-01-01

    Retinal degeneration is often progressive. This feature has provided a therapeutic window for intervention that may extend functional vision in patients. Even though this approach is feasible, few promising drug candidates are available. The scarcity of new drugs has motivated research to discover novel compounds through different sources. One such example is Schisandrin B (SchB), an active component isolated from the five-flavor fruit (Fructus Schisandrae) that is postulated in traditional Chinese medicines to exert prophylactic visual benefit. This SchB benefit was investigated in this study in pde6cw59, a zebrafish retinal-degeneration model. In this model, the pde6c gene (phosphodiesterase 6C, cGMP-specific, cone, alpha prime) carried a mutation which caused cone degeneration. This altered the local environment and caused the bystander rods to degenerate too. To test SchB on the pde6cw59 mutants, a treatment concentration was first determined that would not cause morphological defects, and would initiate known physiological response. Then, the mutants were treated with the optimized SchB concentration before the appearance of retinal degeneration at 3 days postfertilization (dpf). The light sensation of animals was evaluated at 6 dpf by the visual motor response (VMR), a visual startle that could be initiated by drastic light onset and offset. The results show that the VMR of pde6cw59 mutants towards light onset was enhanced by the SchB treatment, and that the initial phase of the enhancement was primarily mediated through the mutants' eyes. Further immunostaining analysis indicates that the treatment specifically reduced the size of the abnormally large rods. These observations implicate an interesting hypothesis: that the morphologically-improved rods drive the observed VMR enhancement. Together, these investigations have identified a possible visual benefit of SchB on retinal degeneration, a benefit that can potentially be further developed to extend

  10. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    Science.gov (United States)

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc.

  11. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson's disease.

    Science.gov (United States)

    Niccolini, Flavia; Foltynie, Thomas; Reis Marques, Tiago; Muhlert, Nils; Tziortzi, Andri C; Searle, Graham E; Natesan, Sridhar; Kapur, Shitij; Rabiner, Eugenii A; Gunn, Roger N; Piccini, Paola; Politis, Marios

    2015-10-01

    The mechanisms underlying neurodegeneration and loss of dopaminergic signalling in Parkinson's disease are still only partially understood. Phosphodiesterase 10A (PDE10A) is a basal ganglia expressed dual substrate enzyme, which regulates cAMP and cGMP signalling cascades, thus having a key role in the regulation of dopaminergic signalling in striatal pathways, and in promoting neuronal survival. This study aimed to assess in vivo the availability of PDE10A in patients with Parkinson's disease using positron emission tomography molecular imaging with (11)C-IMA107, a highly selective PDE10A radioligand. We studied 24 patients with levodopa-treated, moderate to advanced Parkinson's disease. Their positron emission tomography imaging data were compared to those from a group of 12 healthy controls. Parametric images of (11)C-IMA107 binding potential relative to non-displaceable binding (BPND) were generated from the dynamic (11)C-IMA107 scans using the simplified reference tissue model with the cerebellum as the reference tissue. Corresponding region of interest analysis showed lower mean (11)C-IMA107 BPND in the caudate (P Parkinson's disease compared to healthy controls, which was confirmed with voxel-based analysis. Longer Parkinson's duration correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.65; P = 0.005), putamen (r = -0.51; P = 0.025), and globus pallidus (r = -0.47; P = 0.030). Higher Unified Parkinson's Disease Rating Scale part-III motor scores correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.54; P = 0.011), putamen (r = -0.48; P = 0.022), and globus pallidus (r = -0.70; P Parkinson's disease with levodopa-induced dyskinesias (n = 12), correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.73; P = 0.031) and putamen (r = -0.74; P = 0.031). Our findings demonstrate striatal and pallidal loss of PDE10A expression, which is associated with Parkinson's duration and severity of motor symptoms and complications. PDE10A is an

  12. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    Energy Technology Data Exchange (ETDEWEB)

    Kucka, Marek [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Pogrmic-Majkic, Kristina; Fa, Svetlana [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia); Stojilkovic, Stanko S. [Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, NIH, Bethesda, MD (United States); Kovacevic, Radmila, E-mail: radmila.kovacevic@dbe.uns.ac.rs [Laboratory for Ecotoxicology, Department of Biology and Ecology, University of Novi Sad, Faculty of Sciences, 21000 Novi Sad (Serbia)

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward c

  13. [Counterfeit phosphodiesterase type 5 inhibitors--growing safety risks for public health].

    Science.gov (United States)

    Fijałek, Zbigniew; Sarna, Katarzyna; Błazewicz, Agata; Marin, Jan

    2010-01-01

    Counterfeit drugs, medical devises and dietary supplements are inherently dangerous and a growing problem. In Europe the growth of the counterfeit medication market is attributable in part to registration of phosphodiesterase type 5 inhibitors (PDE-5) used for the erectile dysfunction. "Viagra, Levitra and Cialis belong to this group. It has been estimated that up to 2.5 million men in Europe are exposed to an illicit sildenafil, suggesting that there may be as many illegal as legal users of sildenafil. In Europe a strong trend is observed towards increasingly professional counterfeits and imitations of Viagra, Cialis and Levitra, with regard to the appearance of tablets, capsules and packaging. The professional presentation will deceive potential consumers into assuming these products are legal, efficacious and safe. Globally, increased obstacles for counterfeiters are necessary to combat pharmaceutical counterfeiting, including fines and penalties. The worldwide nature of the counterfeit problem requires proper coordination between countries to ensure an adequate enforcement. We described the usefulness of the time-of-flight mass spectrometry with the electrospray ionization (LC-ESI-MS-TOF) and the X-ray powder diffraction method (XRPD) for PDE-5 counterfeit screening from the Polish illegal market.

  14. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    Science.gov (United States)

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    SUMMARY Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2+ levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca2+-release channel. As a consequence, resveratrol increases NAD+ and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. PMID:22304913

  15. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera

    DEFF Research Database (Denmark)

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have...... not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2′-PDE activity, which highlights the probable existence of a premature 2–5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2–5A degrading activity....... Upon this finding, two out of three elements forming the 2–5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis...

  16. Effects of phosphodiesterase 4 inhibition on alveolarization and hyperoxia toxicity in newborn rats.

    Directory of Open Access Journals (Sweden)

    Céline Méhats

    Full Text Available BACKGROUND: Prolonged neonatal exposure to hyperoxia is associated with high mortality, leukocyte influx in airspaces, and impaired alveolarization. Inhibitors of type 4 phosphodiesterases are potent anti-inflammatory drugs now proposed for lung disorders. The current study was undertaken to determine the effects of the prototypal phosphodiesterase-4 inhibitor rolipram on alveolar development and on hyperoxia-induced lung injury. METHODOLOGY/FINDINGS: Rat pups were placed under hyperoxia (FiO2>95% or room air from birth, and received rolipram or its diluent daily until sacrifice. Mortality rate, weight gain and parameters of lung morphometry were recorded on day 10. Differential cell count and cytokine levels in bronchoalveolar lavage and cytokine mRNA levels in whole lung were recorded on day 6. Rolipram diminished weight gain either under air or hyperoxia. Hyperoxia induced huge mortality rate reaching 70% at day 10, which was prevented by rolipram. Leukocyte influx in bronchoalveolar lavage under hyperoxia was significantly diminished by rolipram. Hyperoxia increased transcript and protein levels of IL-6, MCP1, and osteopontin; rolipram inhibited the increase of these proteins. Alveolarization was impaired by hyperoxia and was not restored by rolipram. Under room air, rolipram-treated pups had significant decrease of Radial Alveolar Count. CONCLUSIONS: Although inhibition of phosphodiesterases 4 prevented mortality and lung inflammation induced by hyperoxia, it had no effect on alveolarization impairment, which might be accounted for by the aggressiveness of the model. The less complex structure of immature lungs of rolipram-treated pups as compared with diluent-treated pups under room air may be explained by the profound effect of PDE4 inhibition on weight gain that interfered with normal alveolarization.

  17. Biflavones of Decussocarpus rospigliosii as phosphodiesterases inhibitors.

    Science.gov (United States)

    Chaabi, Mehdi; Antheaume, Cyril; Weniger, Bernard; Justiniano, Hélène; Lugnier, Claire; Lobstein, Annelise

    2007-10-01

    A phytochemical study of an ethyl acetate extract of Decussocarpus rospigliosii leaves led to the isolation of six 3'-8''-biapigenin derivatives identified as amentoflavone (1), podocarpusflavone A (2), sequoiaflavone (3), podocarpusflavone B (4), 7,7''-di-O-methylamentoflavone (5) and heveaflavone (6). Biflavones 1-4 showed strong inhibitory activity on several PDE isoforms. Biflavone (5) showed selective and potent inhibition of the PDE4 isoform (IC50=1.48+/-0.21 microM) and was almost as active as the reference drug Rolipram (IC50=1.1+/-0.2 microM).

  18. Novel Therapeutic Targets for Phosphodiesterase 5 Inhibitors: current state-of-the-art on systemic arterial hypertension and atherosclerosis.

    Science.gov (United States)

    Vasquez, Elisardo C; Gava, Agata L; Graceli, Jones B; Balarini, Camille M; Campagnaro, Bianca P; Pereira, Thiago Melo C; Meyrelles, Silvana S

    2016-01-01

    The usefulness of selective inhibitors of phosphodiesterase 5 (PDE5) is well known, first for the treatment of male erectile dysfunction and more recently for pulmonary hypertension. The discovery that PDE5 is present in the systemic artery endothelium and smooth muscle cells led investigators to test the extra sexual effects of sildenafil, the first and most investigated PDE5 inhibitor, in diseases affecting the systemic arteries. Cumulative data from experimental and clinical studies have revealed beneficial effects of sildenafil on systemic arterial hypertension and its target organs, such as the heart, kidneys and vasculature. An important effect of sildenafil is reduction of hypertension and improvement of endothelial function in experimental models of hypertension and hypertensive subjects. Interestingly, in angiotensin-dependent hypertension, its beneficial effects on endothelial and kidney dysfunctions seem to at least in part be caused by its ability to decrease the levels of angiotensin II and increase angiotensin 1-7, in addition to improving nitric oxide bioavailability and diminishing reactive oxygen species. Another remarkable finding on the effects of sildenafil comes from studies in apolipoprotein E knockout mice, a model of atherosclerosis that closely resembles human atherosclerotic disease. In this review, we focus on the promising beneficial effects of sildenafil for treating systemic high blood pressure, especially resistant hypertension, and the endothelial dysfunction that is present in hypertension and atherosclerosis.

  19. Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer's disease.

    Science.gov (United States)

    Zhou, Li-Yun; Zhu, Yao; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2017-09-01

    With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer's disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67-169.80nM (donepezil IC50 50.12nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50μM (sildenafil IC50 12.59μM), and some of these compounds showed low cell toxicity to A549 cells in vitro. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    Energy Technology Data Exchange (ETDEWEB)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  1. Correlation between selective inhibition of the cyclic nucleotide phosphodiesterases and the contractile activity in human pregnant myometrium near term.

    Science.gov (United States)

    Leroy, M J; Cedrin, I; Breuiller, M; Giovagrandi, Y; Ferre, F

    1989-01-01

    The present study was carried out to determine the ability of various pharmacological agents to selectively inhibit each cytosolic form of phosphodiesterase isolated from the longitudinal layer of human myometria near term. Among the drugs tested, zaprinast specifically inhibits the first form of PDE which hydrolyses both substrates (cAMP and cGMP) and is stimulated by the Ca2+-calmodulin complex. A second form of PDE specific for cAMP hydrolysis and Ca2+-calmodulin insensitive is only present during pregnancy. Rolipram is the most potent and selective inhibitor of this second form. It is also the most efficient compound to inhibit in vitro the spontaneous contractions of near term myometria. The double effect of rolipram suggests an important role of the second form of PDE in the mechanisms of contractility during the pregnancy. In addition rolipram or other derivatives might be of a therapeutic interest in the prevention of prematurity in so far as they are devoid of undesirable maternal and fetal side effects.

  2. Atrazine Acts as an Endocrine Disrupter by Inhibiting cAMP-specific Phosphodiesterase-4

    Science.gov (United States)

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2014-01-01

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. PMID:23022511

  3. Influence of erectile dysfunction course on its progress and efficacy of treatment with phosphodiesterase type 5 inhibitors

    Institute of Scientific and Technical Information of China (English)

    LIU De-feng; JIANG Hui; HONG Kai; ZHAO Lian-ming; TANG Wen-hao; MA Lu-lin

    2010-01-01

    Background Erectile dysfunction (ED) is a common impairment among older men, and the prevalence rates increase sharply after age of 60 years. Most studies have focused on the prevalence rate or dangerouse factors. The aim of this study was to investigate the basic epidemiologic data about ED patients with different ED courses. The purpose of this researth was to understand the therapeutic effect of phosphodiesterase type 5 inhibitor (PDE5-1) and see how and why the ED course impact the progress of ED and the therapeutic effect of PDE5-1 treatment.Methods From June 2008 to June 2009, 4252 questionnaires (Quality of Erection Questionnaire, QEQ) were gathered from 46 centers by urology or andrology doctors all around China. Patients with ED (age > 20 years) filled in first half of the questionnaires when they came for the first time, and then completed the second half 4 weeks after PDE5-1 therapy.Results ED courses of most patients were less than 5 years (<5 years, 74.0%; 5-10 years 20.8%; >10 years, 5.2%). As ED course increasing, the incidence of the risk factors of ED, such as smoking, drinking, hypertension, diabetes, heart disease and hyperlipidemia also increase (P ≤0.01). PDE5-1 was effective in improving the quality of sexual activities (P ≤0.01). Administration of PDE5-1 improves satisfaction, enjoyment and frequency of sexual activities. The longer the ED course, the worse the therapeutic effect (<5 years, 96.1%; 5-10 years, 94.9%; >10 years, 89.0%) (P<0.01).Conclusions The ED course greatly affected the therapeutic effect of PDE5-1, the patients with ED should consult doctor at early stage of the disease. Admistration of PDE5-1 effectively improves the penile erection and the quality of sexual life of the patients hence should be considered as first-line medicine in the treatment of ED.

  4. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Sandra Marie Schaal

    Full Text Available The extent of damage following spinal cord injury (SCI can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP, via administration of the phosphodiesterase 4 (PDE4 inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol was given subcutaneously (s.c. daily for 2 wk post-injury (PI after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI, demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg, when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune

  5. Phosphodiesterases Inhibition by Bacilli Calmette-Guérin Contributes to Decrease Asthma in Allergic Rats

    Directory of Open Access Journals (Sweden)

    Yajuan Wang

    2011-09-01

    Full Text Available Phosphodiesterases  (PDE  hydrolyse intracellular cAMP  and  cGMP  to  inactive  5’ monophosphates. Decreased level of cAMP is involved in the pathogenesis of asthma. We and others have shown that phosphodiesterases were upregulated in the lung of allergic rats, and Bacilli Calmette-Guérin (BCG induced the production of cAMP in vitro. However, it is unclear how BCG’s effect asthma and whether it is related to PDEs.In  this  study,  BCG  was  intraperitoneally  injected  into  male  Sprague-Dawley rats sensitized and later the rats were challenged with ovabumin/pertusis. The inflammation in lungs was measured. Airway hyperresponsiveness was determined using MedLab software after intravenous methacholine challenge. Furthermore,  cAMP level and adenylate cyclase activity in lungs were analyzed by ELISA, phosphodiesterases activities were analyzed by HPLC, while PDEs mRNA levels in lungs was analyzed by reverse transcription-polymerase chain  reaction.  Administration  of  BCG  significantly attenuated  allergen-induced  lung inflammatory response  and  hyper  responsiveness  as  compared  with  vehicle treatment. Furthermore,  the  levels of  cAMP in lungs were significantly increased in  BCG-treated allergic rats. Interestingly, administration of BCG decreased the activity of cAMP-PDE, but not adenylyl cyclase (AC, activity in lungs of animals. Furthermore, pretreatment with BCG significantly decreased the mRNA levels of PDE4A, 4C, 5 and 8, which were induced in lungs of allergic rats.BCG  administration  attenuated  airway inflammatory  response  and  bronchial  hyper responsiveness in rats, which are the most important symptoms in asthma. The decreased PDEs  mRNA  and  inhibited cAMP-PDE  activities by BCG  contribute,  at least in part, prevention of allergen-induced airway inflammation and asthma in rats.

  6. Sundance: High-Level Software for PDE-Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Long

    2012-01-01

    Full Text Available Sundance is a package in the Trilinos suite designed to provide high-level components for the development of high-performance PDE simulators with built-in capabilities for PDE-constrained optimization. We review the implications of PDE-constrained optimization on simulator design requirements, then survey the architecture of the Sundance problem specification components. These components allow immediate extension of a forward simulator for use in an optimization context. We show examples of the use of these components to develop full-space and reduced-space codes for linear and nonlinear PDE-constrained inverse problems.

  7. Cyclic AMP-phosphodiesterase IIIA1 inhibitors decrease cytosolic Ca2+ concentration and increase the Ca2+ content of intracellular storage sites in human platelets.

    Science.gov (United States)

    Roevens, P; de Chaffoy de Courcelles, D

    1993-06-09

    The effect of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors on Ca2+ homeostasis in human platelets was studied using both quin-2 (2-(bis-(acetylamino)-5-methyl-phenoxy)methyl-6-methoxy-8-bis-(acetylami no) quinoline) and chlorotetracycline (CTC) to measure changes in cytosolic Ca2+ as well as changes in the amount of Ca2+ accumulated in intracellular storage sites. At therapeutic concentrations (1 microM) milrinone and R 80 122 but not enoximone decreased the cytosolic Ca2+ concentration in the resting platelet while the Ca2+ content in intracellular stores was increased. These observations are in accord with the proposed mechanism of action of cAMP-PDE inhibitors on cardiomyocites and highlight the particular role of cAMP in regulation of Ca2+ homeostasis.

  8. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B

    DEFF Research Database (Denmark)

    Walz, Helena A; Härndahl, Linda; Wierup, Nils

    2006-01-01

    AMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from...... advanced fasting hyperinsulinemia and early development of hyper-glycemia, in spite of hyperinsulinemia, as well as impaired capacity of insulin to suppress plasma glucose in an insulin tolerance test. In vitro analyses of insulin-stimulated lipogenesis in adipocytes and glucose uptake in skeletal muscle....../2 mice. We conclude that accurate regulation of beta-cell cAMP is necessary for adequate islet adaptation to a perturbed metabolic environment and protective for the development of glucose intolerance and insulin resistance....

  9. EFFECTS OF NOVEL PHOSPHODIESTERASE 4 INHIBITORS,ARIFLO AND SB242126A, ON ENDOTHELIN-1-INDUCED CONTRACTILITY OF ISOLATED HUMAN MYOMETRIUM

    Institute of Scientific and Technical Information of China (English)

    QI Hong(祁红); ZHANG Yong(张勇); CHEN Hong-zhuan(陈红专); Marie Jo LEROY; Charles ADVENIER

    2005-01-01

    Objective To investigate the effects of novel selective phosphodiesterase4 ( PDE4) inhibitors,Ariflo and SB242126A, on the endothelin-1 ( ET-1 ) - induced contractility occurring in nonpregnant human myometrium specimens. Methods Contractile responses to Ariflo and SB242126A were recorded cumulatively on isolated human longitudinal myometrium specimens obtained through surgical operations. Results Ariflo and SB242126A could inhibit both the frequency and amplitude of spontaneous contractions of myometrium (pD2 =8.6and 7. 6,n =4) and ET-1-induced contractions in a concentration-dependent manner (pD2 =7. 7 and 8. 1 ,n =5),with a potency similar to that of Rolipram. Conclusion Ariflo and SB242126A have an obvious inhibitory effect on endothelin-1-induced contractility of isolated human myometrium. The finding suggested that PDE4 inhibitors might have clinical potential in treating preterm labour and dysmenorrhoea.

  10. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model.

    Directory of Open Access Journals (Sweden)

    Mamoudou Maiga

    Full Text Available Global control of tuberculosis (TB, an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans.

  11. Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model

    Science.gov (United States)

    Ammerman, Nicole C.; Gupta, Radhika; Guo, Haidan; Maiga, Marama C.; Lun, Shichun; Bishai, William R.

    2012-01-01

    Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans. PMID:22319585

  12. Synthesis and biological activity of pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivatives as novel and potent phosphodiesterase type 4 inhibitors.

    Science.gov (United States)

    Taltavull, Joan; Serrat, Jordi; Gràcia, Jordi; Gavaldà, Amadeu; Córdoba, Mònica; Calama, Elena; Montero, José Luis; Andrés, Míriam; Miralpeix, Montserrat; Vilella, Dolors; Hernández, Begoña; Beleta, Jorge; Ryder, Hamish; Pagès, Lluís

    2011-10-01

    A series of pyrido[3',2':4,5]furo[3,2-d]pyrimidines (PFP) were synthesized and tested for phosphodiesterase type 4 (PDE4) inhibitory activity, with the potential to treat asthma and chronic obstructive pulmonary disease (COPD). Structure-activity relationships within this series, leading to an increase of potency on the enzyme, is presented. Both gem-dimethylcyclohexyl moieties fused to the pyridine ring and the substitution at the 5 position of the PFP scaffold, proved to be key elements in order to get a high affinity in the enzyme.

  13. Adherence to Phosphodiesterase Type 5 Inhibitors in the Treatment of Erectile Dysfunction in Long-Term Users: How Do Men Use the Inhibitors?

    Directory of Open Access Journals (Sweden)

    Ana Carvalheira, PhD

    2014-06-01

    Conclusion: The analysis of men's narratives revealed a combination of factors that influence the adherence to PDE5-i. The psychological and medication-related factors were the most prevalent. This study highlighted the importance of taking these factors into account, both at the time of prescription and during the follow-up in order to improve adherence. Carvalheira A, Forjaz V, and Pereira NM. Adherence to phosphodiesterase type 5 inhibitors in the treatment of erectile dysfunction in long-term users: How do men use the inhibitors? Sex Med 2014;2:96–102.

  14. Sex-dependent association of phosphodiesterase 4D gene polymorphisms with ischemic stroke in Henan Han population

    Institute of Scientific and Technical Information of China (English)

    HE Ying; QI Hua; SONG Guo-ying; ZHENG Hong; XU Yu-ming; BAI Jun-yu; SONG Bo; TAN Song; CHANG Yin-shu; LI Tao; SHI Cong-cong; ZHANG Hua; FENG Qing-chuan

    2012-01-01

    Background Recent evidence has implicated the gene for phosphodiesterase 4D (PDE4D) as susceptibility gene for ischemic stroke (IS) in lcelandic population.However,there are few reports on the associations between PDE4D gene polymorphisms and IS in Chinese individuals.The present study aimed to investigate the possible association of genetic polymorphisms in PDE4D gene with IS in Henan Han population.Methods A total of 400 patients with IS and 400 matched controls were examined using a case-control design.Two single nucleotide polymorphism (SNPs) (rs918592 and rs2910829) in PDE4D gene were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.Odds ratios (OR) and 95% confidence intervals (95% Cl) were calculated to test the association between the genetic factors and IS.Genetic parameter and association studies were carried out with SPSS 16.0.Results Among the two SNPs tested,the rs918592 was significantly associated with IS (OR:1.351,95% Cl:1.110-1.645),especially in male patients (OR:1.427,95% Cl:1.105-1.844).Haplotype analysis showed that A-T was associated with an increased risk of the IS (OR:2.114,95% Cl:2.005-2.230) while G-T was associated with decreased risk of IS (OR:0.419,95% Cl:0.302-0.583).Protecting effect of haplotype G-T was also significant in males (OR:0.264,95% Cl:0.162-0.431).Conclusions The present study demonstrated a strong association of rs918592 with IS.Haplotype A-T increased the risk of IS while haplotype G-T had a protective effect in Henan Hen population.The association was sex-dependent with male patients showing stronger effect.

  15. Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B.

    Science.gov (United States)

    Heemskerk, Mattijs M; van den Berg, Sjoerd A A; Pronk, Amanda C M; van Klinken, Jan-Bert; Boon, Mariëtte R; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-04-01

    The lipid-lowering effect of niacin has been attributed to the inhibition of cAMP production in adipocytes, thereby inhibiting intracellular lipolysis and release of nonesterified fatty acids (NEFA) to the circulation. However, long-term niacin treatment leads to a normalization of plasma NEFA levels and induces insulin resistance, for which the underlying mechanisms are poorly understood. The current study addressed the effects of long-term niacin treatment on insulin-mediated inhibition of adipocyte lipolysis and focused on the regulation of cAMP levels. APOE*3-Leiden.CETP transgenic mice treated with niacin for 15 wk were subjected to an insulin tolerance test and showed whole body insulin resistance. Similarly, adipocytes isolated from niacin-treated mice were insulin resistant and, interestingly, exhibited an increased response to cAMP stimulation by 8Br-cAMP, β1- and β2-adrenergic stimulation. Gene expression analysis of the insulin and β-adrenergic pathways in adipose tissue indicated that all genes were downregulated, including the gene encoding the cAMP-degrading enzyme phosphodiesterase 3B (PDE3B). In line with this, we showed that insulin induced a lower PDE3B response in adipocytes isolated from niacin-treated mice. Inhibiting PDE3B with cilostazol increased lipolytic responsiveness to cAMP stimulation in adipocytes. These data show that long-term niacin treatment leads to a downregulation of PDE3B in adipocytes, which could explain part of the observed insulin resistance and the increased responsiveness to cAMP stimulation.

  16. The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations.

    Directory of Open Access Journals (Sweden)

    Rodrigo F Oliveira

    Full Text Available Cyclic AMP (cAMP and its main effector Protein Kinase A (PKA are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30. The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.

  17. Novel Peptide for Attenuation of Hypoxia-Induced Pulmonary Hypertension via Modulation of Nitric Oxide Release and Phosphodiesterase -5 Activity

    Science.gov (United States)

    Hu, Hanbo; Zharikov, Sergey; Patel, Jawaharlal M.

    2012-01-01

    Pulmonary vascular endothelial nitric oxide (NO) synthase (eNOS)-derived NO is the major stimulant of cyclic guanosine 5’ monophosphate (cGMP) production and NO/cGMP-dependent vasorelaxation in the pulmonary circulation. We recently synthesized multiple peptides and reported that an eleven amino acid (SSWRRKRKESS) peptide (P1) but not scrambled P1 stimulated the catalytic activity but not expression of eNOS and causes NO/cGMP-dependent sustained vasorelaxation in isolated pulmonary artery (PA) segments and in lung perfusion models. Since cGMP levels can also be elevated by inhibition of phosphodiesterase type 5 (PDE-5), this study was designed to test the hypothesis that P1-mediated vesorelaxation is due to its unique dual action as NO-releasing PDE-5 inhibitor in the pulmonary circulation. Treatment of porcine PA endothelial cells (PAEC) with P1 caused time-dependent increase in intracellular NO release and inhibition of the catalytic activity of cGMP-specific PDE-5 but not PDE-5 protein expression leading to increased levels of cGMP. Acute hypoxia-induced PA vasoconstriction ex-vivo and continuous telemetry monitoring of hypoxia (10% oxygen)-induced elevated PA pressure in freely moving rats were significantly restored by administration of P1. Chronic hypoxia (10% oxygen for 4 weeks)-induced alterations in PA perfusion pressure, right ventricular hypertrophy, and vascular remodeling were attenuated by P1 treatment. These results demonstrate the potential therapeutic effects of P1 to prevent and/or arrest the progression of hypoxia-induced PAH via NO/cGMP-dependent modulation of hemodynamic and vascular remodeling in the pulmonary circulation. PMID:22465621

  18. Angiotensin-(1-7) Downregulates Diabetes-Induced cGMP Phosphodiesterase Activation in Rat Corpus Cavernosum

    Science.gov (United States)

    Benter, Ibrahim F.

    2017-01-01

    Molecular mechanisms of the beneficial effects of angiotensin-(1-7), Ang-(1-7), in diabetes-related complications, including erectile dysfunction, remain unclear. We examined the effect of diabetes and/or Ang-(1-7) treatment on vascular reactivity and cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) in corpus cavernosum. Male Wistar rats were grouped as (1) control, (2) diabetic (streptozotocin, STZ, treated), (3) control + Ang-(1-7), and (4) diabetic + Ang-(1-7). Following 3 weeks of Ang-(1-7) treatment subsequent to induction of diabetes, rats were sacrificed. Penile cavernosal tissue was isolated to measure vascular reactivity, PDE gene expression and activity, and levels of p38MAP kinase, nitrites, and cGMP. Carbachol-induced vasorelaxant response after preincubation of corpus cavernosum with PE was significantly attenuated in diabetic rats, and Ang-(1-7) markedly corrected the diabetes-induced impairment. Gene expression and activity of PDE and p38MAP kinase were significantly increased in cavernosal tissue of diabetic rats, and Ang-(1-7) markedly attenuated STZ-induced effects. Ang-(1-7) significantly increased the levels of nitrite and cGMP in cavernosal tissue of control and diabetic rats. Cavernosal tissue of diabetic rats had significantly reduced cGMP levels and Ang-(1-7) markedly prevented the STZ-induced cGMP depletion. This study demonstrates that attenuation of diabetes-induced PDE activity might be one of the key mechanisms in the beneficial effects of Ang-(1-7).

  19. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Ichiro Miki

    2007-09-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  20. Is zucchini a phosphodiesterase or a ribonuclease?

    Science.gov (United States)

    Nureki, Osamu

    2014-01-01

    Zucchini (Zuc), a member of the phospholipase D (PLD) superfamily, is essential for the primary PIWI-interacting RNA (piRNA) biogenesis and the suppression of transposon expression, which are crucial for the genome integrity of germline cells. However, it has been ambiguous whether Zuc acts as a phosphodiesterase to produce phosphatidic acid (PA), the lipid signaling molecule, or as a nuclease. The recent three papers describing the crystal structures and functional analyses of fly and mouse Zuc proteins have elucidated that Zuc is a PLD family single-strand ribonuclease, not a phosphodiesterase, and functions in the maturation of primary piRNAs. This review will discuss in detail how the crystal structures clearly predict the function of Zuc, which is subsequently demonstrated by biochemical analysis to conclude the previous controversial discussion on the real function of Zuc.

  1. Is zucchini a phosphodiesterase or a ribonuclease?

    Directory of Open Access Journals (Sweden)

    Osamu Nureki

    2014-12-01

    Full Text Available Zucchini (Zuc, a member of the phospholipase D (PLD superfamily, is essential for the primary PIWI-interacting RNA (piRNA biogenesis and the suppression of transposon expression, which are crucial for the genome integrity of germline cells. However, it has been ambiguous whether Zuc acts as a phosphodiesterase to produce phosphatidic acid (PA, the lipid signaling molecule, or as a nuclease. The recent three papers describing the crystal structures and functional analyses of fly and mouse Zuc proteins have elucidated that Zuc is a PLD family single-strand ribonuclease, not a phosphodiesterase, and functions in the maturation of primary piRNAs. This review will discuss in detail how the crystal structures clearly predict the function of Zuc, which is subsequently demonstrated by biochemical analysis to conclude the previous controversial discussion on the real function of Zuc.

  2. PDE regularization for Bayesian reconstruction of emission tomography

    Science.gov (United States)

    Wang, Zhentian; Zhang, Li; Xing, Yuxiang; Zhao, Ziran

    2008-03-01

    The aim of the present study is to investigate a type of Bayesian reconstruction which utilizes partial differential equations (PDE) image models as regularization. PDE image models are widely used in image restoration and segmentation. In a PDE model, the image can be viewed as the solution of an evolutionary differential equation. The variation of the image can be regard as a descent of an energy function, which entitles us to use PDE models in Bayesian reconstruction. In this paper, two PDE models called anisotropic diffusion are studied. Both of them have the characteristics of edge-preserving and denoising like the popular median root prior (MRP). We use PDE regularization with an Ordered Subsets accelerated Bayesian one step late (OSL) reconstruction algorithm for emission tomography. The OS accelerated OSL algorithm is more practical than a non-accelerated one. The proposed algorithm is called OSEM-PDE. We validated the OSEM-PDE using a Zubal phantom in numerical experiments with attenuation correction and quantum noise considered, and the results are compared with OSEM and an OS version of MRP (OSEM-MRP) reconstruction. OSEM-PDE shows better results both in bias and variance. The reconstruction images are smoother and have sharper edges, thus are more applicable for post processing such as segmentation. We validate this using a k-means segmentation algorithm. The classic OSEM is not convergent especially in noisy condition. However, in our experiment, OSEM-PDE can benefit from OS acceleration and keep stable and convergent while OSEM-MRP failed to converge.

  3. Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Fu L

    2015-05-01

    Full Text Available Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated protein kinase (AMPK signaling and markedly potentiates the effects of other sirtuin and AMPK activators on insulin signaling and lipid metabolism. Phosphodiesterase 5 inhibition increases nitric oxide–cGMP signaling, which in turn exhibits a positive feedback loop with both SIRT1 and AMPK, thus amplifying peroxisome proliferator-activated receptor γ co-activator α (PGC1α-mediated effects. Methods: We evaluated potential synergy between leucine and PDE5i on insulin sensitivity and lipid metabolism in vitro and in diet-induced obese (DIO mice. Results: Leucine (0.5 mM exhibited significant synergy with subtherapeutic doses (0.1–10 nM of PDE5-inhibitors (sildenafil and icariin on fat oxidation, nitric oxide production, and mitochondrial biogenesis in hepatocytes, adipocytes, and myotubes. Effects on insulin sensitivity, glycemic control, and lipid metabolism were then assessed in DIO-mice. DIO-mice exhibited fasting and postprandial hyperglycemia, insulin resistance, and hepatic steatosis, which were not affected by the addition of leucine (24 g/kg diet. However, the combination of leucine and a subtherapeutic dose of icariin (25 mg/kg diet for 6 weeks reduced fasting glucose (38%, P<0.002, insulin (37%, P<0.05, area under the glucose tolerance curve (20%, P<0.01, and fully restored glucose response to exogenous insulin challenge. The combination also inhibited hepatic lipogenesis, stimulated hepatic and muscle fatty acid oxidation, suppressed hepatic inflammation, and reversed high-fat diet-induced steatosis. Conclusion: These robust improvements in insulin sensitivity, glycemic control, and lipid metabolism indicate therapeutic potential for

  4. Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio

    Directory of Open Access Journals (Sweden)

    Yang You-Lan

    2011-11-01

    Full Text Available Abstract Background Hesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4. While hesperetin-7,3'-O-dimethylether (HDME is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs in vitro, and its effects on ovalbumin-induced airway hyperresponsiveness in vivo, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD. Methods PDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [3H]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th1/Th2 cytokine CBA kits, and total immunoglobulin (IgE or IgG2a levels were done using ELISA method. Xylazine (10 mg/kg/ketamine (70 mg/kg-induced anesthesia was performed. Results HDME revealed selective phosphodiesterase 4 (PDE4 inhibition with a therapeutic (PDE4H/PDE4L ratio of 35.5 in vitro. In vivo, HDME (3~30 μmol/kg, orally (p.o. dose-dependently and significantly attenuated the airway resistance (RL and increased lung dynamic compliance (Cdyn, and decreased enhanced pause (Penh values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF of these mice. In addition, HDME (3~30 μmol/kg, p.o. dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (IgE levels in the BALF and serum, and enhanced IgG2a level in the serum of these mice. Conclusions HDME exerted anti

  5. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  6. Nonlinear Control of Delay and PDE Systems

    Science.gov (United States)

    Bekiaris-Liberis, Nikolaos

    In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predic- tor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we intro- duce infinite-dimensional backstepping transformations for each particular prob-lem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robust- ness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear sys- tems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the intro- duction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.

  7. Selective Extraction of Entangled Textures via Adaptive PDE Transform

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2012-01-01

    Full Text Available Texture and feature extraction is an important research area with a wide range of applications in science and technology. Selective extraction of entangled textures is a challenging task due to spatial entanglement, orientation mixing, and high-frequency overlapping. The partial differential equation (PDE transform is an efficient method for functional mode decomposition. The present work introduces adaptive PDE transform algorithm to appropriately threshold the statistical variance of the local variation of functional modes. The proposed adaptive PDE transform is applied to the selective extraction of entangled textures. Successful separations of human face, clothes, background, natural landscape, text, forest, camouflaged sniper and neuron skeletons have validated the proposed method.

  8. HPRT-deficiency dysregulates cAMP-PKA signaling and phosphodiesterase 10A expression: mechanistic insight and potential target for Lesch-Nyhan Disease?

    Directory of Open Access Journals (Sweden)

    Ghiabe-Henri Guibinga

    Full Text Available Lesch-Nyhan Disease (LND is the result of mutations in the X-linked gene encoding the purine metabolic enzyme, hypoxanthine guanine phosphoribosyl transferase (HPRT. LND gives rise to severe neurological anomalies including mental retardation, dystonia, chorea, pyramidal signs and a compulsive and aggressive behavior to self injure. The neurological phenotype in LND has been shown to reflect aberrant dopaminergic signaling in the basal ganglia, however there are little data correlating the defect in purine metabolism to the neural-related abnormalities. In the present studies, we find that HPRT-deficient neuronal cell lines have reduced CREB (cAMP response element-binding protein expression and intracellular cyclic AMP (cAMP, which correlates with attenuated CREB-dependent transcriptional activity and a reduced phosphorylation of protein kinase A (PKA substrates such as synapsin (p-syn I. Of interest, we found increased expression of phosphodiesterase 10A (PDE10A in HPRT-deficient cell lines and that the PDE10 inhibitor papaverine and PDE10A siRNA restored cAMP/PKA signaling. Furthermore, reconstitution of HPRT expression in mutant cells partly increased cAMP signaling synapsin phosphorylation. In conclusion, our data show that HPRT-deficiency alters cAMP/PKA signaling pathway, which is in part due to the increased of PDE10A expression and activity. These findings suggest a mechanistic insight into the possible causes of LND and highlight PDE10A as a possible therapeutic target for this intractable neurological disease.

  9. Progress of adaptive finite element(FE) method in solving nonlinear partial differential equation(PDE)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Scientific computation is widely used in multiple cross-disciplinary areas. Most of the issues coming from this area finally result in solving PDE. In the process of solving PDE, the meshes are firstly generated within the area where PDE is functional; then, the methods of FE,Finite Difference (FD), and Finite Volume (FV) are applied on the meshes to solve the PDE.

  10. Non-Selective Lexical Access in Different-Script Bilinguals

    Science.gov (United States)

    Moon, Jihye; Jiang, Nan

    2012-01-01

    Lexical access in bilinguals is known to be largely non-selective. However, most studies in this area have involved bilinguals whose two languages share the same script. This study aimed to examine bilingual lexical access among bilinguals whose two languages have distinct scripts. Korean-English bilinguals were tested in a phoneme monitoring task…

  11. Synthesis, radiolabeling and in vivo evaluation of [{sup 11}C]RAL-01, a potential phosphodiesterase 5 radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Steen [PET Centre, Aarhus University Hospitals, 8000 Aarhus (Denmark)]. E-mail: steen@pet.auh.dk; Kodahl, Gitte Munkebo [PET Centre, Aarhus University Hospitals, 8000 Aarhus (Denmark); Olsen, Aage Kristian [PET Centre, Aarhus University Hospitals, 8000 Aarhus (Denmark); Cumming, Paul [PET Centre, Aarhus University Hospitals, 8000 Aarhus (Denmark); Centre for Functionally Integrative Neuroscience, Aarhus University, Aarhus (Denmark)

    2006-07-15

    Very few tracers are available for imaging studies of second messenger systems. We developed a radiosynthesis for the phosphodiesterase (PDE) 5 inhibitor [{sup 11}C]RAL-01. Whole body distribution studies using positron emission tomography (PET) revealed a time-dependant passage through the liver and accumulation of radioactivity in the bile of the Landrace pig. Displaceable binding was readily discerned in the myocardium, and traces of binding were seen in pulmonary tissue, consistent with the use of this class of drug in the treatment of pulmonary hypertension and heart failure. [{sup 11}C]RAL-01 readily entered the brain and obtained an equilibrium distribution volume of 4-5 ml g{sup -1}. Mean parametric images suggested the presence of a small displaceable binding component, but this binding was not significant in the present group of three pigs. Thus, [{sup 11}C]RAL-01 shows considerable promise for PET studies of biliary elimination and of PDE5 binding in the cardiovascular system. However, analogues of higher affinity may be required for investigations of central nervous system binding sites.

  12. Human biodistribution and dosimetry of {sup 18}F-JNJ42259152, a radioligand for phosphodiesterase 10A imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laere, Koen van [University Hospital Leuven and KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); University Hospital Leuven - Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); Ahmad, Rawaha U.; Hudyana, Hendra; Koole, Michel [University Hospital Leuven and KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); Celen, Sofie; Bormans, Guy [KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium); Dubois, Kristof; Schmidt, Mark E. [Division of Janssen Pharmaceuticals NV, Janssen Research and Development, Beerse (Belgium)

    2013-02-15

    Phosphodiesterase 10A (PDE10A) is a cAMP/cGMP-hydrolysing enzyme with a central role in striatal signalling and implicated in neuropsychiatric disorders such as Huntington's disease, Parkinson's disease, schizophrenia and addiction. We have developed a novel PDE10A PET ligand, {sup 18}F-JNJ42259152, and describe here its human dynamic biodistribution, safety and dosimetry. Six male subjects (age range 23-67 years) underwent ten dynamic whole-body PET/CT scans over 6 h after bolus injection of 175.5 {+-} 9.4 MBq {sup 18}F-JNJ42259152. Source organs were delineated on PET/CT and individual organ doses and effective dose were determined using the OLINDA software. F-JNJ42259152 was readily taken up by the brain and showed exclusive retention in the brain, especially in the striatum with good washout starting after 20 min. The tracer was cleared through both the hepatobiliary and the urinary routes. No defluorination was observed. Organ absorbed doses were largest for the gallbladder (239 {mu}Sv/MBq) and upper large intestine (138 {mu}Sv/MBq). The mean effective dose was 24.9 {+-} 4.1 {mu}Sv/MBq. No adverse events were encountered. In humans, {sup 18}F-JNJ42259152 has an appropriate distribution, brain kinetics and safety. The estimated effective dose was within WHO class IIb with low interindividual variability. Therefore, the tracer is suitable for further kinetic evaluation in humans. (orig.)

  13. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation.

    Science.gov (United States)

    Sakai, Mari; Suzuki, Tokiko; Tomita, Kengo; Yamashita, Shigeyuki; Palikhe, Sailesh; Hattori, Kohshi; Yoshimura, Naoki; Matsuda, Naoyuki; Hattori, Yuichi

    2017-06-01

    Dobutamine has been used in septic shock for many years as an only inotrope, but its benefit has been questioned. We weighed the effects of dobutamine and milrinone as inotropes in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. CLP-induced septic mice exhibited significant cardiac inflammation, as indicated by greatly increased mRNAs of proinflammatory cytokines and robust infiltration of inflammatory cells in the ventricular myocardium. Elevations of plasma cardiac troponin-I showed cardiac injury in CLP mice. Noninvasive echocardiographic assessment of cardiac function revealed that despite preserved left ventricular function in the presence of fluid replacement, the dobutamine inotropic response was significantly impaired in CLP mice compared with sham-operated controls. By contrast, milrinone exerted inotropic effects in sham-operated and CLP mice in an equally effective manner. Surface expression levels of β1-adrenoceptors and α-subunits of three main G protein families in the myocardium were unaffected by CLP-induced sepsis. Plasma cAMP levels were significantly elevated in both sham-operated and CLP mice in response to milrinone but only in sham-operated controls in response to dobutamine. Of phosphodiesterase (PDE) isoforms, PDE4D, but not PDE3A, both of which are responsible for cardiac cAMP hydrolysis, was significantly upregulated in CLP mouse myocardium. We define a novel mechanism for the impaired responsiveness to dobutamine as an inotrope in sepsis, and understanding the role of PDE4D in modulating cardiac functional responsiveness in sepsis may open the potential of a PDE4D-targeted therapeutic option in septic patients with low cardiac output who have a need for inotropic support.NEW & NOTEWORTHY Advisability of the usefulness of dobutamine in septic shock management is limited. Here, we reveal that the effect of dobutamine as a positive inotrope is impaired in mice with cecal ligation and puncture-induced sepsis

  14. Rapid detection and identification of counterfeit and [corrected] adulterated products of synthetic phosphodiesterase type-5 inhibitors with an atmospheric solids analysis probe.

    Science.gov (United States)

    Twohig, Marian; Skilton, St John; Fujimoto, Gordon; Ellor, Nicholas; Plumb, Robert S

    2010-02-01

    The market success of the three approved synthetic phosphodiesterase type-5 (PDE-5) inhibitors for the treatment of erectile dysfunction has led to an explosion in counterfeit versions of these drugs. In parallel a large market has developed for herbal products claimed to be natural alternatives to these synthetic drugs. The herbal products are heavily advertised on the internet and are freely available to purchase without prescription. Furthermore, adulteration of these supposed natural medicines is a very common and serious phenomenon. Recent reports have shown that the adulteration has extended to the analogues of the three approved synthetic PDE-5 inhibitors. An Atmospheric Solids Analysis Probe (ASAP) was used for the direct analysis of the counterfeit pharmaceuticals and herbal products. Using the ASAP combined with time-of-flight mass spectrometry (TOF MS) it was possible to detect fraudulent counterfeit tablets. The physical appearance of the pills resembled the pills from the original manufacturer but contained the wrong active pharmaceutical ingredient (API). Detecting adulteration for five herbal supplements marketed as natural alternatives to PDE-5 inhibitors was also possible using the ASAP. Three types of adulteration were found in the five samples: adulteration with tadalafil or sildenafil, mixed adulteration (tadalafil and sildenafil), and adulteration with analogues of these drugs. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Synthesis and enzymic activity of various substituted pyrazolo[1,5-a]-1,3,5-triazines as adenosine cyclic 3',5'-phosphate phosphodiesterase inhibitors.

    Science.gov (United States)

    Senga, K; O'Brien, D E; Scholten, M B; Novinson, T; Miller, J P; Robins, R K

    1982-03-01

    A series of various pyrazolo[1,5-a]-1,3,5-triazines have been prepared and studied as inhibitors of cAMP phosphodiesterase isolated from bovine brain, bovine heart, and rabbit lung. A number of compounds were found to be superior to theophylline. 2-Ethyl-7-phenylpyrazolo[1,5-a]-1,3,5-triazine (35) was found to be 97 times more potent than theophylline as an inhibitor of bovine brain PDE. 8-Bromo-2,4-dimethyl-7-phenylpyrazolo[1,5-a]-1,3,5-triazine (52) showed alpha lung = 40 compared to alpha heart = 3.0. Thus, various substituents could increase or decrease the inhibition relative to the type and source of tissue from which the PDE was isolated. The most active compound was 8-bromo-4-(diethylamino)-7-phenylpyrazolo[1,3-a]-1,3,5-triazine (25), which was 185 times more potent than theophylline as an inhibitor of PDE isolated from rabbit lung. The stepwise synthesis via ring-closure procedures of requisite pyrazole intermediates, followed by electrophilic substitution in the pyrazole ring and/or nucleophilic substitution in the 1,3,5-triazine moiety, resulted in the various pyrazolo[1,5-a]1,3,5-triazines listed in Tables I and II. Structure-activity relationships are reviewed.

  16. Phosphodiesterase-5 inhibitors and their analogues as adulterants of herbal and food products: analysis of the Malaysian market, 2014-16.

    Science.gov (United States)

    Bujang, Nur Baizura; Chee, Chin Fei; Heh, Choon Han; Rahman, Noorsaadah Abd; Buckle, Michael J C

    2017-07-01

    Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men's sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (n = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (n = 9) and products investigated under the post-registration market surveillance programme (n = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.

  17. Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin) Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer's Dementia.

    Science.gov (United States)

    Chiu, Simon; Gericke, Nigel; Farina-Woodbury, Michel; Badmaev, Vladimir; Raheb, Hana; Terpstra, Kristen; Antongiorgi, Joalex; Bureau, Yves; Cernovsky, Zack; Hou, Jirui; Sanchez, Veronica; Williams, Marissa; Copen, John; Husni, Mariwan; Goble, Liz

    2014-01-01

    Introduction. Converging evidence suggests that PDE-4 (phosphodiesterase subtype 4) plays a crucial role in regulating cognition via the PDE-4-cAMP cascade signaling involving phosphorylated cAMP response element binding protein (CREB). Objective. The primary endpoint was to examine the neurocognitive effects of extract Sceletium tortuosum (Zembrin) and to assess the safety and tolerability of Zembrin in cognitively healthy control subjects. Method. We chose the randomized double-blind placebo-controlled cross-over design in our study. We randomized normal healthy subjects (total n = 21) to receive either 25 mg capsule Zembrin or placebo capsule once daily for 3 weeks, in a randomized placebo-controlled 3-week cross-over design. We administered battery of neuropsychological tests: CNS Vital Signs and Hamilton depression rating scale (HAM-D) at baseline and regular intervals and monitored side effects with treatment emergent adverse events scale. Results. 21 subjects (mean age: 54.6 years ± 6.0 yrs; male/female ratio: 9/12) entered the study. Zembrin at 25 mg daily dosage significantly improved cognitive set flexibility (P Zembrin was well tolerated. Conclusion. The promising cognitive enhancing effects of Zembrin likely implicate the PDE-4-cAMP-CREB cascade, a novel drug target in the potential treatment of early Alzheimer's dementia. This trial is registered with ClinicalTrials.gov NCT01805518.

  18. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes.

    Science.gov (United States)

    Zhou, Libin; Wang, Xiao; Yang, Ying; Wu, Ling; Li, Fengying; Zhang, Rong; Yuan, Guoyue; Wang, Ning; Chen, Mingdao; Ning, Guang

    2011-04-01

    Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of (3)[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.

  19. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Anderson Rebecca L

    2006-05-01

    Full Text Available Abstract Background The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c BAC transgenic mice in which a green fluorescent protein (GFP reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. Results Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative. A small proportion of both non-peptidergic (IB4-binding and peptidergic (CGRP immunoreactive subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. Conclusion The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.

  20. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  1. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    Science.gov (United States)

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of antidepressant and anxiolytic activity of phosphodiesterase 3 inhibitor - Cilostazol

    Directory of Open Access Journals (Sweden)

    Dipesh S Patel

    2012-01-01

    Full Text Available Background: Cyclic nucleotide Phosphodiesterases (PDEs are ubiquitously distributed in mammalian tissues and play a major role in cell signaling by hydrolyzing cyclic Adenosine Monophosphate (cAMP and cyclic Guanosine Monophosphate (cGMP. Impairments in signal transduction have been implicated as possible mechanism of reduced plasticity and neuronal survival in major depressive disorders. PDE inhibitors possess a potentially powerful means to manipulate secondary messengers involved in learning, memory and mood. Cilostazol is an antiplatelet agent indicated for the treatment of intermittent claudication with peripheral artery occlusion and for the prevention of ischemic stroke worldwide. Various animal studies have reported neuroprotective, anti apoptotic, cognition and cerebral blood flow improvement properties of cilostazol. Materials and Methods: In this study, the antidepressant and anxiolytic effects of cilostazol were evaluated in mice using behavioral tests sensitive to clinically effective antidepressant compound. Results: Cilostazol, administered intraperitoneally (20 mg/kg, decreased immobility time of mice when subjected to forced swim test and tail suspension test as compared to standard fluoxetine (20 mg/kg. Cilostazol also produced significant decrease in the number of marbles buried as compared to fluoxetine in marble burying model. Conclusion: The present study suggests that cilostazol possesses potential antidepressant and anxiolytic activity, which could be of therapeutic interest for use in patients with depressive disorders.

  3. Phosphodiesterases in endocrine physiology and disease.

    Science.gov (United States)

    Vezzosi, Delphine; Bertherat, Jérôme

    2011-08-01

    The cAMP-protein kinase A pathway plays a central role in the development and physiology of endocrine tissues. cAMP mediates the intracellular effects of numerous peptide hormones. Various cellular and molecular alterations of the cAMP-signaling pathway have been observed in endocrine diseases. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. Indeed, PDEs are the only known mechanism for inactivation of cAMP by catalysis to 5'-AMP. It has been suggested that disruption of PDEs could also have a role in the pathogenesis of many endocrine diseases. This review summarizes the most recent advances concerning the role of the PDEs in the physiopathology of endocrine diseases. The potential significance of this knowledge can be easily envisaged by the development of drugs targeting specific PDEs.

  4. Novel class of benzoic acid ester derivatives as potent PDE4 inhibitors for inhaled administration in the treatment of respiratory diseases.

    Science.gov (United States)

    Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; De Fanti, Renato; Ghidini, Eleonora; Capaldi, Carmelida; Carzaniga, Laura; Caruso, Paola; Guala, Matilde; Peretto, Ilaria; La Porta, Elena; Bolzoni, Pier T; Facchinetti, Fabrizio; Carnini, Chiara; Moretto, Nadia; Patacchini, Riccardo; Bassani, Franco; Cenacchi, Valentina; Volta, Roberta; Amadei, Francesco; Capacchi, Silvia; Delcanale, Maurizio; Puccini, Paola; Catinella, Silvia; Civelli, Maurizio; Villetti, Gino

    2014-02-13

    The first steps in the selection process of a new anti-inflammatory drug for the inhaled treatment of asthma and chronic obstructive pulmonary disease are herein described. A series of novel ester derivatives of 1-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3,5-dichloropyridin-4-yl) ethanol have been synthesized and evaluated for inhibitory activity toward cAMP-specific phosphodiesterase-4 (PDE4). In particular, esters of variously substituted benzoic acids were extensively explored, and structural modification of the alcoholic and benzoic moieties were performed to maximize the inhibitory potency. Several compounds with high activity in cell-free and cell-based assays were obtained. Through the evaluation of opportune in vitro ADME properties, a potential candidate suitable for inhaled administration in respiratory diseases was identified and tested in an in vivo model of pulmonary inflammation, proving its efficacy.

  5. Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics

    KAUST Repository

    Franz, Benjamin

    2013-06-19

    Two algorithms that combine Brownian dynami cs (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface, which partitions the domain, and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that the overlap region is required to accurately compute variances using PBD simulations. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented. © 2013 Society for Industrial and Applied Mathematics.

  6. Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics

    CERN Document Server

    Franz, Benjamin; Chapman, S Jonathan; Erban, Radek

    2012-01-01

    Two algorithms that combine Brownian dynamics (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface which partitions the domain and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that to accurately compute variances using the PBD simulation requires the overlap region. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented.

  7. A meta-regression evaluating the effectiveness and prognostic factors of oral phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Jin-Qiu Yuan

    2016-01-01

    Full Text Available The effectiveness of phosphodiesterase type 5 inhibitors (PDE5-Is for erectile dysfunction (ED varies considerably among trials, but available studies investigating the factors that affect the effectiveness are few and findings are not consistent. A systematic search was performed in PubMed, Cochrane Library, and EMBASE to identify randomized controlled trials comparing PDE5-Is with placebo for the treatment of ED. The methodological quality of included studies was assessed by the Cochrane Collaboration′s tool for assessing risk of bias. The associations between prespecified study-level factors and effectiveness were tested by a random effects meta-regression model. This study included 93 trials with 26 139 patients. When all PDE5-Is were grouped together, Caucasian ethnicity was associated with 15.636% (95% confidence interval [CI]: 0.858% to 32.579% increase in risk ratio (RR for Global Assessment Questionnaire question-1 (GAQ-1, and 1.473 (95% CI: 0.406 to 2.338 score increase in mean difference (MD for posttreatment International Index of Erectile Function-Erectile Function domain score (IIEF-EF, compared to Asian ethnicity. A one-score increase in baseline IIEF-EF was associated with −5.635% (95% CI: −9.120% to −2.017% reduction in RR for GAQ-1, and −0.229 (95% CI: −0.425 to −0.042 score decrease in MD for posttreatment IIEF-EF. In conclusion, PDE5-Is are more effective in Caucasians than Asians, and in patients with more severe ED.

  8. Optimization with PDE constraints ESF networking program 'OPTPDE'

    CERN Document Server

    2014-01-01

    This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).

  9. Restoration of Vision in the pde6β-deficient Dog, a Large Animal Model of Rod-cone Dystrophy

    Science.gov (United States)

    Petit, Lolita; Lhériteau, Elsa; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Guihal, Caroline; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2012-01-01

    Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment. PMID:22828504

  10. Characterization of [{sup 11}C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai-Chun; Stepanov, Vladimir; Amini, Nahid; Martinsson, Stefan; Takano, Akihiro; Halldin, Christer [Karolinska Institutet, Karolinska University Hospital, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm (Sweden); Nielsen, Jacob [H. Lundbeck A/S, Synaptic Transmission, Valby (Denmark); Bundgaard, Christoffer; Bang-Andersen, Benny [H. Lundbeck A/S, Discovery Chemistry and DMPK, Valby (Denmark); Grimwood, Sarah [Pfizer Inc., Neuroscience and Pain Research Unit, Cambridge, MA (United States); Farde, Lars [Karolinska Institutet, Karolinska University Hospital, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm (Sweden); AstraZeneca PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm (Sweden); Finnema, Sjoerd J. [Karolinska Institutet, Karolinska University Hospital, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm (Sweden); Yale University, Department of Radiology and Biomedical Imaging, New Haven, CT (United States)

    2017-02-15

    [{sup 11}C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [{sup 11}C]Lu AE92686 has high affinity for PDE10A (IC{sub 50} = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [{sup 11}C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [{sup 11}C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (V{sub T}) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar V{sub T} values could not be derived by the 2TCM. For cerebellum, a proposed reference region, V{sub T} values increased by ∝30 % with increasing PET measurement duration from 63 to 123 min, while V{sub T} values in target regions remained stable. Both pretreatment drugs significantly decreased [{sup 11}C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BP{sub ND}) values, derived with the simplified reference tissue model (SRTM), were 13-17 in putamen and 3-5 in substantia nigra and correlated well to values from the Logan plot analysis. The method proposed for quantification of [{sup 11}C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [{sup 11}C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia

  11. Phosphodiesterase-3B-cAMP pathway of leptin signalling in the hypothalamus is impaired during the development of diet-induced obesity in FVB/N mice.

    Science.gov (United States)

    Sahu, M; Anamthathmakula, P; Sahu, A

    2015-04-01

    The phosphodiesterase-3B (PDE3B)-cAMP pathway plays an important role in transducing the action of leptin in the hypothalamus. Obesity is usually associated with hyperleptinaemia and resistance to anorectic and body weight-reducing effects of leptin. To determine whether the hypothalamic PDE3B-cAMP pathway of leptin signalling is impaired during the development of diet-induced obesity (DIO), we fed male FVB/N mice a high-fat diet (HFD: 58% kcal as fat) or low-fat diet (LFD: 6% kcal as fat) for 4 weeks. HFD fed mice developed DIO in association with hyperphagia, hyperleptinaemia and hyperinsulinaemia. Leptin (i.p.) significantly increased hypothalamic PDE3B activity and phosphorylated (p)-Akt levels in LFD-fed but not in HFD-fed mice. However, basal p-Akt levels in hypothalamus were increased in DIO mice. Additionally, amongst six-microdissected brain nuclei examined, leptin selectively decreased cAMP levels in the arcuate nucleus (ARC) of LFD-fed mice but failed to do so in HFD-fed mice. We next tested whether both the PBE3B and Akt pathways of leptin signalling remained impaired in DIO mice on the HFD for 12 weeks (long-term). DIO mice were hyperinsulinaemic and hyperleptinaemic in association with impaired glucose and insulin tolerance. Although, in LFD-fed mice, leptin significantly increased PDE3B activity and p-Akt levels in the hypothalamus, it failed to do so in HFD-fed mice. Also, basal p-Akt levels in the hypothalamus were increased in DIO mice and leptin had no further effect. Similarly, immunocytochemistry showed that leptin increased the number of p-Akt-positive cells in the ARC of LFD-fed but not in HFD-fed mice, and there was an increased basal number of p-Akt positive cells in the ARC of DIO mice. These results suggest that the PDE3B-cAMP- and Akt-pathways of leptin signalling in the hypothalamus are impaired during the development of DIO. Thus, a defect in the regulation by leptin of the hypothalamic PDE3B-cAMP pathway and Akt signalling may be one

  12. Responsiveness to Exogenous Camp of a Saccharomyces Cerevisiae Strain Conferred by Naturally Occurring Alleles of Pde1 and Pde2

    OpenAIRE

    Mitsuzawa, H.

    1993-01-01

    The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity...

  13. Universal Structure and Universal PDE for Unitary Ensembles

    CERN Document Server

    Rumanov, Igor

    2009-01-01

    An attempt is made to describe random matrix ensembles with unitary invariance of measure (UE) in a unified way, using a combination of Tracy-Widom (TW) and Adler-Shiota-Van Moerbeke (ASvM) approaches to derivation of partial differential equations (PDE) for spectral gap probabilities. First, general 3-term recurrence relations for UE restricted to subsets of real line, or, in other words, for functions in the resolvent kernel, are obtained. Using them, simple universal relations between all TW dependent variables and one-dimensional Toda lattice $\\tau$-functions are found. A universal system of PDE for UE is derived from previous relations, which leads also to a {\\it single independent PDE} for spectral gap probability of various UE. Thus, orthogonal function bases and Toda lattice are seen at the core of correspondence of different approaches. Moreover, Toda-AKNS system provides a common structure of PDE for unitary ensembles. Interestingly, this structure can be seen in two very different forms: one arises...

  14. Is PDE4 too difficult a drug target?

    Science.gov (United States)

    Higgs, Gerry

    2010-05-01

    The search for selective inhibitors of PDE4 as novel anti-inflammatory drugs has continued for more than 30 years. Although several compounds have demonstrated therapeutic effects in diseases such as asthma, COPD, atopic dermatitis and psoriasis, none have reached the market. A persistent challenge in the development of PDE4 inhibitors has been drug-induced gastrointestinal adverse effects, such as nausea. However, extensive clinical trials with well-tolerated doses of roflumilast (Daxas; Nycomed/Mitsubishi Tanabe Pharma Corp/Forest Laboratories Inc) in COPD, a disease that is generally unresponsive to existing therapies, have demonstrated significant therapeutic improvements. In addition, GlaxoSmithKline plc is developing 256066, an inhaled formulation of a PDE4 inhibitor that has demonstrated efficacy in trials in asthma, and apremilast from Celgene Corp has been reported to be effective for the treatment of psoriasis. Despite the challenges and complications that have been encountered during the development of PDE4 inhibitors, these drugs may provide a genuinely novel class of anti-inflammatory agents, and there are several compounds in development that could fulfill that promise.

  15. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats.

    Directory of Open Access Journals (Sweden)

    Abdallah Ahnaou

    Full Text Available Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A and activation of metabotropic glutamate receptor (mGluR2 signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1 model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP; 2 confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3 evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not.

  16. The Cyclic Di-GMP Phosphodiesterase Gene Rv1357c/BCG1419c Affects BCG Pellicle Production and In Vivo Maintenance.

    Science.gov (United States)

    Flores-Valdez, Mario Alberto; Aceves-Sánchez, Michel de Jesús; Pedroza-Roldán, César; Vega-Domínguez, Perla Jazmín; Prado-Montes de Oca, Ernesto; Bravo-Madrigal, Jorge; Laval, Françoise; Daffé, Mamadou; Koestler, Ben; Waters, Christopher M

    2015-02-01

    Bacteria living in a surface-attached community that contains a heterogeneous population, coated with an extracellular matrix, and showing drug tolerance (biofilms) are often linked to chronic infections. In mycobacteria, the pellicle mode of growth has been equated to an in vitro biofilm and meets several of the criteria mentioned above, while tuberculosis infection presents a chronic (latent) phase of infection. As mycobacteria lack most genes required to control biofilm production by other microorganisms, we deleted or expressed from the hsp60 strong promoter the only known c-di-GMP phosphodiesterase (PDE) gene in Mycobacterium bovis BCG. We found changes in pellicle production, cellular protein profiles, lipid production, resistance to nitrosative stress and maintenance in lungs and spleens of immunocompetent BALB/mice. Our results show that pellicle production and capacity to remain within the host are linked in BCG. © 2015 International Union of Biochemistry and Molecular Biology.

  17. Use of a column-switching high-performance liquid chromatography method to assess the presence of specific binding of (R)- and (S)-[{sup 11}C]rolipram and their labeled metabolites to the phosphodiesterase-4 enzyme in rat plasma and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kenk, Miran; Greene, Michael [Cardiovascular PET Molecular Imaging Program, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 (Canada); Lortie, Mireille; Kemp, Robert A. de [Cardiovascular PET Molecular Imaging Program, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7 (Canada); Beanlands, Rob S. [Cardiovascular PET Molecular Imaging Program, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 (Canada); DaSilva, Jean N. [Cardiovascular PET Molecular Imaging Program, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 (Canada)], E-mail: jdasilva@ottawaheart.ca

    2008-05-15

    Introduction: To complement recent studies using the high-affinity {sup 11}C-labeled phosphodiesterase-4 (PDE4) inhibitor (R)-rolipram and the less active enantiomer (S)-[{sup 11}C]rolipram for in vivo quantification of PDE4 levels, we evaluated the presence of radiolabeled metabolites and their potential binding to PDE4 in the rat plasma, brain, heart, pancreas, skeletal muscle and brown adipose tissue. Methods: A reverse-phase capture and analytical HPLC column-switch method was used to detect (R)-[{sup 11}C]rolipram, (S)-[{sup 11}C]rolipram and their radiolabeled metabolites in rat plasma and tissue extracts. The relative proportion of PDE4-specific binding of the radiotracers and their labeled metabolites was analyzed following co-injections with a saturating dose of unlabeled (R)-rolipram at 45 min post-tracer injection in tissue extracts. Results: Radiolabeled metabolites were found in the plasma (72-75% of total radioactive signal), and in the heart, skeletal muscle, pancreas and brown adipose tissue (44-52%), but not in the brain. In comparison to polar labeled metabolites, the proportion of unchanged (R)-[{sup 11}C]rolipram was reduced in PDE4-rich organs by co-injection of unlabeled (R)-rolipram. Conversely, no changes were obtained in brown adipose tissue, or with (S)-[{sup 11}C]rolipram, suggesting that radiolabeled metabolites of (R)-[{sup 11}C]rolipram display no specific binding to PDE4. Conclusions: Radiolabeled hydrophilic metabolites are unlikely to compete with (R)-[{sup 11}C]rolipram for PDE4-specific retention. However, due to the high proportion of the radioactive metabolites in the total radioactive signal, any kinetic modeling calculations in the peripheral tissues will need to take into account the presence of labeled metabolites.

  18. Change in PDE10 across early Huntington disease assessed by [18F]MNI-659 and PET imaging.

    Science.gov (United States)

    Russell, David S; Jennings, Danna L; Barret, Olivier; Tamagnan, Gilles D; Carroll, Vincent M; Caillé, Fabien; Alagille, David; Morley, Thomas J; Papin, Caroline; Seibyl, John P; Marek, Kenneth L

    2016-02-23

    To evaluate whether striatal [(18)F]MNI-659 PET imaging of phosphodiesterase 10A (PDE10) serves as a sensitive and reliable biomarker of striatal neurodegeneration in a longitudinal cohort of participants with early Huntington disease (HD). A cohort of participants with HD, including both participants premanifest or manifest with motor signs, underwent clinical assessments, genetic determination, and 2 [(18)F]MNI-659 PET imaging sessions approximately 1 year apart. Eleven healthy control (HC) participants underwent clinical assessments and [(18)F]MNI-659 PET imaging once. Striatal binding potentials (BPnd) were estimated for brain regions of interest, specifically within the basal ganglia, and compared between baseline and follow-up imaging. Clinical measures of HD severity were assessed at each visit. Eight participants with HD (6 manifest; 2 premanifest) participated. Of those with manifest HD, all had relatively early stage disease (stage 1, n = 2; stage 2, n = 4) and a Unified Huntington's Disease Rating Scale total motor score disease progression. © 2016 American Academy of Neurology.

  19. Phosphodiesterase 5 inhibitors prevent 3,4-methylenedioxymethamphetamine-induced 5-HT deficits in the rat.

    Science.gov (United States)

    Puerta, Elena; Hervias, Isabel; Goñi-Allo, Beatriz; Lasheras, Berta; Jordan, Joaquin; Aguirre, Norberto

    2009-02-01

    Phosphodiesterase 5 (PDE5) inhibitors are often used in combination with club drugs such as 3,4-methylenedioxymethamphetamine (MDMA or ecstasy). We investigated the consequences of such combination in the serotonergic system of the rat. Oral administration of sildenafil citrate (1.5 or 8 mg/kg) increased brain cGMP levels and protected in a dose-dependent manner against 5-hydroxytryptamine depletions caused by MDMA (3 x 5 mg/kg, i.p., every 2 h) in the striatum, frontal cortex and hippocampus without altering the acute hyperthermic response to MDMA. Intrastriatal administration of the protein kinase G (PKG) inhibitor, KT5823 [(9S, 10R, 12R)-2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester)], suppressed sildenafil-mediated protection. By contrast, the cell permeable cGMP analogue, 8-bromoguanosine cyclic 3',5'-monophosphate, mimicked sildenafil effects further suggesting the involvement of the PKG pathway in mediating sildenafil protection. Because mitochondrial ATP-sensitive K(+) channels are a target for PKG, we next administered the specific mitochondrial ATP-sensitive K(+) channel blocker, 5-hydroxydecanoic acid, 30 min before sildenafil. 5-hydroxydecanoic acid completely reversed the protection afforded by sildenafil, thereby implicating the involvement of mitochondrial ATP-sensitive K(+) channels. Sildenafil also increased Akt phosphorylation, and so the possible involvement of the Akt/endothelial nitric oxide synthase (eNOS)/sGC signalling pathway was analysed. Neither the phosphatidylinositol 3-kinase inhibitor, wortmannin, nor the selective eNOS inhibitor, L-N5-(1-iminoethyl)-L-ornithine dihydrochloride, reversed the protection afforded by sildenafil, suggesting that Akt/eNOS/sGC cascade does not participate in the protective mechanisms. Our data also show that the protective effect of sildenafil can be extended to vardenafil, another PDE5

  20. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Bilal [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Banke, Elin, E-mail: elin.banke@med.lu.se [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Guirguis, Emilia [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Aakesson, Lina [Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Clinical Research Centre, Lund University, Malmoe (Sweden); Manganiello, Vincent [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Lyssenko, Valeriya; Groop, Leif [Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmoe (Sweden); Gomez, Maria F. [Department of Clinical Sciences, Vascular ET Coupling, Clinical Research Centre, Lund University, Malmoe (Sweden); Degerman, Eva [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  1. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries

    DEFF Research Database (Denmark)

    Birk, Steffen; Edvinsson, Lars; Olesen, Jes;

    2004-01-01

    Inhibitors of phosphodiesterases 3 and 4, the main cyclic AMP (cAMP) degrading enzymes in arteries, may have therapeutic potential in cerebrovascular disorders. We analysed the effects of such phosphodiesterases in guinea pig cerebral arteries with organ bath technique and cyclic nucleotide assays...... the major contributors to total cAMP hydrolysis in the arteries examined. The phosphodiesterase 3 inhibitors additionally attenuated cyclic GMP (cGMP) hydrolysis, but relaxant responses were not dependent on an intact endothelium or on the nitric oxide-cGMP pathway. Conversely, the phosphodiesterase 4....... Guinea pig and human cerebral arteries were used for phosphodiesterase assays. Cilostazol (6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone), a phosphodiesterase 3 inhibitor, was compared to conventional phosphodiesterase 3 and 4 inhibitors. Phosphodiesterases 3 and 4 were...

  2. Medical X-Ray Image Enhancement Based on Kramer's PDE Model

    Institute of Scientific and Technical Information of China (English)

    Yan-Fei Zhao; Qing-Wei Gao; De-Xiang Zhang; Yi-Xiang Lu

    2007-01-01

    The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable.

  3. Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling

    Institute of Scientific and Technical Information of China (English)

    WANG ZhengChao; SHI FangXiong

    2007-01-01

    Cyclic AMP (cAMP), as a second messenger, plays a critical role in cellular signaling transduction. However, it is not clear how this apparently identical cAMP signal induces divergent physiological responses. The potential explanation that cAMP signaling is compartmentalized was proposed by Buxton and Brunton twenty years ago. Compartmentalization of cAMP signaling allows spatially distinct pools of protein kinase A (PKA) to be differently activated. Research on cAMP signaling has regained impetus in many fields of life sciences due to the progress in understanding cAMP signaling complexity and functional diversity. The cAMP/PKA signaling compartments are maintained by A-kinase anchoring proteins (AKAPs) which bind PKA and other signaling proteins, and by PDEs which hydrolyse cAMP and thus terminate PKA activity. PDE4 enzymes belong to PDE superfamily and stand at a crossroad that allows them to integrate various signaling pathways with that of cAMP in spatially distinct compartments. In the current review, the nomenclature, taxonomy and gene expression of PDE4, and the system and region of its effect are described. In addition, the idiographic molecules, mechanisms, and regulation models of PDE4 are summarized. Furthermore, the important roles PDE4 plays in the maturation of rat granulosa cells and cAMP signaling compartmentalization are discussed.

  4. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents.

    Directory of Open Access Journals (Sweden)

    Santiago A Plano

    Full Text Available The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN and is synchronized by several environmental stimuli, mainly the light-dark (LD cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2. The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC, cGMP and its related protein kinase (PKG. Pharmacological manipulation of cGMP by phosphodiesterase (PDE inhibition (e.g., sildenafil increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.

  5. Effect of the phosphodiesterase type 5 inhibitor tadalafil on pulmonary hemodynamics in a canine model of pulmonary hypertension.

    Science.gov (United States)

    Hori, Yasutomo; Kondo, Chigusa; Matsui, Maho; Yamagishi, Maki; Okano, Shozo; Chikazawa, Seishiro; Kanai, Kazutaka; Hoshi, Fumio; Itoh, Naoyuki

    2014-11-01

    Phosphodiesterase type 5 (PDE5) inhibitors are used for treating pulmonary arterial hypertension (PAH) in dogs. The long-acting PDE5 inhibitor tadalafil was recently approved for treatment of PAH in humans. Basic information related to the pharmacological and hemodynamic effects of tadalafil in dogs is scarce. In this study, the hemodynamic effects of tadalafil after intravenous (IV) and oral administration were investigated in a healthy vasoconstrictive PAH Beagle dog model induced by U46619, a thromboxane A2 mimetic. Six healthy Beagle dogs were anesthetized with propofol and maintained with isoflurane. Fluid-filled catheters were placed into the descending aorta to measure systemic arterial pressure and in the pulmonary artery to measure pulmonary arterial pressure (PAP). U46619 was infused via the cephalic vein to induce PAH. IV infusion of U46619 significantly elevated PAP from baseline in a dose-dependent manner. U46619-elevated PAP and pulmonary vascular resistance was significantly attenuated by the simultaneous infusion of tadalafil at 100 and 200 µg/kg/h. Likewise, oral administration of tadalafil at 1.0, 2.0, and 4.0 mg/kg significantly attenuated U46619-elevated PAP in a dose-dependent manner. U46619-elevated systolic and mean PAP decreased significantly 1 h after oral tadalafil administration at 4.0 mg/kg, and this effect was maintained for 6 h. In conclusion, tadalafil had a pharmacological effect in dogs and IV infusion of tadalafil induced pulmonary arterial relaxation, while oral administration of tadalafil decreased PAP. These results suggest that tadalafil may offer a new therapeutic option for treating dogs with PAH.

  6. INVESTIGATION OF SEIZURE ACTIVITY AFTER CYCLIC NUCLEOTIDE PHOSPHODIESTERASE INHIBITION WITH SECOND MESSENGER AND CALCIUM ION CHANNEL INHIBITION IN MICE

    Directory of Open Access Journals (Sweden)

    J Nandhakumar

    2012-03-01

    Full Text Available The role of PDE-4 inhibitor etazolate, was evaluated in the presence of PDE-7 inhibitor, BRL-50481, in animal models of epilepsy. Seizures were induced in the animals by subjecting them to injection of chemical convulsants, Pilocarpine, Kainic acid (KA and maximal electroshock (MES. The combination of etazolate and BRL50481 treated mice showed a significant (P<0.001 quick onset of action, jerky movements and convulsion when compared to gabapentin. The combination of etazolate and sGC inhibitor, methylene blue (MB treated mice showed a significant (P<0.001 delay in onset of action, jerky movements and convulsion when compare to gabapentin as well as against the combination of etazolate with BRL 50481.The present study mainly highlights the individual effects of etazolate and combination with BRL-50481 potentiates (P<0.001 the onset of seizure activity against all models of convulsion. The study mainly comprises the onset of seizures, mortality/recovery, percentage of prevention of seizures (anticonvulsant and total duration of convulsive time. The total convulsive time was prolonged significantly (P<0.05 and P<0.01 in combination of methylene blue with etazolate treated (28.59% and 35.15 % groups, compared to DMSO received group (100% in the MES model. In the same way, the combination of calcium channel modulator (CCM and calcium channel blocker (CCB amiodarone and nifedipine respectively, with etazolate showed a significant (P<0.001 delay in onset of seizures, compared to DMSO and etazolate treated groups in all models of epilepsy. This confirms that both CCM and CCB possess anticonvulsant activity. Finally, the study reveals that identification of new cAMP mediated phosphodiesterases family members offers a potential new therapy for epilepsy management in future.

  7. Anxiolytic-like effect of etazolate, a type 4 phosphodiesterase inhibitor in experimental models of anxiety.

    Science.gov (United States)

    Ankur, Jindal; Mahesh, Radhakrishan; Bhatt, Shvetank

    2013-06-01

    Etazolate is a selective inhibitor of type 4 phosphodiesterase (PDE4) class enzyme. Antidepressant-like effect of etazolate has been previously demonstrated in the rodent models of depression. The present study was designed to investigate the anxiolytic-like activity of etazolate in experimental mouse models of anxiety. The putative anxiolytic effect of etazolate (0.25-1 mg/kg, ip) was studied in mice by using a battery of behavioural tests of anxiety such as elevated plus maze (EPM), light/dark (L/D) aversion, hole board (HB) and open field (OFT) with diazepam (2 mg/kg, ip) as reference anxiolytic. Like diazepam (2 mg/kg, ip), etazolate (0.5 and 1 mg/kg, ip) significantly increased the percentage of both time spent and entries into open arms in the EPM test. In the L/D test etazolate (0.5 and 1 mg/kg, ip) increased the both total time spent in and latency time to leave the light compartment. Etazolate (0.5 and 1 mg/kg, ip) also significantly increased head dipping scores and time spent in head dipping, whereas significantly decreased the head dipping latency in HB test. In addition, etazolate (0.5 and 1 mg/kg, ip) significantly increased the ambulation scores (square crossed) and number of rearing in OFT. In conclusion, these findings indicated that etazolate exhibited an anxiolytic-like effect in experimental models of anxiety and may be considered an alternative approach for the management of anxiety disorder.

  8. A local PDE model of aggregation formation in bacterial colonies

    Science.gov (United States)

    Chavy-Waddy, Paul-Christopher; Kolokolnikov, Theodore

    2016-10-01

    We study pattern formation in a model of cyanobacteria motion recently proposed by Galante, Wisen, Bhaya and Levy. By taking a continuum limit of their model, we derive a novel fourth-order nonlinear parabolic PDE equation that governs the behaviour of the model. This PDE is {{u}t}=-{{u}xx}-{{u}xxxx}+α {{≤ft(\\frac{{{u}x}{{u}xx}}{u}\\right)}x} . We then derive the instability thresholds for the onset of pattern formation. We also compute analytically the spatial profiles of the steady state aggregation density. These profiles are shown to be of the form \\text{sec}{{\\text{h}}p} where the exponent p is related to the parameters of the model. Full numerical simulations give a favorable comparison between the continuum and the underlying discrete system, and show that the aggregation profiles are stable above the critical threshold.

  9. A General Symbolic PDE Solver Generator: Beyond Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving a variety of partial differential equation (PDE problems. The main features of our earlier work, which implemented explicit finite-difference schemes, include the ability to handle (1 arbitrary number of dependent variables, (2 arbitrary dimensionality, and (3 arbitrary geometry, as well as (4 developing finite-difference schemes to any desired order of approximation. In the present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator are presented.

  10. Modal reduction of PDE models by means of Snapshot Archetypes

    Science.gov (United States)

    Adrover, A.; Giona, M.

    2003-08-01

    A new method for constructing low-dimensional reduced models of dissipative partial differential equations is proposed. The original PDE, ut= F( u), is projected onto a linear subspace spanned by the so-called Snapshot Archetypes, that are selected spatial profiles of u( x, t). The selection rule of the Snapshot Archetypes characterizes the method. Two different selection methods are proposed. We provide an “energetic” criterion for the minimum number of archetypes needed for an accurate approximation of the asymptotic dynamics. This approach is tested for several PDE systems such as the Kuramoto-Sivashinsky equation, the Arneodo-Elezgaray reaction-diffusion model, and the self-ignition dynamics of a coal stockpile. The latter two systems exhibit a rich bifurcative structure and are suitable for checking the robustness of the Snapshot Archetype reduced models with respect to parameter variations.

  11. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    CERN Document Server

    Knepley, Matthew G

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical PDE algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or \\emph{arrows}, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode not only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete des...

  12. Discovery of N-{4-[5-(4-Fluorophenyl)-3-methyl-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl}-acetamide (CBS-3595), a Dual p38α MAPK/PDE-4 Inhibitor with Activity against TNFα-Related Diseases.

    Science.gov (United States)

    Albrecht, Wolfgang; Unger, Anke; Bauer, Silke M; Laufer, Stefan A

    2017-07-13

    The anti-inflammatory potential of p38 mitogen-activated protein kinase (MAPK) inhibitors was coincidentally expanded to a dual inhibition of p38α MAPK and phosphodiesterase 4 (PDE4), and the potential benefits arising from the blockage of both inflammation-related enzymes were thoroughly investigated. The most promising compound, CBS-3595 (1), was successively evaluated in in vitro experiments as well as in ex vivo and in vivo preclinical studies after administration of 1 to rodents, dogs, and monkeys. The resulting data clearly indicated a potent suppression of tumor necrosis factor alpha release. For reconfirming the findings of the animal studies when administering 1 to healthy human volunteers, a phase I clinical trial was conducted. Apart from further information regarding the pharmacokinetic and pharmacodynamic characteristics of 1, it was demonstrated that dual inhibition of p38α MAPK and PDE4 is able to synergistically attenuate the excessive anti-inflammatory response.

  13. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration.

    Science.gov (United States)

    Moretto, Nadia; Caruso, Paola; Bosco, Raffaella; Marchini, Gessica; Pastore, Fiorella; Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; Ghidini, Eleonora; De Fanti, Renato; Capaldi, Carmelida; Carzaniga, Laura; Hirsch, Emilio; Buccellati, Carola; Sala, Angelo; Carnini, Chiara; Patacchini, Riccardo; Delcanale, Maurizio; Civelli, Maurizio; Villetti, Gino; Facchinetti, Fabrizio

    2015-03-01

    This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 ± 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-α from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-γ from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 μmol/kg) and leukocyte infiltration (ED50 = 0.188 μmol/kg) with an efficacy comparable to a high dose of budesonide (1 μmol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including

  14. Crystal Structure of the Leishmania Major Phosphodiesterase LmjPDEB1 and Insight into the Design of hte Parasite-Selective Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang,H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H.

    2007-01-01

    Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Angstroms resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.

  15. 磷酸二酯酶与疾病相关的药理学研究进展%Review on Pharmcology of Phosphodiesterases Related Diseases

    Institute of Scientific and Technical Information of China (English)

    王晨泉

    2011-01-01

    Cyclic nucleotide phosphodiesterases( PDEs ), which are distributed in mammalian tissues,play an important role in cell signaling by hydrolyzing cAMP and cGMP. PDEs can selectively regulate various cellular functions such as myocardial contraction , neurodegeneration , apoptosis , lipogenesis , glycogenolysis and gluconeogenesis. Thus PDE has the potential to become target of the treatment for various diseases , including depression,asthma,inflammation and erectile dysfunction etc. . Here is to make a brief review on the pharmacology of PDE related diseases.%磷酸二酯酶超家族(PDEs)是细胞内重要的第二信使cAMP和cGMP的催化水解酶.该家族参与大量的生理学过程,包括心肌收缩、神经退行性病变、细胞凋亡、脂肪生成、糖原分解和糖异生作用等.因此,PDE具有成为多种疾病治疗靶点的潜力,包括抑郁、哮喘、炎症与勃起功能障碍等.现就磷酸二酯酶相关疾病的药理学进展作简单的综述.

  16. Biomedical images texture detail denoising based on PDE

    Science.gov (United States)

    Chen, Guan-nan; Pan, Jian-ji; Li, Chao; Chen, Rong; Lin, Ju-qiang; Yan, Kun-tao; Huang, Zu-fang

    2009-08-01

    Biomedical images denosing based on Partial Differential Equation are well-known for their good processing results. General denosing methods based on PDE can remove the noises of images with gentle changes and preserve more structure details of edges, but have a poor effectiveness on the denosing of biomedical images with many texture details. This paper attempts to make an overview of biomedical images texture detail denosing based on PDE. Subsequently, Three kinds of important image denosing schemes are introduced in this paper: one is image denosing based on the adaptive parameter estimation total variation model, which denosing the images based on region energy distribution; the second is using G norm on the perception scale, which provides a more intuitive understanding of this norm; the final is multi-scale denosing decomposition. The above methods involved can preserve more structures of biomedical images texture detail. Furthermore, this paper demonstrates the applications of those three methods. In the end, the future trend of biomedical images texture detail denosing Based on PDE is pointed out.

  17. XRF map identification problems based on a PDE electrodeposition model

    Science.gov (United States)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction–diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  18. Mean field spin glasses treated with PDE techniques

    Science.gov (United States)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  19. Approximation error in PDE-based modelling of vehicular platoons

    Science.gov (United States)

    Hao, He; Barooah, Prabir

    2012-08-01

    We study the problem of how much error is introduced in approximating the dynamics of a large vehicular platoon by using a partial differential equation, as was done in Barooah, Mehta, and Hespanha [Barooah, P., Mehta, P.G., and Hespanha, J.P. (2009), 'Mistuning-based Decentralised Control of Vehicular Platoons for Improved Closed Loop Stability', IEEE Transactions on Automatic Control, 54, 2100-2113], Hao, Barooah, and Mehta [Hao, H., Barooah, P., and Mehta, P.G. (2011), 'Stability Margin Scaling Laws of Distributed Formation Control as a Function of Network Structure', IEEE Transactions on Automatic Control, 56, 923-929]. In particular, we examine the difference between the stability margins of the coupled-ordinary differential equations (ODE) model and its partial differential equation (PDE) approximation, which we call the approximation error. The stability margin is defined as the absolute value of the real part of the least stable pole. The PDE model has proved useful in the design of distributed control schemes (Barooah et al. 2009; Hao et al. 2011); it provides insight into the effect of gains of local controllers on the closed-loop stability margin that is lacking in the coupled-ODE model. Here we show that the ratio of the approximation error to the stability margin is O(1/N), where N is the number of vehicles. Thus, the PDE model is an accurate approximation of the coupled-ODE model when N is large. Numerical computations are provided to corroborate the analysis.

  20. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  1. 低温法制备马铃薯淀粉磷酸双酯的工艺研究%Study on Process in Fabricating Phosphodiesterase of Potato Starch at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    刘高梅; 王常青; 王菲

    2011-01-01

    为了提高马铃薯淀粉磷酸双酯的特性以及降低生产的能耗,研究采用在40℃的低温条件下,以三氯氧磷为交联剂,聚乙二醇(PEG)为催化剂制备马铃薯淀粉磷酸双酯.结果表明,当稳定剂用量为0.1%、三氯氧磷用量为0.05%、pH 10时所制备的马铃薯淀粉磷酸双酯的粘度为3400 cp,酯化度为0.42.%In roder to enhance the quality of Phosphodiesterase (PDE) of potato starch and slow dowm the energy consumption of production, the low temperature -40℃, POCL3 and PEG were used to fabrica PDE of potato starch. The results showed that the viscosity and degree of esterification on PDE of potato starch was 3400 cp and 0.42 respectively under the conditions which adding stabilizer 0.1%, POCL3 0.05% and pH 10.

  2. Acute effects of physical exercise and phosphodiesterase's type 5 inhibition on serum 11β-hydroxysteroid dehydrogenases related glucocorticoids metabolites: a pilot study.

    Science.gov (United States)

    Di Luigi, Luigi; Botrè, Francesco; Sabatini, Stefania; Sansone, Massimiliano; Mazzarino, Monica; Guidetti, Laura; Baldari, Carlo; Lenzi, Andrea; Caporossi, Daniela; Romanelli, Francesco; Sgrò, Paolo

    2014-12-01

    Endogenous glucocorticoids (GC) rapidly increase after acute exercise, and the phosphodiesterase's type 5 inhibitor (PDE5i) tadalafil influences this physiological adaptation. No data exist on acute effects of both acute exercise and PDE5i administration on 11β-hydroxysteroid dehydrogenases (11β-HSDs)-related GC metabolites. We aimed to investigate the rapid effects of exercise on serum GC metabolites, with and without tadalafil administration. A double blind crossover study was performed in eleven healthy male volunteers. After the volunteers randomly received a short-term administration of placebo or tadalafil (20 mg/die for 2 days), a maximal exercise test to exhaustion on cycle ergometer was performed. Then, after a 2-week washout period, the volunteers were crossed over. Blood samples were collected before starting exercise and at 5 and 30 min of recovery (+5-Rec, +30-Rec). Serum ACTH, corticosterone (Cn), cortisol (F), cortisone (E), tetrahydrocortisol (THF), tetrahydrocortisone (THE), cortols, cortolones and respective ratios were evaluated. Pre-Ex THF was higher after tadalafil. Exercise increased ACTH, Cn, F, E, THE, cortols and cortolones after both placebo and tadalafil, and THF after placebo. The F/E ratio increased at +5-Rec and decreased at +30-Rec after placebo. Compared to placebo, after tadalafil lower ACTH, F and Cn, higher THF/F and THE/E, and not E (at +5-Rec) and F/E modifications were observed. Acute exercise rapidly influences serum GC metabolites concentrations. Tadalafil influences both GC adaptation and 11β-HSDs activity during acute exercise. Additional researches on the effects of both exercise and PDE5i on tissue-specific 11β-HSDs activity at rest and during physiological adaptation are warranted.

  3. Ontogeny of catecholamine and adenosine receptor-mediated cAMP signaling of embryonic red blood cells: role of cGMP-inhibited phosphodiesterase 3 and hemoglobin.

    Science.gov (United States)

    Baumann, R; Blass, C; Götz, R; Dragon, S

    1999-12-15

    We have previously shown that the cAMP signaling pathway controls major aspects of embryonic red blood cell (RBC) function in avian embryos (Glombitza et al, Am J Physiol 271:R973, 1996; and Dragon et al, Am J Physiol 271:R982, 1996) that are important for adaptation of the RBC gas transport properties to the progressive hypercapnia and hypoxia of later stages of avian embryonic development. Data about the ontogeny of receptor-mediated cAMP signaling are lacking. We have analyzed the response of primitive and definitive chick embryo RBC harvested from day 3 to 18 of development towards forskolin, beta-adrenergic, and A2 receptor agonists. The results show a strong response of immature definitive and primitive RBC to adenosine A2 and beta-adrenergic receptor agonists, which is drastically reduced in the last stage of development, coincident with the appearance of mature, transcriptionally inactive RBC. Modulation of cGMP-inhibited phosphodiesterase 3 (PDE3) has a controlling influence on cAMP accumulation in definitive RBC. Under physiological conditions, PDE3 is inhibited due to activation of soluble guanylyl cyclase (sGC). Inhibition of sGC with the specific inhibitor ODQ decreases receptor-mediated stimulation of cAMP production; this effect is reversed by the PDE3 inhibitor milrinone. sGC is acitivated by nitric oxide (NO), but we found no evidence for production of NO by erythrocyte NO-synthase. However, embryonic hemoglobin releases NO in an oxygen-linked manner that may activate guanylyl cyclase.

  4. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity.

    Science.gov (United States)

    Soares, Ligia Mendes; Meyer, Erika; Milani, Humberto; Steinbusch, Harry W M; Prickaerts, Jos; de Oliveira, Rúbia M Weffort

    2017-02-01

    Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.

  5. Simulating biochemical physics with computers: 1. Enzyme catalysis by phosphotriesterase and phosphodiesterase; 2. Integration-free path-integral method for quantum-statistical calculations

    Science.gov (United States)

    Wong, Kin-Yiu

    We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.

  6. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia

    DEFF Research Database (Denmark)

    Mahmood, Badar; Damm, Morten Matthiesen Bach; Jensen, Thorbjørn Søren Rønn

    2016-01-01

    showed overexpression of subtype PDE4B (p = 0.002) and subtype PDE5A (p = 0.02) in colorectal neoplasia patients. Finally, immunohistochemistry for 7 PDE isozymes demonstrated the presence of all 7 isozymes, albeit with weak reactions, and with no differences in localization between colorectal neoplasia...

  7. Chronic vasodilation increases renal medullary PDE5A and α-ENaC through independent renin-angiotensin-aldosterone system pathways.

    Science.gov (United States)

    West, Crystal A; Shaw, Stefan; Sasser, Jennifer M; Fekete, Andrea; Alexander, Tyler; Cunningham, Mark W; Masilamani, Shyama M E; Baylis, Chris

    2013-11-15

    We have previously observed that many of the renal and hemodynamic adaptations seen in normal pregnancy can be induced in virgin female rats by chronic systemic vasodilation. Fourteen-day vasodilation with sodium nitrite or nifedipine (NIF) produced plasma volume expansion (PVE), hemodilution, and increased renal medullary phosphodiesterase 5A (PDE5A) protein. The present study examined the role of the renin-angiotensin-aldosterone system (RAAS) in this mechanism. Virgin females were treated for 14 days with NIF (10 mg·kg(-1)·day(-1) via diet), NIF with spironolactone [SPR; mineralocorticoid receptor (MR) blocker, 200-300 mg·kg(-1)·day(-1) via diet], NIF with losartan [LOS; angiotensin type 1 (AT1) receptor blocker, 20 mg·kg(-1)·day(-1) via diet], enalapril (ENAL; angiotensin-converting enzyme inhibitor, 62.5 mg/l via water), or vehicle (CON). Mean arterial pressure (MAP) was reduced 7.4 ± 0.5% with NIF, 6.33 ± 0.5% with NIF + SPR, 13.3 ± 0.9% with NIF + LOS, and 12.0 ± 0.4% with ENAL vs. baseline MAP. Compared with CON (3.6 ± 0.3%), plasma volume factored for body weight was increased by NIF (5.2 ± 0.4%) treatment but not by NIF + SPR (4.3 ± 0.3%), NIF + LOS (3.6 ± 0.1%), or ENAL (4.0 ± 0.3%). NIF increased PDE5A protein abundance in the renal inner medulla, and SPR did not prevent this increase (188 ± 16 and 204 ± 22% of CON, respectively). NIF increased the α-subunit of the epithelial sodium channel (α-ENaC) protein in renal outer (365 ± 44%) and inner (526 ± 83%) medulla, and SPR prevented these changes. There was no change in either PDE5A or α-ENaC abundance vs. CON in rats treated with NIF + LOS or ENAL. These data indicate that the PVE and renal medullary adaptations in response to chronic vasodilation result from RAAS signaling, with increases in PDE5A mediated through AT1 receptor and α-ENaC through the MR.

  8. Repercussão cardiovascular, com e sem álcool, do carbonato de lodenafila, um novo inibidor da PDE5 Repercusión cardiovascular, con y sin alcohol, del carbonato de lodenafila, un nuevo inhibidor de la PDE5 Cardiovascular repercussion of lodenafil carbonate, a new PDE5 inhibitor, with and without alcohol consumption

    Directory of Open Access Journals (Sweden)

    Adauto Carvalho Silva

    2010-02-01

    tratamiento de estos pacientes. El consumo social de alcohol y el acto sexual presentan una relación considerable. Por lo tanto, puede ocurrir una asociación entre alcohol e iPDE5. El carbonato de lodenafila es un nuevo iPDE5 desarrollado por una empresa brasileña. OBJETIVO: Evaluar la repercusión cardiovascular del carbonato de lodenafila, asociado o no al alcohol, así como las alteraciones en la farmacocinética que esta asociación pueda determinar. MÉTODOS: Estudio realizado con 15 voluntarios sanos que recibieron en momentos diferentes el carbonato de lodenafila (CL en la dosis de 160mg en ayunas, CL (160 mg con alcohol, o solamente placebo. Estos pacientes fueron monitoreados por 24 horas, siendo evaluado el cuadro clínico, la presión arterial (PA, la frecuencia cardíaca (FC, el intervalo QT y también los datos de farmacocinética. RESULTADOS: El carbonato de lodenafila, aisladamente o asociado con alcohol, no determinó alteraciones clínicas significativas en la PA o FC, aunque se haya registrado una disminución de la PA estadísticamente significativa después de 4 horas en los voluntarios que recibieron medicamento y alcohol, así como un aumento de la FC después de 6 horas en los pacientes que recibieron el CL. El análisis del intervalo QT corregido no mostró alteración significativa. El alcohol aumentó la biodisponibilidad del medicamento en un 74%. Se registraron sólo 2 quejas de cefalea leve, posiblemente asociada al medicamento. CONCLUSIÓN: El carbonato de lodenafila, aun asociado al alcohol, no determinó repercusiones clínicas importantes en la PA, FC, o alteraciones en el intervalo QTc; la ingestión con alcohol, a su vez, aumentó significativamente su biodisponibilidad.BACKGROUND: Millions of men around the world suffer from erectile dysfunction, for which phosphodiesterase 5 inhibitors (PDE-5 inhibitors are currently the first treatment option. Sexual activity and alcohol consumption are closely related, and the simultaneous use of

  9. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with (18)F-MNI-659 and (11)C-raclopride with correction for partial volume effect.

    Science.gov (United States)

    Fazio, Patrik; Schain, Martin; Mrzljak, Ladislav; Amini, Nahid; Nag, Sangram; Al-Tawil, Nabil; Fitzer-Attas, Cheryl J; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Cristina; Halldin, Christer; Varrone, Andrea

    2017-05-15

    Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand (18)F-MNI-659 and D2/3 R radioligand (11)C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model ((18)F-MNI-659) and the simplified reference tissue model ((11)C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the

  10. Simulation of Stochastic Processes by Coupled ODE-PDE

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  11. Tau approximation techniques for identification of coefficients in parabolic PDE

    Science.gov (United States)

    Banks, H. T.; Wade, J. G.

    1989-01-01

    A variant of the Tau method, called the weak Tau method, is developed on the basis of the weak form of the PDE for use in least-squares parameter estimation; also presented is a suitable abstract convergence framework. The emphasis is on the theoretical framework that allows treatment of the weak Tau method when it is applied to a wide class of inverse problems, including those for diffusion-advection equations, the Fokker-Planck model for population dynamics, and damped beam equations. Extensive numerical testing of the weak Tau method has demonstrated that it compares quite favorably with existing methods.

  12. Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice.

    Science.gov (United States)

    Ooms, Maarten; Rietjens, Roma; Rangarajan, Janaki Raman; Vunckx, Kathleen; Valdeolivas, Sara; Maes, Frederik; Himmelreich, Uwe; Fernandez-Ruiz, Javier; Bormans, Guy; Van Laere, Koen; Casteels, Cindy

    2014-12-01

    Several lines of evidence imply early alterations in endocannabinoid and phosphodiesterase 10A (PDE10A) signaling in Huntington disease (HD). Using [(18)F]MK-9470 and [(18)F]JNJ42259152 small-animal positron emission tomography (PET), we investigated for the first time cerebral changes in type 1 cannabinoid (CB1) receptor binding and PDE10A levels in vivo in presymptomatic, early symptomatic, and late symptomatic HD (R6/2) mice, in relation to glucose metabolism ([(18)F]FDG PET), brain morphology (magnetic resonance imaging) and motor function. Ten R6/2 and 16 wild-type (WT) mice were investigated at 3 different time points between the age of 4 and 13 weeks. Parametric CB1 receptor and PDE10A images were anatomically standardized to Paxinos space and analyzed voxelwise. Volumetric microMRI imaging was performed to assess HD pathology. In R6/2 mice, CB1 receptor binding was decreased in comparison with WT in a cluster comprising the bilateral caudate-putamen, globus pallidus, and thalamic nucleus at week 5 (-8.1% ± 2.6%, p = 1.7 × 10(-5)). Longitudinal follow-up showed further progressive decline compared with controls in a cluster comprising the bilateral hippocampus, caudate-putamen, globus pallidus, superior colliculus, thalamic nucleus, and cerebellum (late vs. presymptomatic age: -13.7% ± 3.1% for R6/2 and +1.5% ± 4.0% for WT, p = 1.9 × 10(-5)). In R6/2 mice, PDE10A binding potential also decreased over time to reach significance at early and late symptomatic HD (late vs. presymptomatic age: -79.1% ± 1.9% for R6/2 and +2.1% ± 2.7% for WT, p = 1.5 × 10(-4)). The observed changes in CB1 receptor and PDE10A binding were correlated to anomalies exhibited by R6/2 animals in motor function, whereas no correlation was found with magnetic resonance imaging-based striatal volume. Our findings point to early regional dysfunctions in endocannabinoid and PDE10A signaling, involving the caudate-putamen and lateral globus pallidus, which may play a role

  13. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    Directory of Open Access Journals (Sweden)

    Matthew G. Knepley

    2009-01-01

    Full Text Available We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s (PDE algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode not only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.

  14. Assessment of the Role of NO-cGMP Pathway in Orthodontic Tooth Movement Using PDE5 Inhibitors: An Animal Study

    Science.gov (United States)

    Mirhashemi, Amir Hossein; Akhoundi, Mohammad Sadegh Ahmad; Ghazanfari, Rezvaneh; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Khorshidian, Azam; Dehpour, Ahmad Reza

    2016-01-01

    Objectives: Nitric oxide (NO) is a signaling molecule that mediates mechanical bone loading. Cyclic guanosine 3′, 5′ monophosphate (cGMP) is a NO-induced effector molecule. The aim of this study was to assess the effect of NO-cGMP pathway on orthodontic tooth movement (OTM) in rats by use of two phosphodiesterase 5 (PDE5) inhibitors namely sildenafil and tadalafil as chemical tools. Materials and Methods: Forty-five male Wistar rats were divided into three equal groups (n=15) based on the substance they received. The first group received daily injections of tadalafil; the second group received daily injections of sildenafil and the third group received daily injections of normal saline. The orthodontic appliances consisted of nickel-titanium closed-coil spring ligated between the maxillary right incisor and the first molar of the animals for 21 days. The amount of tooth movement was measured in all three groups at the end of this period. Histological analysis was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) thickness. Results: All appliance-treated molars in the experimental and control groups showed evidence of tooth movement. The mean OTM was calculated to be 0.39±0.16, 0.32±0.16 and 0.26±0.16mm in tadalafil, sildenafil and control groups, respectively and there were no significant differences in OTM among the study groups (P>0.05). In the tadalafil group, significantly greater root resorption on the tension side was seen when compared with controls (P≤0.05). Conclusions: Tadalafil and sildenafil PDE-5 inhibitors affecting the NO-cGMP pathway did not affect OTM in rats.

  15. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice.

    Science.gov (United States)

    Lipina, Tatiana V; Palomo, Valle; Gil, Carmen; Martinez, Ana; Roder, John C

    2013-01-01

    Cognitive deficit is a core of schizophrenia and it is not effectively treated by the available antipsychotic drugs, hence new and more effective therapy is needed. Schizophrenia is considered as a pathway disorder where Disrupted-In-Schizophrenia-1 (DISC1) is important molecular player that regulates multiple cellular cascades. We recently reported synergistic action between phosphodiesterase-4 (PDE4) and glycogen synthase kinase-3 (GSK-3) as DISC1 interacting proteins. In the current study we characterized behavioural effects of a newly developed compound, VP1.15 that inhibits both PDE7 and GSK-3 with main focus on its antipsychotic and cognitive capacities. VP1.15 reduced ambulation in C57BL/6J mice in a dose-dependent manner (7.5 mg/kg and 3 mg/kg, respectively) and, hence, lower dose was chosen for the further analysis. VP1.1.5 facilitated pre-pulse inhibition (PPI), reversed amphetamine- but not MK-801-induced PPI deficit. The drug was able to ameliorate the disrupted latent inhibition (LI) induced by the increased number of conditioning trials and reversed amphetamine-induced LI deficit, supporting further its antipsychotic effects. The drug also significantly improved episodic memory in the spatial object recognition test, facilitated working memory in Y-maze and enhanced cued fear memory, but had no effect on executive function in the Puzzle box and contextual fear conditioning. Taken together, VP1.15 elicited antipsychotic effects and also facilitated cognitive domains in mice, suggesting that multitarget drugs, affecting molecular substrates from the same pathway, perhaps could be antipsychotics of new-generation that open a new possibilities in drug discoveries. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  16. Extraction and DNA Digestion of 5'-Phosphodiesterase from Malt Root

    Institute of Scientific and Technical Information of China (English)

    ZOU Hechang; CAI Guangqi; CAI Wen; LI Hailong; GU Yi; PARK Yongdoo; MENG Fanguo

    2008-01-01

    This study investigated the extraction of 5'-phosphodiesterase from malt root and the degradation of nucleic acids by this enzyme.The extraction used grade precipitation with ammonium sulfate and enzy-matic hydrolysis.Samples were assayed using the modified Bradford method and high performance liquid chromatography.The results show that 5'-phosphodiesterase is isolated by grade precipitation with 30% and 80% saturation of ammonium sulfate and can be utilized to degrade deoxydbonucleic acid.The hydrolysate has four kinds of deoxynucleotides: 5'-dCMP,5'-dTMP,5'-dAMP,and 5'-dGMP.The optimum reaction tem-perature is 70℃,and the optimum pH is 5.5-6.0 for the reaction.The percentage of deoxynucleotides indi-ceted by the China Pharmacopoeia (2000 edition) in the product is over 70%.The extraction of 5'-phosphodiesterase from malt root is shown to be possible and economical.Products from the enzymatic hydrolysate of DNA meet the pharmacopoeia.

  17. All the lowest order PDE for spectral gaps of Gaussian matrices

    CERN Document Server

    Rumanov, Igor

    2010-01-01

    Tracy-Widom (TW) equations for one-matrix unitary ensembles (UE) (equivalent to a particular case of Schlesinger equations for isomonodromic deformations) are rewritten in a general form which allows one to derive all the lowest order equations (PDE) for spectral gap probabilities of UE without intermediate higher-order PDE. This is demonstrated on the example of Gaussian ensemble (GUE) for which all the third order PDE for gap probabilities are obtained explicitly. Moreover, there is a {\\it second order} PDE for GUE probabilities in the case of more than one spectral endpoint. This approach allows to derive all PDE at once where possible, while in the method based on Hirota bilinear identities and Virasoro constraints starting with different bilinear identities leads to different subsets of the full set of equations.

  18. Block-triangular preconditioners for PDE-constrained optimization

    KAUST Repository

    Rees, Tyrone

    2010-11-26

    In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Screening of PRKAR1A and PDE4D in a Large Italian Series of Patients Clinically Diagnosed With Albright Hereditary Osteodystrophy and/or Pseudohypoparathyroidism.

    Science.gov (United States)

    Elli, Francesca Marta; Bordogna, Paolo; de Sanctis, Luisa; Giachero, Federica; Verrua, Elisa; Segni, Maria; Mazzanti, Laura; Boldrin, Valentina; Toromanovic, Alma; Spada, Anna; Mantovani, Giovanna

    2016-06-01

    The cyclic adenosine monophosphate (cAMP) intracellular signaling pathway mediates the physiological effects of several hormones and neurotransmitters, acting by the activation of G-protein coupled receptors (GPCRs) and several downstream intracellular effectors, including the heterotrimeric stimulatory G-protein (Gs), the cAMP-dependent protein kinase A (PKA), and cAMP-specific phosphodiesterases (PDEs). Defective G-protein-mediated signaling has been associated with an increasing number of disorders, including Albright hereditary osteodistrophy (AHO) and pseudohypoparathyroidism (PHP), a heterogeneous group of rare genetic metabolic disorders resulting from molecular defects at the GNAS locus. Moreover, mutations in PRKAR1A and PDE4D genes have been recently detected in patients with acrodysostosis (ACRDYS), showing a skeletal and endocrinological phenotype partially overlapping with AHO/PHP. Despite the high detection rate of molecular defects by currently available molecular approaches, about 30% of AHO/PHP patients still lack a molecular diagnosis, hence the need to screen patients negative for GNAS epi/genetic defects also for chromosomal regions and genes associated with diseases that undergo differential diagnosis with PHP. According to the growing knowledge on Gsα-cAMP signaling-linked disorders, we investigated our series of patients (n = 81) with a clinical diagnosis of PHP/AHO but negative for GNAS anomalies for the presence of novel genetic variants at PRKAR1A and PDE4D genes. Our work allowed the detection of 8 novel missense variants affecting genes so far associated with ACRDYS in 9 patients. Our data further confirm the molecular and clinical overlap among these disorders. We present the data collected from a large series of patients and a brief review of the literature in order to compare our findings with already published data; to look for PRKAR1A/PDE4D mutation spectrum, recurrent mutations, and mutation hot spots; and to identify specific

  20. Investigation of a Putative Estrogen-Imprinting Gene, Phosphodiesterase Type IV Variant (Pde4d4), in Determining Prostate Cancer Risk

    Science.gov (United States)

    2008-04-01

    pregnancy where shown to have persistent abnormalities in prostate structure shortly after birth [7]. Furthermore, indicators of pregnancy oestrogen levels...toward xenoestrogens and decreases during pregnancy . Environ Health Perspect 2002; 110 :193–6. 37 Domoradzki JY, Thornton CM, Pottenger LH et al. Age...hypertension, stroke, depression, type 2 diabetes, and osteoporosis in later life [8, 10, 22–27]. The paradigm of early origins of adult disease is rooted in

  1. Chronic administration of phosphodiesterase type 5 inhibitor suppresses renal production of endothelin-1 in dogs with congestive heart failure.

    Science.gov (United States)

    Yamamoto, Takashi; Wada, Atsuyuki; Ohnishi, Masato; Tsutamoto, Takayoshi; Fujii, Masanori; Matsumoto, Takehiro; Takayama, Tomoyuki; Wang, Xinwen; Kurokawa, Kiyoshi; Kinoshita, Masahiko

    2002-08-01

    Endothelin-1 (ET-1) and atrial natriuretic peptide (ANP) play important roles in the regulation of body fluid balance in congestive heart failure (CHF). Renal production of ET-1 increases in CHF and it is a significant independent predictor of sodium excretion. ANP inhibits the ET system through cGMP, a second messenger of ANP. However, in severe CHF, plasma cGMP levels reached a plateau despite the activation of ANP secretion. Thus, ANP does not seem to sufficiently oppose exaggerated ET-1 actions in severe CHF, partially due to the accelerated degradation of cGMP, through phosphodiesterase type 5 (PDE5). We examined the chronic effects of a PDE5 inhibitor, T-1032 (1 mg/kg per day, n=5), on renal function and renal production of ET-1 in dogs with CHF induced by rapid ventricular pacing (270 beats/min). Vehicle dogs were given a placebo (n=5) and normal dogs (n=5) served as normal controls without pacing. In this experimentally produced CHF, plasma levels of ET-1, ANP and cGMP were elevated and renal production of cGMP was increased compared with the normal group, associated with increases in renal expression of preproET-1 mRNA and the number of ET-1-positive cells in glomeruli. In the T-1032 group, systemic and renal production of cGMP were further increased compared with the vehicle group despite no significant difference in plasma ANP levels between the two groups. Subsequently, the agent significantly improved urine flow rate, sodium excretion rate and glomerular filtration rate (GFR) associated with reductions in renal expression of preproET-1 mRNA and the number of ET-1-positive cells compared with the vehicle group. Moreover, there was a significant negative correlation between the number of ET-1-positive cells and GFR (r=-0.802 and Prenal ANP and ET-1 through the cGMP pathway, subsequently preventing renal dysfunction during the progression of CHF.

  2. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    Science.gov (United States)

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  3. "One-shot" analysis of PDE-5 inhibitors and analogues in counterfeit herbal natural products using an LC-DAD-QTOF system.

    Science.gov (United States)

    Bortolini, Claudio; Pivato, Antonio; Bogialli, Sara; Pastore, Paolo

    2015-08-01

    A highly selective and robust method for simultaneous screening and confirmation of target and non-target phosphodiesterase type 5 (PDE-5) inhibitor analogues within a single chromatographic run in counterfeit herbal products was developed. The protocol, based on an easy and rapid extraction with a water/acetonitrile 1 % formic acid solution, followed by sonication and centrifugation, exploits an LC-diode array detector-quadrupole-time-of-flight (DAD-QTOF) system. The extraction method was optimized both at high concentrations and at trace levels. These two situations are typically encountered in pharmaceutical formulations and herbal food supplements. Carryover effects, never reported before and occurring mainly for vardenafil, were overcome using a polymer-based column. An in-house validation was carried out using five blanks of different bulk matrices spiked with seven standard analytes, namely yohimbine, sildenafil, vardenafil, tadalafil, homosildenafil, pseudovardenafil and hydroxyhomovardenafil. Reliable quantitation was possible using a conventional standard solution for all the pharmaceutical and herbal samples considered, as matrix effects were eliminated. Accuracy ranged from 80.9 to 108.1 % with overall relative standard deviation (RSD) products marketed for the erectile dysfunction.

  4. Convergence acceleration for time-independent first-order PDE using optimal PNB-approximations

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, S.; Branden, H. [Uppsala Univ. (Sweden)

    1996-12-31

    We consider solving time-independent (steady-state) flow problems in 2D or 3D governed by hyperbolic or {open_quotes}almost hyperbolic{close_quotes} systems of partial differential equations (PDE). Examples of such PDE are the Euler and the Navier-Stokes equations. The PDE is discretized using a finite difference or finite volume scheme with arbitrary order of accuracy. If the matrix B describes the discretized differential operator and u denotes the approximate solution, the discrete problem is given by a large system of equations.

  5. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA.

    Science.gov (United States)

    Gould, Matthew K; Bachmaier, Sabine; Ali, Juma A M; Alsford, Sam; Tagoe, Daniel N A; Munday, Jane C; Schnaufer, Achim C; Horn, David; Boshart, Michael; de Koning, Harry P

    2013-10-01

    One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.

  6. Phosphodiesterase 1 regulation is a key mechanism in vascular aging

    DEFF Research Database (Denmark)

    Niño, Paula K Bautista; Durik, Matej; Danser, A H Jan

    2015-01-01

    Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role.......0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy....

  7. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-12-07

    Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity

  8. [Thermostable extracellular cyclic nucleotide phosphodiesterase from Physarum polycephalum plasmodium].

    Science.gov (United States)

    Nezvetskiĭ, A R; Orlova, T G; Beĭlina, S I; Orlov, N Ia

    2006-01-01

    The cyclic nucleotide phosphodiesterase secreted by Physarum polycephalum plasmodium into extracellular medium has been partially purified by DEAE cellulose chromatography, ultrafiltration, and HPLC. The results obtained by gel filtration, HPLC, electrophoresis, and isoelectric focusing suggest that, the native enzyme in solution is a monomer with a molecular mass of about 90 kDa and pI in the range 3.6 - 4.0. The Km values were estimated to be about 0.9 mM and 7.7 mM, respectively, and Vm for both substrates were similar (up to several thousand micromoles of cAMP hydrolyzed/hour per mg of enzyme). The partially purified enzyme was shown to be extremely stable. It did not lose the activity after heat treatment at 100 degrees C during 30 min. The enzyme was active in the presence of 1% SDS, but it was fully inactivated under the same conditions in the presence of beta-mercaptoethanol. The properties of the phosphodiesterase from Physarum polycephalum are discussed.

  9. PDE-5 Inhibitors in Scleroderma Raynaud Phenomenon and Digital Ulcers: Current Status of Clinical Trials

    Directory of Open Access Journals (Sweden)

    Ann J. Impens

    2011-01-01

    Full Text Available Systemic sclerosis- (SSc- related vasculopathy, as manifested by Raynaud's Phenomenon (RP and digital ulcers (DUs, is associated with significant impairment of the quality of life and morbidity. The current vasoactive approach for SSc-RP, although employing vasodilators, is entirely off-label. PDE-5 inhibitors improve peripheral circulation, are well tolerated, and are widely used for various forms of constrictive vasculopathies. This class of medications has become one of the first lines of treatment of SSc-RP and SSc-DUs among rheumatologists that routinely treat SSc patients. Due to the lack of robust randomized clinical trials of PDE-5 inhibitors in SSc-RP/DUs, the PDE-5 inhibitors have not been FDA approved for these particular indications, which constitutes a significant barrier to prescribing this category of drugs. This paper reviews the current state of evidence-based knowledge in SSc-related vasculopathy and the use of PDE-5 inhibitors.

  10. Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models.

    Science.gov (United States)

    Beaumont, Vahri; Zhong, Sheng; Lin, Hai; Xu, WenJin; Bradaia, Amyaouch; Steidl, Esther; Gleyzes, Melanie; Wadel, Kristian; Buisson, Bruno; Padovan-Neto, Fernando E; Chakroborty, Shreaya; Ward, Karen M; Harms, John F; Beltran, Jose; Kwan, Mei; Ghavami, Afshin; Häggkvist, Jenny; Tóth, Miklós; Halldin, Christer; Varrone, Andrea; Schaab, Christoph; Dybowski, J Nikolaj; Elschenbroich, Sarah; Lehtimäki, Kimmo; Heikkinen, Taneli; Park, Larry; Rosinski, James; Mrzljak, Ladislav; Lavery, Daniel; West, Anthony R; Schmidt, Christopher J; Zaleska, Margaret M; Munoz-Sanjuan, Ignacio

    2016-12-21

    Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models, and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition was required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Computer-Aided Transformation of PDE Models: Languages, Representations, and a Calculus of Operations

    Science.gov (United States)

    2016-01-05

    Computer-aided transformation of PDE models: languages, representations, and a calculus of operations A domain-specific embedded language called...languages, representations, and a calculus of operations Report Title A domain-specific embedded language called ibvp was developed to model initial...Computer-aided transformation of PDE models: languages, representations, and a calculus of operations 1 Vision and background Physical and engineered systems

  12. Inertial Manifold and Large Deviations Approach to Reduced PDE Dynamics

    Science.gov (United States)

    Cardin, Franco; Favretti, Marco; Lovison, Alberto

    2017-09-01

    In this paper a certain type of reaction-diffusion equation—similar to the Allen-Cahn equation—is the starting point for setting up a genuine thermodynamic reduction i.e. involving a finite number of parameters or collective variables of the initial system. We firstly operate a finite Lyapunov-Schmidt reduction of the cited reaction-diffusion equation when reformulated as a variational problem. In this way we gain a finite-dimensional ODE description of the initial system which preserves the gradient structure of the original one and that is exact for the static case and only approximate for the dynamic case. Our main concern is how to deal with this approximate reduced description of the initial PDE. To start with, we note that our approximate reduced ODE is similar to the approximate inertial manifold introduced by Temam and coworkers for Navier-Stokes equations. As a second approach, we take into account the uncertainty (loss of information) introduced with the above mentioned approximate reduction by considering the stochastic version of the ODE. We study this reduced stochastic system using classical tools from large deviations, viscosity solutions and weak KAM Hamilton-Jacobi theory. In the last part we suggest a possible use of a result of our approach in the comprehensive treatment non equilibrium thermodynamics given by Macroscopic Fluctuation Theory.

  13. Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer’s Dementia

    Directory of Open Access Journals (Sweden)

    Simon Chiu

    2014-01-01

    Full Text Available Introduction. Converging evidence suggests that PDE-4 (phosphodiesterase subtype 4 plays a crucial role in regulating cognition via the PDE-4-cAMP cascade signaling involving phosphorylated cAMP response element binding protein (CREB. Objective. The primary endpoint was to examine the neurocognitive effects of extract Sceletium tortuosum (Zembrin and to assess the safety and tolerability of Zembrin in cognitively healthy control subjects. Method. We chose the randomized double-blind placebo-controlled cross-over design in our study. We randomized normal healthy subjects (total n=21 to receive either 25 mg capsule Zembrin or placebo capsule once daily for 3 weeks, in a randomized placebo-controlled 3-week cross-over design. We administered battery of neuropsychological tests: CNS Vital Signs and Hamilton depression rating scale (HAM-D at baseline and regular intervals and monitored side effects with treatment emergent adverse events scale. Results. 21 subjects (mean age: 54.6 years ± 6.0 yrs; male/female ratio: 9/12 entered the study. Zembrin at 25 mg daily dosage significantly improved cognitive set flexibility (P<0.032 and executive function (P<0.022, compared with the placebo group. Positive changes in mood and sleep were found. Zembrin was well tolerated. Conclusion. The promising cognitive enhancing effects of Zembrin likely implicate the PDE-4-cAMP-CREB cascade, a novel drug target in the potential treatment of early Alzheimer’s dementia. This trial is registered with ClinicalTrials.gov NCT01805518.

  14. Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.

    Science.gov (United States)

    Moodley, Thunicia; Wilson, Sylvia M; Joshi, Taruna; Rider, Christopher F; Sharma, Pawan; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-04-01

    Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate-induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.

  15. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    Science.gov (United States)

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.

  16. DART-MS/MS法直接实时检测保健食品中非法添加的6个PDE5抑制剂的应用研究%Study on rapid and direct analysis of illegally added six PDE5 inhibitors in health food by DART-MS/MS method

    Institute of Scientific and Technical Information of China (English)

    程显隆; 李文杰; 李卫健; 魏锋; 肖新月; 林瑞超

    2011-01-01

    Objective :To develop a directed analysis of 6 phosphodiesterase 5 ( PDE5 )inhibitors : sildenafil, tadalafil , acetildenafil , hydroxyhomosildenafil , aminotadalafil , pseudo - vardenfil in health food. Methods : Triple quadrupol MS with DART ion souce was used to perform the direct analysis. The DART sampler delivery rate was 0. 2 mm ·s-1. The temperature of carry gas of DART was 450 ℃ . The capillary voltage was kept at 4 kV. The temperature of the drying gas of triple quadrupol MS was set at 350 ℃ . The flow rate of the drying gas of triple quadrupol MS was set at 10 L · min -1 , respectively. Product ion scan mode was used with scan range from 50 -550 amu. The precursor ions were set as m/z 475. 1 ( sildenafil) , m/z 467. 2( acetildenafil ) , m/z 505. 1 ( hydroxyhomosildenafil) , m/z 390. 1 ( tadalafil) , m/z 391. 2 ( aminotadalafil) , m/z 460. 3 ( pseudo - vardenfil) . The identification was performed by comparing the mass spectrum of detected peak in samples with the mass spectrum of peak in reference substance. Results :The limit of detection for each of 6 PDE5 inhibitors was under 1 μg · g-1 . Sildenafil was detected in 6 samples , and tadalafil was detected in 1 sample. Conclusion :The method is employed to simultaneous detection of 6 PDE5 inhibitors in health food.%目的:建立一种可以快速检测保健食品中非法添加6个磷酸二酯酶5(PDE5)抑制剂西地那非、他达拉非、红地那非、羟基豪莫西地那非、氨基他达拉非、伪伐地那非的方法.方法:采用直接实时分析(DART)离子源结合三重四极杆质谱,DART离子源的样品传输速度为0.2mm·s-1,载气温度为450℃.Agilent 6410B Triple Quad LC/MS毛细管电压4kV,于燥气流速为10L·min-1,扫描模式为子离子全扫描,扫描范围为50-550amu.待测成分的前体离子为m/z475.1西地那非),m/z 467.2(红地那非),m/z505.1(基豪莫西地那非),m/z390.1(他达拉非),m/z391.2氨基他达拉非),m/z460.3(伪伐地那非).通过对

  17. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis.

    Science.gov (United States)

    Kraft, Peter; Schwarz, Tobias; Göb, Eva; Heydenreich, Nadine; Brede, Marc; Meuth, Sven G; Kleinschnitz, Christoph

    2013-09-01

    Blood-brain-barrier (BBB) disruption, inflammation and thrombosis are important steps in the pathophysiology of acute ischemic stroke but are still inaccessible to therapeutic interventions. Rolipram specifically inhibits the enzyme phosphodiesterase (PDE) 4 thereby preventing the inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to relief inflammation and BBB damage in a variety of neurological disorders. We investigated the therapeutic potential of rolipram in a model of brain ischemia/reperfusion injury in mice. Treatment with 10mg/kg rolipram, but not 2 mg/kg rolipram, 2 h after 60 min of transient middle cerebral artery occlusion (tMCAO) reduced infarct volumes by 50% and significantly improved clinical scores on day 1 compared with vehicle-treated controls. Rolipram maintained BBB function upon stroke as indicated by preserved expression of the tight junction proteins occludin and claudin-5. Accordingly, the formation of vascular brain edema was strongly attenuated in mice receiving rolipram. Moreover, rolipram reduced the invasion of neutrophils as well as the expression of the proinflammatory cytokines IL-1β and TNFα but increased the levels of TGFβ-1. Finally, rolipram exerted antithrombotic effects upon stroke and fewer neurons in the rolipram group underwent apoptosis. Rolipram is a multifaceted antiinflammatory and antithrombotic compound that protects from ischemic neurodegeneration in clinically meaningful settings.

  18. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    Science.gov (United States)

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures.

  19. Can non-selective beta-blockers prevent hepatocellular carcinoma in patients with cirrhosis?

    DEFF Research Database (Denmark)

    Thiele, Maja; Wiest, Reiner; Gluud, Lise Lotte

    2013-01-01

    Hepatocellular carcinoma is the main liver-related cause of death in patients with compensated cirrhosis. The early phases are asymptomatic and the prognosis is poor, which makes prevention essential. We propose that non-selective beta-blockers decrease the incidence and growth of hepatocellular...... carcinoma via a reduction of the inflammatory load from the gut to the liver and inhibition of angiogenesis. Due to their effect on the portal pressure, non-selective beta-blockers are used for prevention of esophageal variceal bleeding. Recently, non-hemodynamic effects of beta-blockers have received...... reduce hepatic inflammation. Blockage of β-adrenoceptors also decrease angiogenesis by inhibition of vascular endothelial growth factors. Because gut-derived inflammation and neo-angiogenesis are important in hepatic carcinogenesis, non-selective beta-blockers can potentially reduce the development...

  20. A framework for the construction of preconditioners for systems of PDE

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, S.; Otto, K. [Uppsala Univ. (Sweden)

    1994-12-31

    The authors consider the solution of systems of partial differential equations (PDE) in 2D or 3D using preconditioned CG-like iterative methods. The PDE is discretized using a finite difference scheme with arbitrary order of accuracy. The arising sparse and highly structured system of equations is preconditioned using a discretization of a modified PDE, possibly exploiting a different discretization stencil. The preconditioner corresponds to a separable problem, and the discretization in one space direction is constructed so that the corresponding matrix is diagonalized by a unitary transformation. If this transformation is computable using a fast O(n log{sub 2} n) algorithm, the resulting preconditioner solve is of the same complexity. Also, since the preconditioner solves are based on a dimensional splitting, the intrinsic parallelism is good. Different choices of the unitary transformation are considered, e.g., the discrete Fourier transform, sine transform, and modified sine transform. The preconditioners fully exploit the structure of the original problem, and it is shown how to compute the parameters describing them subject to different optimality constraints. Some of these results recover results derived by e.g. R. Chan, T. Chan, and E. Tyrtyshnikov, but here they are stated in a {open_quotes}PDE context{close_quotes}. Numerical experiments where different preconditioners are exploited are presented. Primarily, high-order accurate discretizations for first-order PDE problems are studied, but also second-order derivatives are considered. The results indicate that utilizing preconditioners based on fast solvers for modified PDE problems yields good solution algorithms. These results extend previously derived theoretical and numerical results for second-order approximations for first-order PDE, exploiting preconditioners based on fast Fourier transforms.

  1. How to sell successfully a perfume in the non-selective market?

    OpenAIRE

    Ramalho, Maria Rita Pinto Coelho de Magalhães

    2009-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics This document presents a market research on the positioning of perfumes in the non selective market. This project’s main goal had been to analyze the challenge of “successfully selling a perfume in the non-selective market” in order to propose potential solutions. To address this marketing problem, an exploratory research had been c...

  2. Evidence for a Messenger Function of Cyclic GMP During Phosphodiesterase Induction in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Pasveer, Frank J.; Meer, Rob C. van der; Heijden, Paul R. van der; Walsum, Hans van; Konijn, Theo M.

    1982-01-01

    Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function

  3. Integration based profile likelihood calculation for PDE constrained parameter estimation problems

    Science.gov (United States)

    Boiger, R.; Hasenauer, J.; Hroß, S.; Kaltenbacher, B.

    2016-12-01

    Partial differential equation (PDE) models are widely used in engineering and natural sciences to describe spatio-temporal processes. The parameters of the considered processes are often unknown and have to be estimated from experimental data. Due to partial observations and measurement noise, these parameter estimates are subject to uncertainty. This uncertainty can be assessed using profile likelihoods, a reliable but computationally intensive approach. In this paper, we present the integration based approach for the profile likelihood calculation developed by (Chen and Jennrich 2002 J. Comput. Graph. Stat. 11 714-32) and adapt it to inverse problems with PDE constraints. While existing methods for profile likelihood calculation in parameter estimation problems with PDE constraints rely on repeated optimization, the proposed approach exploits a dynamical system evolving along the likelihood profile. We derive the dynamical system for the unreduced estimation problem, prove convergence and study the properties of the integration based approach for the PDE case. To evaluate the proposed method, we compare it with state-of-the-art algorithms for a simple reaction-diffusion model for a cellular patterning process. We observe a good accuracy of the method as well as a significant speed up as compared to established methods. Integration based profile calculation facilitates rigorous uncertainty analysis for computationally demanding parameter estimation problems with PDE constraints.

  4. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

    Science.gov (United States)

    Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

    2012-06-01

    In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation.

  5. Non-selective β-blockers do not affect mortality in cirrhosis patients with ascites

    DEFF Research Database (Denmark)

    Bossen, Lars; Krag, Aleksander; Vilstrup, Hendrik

    2016-01-01

    The safety of non-selective β-blockers (NSBBs) in advanced cirrhosis has been questioned. We used data from three satavaptan trials to examine whether NSBBs increase mortality in cirrhosis patients with ascites. The trials were conducted in 2006-2008 and included 1198 cirrhosis patients with asci...

  6. Non-selective beta-blockers decrease thrombotic events in patients with heart failure

    NARCIS (Netherlands)

    De Peuter, Olav R.; Souverein, Patrick C.; Klungel, Olaf H.; Lip, Gregory Y.; Buller, Harry R.; De Boer, Anthonius; Kamphuisen, Pieter W.

    2010-01-01

    Background: Beta-blockers are often prescribed to patients with heart failure (HF) without distinctions between types of beta-blockers. The 2002 COMET study showed superiority of carvedilol (a non-selective beta-blocker) over metoprolol (selective beta-blocker) on mortality and cardiovascular events

  7. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications

    Science.gov (United States)

    Heckman, Pim R. A.; van Duinen, Marlies A.; Bollen, Eva P. P.; Nishi, Akinori; Wennogle, Lawrence P.; Blokland, Arjan

    2016-01-01

    Background: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson’s disease, Huntington’s disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette’s syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. Methods: Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. Results: Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. Conclusion: Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits. PMID:27037577

  8. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    Science.gov (United States)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  9. A PDE Pricing Framework for Cross-Currency Interest Rate Derivatives with Target Redemption Features

    Science.gov (United States)

    Christara, Christina C.; Minh Dang, Duy; Jackson, Kenneth R.; Lakhany, Asif

    2010-09-01

    We propose a general framework for efficient pricing via a partial differential equation (PDE) approach for exotic cross-currency interest rate (IR) derivatives, with strong emphasis on long-dated foreign exchange (FX) IR hybrids, namely Power Reverse Dual Currency (PRDC) swaps with a FX Target Redemption (FX-TARN) provision. The FX-TARN provision provides a cap on the FX-linked PRDC coupon amounts, and once the accumulated coupon amount reaches this cap, the underlying PRDC swap terminates. Our PDE pricing framework is based on an auxiliary state variable to keep track of the total accumulated PRDC coupon amount. Finite differences on uniform grids and the Alternating Direction Implicit (ADI) method are used for the spatial and time discretizations, respectively, of the model-dependent PDE corresponding to each discretized value of the auxiliary variable. Numerical examples illustrating the convergence properties of the numerical methods are provided.

  10. Sampled-Data Fuzzy Control for Nonlinear Coupled Parabolic PDE-ODE Systems.

    Science.gov (United States)

    Wang, Zi-Peng; Wu, Huai-Ning; Li, Han-Xiong

    2017-09-01

    In this paper, a sampled-data fuzzy control problem is addressed for a class of nonlinear coupled systems, which are described by a parabolic partial differential equation (PDE) and an ordinary differential equation (ODE). Initially, the nonlinear coupled system is accurately represented by the Takagi-Sugeno (T-S) fuzzy coupled parabolic PDE-ODE model. Then, based on the T-S fuzzy model, a novel time-dependent Lyapunov functional is used to design a sampled-data fuzzy controller such that the closed-loop coupled system is exponentially stable, where the sampled-data fuzzy controller consists of the ODE state feedback and the PDE static output feedback under spatially averaged measurements. The stabilization condition is presented in terms of a set of linear matrix inequalities. Finally, simulation results on the control of a hypersonic rocket car are given to illustrate the effectiveness of the proposed design method.

  11. 磷酸二酯酶参与认知与情绪调节的研究进展%Progress in the role of phosphodiesterases in memory regulation

    Institute of Scientific and Technical Information of China (English)

    陈玲; 徐英; 潘建春

    2012-01-01

    磷酸二酯酶(PDE)催化水解cAMP和cGMP,是细胞内降解cAMP和cGMP的唯一途径.PDE是一个多基因大家族酶,包含11型不同家族,它们的结构,分布以及调节方式对抑制剂的敏感性都不同.PDE选择性抑制剂可通过抑制cAMP或cGMP水解来调节学习记忆障碍等中枢神经系统疾病.因此,PDE被认为在中枢神经系统疾病的治疗上具有重要地位.本综述介绍目前PDE参与学习记忆障碍这一中枢神经系统疾病调节的研究进展,而且PDE作为中枢神经系统疾病的治疗靶点,研究其选择性抑制剂具有重要的意义.%Phosphodiesterases (PDEs) are a super-family of enzymes that are involved in the regulation of the intracellular second messengers cAMP and cGMP by controlling their rates of hydrolysis. There are 11 different PDE families, and each family has typically multiple isof'orms and splice variants. The PDEs differ in their structures , distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been demonstrated to play distinct roles in the process of emotion, and related learning and memory, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, could modulate mood and related cognitive activity. This review discusses the current status and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.

  12. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...... a role in the cellular immune system, may also function in mitochondrial RNA turnover....

  13. PROBABILISTIC NUMERICAL APPROACH FOR PDE AND ITS APPLICATION IN THE VALUATION OF EUROPEAN OPTIONS

    Institute of Scientific and Technical Information of China (English)

    Dong-sheng Wu

    2001-01-01

    This paper suggests a probabilistic numerical approach for a class of PDE. First of all,by simulating Brownian motion and using Monte-Carlo method, we obtain a probabilistic numerical solution for the PDE. Then, we prove that the probabilistic numerical solution converges in probability to its solution. At the end of this paper, as an application, we give a probabilistic numerical approach for the valuation of European Options, where we see volatility σ, interest rate r and divident rate Do as functions of stock S, respectively.

  14. Role of Ser102 and Ser104 as Regulators of cGMP Hydrolysis by PDE5A

    DEFF Research Database (Denmark)

    Carøe Nordgaard, Julie; Kruse, Lars Schack; Gammeltoft, Steen;

    2014-01-01

    -N-AS neuroblastoma cells as C-terminal fusions with green fluorescent protein. Transfected cells were treated with sildenafil, cilostazol, glyceryl trinitrate, calcitonin gene-related peptide (CGRP) or sumatriptan. PDE5A-GFP fusion proteins were localized in fixed cells by immunofluorescence and PDE activity...

  15. New PDE4 inhibitors based on pharmacophoric similarity between papaverine and tofisopam.

    Science.gov (United States)

    Bihel, Frédéric J J; Justiniano, Hélène; Schmitt, Martine; Hellal, Malik; Ibrahim, Mohamed A; Lugnier, Claire; Bourguignon, Jean-Jacques

    2011-11-01

    Pharmacophoric comparison between papaverine and tofisopam led to identify three new series of micro- to sub-micromolar inhibitors of phosphodiesterase-4, including 7,8-dialkoxy-2,3-benzodiazepin-4-one derivatives, 7,8-dialkoxy-1,4-benzodiazepin-2-one derivatives, and dialkoxybenzophenone derivatives.

  16. Local classification of stable geometric solutions of systems of quasilinear first-order PDE

    Institute of Scientific and Technical Information of China (English)

    LI; Bing(李兵); LI; Yangcheng(李养成)

    2002-01-01

    Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory.

  17. Research on Odor Interaction between Aldehyde Compounds via a Partial Differential Equation (PDE Model

    Directory of Open Access Journals (Sweden)

    LuchunYan

    2015-01-01

    Full Text Available In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.

  18. A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia.

    NARCIS (Netherlands)

    Kohl, S.; Coppieters, F.; Meire, F.; Schaich, S.; Roosing, S.; Brennenstuhl, C.; Bolz, S.; Genderen, M.M. van; Riemslag, F.C.; Lukowski, R.; Hollander, A.I. den; Cremers, F.P.M.; Baere, E. de; Hoyng, C.B.; Wissinger, B.

    2012-01-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM,

  19. Riccati inequality and oscillation criteria for PDE with P-laplacian

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Oscillation criteria for PDE with P-Laplacian div ( A( x ‖ Du ‖ p−2 Du +P( x | u | p−2 u=0 are obtained via Riccati inequality. Some of them are extensions of the results for the second-order linear ODE to this equation.

  20. PDE-based random-valued impulse noise removal based on new class of controlling functions.

    Science.gov (United States)

    Wu, Jian; Tang, Chen

    2011-09-01

    This paper is concerned with partial differential equation (PDE)-based image denoising for random-valued impulse noise. We introduce the notion of ENI (the abbreviation for "edge pixels, noisy pixels, and interior pixels") that denotes the number of homogeneous pixels in a local neighborhood and is significantly different for edge pixels, noisy pixels, and interior pixels. We redefine the controlling speed function and the controlling fidelity function to depend on ENI. According to our two controlling functions, the diffusion and fidelity process at edge pixels, noisy pixels, and interior pixels can be selectively carried out. Furthermore, a class of second-order improved and edge-preserving PDE denoising models is proposed based on the two new controlling functions in order to deal with random-valued impulse noise reliably. We demonstrate the performance of the proposed PDEs via application to five standard test images, corrupted by random-valued impulse noise with various noise levels and comparison with the related second-order PDE models and the other special filtering methods for random-valued impulse noise. Our two controlling functions are extended to automatically other PDE models.

  1. A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia.

    NARCIS (Netherlands)

    Kohl, S.; Coppieters, F.; Meire, F.; Schaich, S.; Roosing, S.; Brennenstuhl, C.; Bolz, S.; Genderen, M.M. van; Riemslag, F.C.; Lukowski, R.; Hollander, A.I. den; Cremers, F.P.M.; Baere, E. de; Hoyng, C.B.; Wissinger, B.

    2012-01-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM,

  2. #DDOD Use Case: Access to Medicare Part D Drug Event File (PDE) for cost transparency

    Data.gov (United States)

    U.S. Department of Health & Human Services — SUMMARY DDOD use case to request access to Medicare Part D Drug Event File (PDE) for cost transparency to pharmacies and patients. WHAT IS A USE CASE? A “Use Case”...

  3. Postulated vasoactive neuropeptide immunopathology affecting the blood–brain/blood–spinal barrier in certain neuropsychiatric fatigue-related conditions: A role for phosphodiesterase inhibitors in treatment?

    Directory of Open Access Journals (Sweden)

    Sonya Marshall-Gradisnik

    2008-10-01

    contribute to the BBB and BSB integrity and contain PACAP and VIP receptors. Autoimmunity of these receptors would likely affect BBB and VRS function and therefore may contribute to the etiology of these conditions by affecting CNS and immunological homeostasis, including promoting neuropsychological symptomatology. PACAP and VIP, as potent activators of adenylate cyclase (AC, have a key role in cyclic adenosine monophosphate (cAMP production affecting regulatory T cell (Treg and other immune functions. Phosphodiesterase enzymes (PDEs catalyze cAMP and PDE inhibitors (PDEIs maintain cAMP levels and have proven and well known therapeutic benefit in animal models such as experimental allergic encephalomyelitis (EAE. Therefore PDEIs may have a role in therapy for certain neuropsychiatric fatigue-related conditions.Keywords: vasoactive neuropeptides, multiple sclerosis, Parkinson’s disease, chronic fatigue syndrome, phosphodiesterase inhibitors, cyclic AMP, adenylate cyclase, Virchow–Robin spaces

  4. Selective tracheal relaxation and phosphodiesterase-IV inhibition by xanthine derivatives.

    Science.gov (United States)

    Miyamoto, K; Kurita, M; Ohmae, S; Sakai, R; Sanae, F; Takagi, K

    1994-05-17

    The effects of substitutions in the xanthine nucleus on tracheal relaxant activity, atrium chronotropic activity, adenosine A1 affinity, and inhibitory activities on cyclic AMP-phosphodiesterase isoenzymes in guinea pigs were studied. Substitution with a long alkyl chain at the N1-position of xanthine nucleus increased the tracheal relaxant activity without leading to positive chronotropic action, and long alkyl chains at the N3-position increased both activities. N7-substitutions with n-propyl and 2'-oxopropyl groups, such as in denbufylline, increased bronchoselectivity. N7-substitution decreased the adenosine A1 affinity, but substitution at either the N1- or N3-position increased it. The bronchorelaxant activity of xanthine derivatives was closely correlated with their inhibition of phosphodiesterase-IV, but not with their adenosine A1 affinity; the positive chronotropic effects were related to their inhibition of phosphodiesterase-III. This study confirms that the bronchorelaxation of xanthine derivatives is mediated by inhibition of the isoenzyme phosphodiesterase-IV. The results of structure-activity analysis suggest that substitutions at the N1- and N7-positions should be tried in the development of xanthine derivatives that are selective bronchodilators and phosphodiesterase-IV inhibitors.

  5. Long-term phosphodiesterase 5 inhibitor administration reduces inflammatory markers and heat-shock proteins in cavernous tissue of Zucker diabetic fatty rat (ZDF/fa/fa).

    Science.gov (United States)

    Toblli, J E; Cao, G; Angerosa, M; Rivero, M

    2015-01-01

    Oxidative stress and nitrosative stress present in type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS) induce inflammatory response in diverse tissues including cavernous tissue (CT). Heat-shock proteins (HSPs) have an important role in modulating and repairing tissue injury, although their participation in CT in T2DM is unclear. Beyond the specific action of phosphodiesterase type 5 inhibitors (PDE5i) on erectile function, it has been proposed that chronic administration of these agents improves endothelial function and ameliorates fibrotic changes. The aim of this study was to determine in CT of Zucker Diabetic Fatty (ZDF) rat, an experimental model of T2DM and MS: (1) the degree of oxidative stress and nitrosative stress; (2) the magnitude of inflammatory markers such as tumor necrosis factor-α (TNFα) and interleukin 6 (IL6); (3) immunoexpression of HSP70 and HSP27; (4) how a long-term PDE5i administration may modify these variables. For 6 months, (1) untreated ZDF; (2) ZDF+Sildenafil (Sil) and (3) control Lean Zucker Rat (LZR) received no treatment, were studied. Penises were processed for functional 'in vitro' studies, oxidative and nitrosative stress evaluation and immunohistochemistry in CT using TNFα; IL6; nitrotyrosine, HSP70 and HSP27 antibodies. ZDF+Sil presented better relaxation in corporal strips versus untreated ZDF. Furthermore, ZDF+Sil presented less lipoperoxidation in CT versus untreated ZDF. The activity of antioxidant enzymes CuZn superoxide dismutase (CuZnSOD) and glutathione peroxidase (GPx) was also reduced in untreated ZDF in CT along with a decrease in glutathione versus untreated ZDF. Nitrotyrosine expression was increased in untreated-ZDF rats versus ZDF+Sil and LZR. TNFα and IL6 were decreased in CT in ZDF+Sil versus untreated ZDF. Additionally, the expression of HSP70 and HSP27 was reduced in CT in ZDF+Sil versus untreated ZDF. In conclusion, this study provides substantial evidence supporting a protective role of a long

  6. Reasons and predictive factors for discontinuation of PDE-5 inhibitors despite successful intercourse in erectile dysfunction patients

    Science.gov (United States)

    Kim, S-C; Lee, Y-S; Seo, K-K; Jung, G-W; Kim, T-H

    2014-01-01

    This study was aimed to identify characteristics of ED patients who discontinued PDE5i despite successful intercourse. Data were collected using a questionnaire from 34 urologic clinics regardless of the effect (success or failure) of PDE5i treatment by visiting the clinics (717), e-mail (64) or post (101) for 882 ED patients who had previously taken any kind of PDE5i on demand four or more times. Discontinuation of PDE5i was defined if the patient had never taken PDE5i for the previous 1 year despite successful intercourse. Of the 882 patients, 485 were included in the final analysis. Difference in the socio-demographic, ED- and partner-related data between the continuation and discontinuation group and factors influencing discontinuation of the PDE5i were analyzed. Among 485 respondents (mean age, 53.6), 116 (23.9%) had discontinued PDE5i use despite successful intercourse. Most common reasons for the discontinuation were ‘reluctant medication-dependent intercourse' (31.0%), ‘spontaneous recovery of erectile function without further treatment' (30.2%), and ‘high cost' (26.7%). In multiple logistic regression analysis, independent factors influencing discontinuation of the drug were cause of ED (psychogenic), short duration of ED, low education (⩽ middle school), and religion (Catholic). In partner-related compliance, only partner's religion (Catholic) was a significant factor. PMID:24305610

  7. The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion

    Science.gov (United States)

    Roy, Ankita Basu; Petrova, Olga E.

    2012-01-01

    Although little is known regarding the mechanism of biofilm dispersion, it is becoming clear that this process coincides with alteration of cyclic di-GMP (c-di-GMP) levels. Here, we demonstrate that dispersion by Pseudomonas aeruginosa in response to sudden changes in nutrient concentrations resulted in increased phosphodiesterase activity and reduction of c-di-GMP levels compared to biofilm and planktonic cells. By screening mutants inactivated in genes encoding EAL domains for nutrient-induced dispersion, we identified in addition to the previously reported ΔrbdA mutant a second mutant, the ΔdipA strain (PA5017 [dispersion-induced phosphodiesterase A]), to be dispersion deficient in response to glutamate, nitric oxide, ammonium chloride, and mercury chloride. Using biochemical and in vivo studies, we show that DipA associates with the membrane and exhibits phosphodiesterase activity but no detectable diguanylate cyclase activity. Consistent with these data, a ΔdipA mutant exhibited reduced swarming motility, increased initial attachment, and polysaccharide production but only somewhat increased biofilm formation and c-di-GMP levels. DipA harbors an N-terminal GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain and two EAL motifs within or near the C-terminal EAL domain. Mutational analyses of the two EAL motifs of DipA suggest that both are important for the observed phosphodiesterase activity and dispersion, while the GAF domain modulated DipA function both in vivo and in vitro without being required for phosphodiesterase activity. Dispersion was found to require protein synthesis and resulted in increased dipA expression and reduction of c-di-GMP levels. We propose a role of DipA in enabling dispersion in P. aeruginosa biofilms. PMID:22493016

  8. Coronary vasodilatory, spasmolytic and cAMP-phosphodiesterase inhibitory properties of dihydropyranocoumarins and dihydrofuranocoumarins

    DEFF Research Database (Denmark)

    Thastrup, Ole; Fjalland, B; Lemmich, J

    1983-01-01

    Twenty-three dihydropyrano- and dihydrofuranocoumarins, most of plant origin, were examined for their effects on the coronary flow of isolated perfused guinea-pig heart, on the Ba2+-induced spasms in isolated guinea-pig ileum, on the cAMP level in guinea-pig heart homogenate and on the cAMP metab...... between the coronary vasodilatory and the cAMP-phosphodiesterase inhibitory activity. The results indicate involvement of cAMP-phosphodiesterase inhibition in coronary vasodilatory effects of acyloxydihydropyrano- and acyloxydihydrofurano-coumarins....

  9. The role of arachidonic acid/cyclooxygenase cascade, phosphodiesterase IV and Rho-kinase in H2S-induced relaxation in the mouse corpus cavernosum.

    Science.gov (United States)

    Aydinoglu, Fatma; Ogulener, Nuran

    2017-08-01

    Penile corpus cavernosum is an extremely vascularized tissue and cavernosal smooth muscle tone is regulated by the balance between contractile and relaxant factor. We investigated the possible role of arachidonic acid/cyclooxygenase cascade, phosphodiesterase IV (PDEIV) and Rho-kinase in exogenous hydrogen sulfide (H2S)-induced relaxation in mouse corpus cavernosum. The relaxant response to H2S (NaHS as exogenous H2S; 1-1000μM) were obtained in isolated mouse corpus cavernosum tissues which pre-contracted by phenylephrine (5μM). The effects of 4-(4-octadecylphenyl)-4-oxobutenoic acid (OBAA; 10μM), a selective phospholipase A2 (PLA2) inhibitor, indomethacin (1μM), a non-selective cyclooxygenase (COX) inhibitor, baicalein (10μM), a lipoxygenase (LOX) inhibitor, and proadifen (10μM), cytochrome P450 inhibitor, on the relaxant responses to H2S were investigated. Furthermore, the effects of theophylline (500μM) and rolipram (1μM), a non-selective and selective PDEIV inhibitor, and fasudil (3μM), a specific Rho-kinase inhibitor, were studied on H2S-induced relaxation. H2S-induced relaxations were significantly reduced by OBAA, indomethacin and proadifen but not baicalein. Furthermore, theophylline, rolipram and fasudil reduced H2S-induced relaxations. These results suggest that PLA2, COX, cytochrome P450, PDEIV and Rho-kinase pathway may involve in H2S-induced relaxation in mouse corpus cavernosum tissues. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.

    Directory of Open Access Journals (Sweden)

    Daniel Reinecke

    Full Text Available As second messengers, the cyclic purine nucleotides adenosine 3',5'-cyclic monophosphate (cAMP and guanosine 3',5'-cyclic monophosphate (cGMP play an essential role in intracellular signaling. Recent data suggest that the cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP and uridine 3',5'-cyclic monophosphate (cUMP also act as second messengers. Hydrolysis by phosphodiesterases (PDEs is the most important degradation mechanism for cAMP and cGMP. Elimination of cUMP and cCMP is not completely understood, though. We have shown that human PDEs hydrolyze not only cAMP and cGMP but also cyclic pyrimidine nucleotides, indicating that these enzymes may be important for termination of cCMP- and cUMP effects as well. However, these findings were acquired using a rather expensive HPLC/mass spectrometry assay, the technical requirements of which are available only to few laboratories. N'-Methylanthraniloyl-(MANT-labeled nucleotides are endogenously fluorescent and suitable tools to study diverse protein/nucleotide interactions. In the present study, we report the synthesis of new MANT-substituted cyclic purine- and pyrimidine nucleotides that are appropriate to analyze substrate specificity and kinetics of PDEs with more moderate technical requirements. MANT-labeled nucleoside 3',5'-cyclic monophosphates (MANT-cNMPs are shown to be substrates of various human PDEs and to undergo a significant change in fluorescence upon cleavage, thus allowing direct, quantitative and continuous determination of hydrolysis via fluorescence detection. As substrates of several PDEs, MANT-cNMPs show similar kinetics to native nucleotides, with some exceptions. Finally, they are shown to be also appropriate tools for PDE inhibitor studies.

  11. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43.

    Directory of Open Access Journals (Sweden)

    Ching-Jou Huang

    Full Text Available This study shows that the expression of yjcC, an in vivo expression (IVE gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation. In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.

  12. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors

    Science.gov (United States)

    Temkitthawon, Prapapan; Hinds, Thomas R.; Beavo, Joseph A.; Viyoch, Jarupa; Suwanborirux, Khanit; Pongamornkul, Wittaya; Sawasdee, Pattara; Ingkaninan, Kornkanok

    2014-01-01

    Aim of the study A number of medicinal plants are used in traditional medicine to treat erectile dysfunction. Since cyclic nucleotide PDEs inhibitors underlie several current treatments for this condition, we sought to show whether these plants might contain substantial amounts of PDE5 inhibitors. Materials and methods Forty one plant extracts and eight 7-methoxyflavones from Kaempferia parviflora Wall. ex Baker were screened for PDE5 and PDE6 inhibitory activities using the two-step radioactive assay. The PDE5 and PDE6 were prepared from mice lung and chicken retinas, respectively. All plant extracts were tested at 50 μg/ml whereas the pure compounds were tested at 10 μM. Results From forty one plant extracts tested, four showed the PDE5 inhibitory effect. The chemical constituents isolated from rhizomes of Kaempferia parviflora were further investigated on inhibitory activity against PDE5 and PDE6. The results showed that 7-methoxyflavones from this plant showed inhibition toward both enzymes. The most potent PDE5 inhibitor was 5,7-dimethoxyflavone (IC50 = 10.64 ± 2.09 μM, selectivity on PDE5 over PDE6 = 3.71). Structure activity relationship showed that the methoxyl group at C-5 position of 7-methoxyflavones was necessary for PDE5 inhibition. Conclusions Kaempferia parviflora rhizome extract and its 7-methoxyflavone constituents had moderate inhibitory activity against PDE5. This finding provides an explanation for enhancing sexual performance in the traditional use of Kaempferia parviflora. Moreover, 5,7-dimethoxyflavones should make a useful lead compound to further develop clinically efficacious PDE5 inhibitors. PMID:21884777

  13. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors.

    Science.gov (United States)

    Temkitthawon, Prapapan; Hinds, Thomas R; Beavo, Joseph A; Viyoch, Jarupa; Suwanborirux, Khanit; Pongamornkul, Wittaya; Sawasdee, Pattara; Ingkaninan, Kornkanok

    2011-10-11

    A number of medicinal plants are used in traditional medicine to treat erectile dysfunction. Since cyclic nucleotide PDEs inhibitors underlie several current treatments for this condition, we sought to show whether these plants might contain substantial amounts of PDE5 inhibitors. Forty one plant extracts and eight 7-methoxyflavones from Kaempferia parviflora Wall. ex Baker were screened for PDE5 and PDE6 inhibitory activities using the two-step radioactive assay. The PDE5 and PDE6 were prepared from mice lung and chicken retinas, respectively. All plant extracts were tested at 50 μg/ml whereas the pure compounds were tested at 10 μM. From forty one plant extracts tested, four showed the PDE5 inhibitory effect. The chemical constituents isolated from rhizomes of Kaempferia parviflora were further investigated on inhibitory activity against PDE5 and PDE6. The results showed that 7-methoxyflavones from this plant showed inhibition toward both enzymes. The most potent PDE5 inhibitor was 5,7-dimethoxyflavone (IC(50) = 10.64 ± 2.09 μM, selectivity on PDE5 over PDE6 = 3.71). Structure activity relationship showed that the methoxyl group at C-5 position of 7-methoxyflavones was necessary for PDE5 inhibition. Kaempferia parviflora rhizome extract and its 7-methoxyflavone constituents had moderate inhibitory activity against PDE5. This finding provides an explanation for enhancing sexual performance in the traditional use of Kaempferia parviflora. Moreover, 5,7-dimethoxyflavones should make a useful lead compound to further develop clinically efficacious PDE5 inhibitors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Hyperprolactinemia contributes to reproductive deficit in male rats chronically administered PDE5 inhibitors (sildenafil and tadalafil and opioid (tramadol

    Directory of Open Access Journals (Sweden)

    V.U. Nna

    2016-09-01

    Conclusion: Serum prolactin concentration correlated negatively with male reproductive hormones and may play a major role in reproductive deficits associated with chronic use of PDE5 inhibitors and opioids.

  15. Toward Interoperable Mesh, Geometry and Field Components for PDE Simulation Development

    Energy Technology Data Exchange (ETDEWEB)

    Chand, K K; Diachin, L F; Li, X; Ollivier-Gooch, C; Seol, E S; Shephard, M; Tautges, T; Trease, H

    2005-07-11

    Mesh-based PDE simulation codes are becoming increasingly sophisticated and rely on advanced meshing and discretization tools. Unfortunately, it is still difficult to interchange or interoperate tools developed by different communities to experiment with various technologies or to develop new capabilities. To address these difficulties, we have developed component interfaces designed to support the information flow of mesh-based PDE simulations. We describe this information flow and discuss typical roles and services provided by the geometry, mesh, and field components of the simulation. Based on this delineation for the roles of each component, we give a high-level description of the abstract data model and set of interfaces developed by the Department of Energy's Interoperable Tools for Advanced Petascale Simulation (ITAPS) center. These common interfaces are critical to our interoperability goal, and we give examples of several services based upon these interfaces including mesh adaptation and mesh improvement.

  16. PERSEPSI PENGOLAH DATA TERHADAP EFEKTIVITAS PDE HOTEL BERBINTANG DI KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I KETUT SUWARTHA

    2010-07-01

    Full Text Available The development of information technology provides more expectations for the businessman, spesifically in the hotel sector. Nevertheless, in it’s implementation raise expectation gap between the user of the information and data processing in the Electronic Data Processing (PDE. The objective of this research is to find out the effectivity and dimension that should be improved on the side of data processing perception in the Electronic Data Processing (PDE of  star hotels  in Denpasar. The data collected by using questionnaire and interview and the data analysis technique used in this research is quantitative analysis technique. The conclusions from the analysis are (1 data processing perception included in the category of very effective by 81.64%, (2 there are three dimensions which needs more attention and improved, namely time dimension, report variation dimension or out put, information quality dimension.

  17. A Riccati type PDE for light-front higher helicity vertices

    Science.gov (United States)

    Bengtsson, Anders K. H.

    2014-09-01

    This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. A similar equation also occurs in the theory of continuous spin representations of the Poincaré group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The vertex is fixed by the PDE up to a set of terms that can be considered as boundary data for the PDE. These terms can serve as off-shell quantum corrections.

  18. Mesh dependence in PDE-constrained optimisation an application in tidal turbine array layouts

    CERN Document Server

    Schwedes, Tobias; Funke, Simon W; Piggott, Matthew D

    2017-01-01

    This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating the real-world relevance of best-practice Hilbert space aware approaches to PDE-constrained optimisation problems. Many optimisation problems that arise in a real-world context are constrained by partial differential equations (PDEs). That is, the system whose configuration is to be optimised follows physical laws given by PDEs. This book describes general Hilbert space formulations of optimisation algorithms, thereby facilitating optimisations whose controls are functions of space. It demonstrates the importance of methods that respect the Hilbert space structure of the problem by analysing the mathematical drawbacks of failing to do so. The approaches considered are illustrated using the optimisation problem arisin...

  19. Features of coronary heart disease development in emergency workers of the Chornobyl accident depending on the action of radiation and non radiation risk factors and genotypes of single nucleotide polymorphism rs966221 of phosphodiesterase 4D gene.

    Science.gov (United States)

    Belyi, D; Pleskach, G; Nastina, O; Sidorenko, G; Kursina, N; Bazyka, O; Kovalev, O; Chumak, A; Abramenko, I

    2016-12-01

    This study devoted to specific features of coronary heart disease (CHD) development in emergency work ers (EW) of the accident at the Chernobyl nuclear power plant (ChNPP) based on analysis the interaction between radiation and non radiation risk factors and single nucleotide polymorphism (SNP) rs966221 of phosphodiesterase (PDE) 4D gene. It was examined 397 men with CHD, including 274 EW of 1986-1987 and 123 non irradiated persons (con trol group) who were 66±10 and 69±11 years old relatively. The program studies included clinical examination, elec trocardiography (ECG), ECG daily monitoring, ECG stress testing, echo doppler cardiography, analysis of serum lipid spectrum, polymerase chain reaction with restriction of reaction products, retrospective analysis of case histories. Diagnosis of CHD or its approval was carried out in accordance with the standards of diagnosis, accepted in Ukraine. All EW before their taking part in cleaning ChNPP territory did not suffered from CHD. According to the analysis of contingency tables, carriers of the TT genotype of rs966221 increased the risk of myocardial infarction (MI) in 2.538 times compared with carriers of genotypes CC and CT. The use of Kaplan Meier method showed that a half of EW with the TT genotype developed MI before 64 years old, while with the other geno types up to 78.7 years old. In the control group statistically significant increase of cumulative proportion of patients with MI, carriers of the TT genotype, began from 60 years old. Compared to the non irradiated patients EW fell ill with CHD on 9.4 years earlier. Using proportional hazards analysis (Cox regression), it was found that EW had 3.9 times higher risk of CHD than in non irradiated individuals. Smoking and overweight brought three times less but significant risk - 1.37 and 1.33 respectively. The TT genotype unlike genotypes CC and CT gene PDE4D increased risk of MI in 1.757 times more both in EW and control group. The risk of CHD development was

  20. Establishment of A Pulmonary Arterial Hypertension Model in Rats and Expression of Phosphodiesterase 1C%大鼠肺动脉高压动物模型的建立及磷酸二酯酶1C的表达

    Institute of Scientific and Technical Information of China (English)

    郑晓宇; 覃家锦; 李波; 何巍; 冯旭

    2013-01-01

    Objective To establish a neointima model of pulmonary arterial hypertension (PAH) in rats by pneumonectomy(PE) and monoerotatine(MCT),and to investigate the expression and function of phosphodiesterase 1C (PDE1C) protein in this PAH model.Methods Three approaches were used to establish PAH model in rats:left lung PE group(PE group),MCT injection group,and MCT injection after PE group (P+M group).Mean pulmonary arterial pressure(mPAP),percentage of media thickness(MT%) and the ratio of right ventricular hypertrophy index (RV/LV+S) of model rats were recorded.Morphological parameters relevant to neointima formation and the muscularization of nonmuscle pulmonary arterioles were observed,and the difference of pulmonary vascular remodeling pattern of the three PAH models was analyzed.The expression of PDE1C was detected in each group by immunohistochemitry.Results The P+M group showed serious lesions in the neointim and right ventricular,and serious right ventricular hypertrophy,and the increasing MT of pulmonary arterials could be seen in the animals.Compared with other groups,P+M group had a significantly higher mPAP and muscularization of nonmuscle arterioles developed significantly.Expression of PDE1C protein increased significantly in the neointima PAH model(P<0.05).Conclusion P+M model is a good model for simulation of severe PAH in human , which is the best animal model for a study on the obstructive PAH.Up-regulation of PDE1C in pulmonary artery smooth muscle cells of PAH animal model might offer a new target for therapy of PAH in human .%  目的以左肺切除(PE)+野百合碱(MCT)建立大鼠肺动脉高压(PAH)新生内膜模型,探讨磷酸二酯酶1C(PDE1C)在该模型肺组织中的表达水平及作用。方法采用单纯PE、MCT、PE+MCT(P+M)3种方法建立大鼠PAH模型;检测模型大鼠平均肺动脉压力(mPAP)、中膜厚度百分比、右心肥厚指数(RV/LV+S)比值,观察新生内膜形成和

  1. Positive association of phencyclidine-responsive genes, PDE4A and PLAT, with schizophrenia.

    Science.gov (United States)

    Deng, Xiangdong; Takaki, Hiromi; Wang, Lixiang; Kuroki, Tosihide; Nakahara, Tatsuo; Hashimoto, Kijiro; Ninomiya, Hideaki; Arinami, Tadao; Inada, Toshiya; Ujike, Hiroshi; Itokawa, Masanari; Tochigi, Mamoru; Watanabe, Yuichiro; Someya, Toshiyuki; Kunugi, Hiroshi; Iwata, Nakao; Ozaki, Norio; Shibata, Hiroki; Fukumaki, Yasuyuki

    2011-12-01

    As schizophrenia-like symptoms are produced by administration of phencyclidine (PCP), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, PCP-responsive genes could be involved in the pathophysiology of schizophrenia. We injected PCP to Wistar rats and isolated five different parts of the brain in 1 and 4 hr after the injection. We analyzed the gene expression induced by the PCP treatment of these tissues using the AGILENT rat cDNA microarray system. We observed changes in expression level in 90 genes and 21 ESTs after the treatment. Out of the 10 genes showing >2-fold expressional change evaluated by qRT-PCR, we selected 7 genes as subjects for the locus-wide association study to identify susceptibility genes for schizophrenia in the Japanese population. In haplotype analysis, significant associations were detected in combinations of two SNPs of BTG2 (P = 1.4 × 10(-6) ), PDE4A (P = 1.4 × 10(-6) ), and PLAT (P = 1 × 10(-3) ), after false discovery rate (FDR) correction. Additionally, we not only successfully replicated the haplotype associations in PDE4A (P = 6.8 × 10(-12) ) and PLAT (P = 0.015), but also detected single-point associations of one SNP in PDE4A (P = 0.0068) and two SNPs in PLAT (P = 0.0260 and 0.0104) in another larger sample set consisting of 2,224 cases and 2,250 controls. These results indicate that PDE4A and PLAT may be susceptibility genes for schizophrenia in the Japanese population.

  2. Relaxation Methods for Hyperbolic PDE Mixed-Integer Optimal Control Problems

    OpenAIRE

    Hante, Falk M.

    2015-01-01

    We extend the convergence analysis for methods solving PDE-constrained optimal control problems containing both discrete and continuous control decisions based on relaxation and rounding strategies to the class of first order semilinear hyperbolic systems in one space dimension. The results are obtained by novel a-priori estimates for the size of the relaxation gap based on the characteristic flow, fixed-point arguments and particular regularity theory for such mixed-integer control problems....

  3. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  4. Invariant Measure for the Markov Process Corresponding to a PDE System

    Institute of Scientific and Technical Information of China (English)

    Fu Bao XI

    2005-01-01

    In this paper, we consider the Markov process (X∈(t), Z∈(t)) corresponding to a weakly coupled elliptic PDE system with a small parameter ∈> 0. We first prove that (X∈(t), Z∈(t)) has the Feller continuity by the coupling method, and then prove that (X∈(t), Z∈(t)) has an invariant measure the small parameter ∈ tends to zero.

  5. Weak and strong minima : from calculus of variation toward PDE optimization

    OpenAIRE

    2013-01-01

    This note summarizes some recent advances on the theory of optimality conditions for PDE optimization. We focus our attention on the concept of strong minima for optimal control problems governed by semi-linear elliptic and parabolic equations. Whereas in the field of calculus of variations this notion has been deeply investigated, the study of strong solutions for optimal control problems of partial differential equations (PDEs) has been addressed recently. We first revisit some well-known r...

  6. PDE Surface Generation with Combined Closed and Non-Closed Form Solutions

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun Zhang; Li-Hua You

    2004-01-01

    Partial differential equations (PDEs) combined with suitably chosen boundary conditions are effective in creating free form surfaces. In this paper, a fourth order partial differential equation and boundary conditions up to tangential continuity are introduced. The general solution is divided into a closed form solution and a non-closed form one leading to a mixed solution to the PDE. The obtained solution is applied to a number of surface modelling examples including glass shape design, vase surface creation and arbitrary surface representation.

  7. Computational drug discovery of potential phosphodiesterase inhibitors using in silico studies

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-10-01

    Full Text Available Objective: To evaluate the phosphodiesterase inhibitory activity of flavonoids using in silico docking studies. Methods: In this perspective, flavonoids like Aromadedrin, Biochanin, Eriodictyol, Isorhamnetin, and Okanin were selected. Caffeine, a known phosphodiesterase inhibitor was used as the standard. In silico docking study, was carried out to identify the inhibiting potential of the selected flavonoids against phosphodiesterase enzyme using AutoDock 4.2. The basic principle employed in the AutoDock 4.2 was Lamarckian genetic algorithm. Results: Docking results showed that all the selected flavonoids showed binding energy ranging between -7.57 kcal/mol to -5.79 kcal/mol when compared with that of the standard (-4.77 kcal/ mol. Intermolecular energy (-9.06 kcal/mol to -8.17 kcal/mol and inhibition constant (2.82 毺 mol to 57.41 毺 mol of the ligands also coincide with the binding energy. Conclusions: Eriodictyol contributed better phosphodiesterase inhibitory activity because of its structural parameters. Further investigations on the above compounds and in vivo studies are necessary to develop potential chemical entities for the prevention and treatment of inflammatory disorders.

  8. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna;

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s...

  9. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation

    DEFF Research Database (Denmark)

    Kruuse, Christina; Rybalkin, S D; Khurana, T S;

    2001-01-01

    -IBMX) and the phosphodiesterase 5 inhibitors zaprinast and dipyridamole induced dilatation of cerebral arteries. The dilatory response to 8-MM-IBMX was reduced by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 microM) and endothelial removal and restored by sodium nitroprusside (0.1 microM) pretreatment, indicating...

  10. The YmdB Phosphodiesterase Is a Global Regulator of Late Adaptive Responses in Bacillus subtilis

    NARCIS (Netherlands)

    Diethmaier, Christine; Newman, Joseph A.; Kovács, Ákos T.; Kaever, Volkhard; Herzberg, Christina; Rodrigues, Cecilia; Boonstra, Mirjam; Kuipers, Oscar P.; Lewis, Richard J.; Stülke, Jörg

    2014-01-01

    Bacillus subtilis mutants lacking ymdB are unable to form biofilms, exhibit a strong overexpression of the flagellin gene hag, and are deficient in SlrR, a SinR antagonist. Here, we report the functional and structural characterization of YmdB, and we find that YmdB is a phosphodiesterase with

  11. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly.

    Science.gov (United States)

    Toka, Okan; Tank, Jens; Schächterle, Carolin; Aydin, Atakan; Maass, Philipp G; Elitok, Saban; Bartels-Klein, Eireen; Hollfinger, Irene; Lindschau, Carsten; Mai, Knut; Boschmann, Michael; Rahn, Gabriele; Movsesian, Matthew A; Müller, Thomas; Doescher, Andrea; Gnoth, Simone; Mühl, Astrid; Toka, Hakan R; Wefeld-Neuenfeld, Yvette; Utz, Wolfgang; Töpper, Agnieszka; Jordan, Jens; Schulz-Menger, Jeanette; Klussmann, Enno; Bähring, Sylvia; Luft, Friedrich C

    2015-10-01

    Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.

  12. Low-complexity PDE-based approach for automatic microarray image processing.

    Science.gov (United States)

    Belean, Bogdan; Terebes, Romulus; Bot, Adrian

    2015-02-01

    Microarray image processing is known as a valuable tool for gene expression estimation, a crucial step in understanding biological processes within living organisms. Automation and reliability are open subjects in microarray image processing, where grid alignment and spot segmentation are essential processes that can influence the quality of gene expression information. The paper proposes a novel partial differential equation (PDE)-based approach for fully automatic grid alignment in case of microarray images. Our approach can handle image distortions and performs grid alignment using the vertical and horizontal luminance function profiles. These profiles are evolved using a hyperbolic shock filter PDE and then refined using the autocorrelation function. The results are compared with the ones delivered by state-of-the-art approaches for grid alignment in terms of accuracy and computational complexity. Using the same PDE formalism and curve fitting, automatic spot segmentation is achieved and visual results are presented. Considering microarray images with different spots layouts, reliable results in terms of accuracy and reduced computational complexity are achieved, compared with existing software platforms and state-of-the-art methods for microarray image processing.

  13. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2017-03-02

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  14. Reducing cardiovascular risk factors in non-selected outpatients with schizophrenia

    DEFF Research Database (Denmark)

    Hansen, Mette Vinther; Hjorth, Peter; Kristiansen, Christina Blanner;

    2016-01-01

    glucose, serum lipids, and information on smoking and alcohol were obtained. Results: On average, small significant increases in body mass index (BMI) and waist circumferences were observed while small non-significant improvements in other cardiovascular risk factors were seen. Patients with high baseline......Objectives: Cardiovascular diseases are the most common causes of premature death in patients with schizophrenia. We aimed at reducing cardiovascular risk factors in non-selected outpatients with schizophrenia using methods proven effective in short-term trials. Furthermore, we examined whether any...... motivated to participate in the interventions, and it was difficult to monitor the recommended metabolic risk measures in the patient group. Future research should focus on simple strategies in health promotion that can be integrated into routine care....

  15. Inhibition of human platelet aggregation by dihydropyrano- and dihydrofuranocoumarins, a new class of cAMP-phosphodiesterase inhibitors

    DEFF Research Database (Denmark)

    Thastrup, Ole; Knudsen, J B; Lemmich, J;

    1985-01-01

    Certain esters of dihydropyranocoumarin and dihydrofuranocoumarin alcohols have previously been shown to inhibit the cAMP-phosphodiesterase from bovine heart. We now report that these naturally occurring coumarins inhibit the high affinity (Km = 1.1 microM) cAMP-phosphodiesterase from human...... platelets with activities that closely correlate with those obtained using phosphodiesterase from bovine heart tissue. Additionally the coumarins inhibit the aggregation of human platelets induced with ADP, adrenaline and collagen with activities comparable to those of dipyridamole. A lack of significant...

  16. PDE-5 inhibitors in monotherapy versus combination therapy in a sample of 1200 patients with erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Luis Labairu-Huerta

    2015-09-01

    Full Text Available Objectives: To compare the effectiveness in the treatment of erectile dysfunction when using PDE-5 inhibitors (PDE5i, alprostadil (PG-E1 and testosterone (TES in monotherapy or combination therapy. Material and Methods: Observational multicentre retrospective study of men diagnosed and treated for ED between January 2008 and January 2014. Age, social and employment situation, pathological medical history, risk factors, usual treatments, IIEF-5 at the first consultation and at first and each 6 months follow-ups, physical examination, calculated total and free testosterone and received treatment were analysed. Descriptive statistics, one-way ANOVA analysis, Chi2 for qualitative data, t-test, Fisher's exact test and Pearson's correlation coefficient were used; p < 0.05 is considered significant. Results: Average age was 58.61 years, SD5.02, average follow- up time 48.21 months, SD 6.21, range 6-174 months. Out of the patients 76.12% were married, 9.81% divorced/separated, 10.04% single, 4.03% widowed; 85.14% of the total in stable partnership but 66.16% were not accompanied by their partners. In total 844 patients received monotherapy (597 PDE5i; 62 PG-E1; 36 TES; 27 penile prosthesis; 121 psychotherapy/alternative therapies and 357 combination therapy (167 PDE5i+TES; 124 PDE5i+PGE1; 66 PG-E1+TES. There was a homogeneous distribution between risk factors and medical history groups. Satisfactory response according to IIEF-5 was achieved for 72.33% of patients on PDE5i monotherapy, 46.65% of patients on PDE5i+PG-E1 combination therapy and 83.41% of patients on PDE5i+TES. Conclusions: The best therapeutic success for ED in this series was achieved through a combination of testosterone+PDE-5 inhibitors without increasing morbidity and maintaining the response over time. Larger studies with longer follow-up will corroborate these findings.

  17. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs. In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs precontracted with acetylcholine (ACH. In the presence of nifedipine (10 µM, ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs, and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs were blocked by chloroquine. Pyrazole 3 (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3 channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  18. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.

    Science.gov (United States)

    Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira

    2015-01-01

    Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to

  19. Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling.

    Directory of Open Access Journals (Sweden)

    Florencio Rusty Punzalan

    Full Text Available Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs. Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code

  20. Collocation methods for uncertainty quanti cation in PDE models with random data

    KAUST Repository

    Nobile, Fabio

    2014-01-06

    In this talk we consider Partial Differential Equations (PDEs) whose input data are modeled as random fields to account for their intrinsic variability or our lack of knowledge. After parametrizing the input random fields by finitely many independent random variables, we exploit the high regularity of the solution of the PDE as a function of the input random variables and consider sparse polynomial approximations in probability (Polynomial Chaos expansion) by collocation methods. We first address interpolatory approximations where the PDE is solved on a sparse grid of Gauss points in the probability space and the solutions thus obtained interpolated by multivariate polynomials. We present recent results on optimized sparse grids in which the selection of points is based on a knapsack approach and relies on sharp estimates of the decay of the coefficients of the polynomial chaos expansion of the solution. Secondly, we consider regression approaches where the PDE is evaluated on randomly chosen points in the probability space and a polynomial approximation constructed by the least square method. We present recent theoretical results on the stability and optimality of the approximation under suitable conditions between the number of sampling points and the dimension of the polynomial space. In particular, we show that for uniform random variables, the number of sampling point has to scale quadratically with the dimension of the polynomial space to maintain the stability and optimality of the approximation. Numerical results show that such condition is sharp in the monovariate case but seems to be over-constraining in higher dimensions. The regression technique seems therefore to be attractive in higher dimensions.

  1. On a Schwarzian PDE associated with the KdV Hierarchy

    CERN Document Server

    Nijhoff, F W; Joshi, N; Nijhoff, Frank; Hone, Andrew; Joshi, Nalini

    1999-01-01

    We present a novel integrable non-autonomous partial differential equation of the Schwarzian type, i.e. invariant under Möbius transformations, that is related to the Korteweg-de Vries hierarchy. In fact, this PDE can be considered as the generating equation for the entire hierarchy of Schwarzian KdV equations. We present its Lax pair, establish its connection with the SKdV hierarchy, its Miura relations to similar generating PDEs for the modified and regular KdV hierarchies and its Lagrangian structure. Finally we demonstrate that its similarity reductions lead to the {\\it full} Painlevé VI equation, i.e. with four arbitary parameters.

  2. A discontinuous Galerkin method for two-dimensional PDE models of Asian options

    Science.gov (United States)

    Hozman, J.; Tichý, T.; Cvejnová, D.

    2016-06-01

    In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.

  3. Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1.

    Science.gov (United States)

    Khan, Khalid Mohammed; Siddiqui, Salman; Saleem, Muhammad; Taha, Muhammad; Saad, Syed Muhammad; Perveen, Shahnaz; Choudhary, M Iqbal

    2014-11-15

    A series of Schiff base triazoles 1–25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 lM), 13 (IC50 = 152.83 ± 2.39 lM), and 22 (IC50 = 251.0 ± 6.64 lM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 lM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.

  4. Erectile dysfunction: on the efficacy of a phosphodiesterase inhibitor in patients with multiple risk factors

    Institute of Scientific and Technical Information of China (English)

    HarveyA.Rosenstock; SamuelD.Axelrad

    1999-01-01

    With the 1998 introduction of sildenafil(Viagra),the first available oral phosphodiesterase inhibitor, therehas been an increased interest in the treatment of erectiledysfunction (ED), the most common sexual dysfunctionof males. Most experts estimate that 25 to 30 millionmen in the United States experience erectile dysfunc-tion. The incidence of erectile dysfunction increaseswith age such that 52 % of all men at some time can

  5. Sequence analysis and characterization of a 40-kilodalton Borrelia hermsii glycerophosphodiester phosphodiesterase homolog.

    OpenAIRE

    Shang, E S; Skare, J T; Erdjument-Bromage, H.; Blanco, D R; Tempst, P.; Miller, J N; Lovett, M A

    1997-01-01

    We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity...

  6. Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase

    OpenAIRE

    Junko Morita; Kuniyuki Kano; Kazuki Kato; Hiroyuki Takita; Hideki Sakagami; Yasuo Yamamoto; Emiko Mihara; Hirofumi Ueda; Takanao Sato; Hidetoshi Tokuyama; Hiroyuki Arai; Hiroaki Asou; Junichi Takagi; Ryuichiro Ishitani; Hiroshi Nishimasu

    2016-01-01

    Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing o...

  7. The identification of a novel phosphodiesterase 4 inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1), with improved therapeutic index using pica feeding in rats as a measure of emetogenicity.

    Science.gov (United States)

    Davis, T Gregg; Peterson, John J; Kou, Jen-Pyng; Capper-Spudich, Elizabeth A; Ball, Doug; Nials, Anthony T; Wiseman, Joanne; Solanke, Yemisi E; Lucas, Fiona S; Williamson, Richard A; Ferrari, Livia; Wren, Paul; Knowles, Richard G; Barnette, Mary S; Podolin, Patricia L

    2009-09-01

    Clinical utility of phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory agents has, to date, been limited by adverse effects including nausea and emesis, making accurate assessment of emetic versus anti-inflammatory potencies critical to the development of inhibitors with improved therapeutic indices. In the present study we determined the in vitro and in vivo anti-inflammatory potencies of the first-generation PDE4 inhibitor, rolipram, the second-generation inhibitors, roflumilast and cilomilast, and a novel third generation inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1). The rank-order potency against lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha production by human peripheral blood mononuclear cells was roflumilast (IC(50) = 5 nM) > EPPA-1 (38) > rolipram (269) > cilomilast (389), and against LPS-induced pulmonary neutrophilia in the rat was EPPA-1 (D(50) = 0.042 mg/kg) > roflumilast (0.24) > rolipram (3.34) > cilomilast (4.54). Pica, the consumption of non-nutritive substances in response to gastrointestinal stress, was used as a surrogate measure for emesis, giving a rank-order potency of rolipram (D(50) = 0.495 mg/kg) > roflumilast (1.6) > cilomilast (6.4) > EPPA-1 (24.3). The low and high emetogenic activities of EPPA-1 and rolipram, respectively, detected in the pica model were confirmed in a second surrogate model of emesis, reversal of alpha(2)-adrenoceptor-mediated anesthesia in the mouse. The rank order of therapeutic indices derived in the rat [(pica D(50))/(neutrophilia D(50))] was EPPA-1 (578) > roflumilast (6.4) > cilomilast (1.4) > rolipram (0.15), consistent with the rank order derived in the ferret [(emesis D(50))/(neutrophilia D(50))]. These data validate rat pica feeding as a surrogate for PDE4 inhibitor-induced emesis in higher species, and identify EPPA-1 as a novel PDE4 inhibitor with an improved therapeutic index.

  8. PDE5 Inhibitors-Loaded Nanovesicles: Physico-Chemical Properties and In Vitro Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Roberta F. De Rose

    2016-05-01

    Full Text Available Novel therapeutic approaches are required for the less differentiated thyroid cancers which are non-responsive to the current treatment. In this study we tested an innovative formulation of nanoliposomes containing sildenafil citrate or tadalafil, phosphodiesterase-5 inhibitors, on two human thyroid cancer cell lines (TPC-1 and BCPAP. Nanoliposomes were prepared by the thin layer evaporation and extrusion methods, solubilizing the hydrophilic compound sildenafil citrate in the aqueous phase during the hydration step and dissolving the lipophilic tadalafil in the organic phase. Nanoliposomes, made up of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine monohydrate (DPPC, cholesterol, and N-(carbonyl-methoxypolyethylene glycol-2000-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-mPEG2000 (6:3:1 molar ratio, were characterized by a mean diameter of ~100 nm, a very low polydispersity index (~0.1 and a negative surface charge. The drugs did not influence the physico-chemical properties of the systems and were efficiently retained in the colloidal structure. By using cell count and MTT assay, we found a significant reduction of the viability in both cell lines following 24 h treatment with both nanoliposomal-encapsulated drugs, notably greater than the effect of the free drugs. Our findings demonstrate that nanoliposomes increase the antiproliferative activity of phosphodiesterase-5 inhibitors, providing a useful novel formulation for the treatment of thyroid carcinoma.

  9. Docking studies: In silico phosphodiesterase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-03-01

    Full Text Available The objective of the current study is to evaluate the phosphodiesterase inhibitory activity of flavonoids using in silico docking studies. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -7.50 kcal/mol to -6.61 kcal/mol when compared with that of the standard (-4.77 kcal/mol. Inhibition constant (3.17 µM to 14.36 µM and intermolecular energy (-9.29 kcal/mol to -8.70 kcal/mol of the ligands also coincide with the binding energy. All the selected flavonoids contributed better phosphodiesterase inhibitory activity because of its structural parameters. Benzopyran ring in the flavonoids are majorly contributed its activity. These molecular docking analyses could lead to the further development of potent phosphodiesterase inhibitors for the treatment of inflammatory diseases.

  10. Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate

    Directory of Open Access Journals (Sweden)

    Natasha M. Nesbitt

    2015-09-01

    Full Text Available Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.

  11. Adenoviral short hairpin RNA targeting phosphodiesterase 5 attenuates cardiac remodeling and cardiac dysfunction following myocardial infarction in mice

    Institute of Scientific and Technical Information of China (English)

    张健

    2014-01-01

    Objective To observe the impact of PDE5shRNA on cardiac remodeling and heart function following myocardial infarction in mice.Methods Myocardial infarction(MI)was induced in mice by left coronary artery ligation.Mice were randomly assigned to sham operation group(n=6),PDE5shRNA group(n=12),common adenovirus group(n=15)and DMEM group(n=8).Four weeks post-MI,the survival rate was evaluated.

  12. Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases

    DEFF Research Database (Denmark)

    Friis, Ulla G; Jensen, Boye L; Sethi, Shala

    2002-01-01

    trequinsin increased cellular cAMP content, enhanced forskolin-induced cAMP formation, and stimulated renin release from incubated and superfused JG cells. Trequinsin-mediated stimulation of renin release was inhibited by the permeable protein kinase A antagonist Rp-8-CPT-cAMPS. PDE4C was also expressed......, and the PDE4 inhibitor rolipram enhanced cellular cAMP content. Dialysis of single JG cells with cAMP in whole-cell patch-clamp experiments led to concentration-dependent, biphasic changes in cell membrane capacitance (C(m)) with a marked increase in C(m) at 1 micromol/L, no net change at 10 micromol...

  13. Phosphodiesterase 3 and 5 and cyclic nucleotide-gated ion channel expression in rat trigeminovascular system

    DEFF Research Database (Denmark)

    Kruse, Lars S; Sandholdt, Nicolai T H; Gammeltoft, Steen;

    2006-01-01

    Activation of the trigeminovascular pain signalling system appears involved in migraine pathophysiology. However, the molecular mechanisms are only partially known. Stimulation of cAMP and cGMP production as well as inhibition of their breakdown induce migraine-like headache. Additionally, migraine...... of cAMP and cGMP levels by PDE and activation of CNG may play a role in trigeminovascular pain signalling leading to migraine headache....

  14. A least square extrapolation method for improving solution accuracy of PDE computations

    CERN Document Server

    Garbey, M

    2003-01-01

    Richardson extrapolation (RE) is based on a very simple and elegant mathematical idea that has been successful in several areas of numerical analysis such as quadrature or time integration of ODEs. In theory, RE can be used also on PDE approximations when the convergence order of a discrete solution is clearly known. But in practice, the order of a numerical method often depends on space location and is not accurately satisfied on different levels of grids used in the extrapolation formula. We propose in this paper a more robust and numerically efficient method based on the idea of finding automatically the order of a method as the solution of a least square minimization problem on the residual. We introduce a two-level and three-level least square extrapolation method that works on nonmatching embedded grid solutions via spline interpolation. Our least square extrapolation method is a post-processing of data produced by existing PDE codes, that is easy to implement and can be a better tool than RE for code v...

  15. Assessing protein-ligand binding modes with computational tools: the case of PDE4B.

    Science.gov (United States)

    Çifci, Gülşah; Aviyente, Viktorya; Akten, E Demet; Monard, Gerald

    2017-06-01

    In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC[Formula: see text] values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC[Formula: see text] values [[Formula: see text](IC[Formula: see text])] and their calculated binding free energies ([Formula: see text]). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between [Formula: see text](IC[Formula: see text]) and the lowest [Formula: see text] is achieved with [Formula: see text].

  16. Comparison of PDE based and other techniques for speckle reduction from digitally reconstructed holographic images

    Science.gov (United States)

    Srivastava, Rajeev; Gupta, JRP; Parthasarthy, Harish

    2010-05-01

    In this paper, the partial differential equation (PDE) based homomorphic filtering technique is proposed for speckle reduction from digitally reconstructed holographic images based on the concepts of complex diffusion processes. For digital implementations, the proposed scheme was discretized using finite differences scheme. Further, the performance of the proposed PDE-based technique is compared with other speckle reduction techniques such as homomorphic anisotropic diffusion filter based on extended concept of Perona and Malik (1990) [2], homomorphic Weiner filter, Lee filter, Frost filter, Kuan filter, speckle reducing anisotropic diffusion (SRAD) filter and hybrid filter in the context of digital holography. For the comparison of various speckle reduction techniques, the performance is evaluated quantitatively in terms of all possible parameters that justify the applicability of a scheme for a specific application. The chosen parameters are mean-square-error (MSE), normalized mean-square-error (NMSE), peak signal-to-noise ratio (PSNR), speckle index, average signal-to-noise ratio (SNR), effective number of looks (ENL), correlation parameter (CP), mean structure similarity index map (MSSIM) and execution time in seconds. For experimentation and computer simulation MATLAB 7.0 has been used and the performance is evaluated and tested for various sample holographic images for varying amount of speckle variance. The results obtained justify the applicability of proposed schemes.

  17. Denoising of brain MRI images using modified PDE based on pixel similarity

    Science.gov (United States)

    Jin, Renchao; Song, Enmin; Zhang, Lijuan; Min, Zhifang; Xu, Xiangyang; Huang, Chih-Cheng

    2008-03-01

    Although various image denoising methods such as PDE-based algorithms have made remarkable progress in the past years, the trade-off between noise reduction and edge preservation is still an interesting and difficult problem in the field of image processing and analysis. A new image denoising algorithm, using a modified PDE model based on pixel similarity, is proposed to deal with the problem. The pixel similarity measures the similarity between two pixels. Then the neighboring consistency of the center pixel can be calculated. Informally, if a pixel is not consistent enough with its surrounding pixels, it can be considered as a noise, but an extremely strong inconsistency suggests an edge. The pixel similarity is a probability measure, its value is between 0 and 1. According to the neighboring consistency of the pixel, a diffusion control factor can be determined by a simple thresholding rule. The factor is combined into the primary partial differential equation as an adjusting factor for controlling the speed of diffusion for different type of pixels. An evaluation of the proposed algorithm on the simulated brain MRI images was carried out. The initial experimental results showed that the new algorithm can smooth the MRI images better while keeping the edges better and achieve higher peak signal to noise ratio (PSNR) comparing with several existing denoising algorithms.

  18. Scalar Parameters Optimization in PDE Based Medical Image Denoising by using Cellular Wave Computing

    Directory of Open Access Journals (Sweden)

    GACSÁDI Alexandru

    2016-10-01

    Full Text Available In order to help with biomedical images, a set of complex and effective mathematical models are available, based on the PDE (PDE - partial differential equation. On one hand, effective implementation of these methods is difficult, due to the difficulty of determining the scalar parameter values, on which the image processing efficiency depends, while on the other hand, due to the considerable computing power needed in order to perform in real time. Currently there are no analytical and / or experimental methods in the literature for the exact values determination of the scaled parameters to provide the best results for a specific image processing. This paper proposes a method for optimizing the values of a scaling parameter set, which ensure effective noise reduction of medical images by using cellular wave computing. To assess the overall performance of noise extraction, the error function (quantitative component and direct visualization (qualitative component are used at the same time. Moreover, by using this analysis, the degree to which the CNN templates are robust against the range of values of the scalar parameter, is obtainable.

  19. A Comparison of PETSC Library and HPF Implementations of an Archetypal PDE Computation

    Science.gov (United States)

    Hayder, M. Ehtesham; Keyes, David E.; Mehrotra, Piyush

    1997-01-01

    Two paradigms for distributed-memory parallel computation that free the application programmer from the details of message passing are compared for an archetypal structured scientific computation a nonlinear, structured-grid partial differential equation boundary value problem using the same algorithm on the same hardware. Both paradigms, parallel libraries represented by Argonne's PETSC, and parallel languages represented by the Portland Group's HPF, are found to be easy to use for this problem class, and both are reasonably effective in exploiting concurrency after a short learning curve. The level of involvement required by the application programmer under either paradigm includes specification of the data partitioning (corresponding to a geometrically simple decomposition of the domain of the PDE). Programming in SPAM style for the PETSC library requires writing the routines that discretize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global- to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete sequential implementation of the same algorithm, introducing concurrency through subdomain blocking (an effort similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent concurrency. Correctness and scalability are cross-validated on up to 32 nodes of an IBM SP2.

  20. Numerical Methods for Pricing American Options with Time-Fractional PDE Models

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhou

    2016-01-01

    Full Text Available In this paper we develop a Laplace transform method and a finite difference method for solving American option pricing problem when the change of the option price with time is considered as a fractal transmission system. In this scenario, the option price is governed by a time-fractional partial differential equation (PDE with free boundary. The Laplace transform method is applied to the time-fractional PDE. It then leads to a nonlinear equation for the free boundary (i.e., optimal early exercise boundary function in Laplace space. After numerically finding the solution of the nonlinear equation, the Laplace inversion is used to transform the approximate early exercise boundary into the time space. Finally the approximate price of the American option is obtained. A boundary-searching finite difference method is also proposed to solve the free-boundary time-fractional PDEs for pricing the American options. Numerical examples are carried out to compare the Laplace approach with the finite difference method and it is confirmed that the former approach is much faster than the latter one.

  1. Implicit Shape Reconstruction of Unorganized Points Using PDE-Based Deformable 3D Manifolds

    Institute of Scientific and Technical Information of China (English)

    Elena

    2010-01-01

    In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.

  2. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2017-03-06

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  3. Phosphodiesterase 5 and effects of sildenafil on cerebral arteries of man and guinea pig

    DEFF Research Database (Denmark)

    Kruuse, Christina; Khurana, Tejvir S; Rybalkin, Sergei D

    2005-01-01

    and UK-114,542, and a PDE1 inhibitor UK-90,234 on cGMP hydrolysis were investigated in human and guinea pig cerebral arteries. The vasoactive responses of the compounds were evaluated in guinea pig basilar arteries in vitro, with concomitant measurements of cAMP and cGMP. PDE5 was found in human middle...... cerebral arteries. Sildenafil and UK-114,542 inhibited cGMP hydrolysis concentration-dependently in both species. In guinea pig arteries, sildenafil induced an endothelium-dependent vasodilatation only at concentrations above 10 nM, which was augmented by sodium nitroprusside and attenuated by reduction...... of cGMP, but was cGMP independent at high concentrations. UK-114,542 was more and UK-90,234 was less potent than sildenafil. In conclusion, PDE5 is present in human and guinea pig cerebral arteries, and is inhibited by sildenafil at micromolar levels. Sildenafil in vitro is a poor dilator of guinea pig...

  4. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2

    Directory of Open Access Journals (Sweden)

    Emmanuel eStrahm

    2014-05-01

    Full Text Available Most androgenic drugs are available as esters for a prolonged depot action. However the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2 exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 hours exposure to 1 µM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.

  5. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    Directory of Open Access Journals (Sweden)

    Tom Den Abt

    2016-03-01

    Full Text Available Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria. Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used

  6. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics | Office of Cancer Genomics

    Science.gov (United States)

    High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.

  7. Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach

    DEFF Research Database (Denmark)

    Corradini, Eleonora; Klaasse, Gruson; Leurs, Ulrike

    2015-01-01

    In the cell the second messenger cyclic nucleotides cAMP and cGMP mediate a wide variety of external signals. Both signaling molecules are degraded by the superfamily of phosphodiesterases (PDEs) consisting of more than 50 different isoforms. Several of these PDEs are implicated in disease...

  8. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    Science.gov (United States)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framewo