WorldWideScience

Sample records for non-ribosomal peptides produced

  1. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...

  2. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product

    Indian Academy of Sciences (India)

    MANGAL SINGH; SANDEEP CHAUDHARY; DIPTI SAREEN

    2017-03-01

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are themajor multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically importantantibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid,followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, theknowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of theever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thusdeciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is thesubstrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtHhomolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequencedgenome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPSgene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.

  3. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis.

    Science.gov (United States)

    Payne, Jennifer A E; Schoppet, Melanie; Hansen, Mathias Henning; Cryle, Max J

    2016-12-20

    The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.

  4. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.

    Science.gov (United States)

    Gaudelli, Nicole M; Long, Darcie H; Townsend, Craig A

    2015-04-16

    Non-ribosomal peptide synthetases are giant enzymes composed of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks. The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Penicillins and cephalosporins are synthesized from a classically derived non-ribosomal peptide synthetase tripeptide (from δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase). Here we report an unprecedented non-ribosomal peptide synthetase activity that both assembles a serine-containing peptide and mediates its cyclization to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation domain, which typically performs peptide bond formation during product assembly, also synthesizes the embedded four-membered ring. We propose a mechanism, and describe supporting experiments, that is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.

  5. Tagging polyketides/non-ribosomal peptides with a clickable functionality and applications

    Directory of Open Access Journals (Sweden)

    Xuejun eZhu

    2015-02-01

    Full Text Available Bioorthogonal chemistry has recently emerged to be one of the most powerful tools in drug discovery and chemical biology. The exploration of it has successfully advanced the field of natural product research. In this Perspective, we survey current strategies for the installation of chemical handles into the molecular scaffolds of several major classes of natural products, including polyketides, non-ribosomal peptides, and their hybrids. By tagging these natural products with chemical handles and coupling them with subsequent bioorthogonal reactions, researchers have visualized and studied the mode of action of natural products, as well as synthesized derivatives with better pharmaceutical properties. We conclude this Perspective by considering two questions: Is there a general way to synthesize tagged polyketides/non-ribosomal peptides? Does natural product labeling have a broader impact in the field of natural product research beyond current known applications?

  6. Tagging polyketides/non-ribosomal peptides with a clickable functionality and applications

    Science.gov (United States)

    Zhu, Xuejun; Zhang, Wenjun

    2015-02-01

    Bioorthogonal chemistry has recently emerged to be one of the most powerful tools in drug discovery and chemical biology. The exploration of it has successfully advanced the field of natural product research. In this Perspective, we survey current strategies for the installation of chemical handles into the molecular scaffolds of several major classes of natural products, including polyketides, non-ribosomal peptides, and their hybrids. By tagging these natural products with chemical handles and coupling them with subsequent bioorthogonal reactions, researchers have visualized and studied the mode of action of natural products, as well as synthesized derivatives with better pharmaceutical properties. We conclude this Perspective by considering two questions: Is there a general way to synthesize tagged polyketides/non-ribosomal peptides? Does natural product labeling have a broader impact in the field of natural product research beyond current known applications?

  7. Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing.

    Science.gov (United States)

    Flissi, Areski; Dufresne, Yoann; Michalik, Juraj; Tonon, Laurie; Janot, Stéphane; Noé, Laurent; Jacques, Philippe; Leclère, Valérie; Pupin, Maude

    2016-01-01

    Since its creation in 2006, Norine remains the unique knowledgebase dedicated to non-ribosomal peptides (NRPs). These secondary metabolites, produced by bacteria and fungi, harbor diverse interesting biological activities (such as antibiotic, antitumor, siderophore or surfactant) directly related to the diversity of their structures. The Norine team goal is to collect the NRPs and provide tools to analyze them efficiently. We have developed a user-friendly interface and dedicated tools to provide a complete bioinformatics platform. The knowledgebase gathers abundant and valuable annotations on more than 1100 NRPs. To increase the quantity of described NRPs and improve the quality of associated annotations, we are now opening Norine to crowdsourcing. We believe that contributors from the scientific community are the best experts to annotate the NRPs they work on. We have developed MyNorine to facilitate the submission of new NRPs or modifications of stored ones. This article presents MyNorine and other novelties of Norine interface released since the first publication. Norine is freely accessible from the following URL: http://bioinfo.lifl.fr/NRP.

  8. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines.

    Science.gov (United States)

    Pang, Bo; Wang, Min; Liu, Wen

    2016-02-01

    Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis.

  9. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae.

    Science.gov (United States)

    Siewers, Verena; Chen, Xiao; Huang, Le; Zhang, Jie; Nielsen, Jens

    2009-11-01

    Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5' end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 degrees C. When ACVS and PPTase encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast.

  10. Stereochemistry and conformation of skyllamycin, a non-ribosomally synthesized peptide from Streptomyces sp. Acta 2897.

    Science.gov (United States)

    Schubert, Vivien; Di Meo, Florent; Saaidi, Pierre-Loïc; Bartoschek, Stefan; Fiedler, Hans-Peter; Trouillas, Patrick; Süssmuth, Roderich D

    2014-04-22

    Skyllamycin is a non-ribosomally synthesized cyclic depsipeptide from Streptomyces sp. Acta 2897 that inhibits PDGF-signaling. The peptide scaffold contains an N-terminal cinnamoyl moiety, a β-methylation of aspartic acid, three β-hydroxylated amino acids and one rarely occurring α-hydroxy glycine. With the exception of α-hydroxy glycine, the stereochemistry of the amino acids was assigned by comparison to synthetic reference amino acids applying chiral GC-MS and Marfey-HPLC analysis. The stereochemistry of α-hydroxy glycine, which is unstable under basic and acidic conditions, was determined by conformational analysis, employing a combination of data from NOESY-NMR spectroscopy, simulated annealing and free MD simulations. The simulation procedures were applied for both R- and S-configured α-hydroxy glycine of the skyllamycin structure and compared to the NOESY data. Both methods, simulated annealing and free MD simulations independently support S-configured α-hydroxy glycine thus enabling the assignment of all stereocenters in the structure of skyllamycin and devising the role of two-component flavin dependent monooxygenase (Sky39) as S-selective.

  11. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis

    Directory of Open Access Journals (Sweden)

    Iyer Lakshminarayan M

    2010-08-01

    Full Text Available Abstract Background Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS in non-ribosomal peptide ligation. Results Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS. We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. Conclusions The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the

  12. Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo.

    Science.gov (United States)

    Evans, Bradley S; Robinson, Sarah J; Kelleher, Neil L

    2011-01-01

    With many bioactive non-ribosomal peptides and polyketides produced in fungi, studies of their biosyntheses are an active area of research. Practical limitations of working with mega-dalton synthetases including cell lysis and protein extraction to recombinant gene and pathway expression has slowed understanding of many secondary metabolic processes relative to bacterial counterparts. Recent advances in accessing fungal biosynthetic machinery are beginning to change this. Here we describe the successes of some studies of thiotemplate biosynthesis in fungal systems, along with very recent advances in chemical tagging and mass spectrometric strategies to selectively study biosynthetic conveyer belts in isolation, and within a few years, in endogenous fungal proteomes. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani.

    Science.gov (United States)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga; Wollenberg, Rasmus Dam; Nielsen, Kristian Fog; Hansen, Frederik T; Giese, Henriette; Brodersen, Ditlev Egeskov; Sørensen, Jens Laurids

    2016-11-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate knockout mutants of two candidate non-ribosomal peptide synthetases (NRPS29 and NRPS30). Comparative studies of secondary metabolites in the two deletion mutants and wild type confirmed the absence of sansalvamide in the NRPS30 deletion mutant, implicating this synthetase in the biosynthetic pathway for sansalvamide. Sansalvamide is structurally related to the cyclic hexadepsipeptide destruxin, which both contain an α-hydroxyisocaproic acid (HICA) unit. A gene cluster responsible for destruxin production has previously been identified in Metarhizium robertsii together with a hypothetical biosynthetic pathway. Using comparative bioinformatic analyses of the catalytic domains in the destruxin and sansalvamide NRPSs, we were able to propose a model for sansalvamide biosynthesis. Orthologues of the gene clusters were also identified in species from several other genera including Acremonium chrysogenum and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread.

  14. Characterization and localization of a hybrid non-ribosomal peptide synthetase and polyketide synthase gene from the toxic dinoflagellate Karenia brevis.

    Science.gov (United States)

    López-Legentil, Susanna; Song, Bongkeun; DeTure, Michael; Baden, Daniel G

    2010-02-01

    The toxic dinoflagellate Karenia brevis, a causative agent of the red tides in Florida, produces a series of toxic compounds known as brevetoxins and their derivatives. Recently, several putative genes encoding polyketide synthase (PKS) were identified from K. brevis in an effort to elucidate the genetic systems involved in brevetoxin production. In this study, novel PKS sequences were isolated from three clones of K. brevis. Eighteen unique sequences were obtained for the PKS ketosynthase (KS) domain of K. brevis. Phylogenetic comparison with closely related PKS genes revealed that 16 grouped with cyanobacteria sequences, while the remaining two grouped with Apicomplexa and previously reported sequences for K. brevis. A fosmid library was also constructed to further characterize PKS genes detected in K. brevis Wilson clone. Several fosmid clones were positive for the presence of PKS genes, and one was fully sequenced to determine the full structure of the PKS cluster. A hybrid non ribosomal peptide synthetase and PKS (NRPS-PKS) gene cluster of 16,061 bp was isolated. In addition, we assessed whether the isolated gene was being actively expressed using reverse transcription polymerase chain reaction (RT-PCR) and determined its localization at the cellular level by chloroplast isolation. RT-PCR analyses revealed that this gene was actively expressed in K. brevis cultures. The hybrid NRPS-PKS gene cluster was located in the chloroplast, suggesting that K. brevis acquired the ability to produce some of its secondary metabolites through endosymbiosis with ancestral cyanobacteria. Further work is needed to determine the compound produced by the NRPS-PKS hybrid, to find other PKS gene sequences, and to assess their role in K. brevis toxin biosynthetic pathway.

  15. Discovery of antibacterials and other bioactive compounds from microorganisms-evaluating methodologies for discovery and generation of non-ribosomal peptide antibiotics.

    Science.gov (United States)

    Witting, K; Süssmuth, R D

    2011-10-01

    After decades of neglect in industrial research the comeback of natural products is due since improved screening approaches are at disposal, yielding a multitude of new compounds from natural sources. Besides traditional compound libraries peptides are characterized by an enormous structural complexity, thus increasing the chance of finding a hit in a screening. Emphasizing antibacterial compounds structural complexity is a prerequisite for their success. This review focuses on the screening approaches employed for the discovery of mostly antibacterial, non-ribosomal peptides derived from natural sources. Traditional screening methodologies as well as genetic approaches are discussed in this context. Utilizing genetic engineering methods e.g., precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as chemoenzymatics to achieve greater structural diversity is thoroughly discussed and exemplified by recent discoveries.

  16. A sensitive single-enzyme assay system using the non-ribosomal peptide synthetase BpsA for measurement of L-glutamine in biological samples

    Science.gov (United States)

    Brown, Alistair S.; Robins, Katherine J.; Ackerley, David F.

    2017-01-01

    The ability to rapidly, economically and accurately measure L-glutamine concentrations in biological samples is important for many areas of research, medicine or industry, however there is room for improvement on existing methods. We describe here how the enzyme BpsA, a single-module non-ribosomal peptide synthetase able to convert L-glutamine into the blue pigment indigoidine, can be used to accurately measure L-glutamine in biological samples. Although indigoidine has low solubility in aqueous solutions, meaning direct measurements of indigoidine synthesis do not reliably yield linear standard curves, we demonstrate that resolubilisation of the reaction end-products in DMSO overcomes this issue and that spontaneous reduction to colourless leuco-indigoidine occurs too slowly to interfere with assay accuracy. Our protocol is amenable to a 96-well microtitre format and can be used to measure L-glutamine in common bacterial and mammalian culture media, urine, and deproteinated plasma. We show that active BpsA can be prepared in high yield by expressing it in the apo-form to avoid the toxicity of indigoidine to Escherichia coli host cells, then activating it to the holo-form in cell lysates prior to purification; and that BpsA has a lengthy shelf-life, retaining >95% activity when stored at either −20 °C or 4 °C for 24 weeks. PMID:28139746

  17. Biosynthesis of xyrrolin, a new cytotoxic hybrid polyketide/non-ribosomal peptide pyrroline with anticancer potential, in Xylaria sp. BCC 1067.

    Science.gov (United States)

    Phonghanpot, Suranat; Punya, Juntira; Tachaleat, Anuwat; Laoteng, Kobkul; Bhavakul, Vanida; Tanticharoen, Morakot; Cheevadhanarak, Supapon

    2012-04-16

    A gene from Xylaria sp. BCC 1067, pks3, that encodes a putative 3660-residue hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) was characterised by targeted gene disruption in combination with comprehensive product identification. Studies of the features of a corresponding mutant, YA3, allowed us to demonstrate that pks3 is responsible for the synthesis of a new pyrroline compound, named xyrrolin, in the wild-type Xylaria sp. BCC 1067. The structure of xyrrolin was established by extensive spectroscopic and spectrometric analyses, including low- and high-resolution MS, IR, (1)H NMR, (13)C NMR, (13)C NMR with Dept135, HMQC 2D NMR, HMBC 2D NMR and COSY 2D NMR. On the basis of the Pks3 domain organisation and the chemical structure of xyrrolin, we proposed that biosynthesis of this compound requires the condensation of a tetraketide and an L-serine unit, followed by Dieckmann or reductive cyclisation and enzymatic removal of ketone residue(s). Bioassays of the pure xyrrolin further displayed cytotoxicity against an oral cavity (KB) cancer cell line.

  18. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  19. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate kno...... and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread....

  20. Endocrine cells producing regulatory peptides.

    Science.gov (United States)

    Solcia, E; Usellini, L; Buffa, R; Rindi, G; Villani, L; Zampatti, C; Silini, E

    1987-07-15

    Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.

  1. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium.

    Science.gov (United States)

    Hansen, Frederik T; Gardiner, Donald M; Lysøe, Erik; Fuertes, Patricia Romans; Tudzynski, Bettina; Wiemann, Philipp; Sondergaard, Teis Esben; Giese, Henriette; Brodersen, Ditlev E; Sørensen, Jens Laurids

    2015-02-01

    Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.

  2. Novel peptides and methods for producing them

    NARCIS (Netherlands)

    Vos, de W.M.; Palva, A.; Palva, I.; Reunanen, J.; Ossowski, von I.; Satokari, R.M.; Vesterlund, S.; Kankainen, M.; Salusjarvi, T.; Tynkkynen, S.

    2010-01-01

    The present invention relates to the fields of life sciences and food, feed or pharmaceutical industry. Specifically, the invention relates to novel peptides, pilus structures, polynucleotides as well as vectors, host cells, products and pharmaceutical compositions comprising the polynucleotides,

  3. Method of producing a peptide mixture

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention relates to a method for industrial production of a peptide preparation having specific specifications by hydrolysis of a protein material, preferably based on whey. The method comprises several steps, which makes it easy to control the method so as to obtain a product which, e...

  4. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels

    Science.gov (United States)

    Lücking, Genia; Frenzel, Elrike; Rütschle, Andrea; Marxen, Sandra; Stark, Timo D.; Hofmann, Thomas; Scherer, Siegfried; Ehling-Schulz, Monika

    2015-01-01

    The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY. PMID:26528255

  5. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels.

    Science.gov (United States)

    Lücking, Genia; Frenzel, Elrike; Rütschle, Andrea; Marxen, Sandra; Stark, Timo D; Hofmann, Thomas; Scherer, Siegfried; Ehling-Schulz, Monika

    2015-01-01

    The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.

  6. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.

    Science.gov (United States)

    Muhialdin, Belal J; Hassan, Zaiton; Abu Bakar, Fatimah; Algboory, Hussein L; Saari, Nazamid

    2015-05-01

    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.

  7. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases

    DEFF Research Database (Denmark)

    Knudsen, Michael; Søndergaard, Dan Ariel; Tofting-Olesen, Claus;

    2016-01-01

    .g.~antibiotics. There is thus an interest in predicting the compound synthesized by an NRPS from its primary structure (amino acid sequence) alone, as this would enable an in silico search of whole genomes for NRPS enzymes capable of synthesizing potentially useful compounds. Results: NRPS synthesis happens in a conveyor belt...

  8. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le

    2009-01-01

    -(l-α-aminoadipyl)–l-cysteinyl–d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases...... production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5′ end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 °C. When ACVS and PPTase...... encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast....

  9. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells.

    Science.gov (United States)

    Sasaki, Katsuhiro; Takada, Kensuke; Ohte, Yuki; Kondo, Hiroyuki; Sorimachi, Hiroyuki; Tanaka, Keiji; Takahama, Yousuke; Murata, Shigeo

    2015-01-01

    Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8(+) T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8(+) T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8(+) T cells by preferentially producing low-affinity TCR ligand peptides.

  10. The protein and peptide mediated syntheses of non-biologically-produced oxide materials

    Science.gov (United States)

    Dickerson, Matthew B.

    Numerous examples exist in nature of organisms which have evolved the ability to produce sophisticated structures composed of inorganic minerals. Studies of such biomineralizing organisms have suggested that specialized biomolecules are, in part, responsible for the controlled formation of these structures. The research detailed in this dissertation is focused on the use of biomolecules (i.e., peptides and proteins) to form non-biologically produced materials under mild reaction conditions (i.e., neutral pH, aqueous solutions, and room temperature). The peptides utilized in the studies detailed in this dissertation were identified through the screening of single crystal rutile TiO2 substrates or Ge powder with a phagedisplayed peptide library. Twenty-one peptides were identified which possessed an affinity for Ge. Three of these twenty one peptides were tested for germania precipitation activity. Those peptides possessing a basic isoelectric point as well as hydroxyl- and imidazole-containing amino acid residues were found to be the most effective in precipitating amorphous germania from an alkoxide precursor. The phage-displayed peptide library screening of TiO2 substrates yielded twenty peptides. Four of these peptides, which were heavily enriched in histidine and/or basic amino acid residues, were found to possess signficant titania precipitation activity. The activity of these peptides was found to correlate with the number of positive charges they carried. The sequence of the most active of the library-identified peptides was modified to yield two additional peptides. The titania precipitation activity of these designed peptides was higher than the parent peptide, with reduced pH dependence. The titania materials generated by the library-identified and designed peptides were found to be composed of amorphous titania as well as <10 nm anatase and/or monoclinic TiO2 crystallites. The production of titania and zirconia resulting from the interaction of the

  11. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006.

    Science.gov (United States)

    Benitez, Lisianne Brittes; Velho, Renata Voltolini; Lisboa, Marcia Pagno; Medina, Luis Fernando da Costa; Brandelli, Adriano

    2010-12-01

    Bacillus amyloliquefaciens LBM 5006 produces antagonistic activity against pathogenic bacteria and phytopathogenic fungi, including Aspergillus spp., Fusarium spp., and Bipolaris sorokiniana. PCR analysis revealed the presence of ituD, but not sfp genes, coding for iturin and surfactin, respectively. The antimicrobial substance produced by this strain was isolated by ammonium sulfate precipitation, gel filtration chromatography and 1-butanol extraction. The ultraviolet spectrum was typical of a polypeptide and the infrared spectrum indicates the presence of peptide bonds and acyl group(s). The antimicrobial substance was resistant to proteolytic enzymes and heat treatment, and was reactive with ninhydrin. Mass spectroscopy analysis indicated that B. amyloliquefaciens LBM 5006 produces two antimicrobial peptides, with main peaks at m/z 1,058 Da and 1,464 Da, corresponding to iturin-like and fengycin-like peptides, respectively. B. amyloliquefaciens LBM 5006 showed significant activity against phytopatogenic fungi, showing potential for use as a biocontrol agent or production of antifungal preparations.

  12. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    Science.gov (United States)

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  13. Purification and characterization of an antimicrobial peptide produced by Bacillus sp. strain P7

    OpenAIRE

    Fernández Soto, Paulina Alexandra

    2014-01-01

    This study reports a potential novel antimicrobial peptide with narrow spectrum activity against S. aureus NCTC 7447, produced by Bacillus tequilensis. Further studies to improve AMP-P7 purification and characterization are requered to establish its potential used in medicine and industry.

  14. Cinacalcet for hypercalcemia caused by pulmonary squamous cell carcinoma producing parathyroid hormone-related Peptide

    NARCIS (Netherlands)

    Bech, A.; Smolders, K.; Telting, D.; Boer, H. de

    2012-01-01

    BACKGROUND: Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp) have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as su

  15. Inhibition of equine arteritis virus by an antimicrobial peptide produced by Bacillus sp. P34

    Directory of Open Access Journals (Sweden)

    D. Scopel e Silva

    Full Text Available ABSTRACT P34 is an antimicrobial peptide produced by Bacillus sp. P34, isolated from the intestinal contents of a fish from the Amazon basin. This peptide showed antibacterial properties against Gram-positive and Gram-negative bacteria and was characterized as a bacteriocin like substance. It was demonstrated that the peptide P34 exhibited antiviral activity against feline herpesvirus type 1 in vitro. The aim of this work was to evaluate P34 for its antiviral properties in vitro, using RK 13 cells, against the equine arteritis virus, since it has no specific treatment and a variable proportion of stallions may become persistently infected. The results obtained show that P34 exerts antiviral and virucidal activities against equine arteritis virus, probably in the viral envelope. The antiviral assays performed showed that P34 reduces significantly the viral titers of treated cell cultures. The mechanism of action of P34 seems to be time/temperature-dependent. This peptide tends to be a promising antiviral compound for the prevention and treatment of arteriviral infections since it has a high therapeutic index. However, more detailed studies must be performed to address the exact step of viral infection where P34 acts, in order to use this peptide as an antiviral drug in vivo in the future.

  16. Screening of protease-producing marine yeasts for production of the bioactive peptides

    Institute of Scientific and Technical Information of China (English)

    NI Xiumei; CHI Zhenming; LIU Zhiqiang; YUE Lixi

    2008-01-01

    Over 400 yeast strains from seawater and sediments were obtained,but only five strains named HN2-3,N13d,N13C,Mb5 and HN3-2 among them could form clear zones around their colonies on the double plates with 2.0% casein.Peptides in the hydroly-sate produced by the proteases from strains HN2-3 and N13d had higher angiotensin Ⅰ-converting-enzyme (ACE)-inhibitory ac-tivity.The two marine yeast strains were identified to be Aureobasidium pullulans according to the results of routine yeast identifi-cation and molecular methods.After purification of the proteases from the two marine yeast strains,it was found that the optimal pH for them was both 9.0,both of them were serine alkaline protease.However,the optimal temperature for the protease from the strain HN2-3 was 52℃ while that from strain N13d was 48℃.ACE-inhibitory activity of the peptides in the hydrolysate of shrimp protein produced by the purified protease from the strain HN2-3 was the highest while antioxidant activity in the hydroly-sate of spirulina protein produced by the purified protease from the strain N13d was the highest.

  17. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA

    Directory of Open Access Journals (Sweden)

    Milos Patrice

    2010-12-01

    Full Text Available Abstract Background Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. Results We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs, as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA, can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. Conclusions We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long

  18. Cinacalcet for Hypercalcemia Caused by Pulmonary Squamous Cell Carcinoma Producing Parathyroid Hormone-Related Peptide

    Directory of Open Access Journals (Sweden)

    Anneke Bech

    2012-01-01

    Full Text Available Background: Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as suppressor of PTH-rp production. Patient: A 57-year-old male with severe and recurrent hypercalcemia induced by a PTH-rp-producing squamous cell lung carcinoma, stage cT4N3M1b, poorly responding to standard treatments. Results: Serum PTH-rp levels were not affected by saline, calcitonin or zoledronate. PTH-rp decreased during chemotherapy and cinacalcet monotherapy. The combination of chemotherapy plus cinacalcet was most effective in rapidly reducing serum calcium and PTH-rp. Conclusion: This case study is the first to suggest that cinacalcet may be of value in some cases of PTH-rp-dependent hypercalcemia. Corroborative evidence is needed.

  19. Cinacalcet for Hypercalcemia Caused by Pulmonary Squamous Cell Carcinoma Producing Parathyroid Hormone-Related Peptide

    Science.gov (United States)

    Bech, Anneke; Smolders, Koen; Telting, Darryl; de Boer, Hans

    2012-01-01

    Background Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp) have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as suppressor of PTH-rp production. Patient A 57-year-old male with severe and recurrent hypercalcemia induced by a PTH-rp-producing squamous cell lung carcinoma, stage cT4N3M1b, poorly responding to standard treatments. Results Serum PTH-rp levels were not affected by saline, calcitonin or zoledronate. PTH-rp decreased during chemotherapy and cinacalcet monotherapy. The combination of chemotherapy plus cinacalcet was most effective in rapidly reducing serum calcium and PTH-rp. Conclusion This case study is the first to suggest that cinacalcet may be of value in some cases of PTH-rp-dependent hypercalcemia. Corroborative evidence is needed. PMID:22379470

  20. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

    Science.gov (United States)

    Girgih, Abraham T; Udenigwe, Chibuike C; Aluko, Rotimi E

    2013-03-01

    Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

  1. Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice

    DEFF Research Database (Denmark)

    Arora, Tulika; Wegmann, Udo; Bobhate, Anup

    2016-01-01

    OBJECTIVE: The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet...... (HFD). METHODS: We transformed L. lactis FI5876 with either empty vector (pUK200) or murine GLP-1 expression vector to generate LL-UK200 and LL-GLP1, respectively, and determined their potential to induce insulin secretion by incubating primary islets from wild-type (WT) and GLP-1 receptor knockout...... (GLP1R-KO) mice with culture supernatant of these strains. In addition, we administered these strains to mice on chow or HFD. At the end of the study period, we measured plasma GLP-1 levels, performed intraperitoneal glucose tolerance and insulin tolerance tests, and determined hepatic expression...

  2. Producing peptide arrays for epitope mapping by intein-mediated protein ligation.

    Science.gov (United States)

    Sun, Luo; Rush, John; Ghosh, Inca; Maunus, Jeremy R; Xu, Ming-Qun

    2004-09-01

    Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.

  3. HPLC determination of an oxytocin-like peptide produced by isolated guinea pig Leydig cells: stimulation by ascorbate.

    Science.gov (United States)

    Kukucka, M A; Misra, H P

    1992-01-01

    Highly purified populations of guinea pig Leydig cells were incubated with a maximally stimulating dose of 100 ng/mL LH for 24 h in the presence of increasing concentrations of sodium ascorbate. Sample supernatants were extracted, concentrated under vacuum, and reconstituted with acidified absolute ethanol. Samples were analyzed for oxytocin using high-performance liquid chromatography with electrochemical detection and known concentrations of an authentic oxytocin standard. Leydig cells stimulated with 0, 25, and 50 microM ascorbate produced and secreted 40.1 +/- 1.23, 77.4 +/- 13.8, 74.2 +/- 26.3 pg of an oxytocin-like peptide, respectively, per 1 x 10(6) cells. These results indicate that guinea pig Leydig cells are capable of producing an oxytocin-like peptide de novo and that low concentrations of ascorbate stimulate the production of this peptide in Leydig cells cultured in vitro.

  4. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk.

    Science.gov (United States)

    Gútiez, Loreto; Gómez-Sala, Beatriz; Recio, Isidra; del Campo, Rosa; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2013-08-16

    Enterococcus faecalis isolates from food and environmental origin were evaluated for their angiotensin-converting enzyme (ACE)-inhibitory activity (ACE-IA) after growth in bovine skim milk (BSM). Most (90% active) but not all (10% inactive) E. faecalis strains produced BSM-derived hydrolysates with high ACE-IA. Known ACE-inhibitory peptides (ACE-IP) and an antioxidant peptide were identified in the E. faecalis hydrolysates by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS). Antimicrobial activity against Pediococcus damnosus CECT4797 and Listeria ivanovii CECT913 was also observed in the E. faecalis hydrolysates. The incidence of virulence factors in the E. faecalis strains with ACE-IA and producers of ACE-IP was variable but less virulence factors were observed in the food and environmental strains than in the clinical reference strains. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) based analysis demonstrated that food and environmental E. faecalis strains were genetically different from those of clinical origin. When evaluated, most E. faecalis strains of clinical origin also originated BSM-derived hydrolysates with high ACE-IA due to the production of ACE-IP. Accordingly, the results of this work suggest that most E. faecalis strains of food, environmental and clinical origin produce BSM-derived bioactive peptides with human health connotations and potential biotechnological applications.

  5. Phosphorylation in vivo of non-ribosomal proteins from native 40 S ribosomal particles of Krebs II mouse ascites-tumour cells

    DEFF Research Database (Denmark)

    Schuck, J; Reichert, G; Issinger, O G

    1981-01-01

    Four non-ribosomal proteins from native 40 S ribosomal subunits with mol.wts. of 110 000, 84 000, 68 000 and 26 000 were phosphorylated in vivo when ascites cells were incubated in the presence of [32P]Pi. The 110 000-, 84 000- and 26 000-dalton proteins are identical with phosphorylated products...

  6. Genome Sequence of Geobacillus sp. Strain ZGt-1, an Antibacterial Peptide-Producing Bacterium from Hot Springs in Jordan.

    Science.gov (United States)

    Alkhalili, Rawana N; Hatti-Kaul, Rajni; Canbäck, Björn

    2015-07-23

    This paper reports the draft genome sequence of the firmicute Geobacillus sp. strain ZGt-1, an antibacterial peptide producer isolated from the Zara hot spring in Jordan. This study is the first report on genomic data from a thermophilic bacterial strain isolated in Jordan.

  7. Hierarchy of Specific Lipid-Peptide Interactions Produces the Activity of Cell-penetrating and Cell-permeating Peptides

    Science.gov (United States)

    Davis, Matthew; Parente, Daniel; Gordon, Vernita; Mishra, Abhijit; Schmidt, Nathan; Yang, Lihua; Coridan, Robert; Som, Abhigyan; Tew, Gregory; Wong, Gerard

    2008-03-01

    Protein transduction domains can cross cell membranes with high efficiency, even when carrying a variety of cargos, and thus has strong biotechnological potential. The molecular mechanism of entry, however, is not well understood. We use small-angle x-ray scattering (SAXS) and confocal microscopy to systematically study the interaction of the TAT and ANTP PTD with model membranes of variable composition. Their membrane transduction activity requires the presence of both PE and PS lipids in the membrane. Antimicrobial peptides (AMP's) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogs of AMP's, such as the family of phenylene ethynylene antimicrobial oligomers (AMO's), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. PE lipid greatly enhances permeating activity of AMO in these membranes, showing the importance of specific lipid composition for the activity of cell-permeating peptides. Since bacterial cell membranes are richer in PE lipids than are eukaryotic cell membranes, this may indicate a mechanism for antimicrobial specificity.

  8. Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation.

    Science.gov (United States)

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Nanavati, Dhaval; Federle, Michael J

    2014-08-08

    Streptococcus pyogenes, a human-restricted pathogen, accounts for substantial mortality related to infections worldwide. Recent studies indicate that streptococci produce and respond to several secreted peptide signaling molecules (pheromones), including those known as short hydrophobic peptides (SHPs), to regulate gene expression by a quorum-sensing mechanism. Upon transport into the bacterial cell, pheromones bind to and modulate activity of receptor proteins belonging to the Rgg family of transcription factors. Previously, we reported biofilm regulation by the Rgg2/3 quorum-sensing circuit in S. pyogenes. The aim of this study was to identify the composition of mature pheromones from cell-free culture supernatants that facilitate biofilm formation. Bioluminescent reporters were employed to detect active pheromones in culture supernatants fractionated by reverse-phase chromatography, and mass spectrometry was used to characterize their properties. Surprisingly, multiple SHPs that varied by length were detected. Synthetic peptides of each variant were tested individually using bioluminescence reporters and biofilm growth assays, and although activities differed widely among the group, peptides comprising the C-terminal eight amino acids of the full-length native peptide were most active. Direct Rgg/SHP interactions were determined using a fluorescence polarization assay that utilized FITC-labeled peptide ligands. Peptide receptor affinities were seen to be as low as 500 nm and their binding affinities directly correlated with observed bioactivity. Revelation of naturally produced pheromones along with determination of their affinity for cognate receptors are important steps forward in designing compounds whose purpose is positioned for future therapeutics aimed at treating infections through the interference of bacterial communication.

  9. Phage display against corneal epithelial cells produced bioactive peptides that inhibit Aspergillus adhesion to the corneas.

    Directory of Open Access Journals (Sweden)

    Ge Zhao

    Full Text Available Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC. Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the

  10. Identification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater

    Directory of Open Access Journals (Sweden)

    Isabel Rodríguez Amado

    2014-03-01

    Full Text Available The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (IC50 = 76.8 ± 15.2 μg mL−1 after 8 h of proteolysis. Sequential ultrafiltration of the 8 h hydrolysate with molecular weight cut-off (MWCO membranes of 10 and 1 kDa resulted in the increased activity of each permeate, with a final IC50 value of 58.4 ± 4.6 μg mL−1. Permeate containing peptides lower than 1 kDa was separated by reversed-phase high performance liquid chromatography (RP-HPLC. Four fractions (A–D with potent ACE inhibitory activity were isolated and their main peptides identified using high performance liquid chromatography coupled to an electrospray ion trap Fourier transform ion cyclotron resonance-mass spectrometer (HPLC-ESI-IT-FTICR followed by comparison with databases and de novo sequencing. The amino acid sequences of the identified peptides contained at least one hydrophobic and/or a proline together with positively charged residues in at least one of the three C-terminal positions. The IC50 values of the fractions ranged from 1.92 to 8.83 μg mL−1, however this study fails to identify which of these peptides are ultimately responsible for the potent antihypertensive activity of these fractions.

  11. Tyrosine-containing peptides are precursors of tyramine produced by Lactobacillus plantarum strain IR BL0076 isolated from wine

    Directory of Open Access Journals (Sweden)

    Bonnin-Jusserand Maryse

    2012-09-01

    Full Text Available Abstract Background Biogenic amines are molecules with allergenic properties. They are found in fermented products and are synthesized by lactic acid bacteria through the decarboxylation of amino acids present in the food matrix. The concentration of biogenic amines in fermented foodstuffs is influenced by many environmental factors, and in particular, biogenic amine accumulation depends on the quantity of available precursors. Enological practices which lead to an enrichment in nitrogen compounds therefore favor biogenic amine production in wine. Free amino acids are the only known precursors for the synthesis of biogenic amines, and no direct link has previously been demonstrated between the use of peptides by lactic acid bacteria and biogenic amine synthesis. Results Here we demonstrate for the first time that a Lactobacillus plantarum strain isolated from a red wine can produce the biogenic amine tyramine from peptides containing tyrosine. In our conditions, most of the tyramine was produced during the late exponential growth phase, coinciding with the expression of the tyrDC and tyrP genes. The DNA sequences of tyrDC and tyrP in this strain share 98% identity with those in Lactobacillus brevis consistent with horizontal gene transfer from L. brevis to L. plantarum. Conclusion Peptides amino acids are precursors of biogenic amines for Lactobacillus plantarum strain IR BL0076.

  12. A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.; Taylor, Larry E.; Baker, John O.; Vander Wall, Todd A.; Linger, Jeffrey G.; Himmel, Michael E.; Decker, Stephen R.

    2017-02-06

    The industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenable marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.

  13. Safety Study of an Antimicrobial Peptide Lactocin 160, Produced by the Vaginal Lactobacillus rhamnosus

    OpenAIRE

    Dover, Sara E.; Aroutcheva, Alla A.; Faro, S; Chikindas, Michael L.

    2007-01-01

    Objective. To evaluate the safety of the antimicrobial peptide, lactocin 160. Methods. Lactocin 160, a product of vaginal probiotic Lactobacillus rhamnosus 160 was evaluated for toxicity and irritation. An in vitro human organotypic vaginal-ectocervical tissue model (EpiVaginal) was employed for the safety testing by determining the exposure time to reduce tissue viability to 50% (ET-50). Hemolytic activity of lactocin160 was tested using 8% of human erythrocyte suspens...

  14. Lysine-Tryptophan-Crosslinked Peptides Produced by Radical SAM Enzymes in Pathogenic Streptococci.

    Science.gov (United States)

    Schramma, Kelsey R; Seyedsayamdost, Mohammad R

    2017-04-21

    Macrocycles represent a common structural framework in many naturally occurring peptides. Several strategies exist for macrocyclization, and the enzymes that incorporate them are of great interest, as they enhance our repertoire for creating complex molecules. We recently discovered a new peptide cyclization reaction involving a crosslink between the side chains of lysine and tryptophan that is installed by a radical SAM enzyme. Herein, we characterize relatives of this metalloenzyme from the pathogens Streptococcus agalactiae and Streptococcus suis. Our results show that the corresponding enzymes, which we call AgaB and SuiB, contain multiple [4Fe-4S] clusters and catalyze Lys-Trp crosslink formation in their respective substrates. Subsequent high-resolution-MS and 2D-NMR analyses located the site of macrocyclization. Moreover, we report that AgaB can accept modified substrates containing natural or unnatural amino acids. Aside from providing insights into the mechanism of this unusual modification, the substrate promiscuity of AgaB may be exploited to create diverse macrocyclic peptides.

  15. Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Bassan

    2016-05-01

    Full Text Available In this study, trypsin (Enzyme Comission 3.4.21.4 was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides.

  16. Safety Study of an Antimicrobial Peptide Lactocin 160, Produced by the Vaginal Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Sara E. Dover

    2007-01-01

    Full Text Available Objective. To evaluate the safety of the antimicrobial peptide, lactocin 160. Methods. Lactocin 160, a product of vaginal probiotic Lactobacillus rhamnosus 160 was evaluated for toxicity and irritation. An in vitro human organotypic vaginal-ectocervical tissue model (EpiVaginal was employed for the safety testing by determining the exposure time to reduce tissue viability to 50% (ET-50. Hemolytic activity of lactocin160 was tested using 8% of human erythrocyte suspension. Susceptibility of lactobacilli to lactocin160 was also studied. Rabbit vaginal irritation (RVI model was used for an in vivo safety evaluation. Results. The ET-50 value was 17.5 hours for lactocin 160 (4.9 hours for nonoxynol 9, N9. Hemolytic activity of lactocin 160 was 8.2% (N9 caused total hemolysis. Lactobacilli resisted to high concentrations of peptide preparation. The RVI model revealed slight vaginal irritation. An average irritation index grade was evaluated as “none.” Conclusions. Lactocin 160 showed minimal irritation and has a good potential for intravaginal application.

  17. CALCITONIN GENE-RELATED PEPTIDE INDUCES FIBROBLASTS FROM HIP PSEUDOCAPSULE TO PRODUCE CYTOKINES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate calcitonin gene-related peptide (CGRP) involvement in the process of aseptic loosening. Methods We isolated fibroblasts from periprosthetic pseudocapsular tissue at the time of revision hip arthroplasty performed due to aseptic loosening. Fibroblasts were incubated for 24 h in the presence of CGRP, and the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the media were determined using enzyme-linked immunosorbent assay kit. Results We found that the levels of IL-1β, IL-6, and TNF-α increased in a time- and concentration-dependent manner. ConclusionThese inflammatory cytokines play an important role in the development of periprosthetic osteolysis and implant loosening. Our results suggest that CGRP may be involved in the pathogenesis of aseptic loosening.

  18. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi.

    Science.gov (United States)

    Xu, Lijian; Liang, Kangkang; Duan, Bensha; Yu, Mengdi; Meng, Wei; Wang, Qinggui; Yu, Qiong

    2016-08-22

    Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008). With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  19. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi

    Directory of Open Access Journals (Sweden)

    Lijian Xu

    2016-08-01

    Full Text Available Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008. With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  20. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica Produced by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Maira Rubi Segura Campos

    2013-01-01

    Full Text Available Synthetic angiotensin I-converting enzyme (ACE-I inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L. seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa. ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64% and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%. This fraction’s amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume. The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  1. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    Science.gov (United States)

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  2. The partial characterization of the antibacterial peptide bacteriocin G2 produced by the probiotic bacteria Lactobacillus plantarum G2

    Directory of Open Access Journals (Sweden)

    SVETLANA L. ŠEATOVIĆ

    2011-05-01

    Full Text Available The aim of this study was the partial characterization of the antimicrobial peptide bacteriocin G2 produced by probiotic bacteria Lactobacillus plantarum G2, which was isolated from a clinical sample of a healthy person. Antimicrobial substance was secreted in the supernatant of an L. plantarum G2 culture, and showed a diverse spectrum of antimicrobial activity of all the tested strains of the genera Lactobacillus and the pathogenic bacteria Staphylococcus aureus and Salmonella аbony. Isoelectric focusing revealed that bacteriocin G2 is a cationic peptide (pI about 10 with a molecular mass of 2.2 kDa according to tricine–sodium dodecyl sulphate–polyacrylamide gel electrophoresis, SDS-PAGE. The antimicrobial activity of bacteriocin G2 was diminished by the proteolytic action of trypsin and proteinase K. Bacteriocin G2 preserved its biological activity in the temperature range 40–60 °C (15 min, which was lost at 80 °C. Bacteriocin G2 was stable in the pH range 2–9, while treatment with 1 % Tween 80 and 1 % urea resulted in increased antimicrobial activity. The probiotic strain L. plantarum G2 produces the antimicrobial substance proteinaceous in nature with bacteriocin characteristics. Bacteriocin production is one of the key properties of probiotic bacteria with clinical potential as anti-infective agents, which will increase the likelihood of its in vivo efficacy.

  3. [Isolation of peptide antibiotic virginiamycin components and selection of their producer Streptomyces virginiae].

    Science.gov (United States)

    Zvenigorodskiĭ, V I; Tiaglov, B V; Voeĭkova, T A

    2001-01-01

    A method for chromatographic separation and quantitative determination of individual components of the antibiotic virginiamycin, produced by microbiological synthesis (Streptomyces virginiae strain 147), is described. The components, M1-2 and S1-5, were isolated from fermentation broth and identified by HPTLC and HPLC (the results obtained using the two methods correlate well with each other). Conditions of culturing of the producer and compositions of nutritive media were optimized. Using UV irradiation as a mutagenic factor, the producer was selected for increased level of synthesis of the antibiotic; this was achieved by inducing mutations that impart resistance to virginiamycin and meta-fluorophenylalanine, an analog of phenylalanine.

  4. Coagulation of peptides and proteins produced by Microcystis aeruginosa: Interaction mechanisms and the effect of Fe-peptide/protein complexes formation.

    Science.gov (United States)

    Pivokonsky, Martin; Safarikova, Jana; Bubakova, Petra; Pivokonska, Lenka

    2012-11-01

    This paper focuses on elucidation of the mechanisms involved in the coagulation of peptides and proteins contained in cellular organic matter (COM) of cyanobacterium Microcystis aeruginosa by ferric coagulant. Furthermore, coagulation inhibition due to the formation of Fe-peptide/protein surface complexes was evaluated. The results of coagulation testing imply that removability of peptides and proteins is highly dependent on pH value which determines charge characteristics of coagulation system compounds and therefore the mechanisms of interactions between them. The highest peptide/protein removal was obtained in the pH range of 4-6 owing to charge neutralization of peptide/protein negative surface by positively charged hydrolysis products of ferric coagulant. At low COM/Fe ratio (COM/Fe peptides/proteins onto ferric oxide-hydroxide particles, described as electrostatic patch model, enables the coagulation at pH 6-8. On the contrary, steric stabilization reduces coagulation at pH 6-8 if the ratio COM/Fe is high (COM/Fe >0.33). Coagulation of peptides and proteins is disturbed at pH 6-7 as a consequence of Fe-peptide/protein complexes formation. The maximum ability of peptides/proteins to form soluble complexes with Fe was found just at pH 6, when peptides/proteins bind 1.38 mmol Fe per 1 g of peptide/protein DOC. Complex forming peptides and proteins of relative molecular weights of 1, 2.8, 6, 8, 8.5, 10 and 52 kDa were isolated by affinity chromatography.

  5. Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity

    Science.gov (United States)

    Inokoshi, Junji; Koyama, Nobuhiro; Miyake, Midori; Shimizu, Yuji; Tomoda, Hiroshi

    2016-07-01

    Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis.

  6. Antimicrobial Peptides from Marine Proteobacteria

    Directory of Open Access Journals (Sweden)

    Yannick Fleury

    2013-09-01

    Full Text Available After years of inadequate use and the emergence of multidrug resistant (MDR strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs, synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs, obtained through the linkage of (unusual amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.

  7. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants.

    Science.gov (United States)

    Tan, Yinhe; Yang, Zhiwen; Peng, Xinsheng; Xin, Feng; Xu, Yuehong; Feng, Min; Zhao, Chunshun; Hu, Haiyan; Wu, Chuanbin

    2011-07-15

    To overcome the disadvantages of microemulsion and nanoprecipitation methods to produce protein-containing nanoparticles, a novel bottom-up process was developed to produce nanoparticles containing the model protein lysozyme. The nanoparticles were generated by freeze-drying a solution of lysozyme, lecithin and lactose in tert-butyl alcohol (TBA)/water co-solvent system and washing off excess lecithin in lyophilizate by centrifugation. Formulation parameters such as lecithin concentration in organic phase, water content in TBA/water co-solvent, and lactose concentration in water were optimized so as to obtain desired nanoparticles with retention of the bioactivity of lysozyme. Based on the results, 24.0% (w/v) of lecithin, 37.5% (v/v) of water content, and 0.56% (w/v) of lactose concentration were selected to generate spherical nanoparticles with approximately 200 nm in mean size, 0.1 in polydispersity index (PI), and 99% retained bioactivity of lysozyme. These nanoparticles rinsed with ethanol containing dipalmitoylphosphatidylcholine (DPPC), Span 85 or oleic acid (3%, w/v) could readily be dispersed in HFA 134a to form a stable suspension with good redispersibility and 98% retained bioactivity of lysozyme. The study indicates there is a potential to produce pressed metered dose inhaler (pMDI) formulations containing therapeutic protein and peptide nanoparticles.

  8. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis.

    Science.gov (United States)

    Kaasalainen, Ulla; Fewer, David P; Jokela, Jouni; Wahlsten, Matti; Sivonen, Kaarina; Rikkinen, Jouko

    2012-04-10

    Lichens are symbiotic associations between fungi and photosynthetic algae or cyanobacteria. Microcystins are potent toxins that are responsible for the poisoning of both humans and animals. These toxins are mainly associated with aquatic cyanobacterial blooms, but here we show that the cyanobacterial symbionts of terrestrial lichens from all over the world commonly produce microcystins. We screened 803 lichen specimens from five different continents for cyanobacterial toxins by amplifying a part of the gene cluster encoding the enzyme complex responsible for microcystin production and detecting toxins directly from lichen thalli. We found either the biosynthetic genes for making microcystins or the toxin itself in 12% of all analyzed lichen specimens. A plethora of different microcystins was found with over 50 chemical variants, and many of the variants detected have only rarely been reported from free-living cyanobacteria. In addition, high amounts of nodularin, up to 60 μg g(-1), were detected from some lichen thalli. This microcystin analog and potent hepatotoxin has previously been known only from the aquatic bloom-forming genus Nodularia. Our results demonstrate that the production of cyanobacterial hepatotoxins in lichen symbiosis is a global phenomenon and occurs in many different lichen lineages. The very high genetic diversity of the mcyE gene and the chemical diversity of microcystins suggest that lichen symbioses may have been an important environment for diversification of these cyanobacteria.

  9. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  10. Earthworms produce phytochelatins in response to arsenic.

    Science.gov (United States)

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  11. Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery.

    Directory of Open Access Journals (Sweden)

    Thibault Caradec

    Full Text Available Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs, they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimerization. We investigate here some sequence specificities of the condensation (C and epimerization (E domains of NRPS that can be used to predict the possible isomeric state (D or L of each monomer in a putative peptide. We show that C- and E- domains can be divided into 2 sub-regions called Up-Seq and Down-Seq. The Up-Seq region corresponds to an InterPro domain (IPR001242 and is shared by C- and E-domains. The Down-Seq region is specific to the enzymatic activity of the domain. Amino-acid signatures (represented as sequence logos previously described for complete C-and E-domains have been restricted to the Down-Seq region and amplified thanks to additional sequences. Moreover a new Down-Seq signature has been found for Ct-domains found in fungi and responsible for terminal cyclization of the peptides. The identification of these signatures has been included in a workflow named Florine, aimed to predict nonribosomal peptides from NRPS sequence analyses. In some cases, the prediction of isomery is guided by genus-specific rules. Florine was used on a Pseudomonas genome to allow the determination of the type of pyoverdin produced, the update of syringafactin structure and the identification of novel putative products.

  12. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  13. Perspectives and Insights into the Competition for Aminoacyl-tRNAs between the Translational Machinery and for tRNA Dependent Non-Ribosomal Peptide Bond Formation

    Directory of Open Access Journals (Sweden)

    Angela W. S. Fung

    2015-12-01

    Full Text Available Aminoacyl-tRNA protein transferases catalyze the transfer of amino acids from aminoacyl-tRNAs to polypeptide substrates. Different forms of these enzymes are found in the different kingdoms of life and have been identified to be central to a wide variety of cellular processes. L/F-transferase is the sole member of this class of enzyme found in Escherichia coli and catalyzes the transfer of leucine to the N-termini of proteins which result in the targeted degradation of the modified protein. Recent investigations on the tRNA specificity of L/F-transferase have revealed the unique recognition nucleotides for a preferred Leu-tRNALeu isoacceptor substrate. In addition to discussing this tRNA selectivity by L/F-transferase, we present and discuss a hypothesis and its implications regarding the apparent competition for this aminoacyl-tRNA between L/F-transferase and the translational machinery. Our discussion reveals a hypothetical involvement of the bacterial stringent response that occurs upon amino acid limitation as a potential cellular event that may reduce this competition and provide the opportunity for L/F-transferase to readily increase its access to the pool of aminoacylated tRNA substrates.

  14. Elucidation and modeling of the in-vivo kinetics of enzymes and membrane transporters associated with β-lactam and non-ribosomal peptide production in Penicillium chrysogenum

    NARCIS (Netherlands)

    Deshmukh, A.T.

    2013-01-01

    Even 80 years after the discovery of penicillin, it still holds 16% of total antibiotics market. This makes it crucial, from an economical point of view, to improve our understanding of the production organism Penicillium chrysogenum to maximize the penicillin production, as its theoretical yields a

  15. The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors.

    Science.gov (United States)

    Condie, Janet A; Nowak, Goska; Reed, Darwin W; Balsevich, J John; Reaney, Martin J T; Arnison, Paul G; Covello, Patrick S

    2011-08-01

    Cyclic peptides (CPs) are produced in a very wide range of taxa. Their biosynthesis generally involves either non-ribosomal peptide synthases or ribosome-dependent production of precursor peptides. Plants within the Caryophyllaceae and certain other families produce CPs which generally consist of 5-9 proteinogenic amino acids. The biological roles for these CPs in the plant are not very clear, but many of them have activity in mammalian systems. There is currently very little known about the biosynthesis of CPs in the Caryophyllaceae. A collection of expressed sequence tags from developing seeds of Saponaria vaccaria was investigated for information about CP biosynthesis. This revealed genes that appeared to encode CP precursors which are subsequently cyclized to mature CPs. This was tested and confirmed by the expression of a cDNA encoding a putative precursor of the CP segetalin A in transformed S. vaccaria roots. Similarly, extracts of developing S. vaccaria seeds were shown to catalyze the production of segetalin A from the same putative (synthetic) precursor. Moreover, the presence in S. vaccaria seeds of two segetalins, J [cyclo(FGTHGLPAP)] and K [cyclo(GRVKA)], which was predicted by sequence analysis, was confirmed by liquid chromatography/mass spectrometry. Sequence analysis also predicts the presence of similar CP precursor genes in Dianthus caryophyllus and Citrus spp. The data support the ribosome-dependent biosynthesis of Caryophyllaceae-like CPs in the Caryophyllaceae and Rutaceae.

  16. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    Directory of Open Access Journals (Sweden)

    Javad Hamedi

    2015-10-01

    Full Text Available Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes.Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain.Results: Amplified NRPS adenylation gene (700 bp was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MSand UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites.Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  17. Flow-through synthesis on Teflon-patterned paper to produce peptide arrays for cell-based assays.

    Science.gov (United States)

    Deiss, Frédérique; Matochko, Wadim L; Govindasamy, Natasha; Lin, Edith Y; Derda, Ratmir

    2014-06-16

    A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.

  18. Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12.

    Science.gov (United States)

    Gálvez, A; Maqueda, M; Martínez-Bueno, M; Lebbadi, M; Valdivia, E

    1993-07-01

    An antifungal substance named peptide A12-C has been purified to homogeneity from supernatants of sporulated cultures of Bacillus licheniformis A12. It consists of a 0.77-kDa hydrophilic peptide containing two residues of Glu and one of Arg, Ala, Pro, Tyr and Orn. No fatty acids, phosphorus or carbohydrates have been detected. Peptide A12-C is active on several fungi (Microsporum canis CECT 2797, Mucor mucedo CECT 2653, M. plumbeus (CCM F 443, Sporothrix schenckii CECT 2799 and Trichophyton mentagrophytes CECT 2793) and bacteria (Bacillus megaterium, Corynebacterium glutamicum, Sarcina and Mycobacterium), although the latter are less sensitive.

  19. D-Lysergyl peptide synthetase from the ergot fungus Claviceps purpurea.

    Science.gov (United States)

    Riederer, B; Han, M; Keller, U

    1996-11-01

    The ergot fungus Claviceps purpurea produces the medically important ergopeptines, which consist of a cyclol-structured tripeptide and D-lysergic acid linked by an amide bond. An enzyme activity capable of non-ribosomal synthesis of D-lysergyl-L-alanyl-L-phenylalanyl-L-proline lactam, the non-cyclol precursor of the ergopeptine ergotamine, has been purified about 18-fold from the ergotamine-producing C. purpurea strain D1. Analysis of radioactively labeled enzyme-substrate complexes revealed a 370-kDa lysergyl peptide synthetase 1 (LPS 1) carrying the amino acid activation domains for alanine, phenylalanine, and proline. The activation of D-lysergic acid is catalyzed by a 140-kDa peptide synthetase (LPS 2) copurifying with LPS 1. LPS 1 and LPS 2 contain 4'-phosphopantetheine and bind their substrates covalently by thioester linkage. Kinetic analysis of the synthesis reaction revealed a Km of approximately 1.4 microM for both D-lysergic acid and its structural homolog dihydrolysergic acid, which is one to two orders of magnitude lower than the Km values for the other amino acids involved. The Km values for the amino acids reflect their relative concentrations in the cellular pool of C. purpurea. This may indicate that in in vivo conditions D-lysergyl peptide formation is limited by the D-lysergic acid concentration in the cell. In vitro, the multienzyme preparation catalyzes the formation of several different D-lysergyl peptide lactams according to the amino acids supplied. Specific antiserum was used to detect LPS 1 in various C. purpurea strains. In C. purpurea wild type, the enzyme was expressed at all stages of cultivation and in different media, suggesting that it is produced constitutively.

  20. Low molecular weight peptides derived from sarcoplasmic proteins produced by an autochthonous starter culture in a beaker sausage model

    Directory of Open Access Journals (Sweden)

    Constanza M. López

    2015-06-01

    Significance: The selection of a specific autochthonous starter culture guarantees the hygiene and typicity of fermented sausages. The identification of new peptides as well as new target proteins by means of peptidomics represents a significant step toward the elucidation of the role of microorganisms in meat proteolysis. Moreover, these peptides may be further used as biomarkers capable to certify the use of the applied autochthonous starter culture described here.

  1. Human commensals producing a novel antibiotic impair pathogen colonization.

    Science.gov (United States)

    Zipperer, Alexander; Konnerth, Martin C; Laux, Claudia; Berscheid, Anne; Janek, Daniela; Weidenmaier, Christopher; Burian, Marc; Schilling, Nadine A; Slavetinsky, Christoph; Marschal, Matthias; Willmann, Matthias; Kalbacher, Hubert; Schittek, Birgit; Brötz-Oesterhelt, Heike; Grond, Stephanie; Peschel, Andreas; Krismer, Bernhard

    2016-07-28

    The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics.

  2. Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells.

    Science.gov (United States)

    Sand, Sverre L; Oppegård, Camilla; Ohara, Shinya; Iijima, Toshio; Naderi, Soheil; Blomhoff, Heidi K; Nissen-Meyer, Jon; Sand, Olav

    2010-07-01

    Antimicrobial peptides produced by multicellular organisms protect against pathogenic microorganisms, whereas such peptides produced by bacteria provide an ecological advantage over competitors. Certain antimicrobial peptides of metazoan origin are also toxic to eukaryotic cells, with preference for a variety of cancerous cells. Plantaricin A (PlnA) is a peptide pheromone with membrane permeabilizing strain-specific antibacterial activity, produced by Lactobacillus plantarum C11. Recently, we have reported that PlnA also permeabilizes cancerous rat pituitary cells (GH(4) cells), whereas normal rat anterior pituitary cells are resistant. To investigate if preferential effect on cancerous cells is a general feature of PlnA, we have studied effects of the peptide on normal and cancerous lymphocytes and neuronal cells. Normal human B and T cells, Reh cells (from human B cell leukemia), and Jurkat cells (from human T cell leukemia) were studied by flow cytometry to detect morphological changes (scatter) and viability (propidium iodide uptake), and by patch clamp recordings to monitor membrane conductance. Ca(2+) imaging based on a combination of fluo-4 and fura-red was used to monitor PlnA-induced membrane permeabilization in normal rat cortical neurons and glial cells, PC12 cells (from a rat adrenal chromaffin tumor), and murine N2A cells (from a spinal cord tumor). All the tested cell types were affected by 10-100 microM PlnA, whereas concentrations below 10 microM had no significant effect. We conclude that normal and cancerous lymphocytes and neuronal cells show similar sensitivity to PlnA.

  3. Two cyclic peptides produced by the endophytic fungus # 2221 from Castaniopsisfissa on the south China sea coast

    Institute of Scientific and Technical Information of China (English)

    Wen Qing YIN; Jie Ming ZOU; Zhi Gang SHE; L. L. P. Vrijmoed; E. B. Gareth Jones; Yong Cheng LIN

    2005-01-01

    New cyclic peptides 1 and 2 were isolated from the endophytic fungus #2221 from Castaniopsisfissa on the south China sea coast. By 2D NMR methods and chiral HPLC technique,their structures were elucidated as cyclo (L-Val-L-Leu-L-Val-L-Leu) and cyclo(L-Leu-L-Ala-L-Leu-L-Ala), respectively.

  4. Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Søgaard, M; Svensson, B

    1994-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively, an...

  5. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae

    Science.gov (United States)

    Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D.

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins’ anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver. PMID:27760211

  6. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels

    Directory of Open Access Journals (Sweden)

    Genia eLücking

    2015-10-01

    Full Text Available The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like mega-plasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the nonribosomal peptide synthetase (NRPS, gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional Level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.

  7. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  8. Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes.

    Science.gov (United States)

    Busti, Elena; Monciardini, Paolo; Cavaletti, Linda; Bamonte, Ruggiero; Lazzarini, Ameriga; Sosio, Margherita; Donadio, Stefano

    2006-03-01

    The discovery of new antibiotics and other bioactive microbial metabolites continues to be an important objective in new drug research. Since extensive screening has led to the discovery of thousands of bioactive microbial molecules, new approaches must be taken in order to reduce the probability of rediscovering known compounds. The authors have recently isolated slow-growing acidophiles belonging to the novel genera Catenulispora and Actinospica within the order Actinomycetales. These strains, which likely belong to a new suborder, grow as filamentous mycelia, have a genome size around 8 Mb, and produce antimicrobial activities. In addition, a single strain harbours simultaneously genes encoding type I and type II polyeketide synthases, as well as non-ribosomal peptide synthetases. The metabolite produced by one strain was identified as a previously reported dimeric isochromanequinone. In addition, at least the Catenulispora strains appear globally distributed, since a PCR-specific signal could be detected in a significant fraction of acidic soils from different continents, and similar strains have been independently isolated from an Australian soil (Jospeh et al., Appl Environ Microbiol 69, 7210-7215, 2003). Thus, these previously uncultured actinomycetes share several features with Streptomyces and related antibiotic-producing genera, and represent a promising source of novel antibiotics.

  9. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110

    Directory of Open Access Journals (Sweden)

    Schwientek Patrick

    2012-03-01

    Full Text Available Abstract Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production

  10. Diversity of Nonribosomal Peptide Synthetase Genes in the AnticancerProducing Actinomycetes Isolated from Marine Sediment in Indonesia

    OpenAIRE

    Camelia Herdini; Shinta Hartanto; Sofia Mubarika; Bambang Hariwiyanto; Nastiti Wijayanti; Akira Hosoyama; Atsushi Yamazoe; Hideaki Nojiri; Jaka Widada

    2016-01-01

    Marine actinomycetes is a group of bacteria that is highly potential in producing novel bioactive compound. It has unique characteristics and is different from other terrestrial ones. Extreme environmental condition is suspected to lead marine actinomycetes produce different types of bioactive compound found previously. The aim of this study was to explore the presence and diversity of NRPS genes in 14 anticancer-producing actinomycetes isolated from marine sediment in Indonesia. ...

  11. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  12. A new brain metalloendopeptidase which degrades the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects

    Directory of Open Access Journals (Sweden)

    K.M. Carvalho

    1997-10-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM and was insensitive to phosphoramidon and captopril (1 µM concentration, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.

  13. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (“Penicillium islandicum”)

    DEFF Research Database (Denmark)

    Schafhauser, Thomas; Kirchner, Norbert; Kulik, Andreas

    2016-01-01

    Talaromyces islandicus (“Penicillium islandicum”) is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains...

  14. Bacteriocin Inducer Peptides

    Science.gov (United States)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  15. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  16. Association of restriction fragment length polymorphism at the atrial natriuretic peptide gene locus with aldosterone responsiveness to angiotensin in aldosterone-producing adenoma.

    Science.gov (United States)

    Tunny, T J; Jonsson, J R; Klemm, S A; Ballantine, D M; Stowasser, M; Gordon, R D

    1994-11-15

    Primary aldosteronism is an important, potentially curable, form of hypertension. We examined the possible association between restriction fragment length polymorphisms in the atrial natriuretic peptide (ANP) gene and responsiveness of aldosterone to angiotensin II in 59 patients with primary aldosteronism due to aldosterone-producing adenoma (APA). Significant differences in the allelic frequencies of the BglI, TaqI and XhoI polymorphic sites at the ANP gene locus (chromosome 1; 1p36) between angiotensin II-unresponsive and angiotensin II-responsive tumors were observed. Variation in the ANP gene between the two groups may result in altered expression of ANP within the adrenal gland, and may contribute to the biochemical regulation of aldosterone production of these two subgroups of patients with APA.

  17. Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts

    DEFF Research Database (Denmark)

    Wright, Elizabeth J; Farrell, Kelly A; Malik, Nadim;

    2012-01-01

    -life in vivo. The effects of prolonged GLP-1 delivery from stromal cells post-MI were evaluated in a porcine model. Human mesenchymal stem cells immortalized and engineered to produce a GLP-1 fusion protein were encapsulated in alginate (bead-GLP-1 MSC) and delivered to coronary artery branches. Control groups...... and showed decreased infarction area compared with controls. Histological analysis showed reduced inflammation and a trend toward reduced apoptosis in the infarct zone. Increased collagen but fewer myofibroblasts were observed in infarcts of the bead-GLP-1 MSC and bead-MSC groups, and significantly more...

  18. The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production

    Institute of Scientific and Technical Information of China (English)

    LI Jing; CHI Zhenming; WANG Xianghong; PENG Ying; CHI Zhe

    2009-01-01

    A total of 400 yeast strains from seawater, sediments, saltern mud, marine fish guts, and marine algae were obtained. The protease activity of the yeast cultures was estimated, after which four strains (HN3.11, N11b, YF04C and HN4.9) capable of secreting extracellular alkaline protease were isolated. The isolated strains were identified as Aureobasidium pullulans, Yarrowia lipolytica, Issatchenkia orientalis and Cryptococcus cf. aureus. The optimal pH of the protease activity produced by strains HN3.11, YF04C, and HN4.9 was 9.0, while that of the protease produced by strain N11b was 10.0. The optimal temperature for protease activity was 45°C for strains HN3.11, N11b, and YF04C, and 50°C for strain HN4.9. After digestion of shrimp (Penaeus vannamei) protein and spirulina (Arthospira platensis) protein with the four crude alkaline proteases, the filtrate from spirulina (Arthrospira platensis) powder digested by the crude alkaline protease of strain HN3.11 was found to have the highest antioxidant activity (61.4%) and the highest angiotensin I converting enzyme (ACE)-inhibitory activities (68.4%). The other filtrates had much lower antioxidant activity and ACE-inhibitory activities.

  19. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  20. Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes.

    Science.gov (United States)

    Lysøe, Erik; Frandsen, Rasmus J N; Divon, Hege H; Terzi, Valeria; Orrù, Luigi; Lamontanara, Antonella; Kolseth, Anna-Karin; Nielsen, Kristian F; Thrane, Ulf

    2016-03-16

    Fusarium langsethiae is a widespread pathogen of small grain cereals, causing problems with T-2 and HT-2 toxin contamination in grains every year. In an effort to better understand the biology of this fungus, we present a draft genome sequence of F. langsethiae Fl201059 isolated from oats in Norway. The assembly was fragmented, but reveals a genome of approximately 37.5 Mb, with a GC content around 48%, and 12,232 predicted protein-coding genes. Focusing on secondary metabolism we identified candidate genes for 12 polyketide synthases, 13 non-ribosomal peptide synthetases, and 22 genes for terpene/isoprenoid biosynthesis. Some of these were found to be unique compared to sequence databases. The identified putative Tri5 cluster was highly syntenic to the cluster reported in F. sporotrichioides. Fusarium langsethiae Fl201059 produces a high number of secondary metabolites on Yeast Extract Sucrose (YES) agar medium, dominated by type A trichothecenes. Interestingly we found production of glucosylated HT-2 toxin (Glu-HT-2), previously suggested to be formed by the host plant and not by the fungus itself. In greenhouse inoculations of F. langsethiae Fl201059 on barley and oats, we detected the type A trichothecenes: neosolaniol, HT-2 toxin, T-2 toxin, Glu-HT-2 and numerous derivatives of these.

  1. The peptide toxin amylosin of Bacillus amyloliquefaciens from moisture-damaged buildings is immunotoxic, induces potassium efflux from mammalian cells, and has antimicrobial activity.

    Science.gov (United States)

    Rasimus-Sahari, Stiina; Teplova, Vera V; Andersson, Maria A; Mikkola, Raimo; Kankkunen, Päivi; Matikainen, Sampsa; Gahmberg, Carl G; Andersson, Leif C; Salkinoja-Salonen, Mirja

    2015-04-01

    Amylosin, a heat-stable channel-forming non-ribosomally synthesized peptide toxin produced by strains of Bacillus amyloliquefaciens isolated from moisture-damaged buildings, is shown in this paper to have immunotoxic and cytotoxic effects on human cells as well as antagonistic effects on microbes. Human macrophages exposed to 50 ng of amylosin ml(-1) secreted high levels of cytokines interleukin-1β (IL-1β) and IL-18 within 2 h, indicating activation of the NLRP3 inflammasome, an integral part of the innate immune system. At the same exposure level, expression of IL-1β and IL-18 mRNA increased. Amylosin caused dose-dependent potassium ion efflux from all tested mammalian cells (human monocytes and keratinocytes and porcine sperm cells) at 1 to 2 μM exposure. Amylosin also inhibited the motility of porcine sperm cells and depolarized the mitochondria of human keratinocytes. Amylosin may thus trigger the activation of the NLRP3 inflammasome and subsequently cytokine release by causing potassium efflux from exposed cells. The results of this study indicate that exposure to amylosin activates the innate immune system, which could offer an explanation for the inflammatory symptoms experienced by occupants of moisture-damaged buildings. In addition, the amylosin-producing B. amyloliquefaciens inhibited the growth of both prokaryotic and eukaryotic indoor microbes, and purified amylosin also had an antimicrobial effect. These antimicrobial effects could make amylosin producers dominant and therefore significant causal agents of health problems in some moisture-damaged sites.

  2. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Anti-TMV Activity of Malformin A1, a Cyclic Penta-Peptide Produced by an Endophytic Fungus Aspergillus tubingensis FJBJ11

    Directory of Open Access Journals (Sweden)

    Qing-Wei Tan

    2015-03-01

    Full Text Available Plant-associated microorganisms are known to produce a variety of metabolites with novel structures and interesting biological activities. An endophytic fungus FJBJ11, isolated from the plant tissue of Brucea javanica (L. Merr. (Simaroubaceae, was proven to be significantly effective in producing metabolites with anti-Tobacco mosaic virus (TMV activities. The isolate was identified as Aspergillus tubingensis FJBJ11 based on morphological characteristics and ITS sequence. Bioassay-guided isolation led to the identification of a cycli penta-peptide, malformin A1, along with two cyclic dipeptides, cyclo (Gly-l-Pro and cyclo (Ala-Leu. Malformin A1 showed potent inhibitory effect against the infection and replication of TMV with IC50 values of 19.7 and 45.4 μg·mL−1, as tested using local lesion assay and leaf-disc method, respectively. The results indicated the potential use of malformin A1 as a leading compound or a promising candidate of new viricide.

  4. Anti-TMV activity of malformin A1, a cyclic penta-peptide produced by an endophytic fungus Aspergillus tubingensis FJBJ11.

    Science.gov (United States)

    Tan, Qing-Wei; Gao, Fang-Luan; Wang, Fu-Rong; Chen, Qi-Jian

    2015-03-12

    Plant-associated microorganisms are known to produce a variety of metabolites with novel structures and interesting biological activities. An endophytic fungus FJBJ11, isolated from the plant tissue of Brucea javanica (L.) Merr. (Simaroubaceae), was proven to be significantly effective in producing metabolites with anti-Tobacco mosaic virus (TMV) activities. The isolate was identified as Aspergillus tubingensis FJBJ11 based on morphological characteristics and ITS sequence. Bioassay-guided isolation led to the identification of a cycli penta-peptide, malformin A1, along with two cyclic dipeptides, cyclo (Gly-L-Pro) and cyclo (Ala-Leu). Malformin A1 showed potent inhibitory effect against the infection and replication of TMV with IC50 values of 19.7 and 45.4 μg·mL⁻¹, as tested using local lesion assay and leaf-disc method, respectively. The results indicated the potential use of malformin A1 as a leading compound or a promising candidate of new viricide.

  5. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance.

    Science.gov (United States)

    Wang, Zi-Long; Li, Ning; Wang, Pei; Tang, Hong-Hai; Han, Zheng-Lan; Song, Jing-Jing; Li, Xu-Hui; Yu, Hong-Ping; Zhang, Ting; Zhang, Run; Xu, Biao; Zhang, Meng-Na; Fang, Quan; Wang, Rui

    2016-09-01

    Mounting evidences indicate the functional interactions between neuropeptide FF (NPFF) and opioids, including the endogenous opioids. In the present work, EN-9, a chimeric peptide containing the functional domains of the endogenous opioid endomorphin-2 (EM-2) and NPFF, was synthesized and pharmacologically characterized. In vitro cAMP assay demonstrated that EN-9 was a multifunctional agonist of κ-opioid, NPFF1 and NPFF2 receptors. In the mouse tail-flick test, intracerebroventricularly (i.c.v.) administration of EN-9 produced significant antinociception with an ED50 value of 13.44 nmol, which lasted longer than that of EM-2. In addition, EN-9 induced potent antinociception after both intravenous (i.v.) and subcutaneous (s.c.) injection. Furthermore, the experiments using the antagonists of opioid and NPFF receptors indicated that the central antinociception of EN-9 was mainly mediated by κ-opioid receptor, independently on NPFF receptors. Notably, the central antinociception of EN-9 was not reduced over a period of 6 days repeated i.c.v. injection. Repeated i.c.v. administration of EN-9 with the NPFF1 and NPFF2 receptors antagonist RF9 resulted in a progressive loss of analgesic potency, consistent with the development of tolerance. Moreover, central administration of EN-9 induced the place conditioning aversion only at a high dose of 60 nmol, but not at low doses. At supraspinal level, only high dose of EN-9 (60 nmol, i.c.v.) inhibited gastrointestinal transit via NPFF receptors. Similarly, systemic administration of EN-9 also inhibited gastrointestinal transit at high doses (10 and 30 mg/kg, i.v.). Taken together, the multifunctional agonist of κ-opioid and NPFF receptors EN-9 produced a potent, non-tolerance forming antinociception with limited side effects.

  6. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Sarah Knippenberg

    Full Text Available BACKGROUND: As pharmacological therapies have largely failed so far, stem cell therapy has recently come into the focus of ALS research. Neuroprotective potential was shown for several types of stem and progenitor cells, mainly due to release of trophic factors. In the present study, we assessed the effects of intracerebroventricular injection of glucagon-like peptide 1 (GLP-1 releasing mesenchymal stromal cells (MSC in mutant SOD1 (G93A transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: To improve the neuroprotective effects of native MSC, they had been transfected with a plasmid vector encoding a GLP-1 fusion gene prior to the injection, as GLP-1 was shown to exhibit neuroprotective properties before. Cells were encapsulated and therefore protected against rejection. After intracerebroventricular injection of these GLP-1 MSC capsules in presymptomatic SOD1 (G93A mice, we assessed possible protective effects by survival analysis, measurement of body weight, daily monitoring and evaluation of motor performance by rotarod and footprint analyses. Motor neuron numbers in the spinal cord as well as the amount of astrocytosis, microglial activation, heat shock response and neuronal nitric oxide synthase (nNOS expression were analyzed by immunohistological methods. Treatment with GLP-1 producing MSC capsules significantly prolonged survival by 13 days, delayed symptom onset by 15 days and weight loss by 14 days and led to significant improvements in motor performance tests compared to vehicle treated controls. Histological data are mainly in favour of anti-inflammatory effects of GLP-1 producing MSC capsules with reduced detection of inflammatory markers and a significant heat shock protein increase. CONCLUSION/SIGNIFICANCE: Intracerebroventricular injection of GLP-1 MSC capsules shows neuroprotective potential in the SOD1 (G93A mouse model.

  7. Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition.

    Science.gov (United States)

    García-Tejedor, Aurora; Sánchez-Rivera, Laura; Castelló-Ruiz, María; Recio, Isidra; Salom, Juan B; Manzanares, Paloma

    2014-02-19

    Novel antihypertensive peptides released by Kluyveromyces marxianus from bovine lactoferrin (LF) have been identified. K. marxianus LF permeate was fractionated by semipreparative high performance liquid chromatography and 35 peptides contained in the angiotensin I-converting enzyme (ACE)-inhibitory fractions were identified by using an ion trap mass spectrometer. On the basis of peptide abundance and common structural features, six peptides were chemically synthesized. Four of them (DPYKLRP, PYKLRP, YKLRP, and GILRP) exerted in vitro inhibitory effects on ACE activity and effectively decreased systolic blood pressure after oral administration to spontaneously hypertensive rats (SHRs). Stability against gastrointestinal enzymes suggested that the sequence LRP could contribute to the in vivo effects of parental peptides. Finally, there were reductions in circulating ACE activity and angiotensin II level in SHRs after either DPYKLRP or LRP intake, thus confirming ACE inhibition as the in vivo mechanism for their antihypertensive effect.

  8. Hyaluronic Acid-Based Nanogels Produced by Microfluidics-Facilitated Self-Assembly Improves the Safety Profile of the Cationic Host Defense Peptide Novicidin

    DEFF Research Database (Denmark)

    Water, Jorrit J; Kim, YongTae; Maltesen, Morten J

    2015-01-01

    have hampered their commercial development. To overcome these challenges a novel nanogel-based drug delivery system was designed. METHOD: The peptide novicidin was self-assembled with an octenyl succinic anhydride-modified analogue of hyaluronic acid, and this formulation was optimized using...... peptide loading of 36 ± 4%. The nanogels exhibited good colloidal stability under different ionic strength conditions and allowed complete release of the peptide over 14 days. Furthermore, self-assembly of novicidin with hyaluronic acid into nanogels significantly improved the safety profile at least five...

  9. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells.

    Science.gov (United States)

    Branco, Patrícia; Viana, Tiago; Albergaria, Helena; Arneborg, Nils

    2015-07-16

    Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 24 h 77.0% of the cells completely lost their pH gradient (∆pH=pHi-pHext). After 24h of exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable cells fell from 1×10(5) to 10 CFU/ml. This means that virtually all cells (99.99%) became unculturable but that a sub-population of 22.3% of the cells remained viable (as determined by PI staining). Besides, pHi results showed that after 24h, 23% of the AMP-treated cells were sub-lethally injured (with 0pH<3). Taken together, these results indicated that this subpopulation was under a viable but non-culturable (VBNC) state, which was further confirmed by recuperation assays. In summary, our study reveals that these AMPs compromise the plasma membrane integrity (and possibly also the vacuole membrane) of H. guilliermondii cells, disturbing the pHi homeostasis and inducing a loss of culturability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Heterologous expressed toxic and non-toxic peptide variants of toxin CssII are capable to produce neutralizing antibodies against the venom of the scorpion Centruroides suffusus suffusus.

    Science.gov (United States)

    Hernández-Salgado, Kenya; Estrada, Georgina; Olvera, Alejandro; Coronas, Fredy I; Possani, Lourival D; Corzo, Gerardo

    2009-08-15

    Two toxic and one non-toxic recombinant peptide variants of the mammalian neurotoxin CssII was cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage site. The toxic recombinant peptides rCssII, HisrCssII and the non-toxic rCssIIE15R were expressed under induction with isopropyl thiogalactoside (IPTG), isolated using chromatographic techniques and folded correctly in vitro. The three recombinant variants showed similar secondary structures as the native CssII, but only the rCssIIE15R was not toxic to mice at concentrations up to 30microg/20g mouse body weight when injected intraperitoneally. All three recombinant peptides were capable of displacing the native CssII from their receptor sites in rat brain synaptosomes, suggesting that they had similar structural and functional characteristics of the native peptides. The three recombinant variants of CssII and the native one were used as antigens for immunization of New Zealand rabbits. The antibodies present in the rabbit antisera were able to recognize the native CssII. Additionally and more importantly, the sera of the immunized rabbits were able to neutralize both the native toxin CssII and the whole soluble venom of the scorpion Centruroides suffusus suffusus. These results indicate that the recombinant peptides can be used to produce antidotes against the venom of this species of scorpion.

  11. Isolation and characterization of marine Brevibacillus sp. S-1 collected from South China Sea and a novel antitumor peptide produced by the strain.

    Directory of Open Access Journals (Sweden)

    Lanhong Zheng

    Full Text Available A Gram-positive, rod-shaped bacterium, designated as S-1, was isolated from a marine sediment sample collected from South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence showed that S-1 belongs to the genus Brevibacillus. A novel cytotoxic peptide was isolated from the fermentation broth of the marine-derived bacterium Brevibacillus sp. S-1, using ion-exchange chromatography and reverse-phase HPLC chromatography. The molecular weight of this peptide was determined as 1570 Da by MALDI-TOF mass spectrometry, and its structure was proposed as a cyclic peptide elucidated by MALDI-TOF/TOF mass spectrometry and de novo sequencing. 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay showed that this peptide exhibited cytotoxicity against BEL-7402 human hepatocellular carcinoma cells, RKO human colon carcinoma cells, A549 human lung carcinoma cells, U251 human glioma cells and MCF-7 human breast carcinoma cells. Additionally, SBP exhibited low cytotoxicity against HFL1 human normal fibroblast lung cells. The result suggested that the cytotoxic effect of the peptide is specific to tumor cells.

  12. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    Science.gov (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  13. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.

    Science.gov (United States)

    Han, Jinzhi; Gao, Peng; Zhao, Shengming; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia

    2017-01-06

    LI-F type peptides (AMP-jsa9) produced by Paenibacillus polymyxa JSa-9 are a group of cyclic lipodepsipeptide antibiotics that exhibit a broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi, especially Bacillus cereus and Fusarium moniliforme. In this study, to better understand the antibacterial mechanism of AMP-jsa9 against B. cereus, the ultrastructure of AMP-jsa9-treated B. cereus cells was observed by both atomic force microscopy and transmission electron microscopy, and quantitative proteomic analysis was performed on proteins extracted from treated and untreated bacterial cells by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis, including determinations of ATP, NAD((+))H, NADP((+))H, reactive oxygen species (ROS), the activities of catalase (CAT) and superoxide dismutase (SOD), and the relative expression of target genes by quantitative real-time PCR. Bacterial cells exposed to AMP-jsa9 showed irregular surfaces with bleb projections and concaves; we hypothesize that AMP-jsa9 penetrated the cell wall and was anchored on the cytoplasmic membrane and that ROS accumulated in the cell membrane after treatment with AMP-jsa9, modulating the bacterial membrane properties and increasing membrane permeability. Consequently, the blebs were formed on the cell wall by the impulsive force of the leakage of intercellular contents. iTRAQ-based proteomic analysis detected a total of 1317 proteins, including 176 differentially expressed proteins (75 upregulated (fold >2) and 101 downregulated (fold <0.5)). Based on proteome analysis, the putative pathways of AMP-jsa9 action against B. cereus can be summarized as: (i) inhibition of bacterial sporulation, thiamine biosynthesis, energy metabolism, DNA transcription and translation, and cell wall biosynthesis

  14. Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas sp. In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    Pseudomonas sp. are a rich source of secondary metabolites including bioactive non-ribosomal peptides (NRPs) and polyketides. NRPs are synthesised in large assembly lines by multi-domain modular enzymes known as NRP-synthetases (NRPS). Nunamycin and nunapeptin are two cyclic NRPs synthesised...... by the Greenlandic isolate Pseudomonas sp. In5. Nunamycin shows antifungal activity against the basidiomycete Rhizoctonia solani whereas the only partially structure elucidated nunapeptin appears most active against the ascomycete Fusarium graminearum and the oomycete Pythium aphanidermatum. Originally isolated from...

  15. Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (Ctenopharyngodon idella)

    DEFF Research Database (Denmark)

    Yi, Jierong; De Gobba, Cristian; Skibsted, Leif Horsfelt

    2016-01-01

    Grass carp skin pieces were homogenized in water and hydrolyzed by Alcalase®, collagenase, proteinase K, and/or trypsin at their optimum conditions. Samples were taken at various degrees of hydrolysis and were evaluated for antioxidant, antimicrobial, and angiotensin-converting enzyme inhibitory...... activities. Alcalase and collagenase completely hydrolyzed the skin with different rates, and released peptides with antioxidant and angiotensin-converting enzyme-inhibitory activity. These activities increased linearly with increasing degrees of hydrolysis. Subsequent incubation of the collagenase...... hydrolysates with trypsin slightly increased the antioxidant activity. Proteinase K, although only partially hydrolyzing the skin, also catalyzed the release of peptides with antioxidant and angiotensin-converting enzyme-inhibitory activities. These results show that skin by-products from grass carp can...

  16. Evaluation of the mutagenic activity of leucinostatins, a novel class of antibiotic peptides produced by Paecilomyces marquandii, in the modul Aspergillus nidulans.

    Science.gov (United States)

    Crebelli, R; Carere, A; Conti, G; Conti, L; Rossi, C; Tuttobello, L

    1988-10-01

    Leucinostatins A, B, C, D, E, G, H, and K were thoroughly investigated for their genotoxic activity using the modul Aspergillus nidulans as the test organism. The results of assays for gene mutation (8-azaguanine resistance and methionine suppressors), gene conversion, mitotic crossing-over and mitotic aneuploidy induction suggest that these peptide antibiotics lack significant mutagenicity and that non-genotoxic mechanism(s) underlie their cytotoxic properties.

  17. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis

    Science.gov (United States)

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation

  18. Topical peptides as cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Varadraj Vasant Pai

    2017-01-01

    Full Text Available Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  19. Dequenching of Cu(I)-bathocuproine disulfonate complexes for high-performance liquid chromatographic determination of phytochelatins, heavy-metal-binding peptides produced by the primitive red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Shirabe, Tomoo; Ito, Kyoko; Yoshimura, Etsuro

    2008-12-01

    A novel method has been devised for the determination of phytochelatins (PCs), heavy-metal-tolerant peptides produced by higher plants and algae. The method is based on the facts that fluorescence of bathocuproine disulfonate (BCS) is quenched by Cu(I) ions as a result of Cu(I)-BCS complex formation and that PCs compete with BCS for Cu(I). Detection of PCs via recovered fluorescence of BCS using the Cu(I)-BCS complex as a postcolumn reagent, following separation of peptides on an octyldecylsilane column, demonstrated a highly sensitive method for determination of PCs. PCs in the primitive red alga, Cyanidioschyzon merolae, grown in the presence or absence of added Cd(II) were successfully determined by this protocol. Unlike other methods for the determination of PCs, which rely on the SH groups in the peptides, the proposed method is unique in that detection is based on the chemical nature of PCs, which favors the formation of complexes with Cu(I). In this context, the new method yields chromatograms based on the strength of binding Cu(I) ions.

  20. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors.

    Science.gov (United States)

    Kiatsurayanon, Chanisa; Niyonsaba, François; Chieosilapatham, Panjit; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2016-09-01

    In addition to their antimicrobial activities, antimicrobial peptides, also known as host defense peptides (HDPs) activate keratinocytes; promote wound healing; and improve the skin barrier. AG-30/5C is a novel angiogenic HDP that activates various functions of fibroblasts and endothelial cells, including cytokine/chemokine production and wound healing. To investigate whether AG-30/5C activates human keratinocytes and to examine the underlying mechanisms. Production of cytokines/chemokines was assessed by ELISA. Expression of Mas-related G-protein coupled receptors X (MrgXs) in keratinocytes was determined by real-time PCR and Western blot. MAPK and NF-κB activation was analysed by Western blot. Cell migration was assessed by chemotaxis microchamber and in vitro wound closure assay, whereas cell proliferation was analysed using an XTT assay. We found that AG-30/5C was more efficient than its parent peptide AG-30 in increasing the production of various cytokines/chemokines and promoting keratinocyte migration and proliferation. Furthermore, MrgX3 and MrgX4 receptors were constitutively expressed in keratinocytes at higher levels than MrgX1 and MrgX2, and were up-regulated upon stimulation with TLR ligands. Because MrgX3 and MrgX4 siRNAs suppressed AG-30/5C-mediated cytokine/chemokine production, keratinocyte migration and proliferation, we propose that AG-30/5C utilizes these MrgXs to stimulate keratinocytes. In addition, AG-30/5C-induced activation of keratinocytes was controlled by MAPK and NF-κB pathways, as evidenced by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors. Indeed, we confirmed that AG-30/5C enhanced phosphorylation of MAPKs and IκB. Our findings provide novel evidence that AG-30/5C may be a useful therapeutic agent for wound healing by activating human keratinocytes. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. A novel receptor cross-talk between the ATP receptor P2Y2 and formyl peptide receptors reactivates desensitized neutrophils to produce superoxide.

    Science.gov (United States)

    Önnheim, Karin; Christenson, Karin; Gabl, Michael; Burbiel, Joachim C; Müller, Christa E; Oprea, Tudor I; Bylund, Johan; Dahlgren, Claes; Forsman, Huamei

    2014-04-15

    Neutrophils express several G-protein coupled receptors (GPCRs) and they cross regulate each other. We described a novel cross-talk mechanism in neutrophils, by which signals generated by the receptor for ATP (P2Y2) reactivate desensitized formyl peptide receptors (FPRs) so that these ligand-bound inactive FPRs resume signaling. At the signaling level, the cross-talk was unidirectional, i.e., P2Y2 ligation reactivated FPR, but not vice versa and was sensitive to the phosphatase inhibitor calyculinA. Further, we show that the cross talk between P2Y2 and FPR bypassed cytosolic Ca(2+) transients and did not rely on the actin cytoskeleton. In summary, our data demonstrate a novel cross-talk mechanism that results in reactivation of desensitized FPRs and, an amplification of the neutrophil response to ATP. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (“Penicillium islandicum”)

    DEFF Research Database (Denmark)

    Schafhauser, Thomas; Kirchner, Norbert; Kulik, Andreas;

    2016-01-01

    Talaromyces islandicus (“Penicillium islandicum”) is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains ...

  3. Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-02-01

    The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.

  4. Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions*

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D.; Herath, Thushani N.; McEwen, Charles N.

    2010-01-01

    The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented. PMID:19955086

  5. Nunamycin and Nunapeptin: Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas fluorescens In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    Pseudomonas spp. are a rich source of secondary metabolites including bioactive non-ribosomal peptides (NRPs) and polyketides. NRPs are synthesised in large assembly lines by multi-domain modular enzymes known as NRP-synthetases (NRPS). Nunamycin and nunapeptin are two cyclic NRPs synthesised...... by the Greenlandic isolate P. fluorescens In5. Nunamycin shows antifungal activity against the basidiomycete Rhizoctonia solani whereas the only partially structure elucidated nunapeptin appears most active against the ascomycete Fusarium graminearum and the oomycete Pythium aphanidermatum. Originally isolated from...

  6. Hypoglycemia in a dog with a leiomyoma of the gastric wall producing an insulin-like growth factor II-like peptide.

    Science.gov (United States)

    Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M

    1995-06-01

    A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. DNA Sequencing and Homologous Expression of a Small Peptide Conferring Immunity to Gassericin A, a Circular Bacteriocin Produced by Lactobacillus gasseri LA39

    NARCIS (Netherlands)

    Kawai, Yasushi; Kusnadi, Joni; Kemperman, Rober; Kok, Jan; Ito, Yoshiyuki; Endo, Mikiko; Arakawa, Kensuke; Uchida, Hideaki; Nishimura, Junko; Kitazawa, Haruki; Saito, Tadao

    2009-01-01

    Gassericin A, produced by Lactobacillus gasseri LA39, is a hydrophobic circular bacteriocin. The DNA region surrounding the gassericin A structural gene, gaaA, was sequenced, and seven open reading frames (ORFs) of 3.5 kbp (gaaBCADITE) were found with possible functions in gassericin A production, s

  8. Quorum sensing is a key regulator for the antifungal and biocontrol activity of chitinase-producing Chromobacterium sp. C61.

    Science.gov (United States)

    Kim, In Seon; Yang, Si Young; Park, Seur Kee; Kim, Young Cheol

    2017-01-01

    Chromobacterium sp. strain C61 has strong biocontrol activity; however, the genetic and biochemical determinants of its plant disease suppression activity are not well understood. Here, we report the identification and characterization of two new determinants of its biocontrol activity. Transposon mutagenesis was used to identify mutants that were deficient in fungal suppression. One of these mutants had an insertion in a homologue of depD, a structural gene in the dep operon, that encodes a protein involved in non-ribosomal peptide synthesis. In the second mutant, the insertion was in a homologue of the luxI gene, which encodes a homoserine lactone synthase. The luxI(-) and depD(-) mutants had no antifungal activity in vitro and a dramatically reduced capacity to suppress various plant diseases in planta. Antifungal production and biocontrol were restored by complementation of the luxI(-) mutant. Other phenotypes associated with effective biological control, including motility and lytic enzyme secretion, were also affected by the luxI mutation. Biochemical analysis of ethyl acetate extracts of culture filtrates of the mutant and wild-type strains showed that a key antifungal compound, chromobactomycin, was produced by wild-type C61 and the complemented luxI(-) mutant, but not by the luxI(-) or depD(-) mutant. These data suggest that multiple biocontrol-related phenotypes are regulated by homoserine lactones in C61. Thus, quorum sensing plays an essential role in the biological control potential of diverse bacterial lineages. © 2016 BSPP and John Wiley & Sons Ltd.

  9. Isolation and identification of lactic acid bacteria produced antimicrobial peptides from Sichuan pickles%泡菜中产抗菌素的乳酸菌筛选和性能鉴定

    Institute of Scientific and Technical Information of China (English)

    熊华; 张国栋; 宁霞蕊; 任亚妮

    2011-01-01

    主要是对自然发酵泡菜中的乳酸菌素产生菌株分离筛选、鉴定。采用TJA培养基初步筛选9株典型菌株进行抗菌素产生菌的筛选,供试菌为金黄色葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌(Bacillus subtilis)。通过抑菌实验,综合菌株的形态学特征、生理生化特征,筛选确定了2株细菌素产生菌菌株。%The lactic acid bacteria produced antimicrobial peptides was isolated and identified from Sichuan pickles.Using TJA medium,the 9 typical strains were screened,and the antimicrobial activities were investigated upon Staphylococcus aureus and Bacillus subti

  10. The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides

    Directory of Open Access Journals (Sweden)

    Florin Barla

    2016-06-01

    Full Text Available Many traditional fermented products are onsumed in Ishikawa Prefecture, Japan, such as kaburazushi, narezushi, konkazuke, and ishiru. Various kinds of lactic acid bacteria (LAB are associated with their fermentation, however, characterization of LAB has not yet been elucidated in detail. In this study, we evaluated 53 isolates of LAB from various traditional fermented foods by taxonomic classification at the species level by analyzing the 16S ribosomal RNA gene (rDNA sequences and carbohydrate assimilation abilities. We screened isolates that exhibited high angiotensin-converting enzyme (ACE inhibitory activities in skim milk or soy protein media and produced high γ-aminobutyric acid (GABA concentrations in culture supernatants when grown in de Man Rogosa Sharpe broth in the presence of 1% (w/v glutamic acid. The results revealed that 10 isolates, i.e., Lactobacillus buchneri (2 isolates, Lactobacillus brevis (6 isolates, and Weissella hellenica (2 isolates had a high GABA-producing ability of >500 mg/100 ml after 72 h of incubation at 35 °C. The ACE inhibitory activity of the whey cultured with milk protein by using L. brevis (3 isolates, L. buchneri (2 isolates, and W. hellenica (2 isolates was stronger than that of all whey cultured with soy protein media, and these IC50 were < 1 mg protein/ml. Three of 10 isolates had high GABA-producing activities at pH 3, suggesting that they could be powerful candidates for use in the fermentation of food materials having low pH.

  11. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    Science.gov (United States)

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  12. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  13. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  14. Occurrence and purification on microcystis species. Chemistry and analysis method for toxic peptides produced by cyanobacteria; Aoko/sono hassei to joka taisaku. Aoko ga seisansuru yudoku pepuchido no kagaku to bunsekiho

    Energy Technology Data Exchange (ETDEWEB)

    Harada, K. [Meijo Univ., Nagoya (Japan). Faculty of Pharmaceutical Science; Tsuji, K.; Kondo, F.

    1994-09-10

    The phenomena on a cacogenesis of the blue green algae in the lakes subjected to an eutrophication occur frequently at every places in the world, and therefore they become a serious environmental problem. Especially it is known that a part of the blue green algae produces a toxic compounds, and consequently the issues of this kind is made further complicated. One of the blue green algae occurring universally at every place in the world is the microcystis genus, and moreover it often produces the microcystin group which is a peptidic hepatic toxin. Because the microcystin was a strong hepatic toxin, the toxicity testes using the mice have been exclusively executed. However, because the constituents reached up to 50 items, and in addition a toxicity of each element is not necessarily same, it has been considered that a chemical analytical method to perform an accurate separation and a sure detection have been necessary. A high-performance liquid chromatography (HPLC) is currently the most much used for an analysis of the microcystin. In order to detect the microcystin, the ultraviolet rays (UV) near 240 nm being its absorption maximum are being frequently used. However, a toxicity manifestation mechanism of the microcystin and so forth has not yet been elucidated. 24 refs., 2 figs., 2 tabs.

  15. Recent advances in solid phase peptide synthesis

    OpenAIRE

    White, P.D.

    2016-01-01

    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  16. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †.

    Science.gov (United States)

    Jakubowski, Hieronim

    2017-02-09

    Aminoacyl-tRNA synthetases (AARSs) have evolved "quality control" mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.

  17. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †

    Directory of Open Access Journals (Sweden)

    Hieronim Jakubowski

    2017-02-01

    Full Text Available Aminoacyl-tRNA synthetases (AARSs have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.

  18. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  19. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did n...

  20. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  1. C-Peptide Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities C-peptide Share this page: Was this page helpful? Also known as: Insulin C-peptide; Connecting Peptide Insulin; Proinsulin C-peptide Formal ...

  2. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  3. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  4. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja-Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  5. Bioactive Peptides in Milk and Dairy Products: A Review

    OpenAIRE

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, an...

  6. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    Science.gov (United States)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  7. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  8. Separation, Purification and Biological Activity Detection of Antibacterial Peptide Produced by Streptococcus lactis%乳酸链球菌抗菌肽的分离纯化及生物活性检测

    Institute of Scientific and Technical Information of China (English)

    盛博文; 杨海君; 关向杰

    2012-01-01

    This study aimed to separate and purify the Streptococcus lactis -antimicrobial peptides which had wide antimicrobial properties by gel filtration chromatography and HPLC. Staphyiococcus aureus (ATCC25923), Escherkkia coli (ATCC25922), Pseudomonas aeruginosa, Bacillus subtilh, Yersinia and Enterococcw fat calls were used to research the bactericidal mechanism and antibacterial spectrum of the Streptococcus lactis -antimicrobial peptide . The results showed that a species of Streptococcus /aeas-antimicrobial peptides which had killing effects on all bacterial cells except Pseudomonas aerugiiwsa was obtained by separation and purification. The microporous structure of Staphyiococcus aureus (ATCC25923) was observed by transmission electron microscopy when Ihe Streptococcus lactis -antimicrobial peptide was added. The transmission electron microscopy results showed that the Streptococcus lactis -antimicrobial peptide caused the Staphyiococcus aureus (ATCC25923) cells broken, swelling and leakage .accompanied cytoplasmic diluted, cell membrane boundaries blurred or even completely dissolved, and made them apoptosis ultimately.%通过凝胶过滤层析及制备型高效液相色谱法,从乳酸链球菌发酵液中筛选分离出了具有广谱抗菌活性的物质,利用金黄色葡萄球菌( ATCC25923)、大肠杆菌(ATCC25922)、绿脓杆菌、枯草芽孢杆菌、耶尔森菌.粪肠球菌对该活性物质的抗菌谱及杀菌机理进行了研究.结果表明:经过分离纯化,得到的较纯的活性物质为乳酸链球抗菌肽,该物质除了对绿脓杆菌没有杀伤作用, 对其他5种细菌均具有杀伤作用.透射电镜观察结果显示,金黄色葡萄球菌(ATCC25923)经抗菌肽处理后,细胞出现破损或肿胀,有部分细胞内容物外泄,并伴有细胞质稀释的现象,细胞膜界限模糊不清,细胞膜甚至完全溶解.由于细胞内容物外渗,最终导致菌体死亡.

  9. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    Energy Technology Data Exchange (ETDEWEB)

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.; (Guelph)

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  10. Effect of antimicrobial peptide APNT-6 produced by Bacillus natto on fresh-keeping of Litopenaeus vannamei at low temperature%纳豆菌抗菌肽APNT-6对凡纳滨对虾的低温保鲜效果

    Institute of Scientific and Technical Information of China (English)

    王东; 孙力军; 王雅玲; 刘唤明; 徐德峰; 邓楚津; 杜焕妍; 励建荣

    2012-01-01

    A new biological preservative—antimicrobial peptide APNT-6 produced by Bacillus natto NT-6 and purified by column chromatography will be applied in the fresh-keeping of Litopenaeus vannamei. Bacillus antimicrobial peptides are a series of lipopeptides substances produced by represented Bacillus strains of B. subtilis, B. amyloliquefaciens and B. natto, which include surfactin, iturin, fengycin, subtilin and so on. Numerous studies show that Bacillus antimicrobial peptides have a startling range of antimicrobial activities that can include action against most Gram-negative and Gram-positive bacteria, fungi, enveloped viruses, and eukaryotic parasites. Recently, our research group isolated a highly antibiotic activity and largely antimicrobial spectrum strain—B. natto NT-6 from the Chinese traditional food—lobster sauce. According to the mass spectrometry (ESI /MS /CID) analysis,we know the mainly antimicrobial substances produced by this strain is Bacillus antimicrobial peptides, mainly including surfactin, fengycin, and iturin(called after APNT-6). Through oral acute toxicity in mice we found that its LDso greater than 5000 mg/kg body weight, indicating that antimicrobial peptide APNT-6 has high food safety. In this paper, the antibacterial activities of antimicrobial peptide on spoilage organisms were determined by Oxford cup assay. Then the quality changes of L vannamei during storage at (4±1) ℃ were investigated, including the pH, total volatile basic nitrogen (TVB-N), aerobic plate count (APC) and sensory assessment. The results showed that antimicrobial peptide APNT-6 can effectively inhibit 8 strains of spoilage organisms isolated from L. vannamei. During storage at (4±1) ℃, with the extension of storage time, the gradually increasing values of pH, TVB-N and APC of L.vannamei were observed during the 7 days storage. However, incubated 0.5 mg/mL antimicrobial peptide can effectively slow down the value increasing, which extends the shelf-life of L

  11. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  12. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  13. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  14. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications.

    Science.gov (United States)

    Hutchinson, J A; Burholt, S; Hamley, I W

    2017-02-01

    This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

  15. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-β peptide produced in silkworm pupae protects against Alzheimer's disease in mice.

    Directory of Open Access Journals (Sweden)

    Si Li

    Full Text Available A key molecule in the pathogenesis of Alzheimer's disease (AD is a 42-amino acid isoform of the amyloid-β peptide (Aβ42, which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD.

  16. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  17. Natriuretic peptide drug leads from snake venom.

    Science.gov (United States)

    Vink, S; Jin, A H; Poth, K J; Head, G A; Alewood, P F

    2012-03-15

    Natriuretic peptides are body fluid volume modulators, termed natriuretic peptides due to a role in natriuresis and diuresis. The three mammalian NPs, atrial natriuretic peptide (ANP), brain or b-type natriuretic peptide (BNP) and c-type natriuretic peptide (CNP), have been extensively investigated for their use as therapeutic agents for the treatment of cardiovascular diseases. Although effective, short half-lives and renal side effects limit their use. In approximately 30 years of research, NPs have been discovered in many vertebrates including mammals, amphibians, reptiles and fish, with plants and, more recently, bacteria also being found to possess NPs. Reptiles have produced some of the more interesting NPs, with dendroaspis natriuretic peptide (DNP), which was isolated from the venom of the green mamba (Dendroaspis angusticeps), having greater potency and increased stability as compared to the mammalian family members, and taipan natriuretic peptide c (TNPc), which was isolated from the venom of the inland taipan (Oxyuranus microlepidotus) displaying similar activity to ANP and DNP at rat natriuretic peptide receptor A. Although promising, more research is required in this field to develop therapeutics that overcome receptor-mediated clearance, and potential toxicity issues. This review investigates the use of snake venom NPs as therapeutic drug leads. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  19. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  3. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  4. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  5. CART peptide in the nucleus accumbens regulates psychostimulants: Correlations between psychostimulant and CART peptide effects.

    Science.gov (United States)

    Job, Martin O; Kuhar, Michael J

    2017-02-16

    In this study, we reexamined the effect of Cocaine-and-Amphetamine-Regulated-Transcript (CART) peptide on psychostimulant (PS)-induced locomotor activity (LMA) in individual rats. The Methods utilized were as previously published. The PS-induced LMA was defined as the distance traveled after PS administration (intraperitoneal), and the CART peptide effect was defined as the change in the PS-induced activity after bilateral intra-NAc administration of CART peptide. The experiments included both male and female Sprague-Dawley rats, and varying the CART peptide dose and the PS dose. While the average effect of CART peptide was to inhibit PS-induced LMA, the effect of CART peptide on individual PS-treated animals was not always inhibitory and sometimes even produced an increase or no change in PS-induced LMA. Upon further analysis, we observed a linear correlation, reported for the first time, between the magnitude of PS-induced LMA and the CART peptide effect. Because CART peptide inhibits PS-induced LMA when it is large, and increases PS-induced LMA when it is small, the peptide can be considered a homeostatic regulator of dopamine (DA)-induced LMA, which supports our earlier homeostatic hypothesis.

  6. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Alice P. McCloskey

    2014-10-01

    Full Text Available Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.

  7. A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media.

    Science.gov (United States)

    McGillivary, Glen; Ray, William C; Bevins, Charles L; Munson, Robert S; Bakaletz, Lauren O

    2007-03-01

    Cationic antimicrobial peptides (AMPs), a component of the innate immune system, play a major role in defense of mucosal surfaces against a wide spectrum of microorganisms such as viral and bacterial co-pathogens of the polymicrobial disease otitis media (OM). To further understand the role of AMPs in OM, we cloned a cDNA encoding a cathelicidin homolog (cCRAMP) from upper respiratory tract (URT) mucosae of the chinchilla, the predominant host used to model experimental OM. Recombinant cCRAMP exhibited alpha-helical secondary structure and killed the three main bacterial pathogens of OM. In situ hybridization showed cCRAMP mRNA production in epithelium of the chinchilla Eustachian tube and RT-PCR was used to amplify cCRAMP mRNA from several other tissues of the chinchilla URT. Quantitative RT-PCR analysis of chinchilla middle ear epithelial cells (CMEEs) incubated with either viral (influenza A virus, adenovirus, or RSV) or bacterial (nontypeable H. influenzae, M. catarrhalis, or S. pneumoniae) pathogens associated with OM demonstrated distinct microbe-specific patterns of altered expression. Collectively, these data showed that viruses and bacteria modulate AMP messages in the URT, which likely contributes to the disease course of OM.

  8. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Paaske, Berit; Jiang, Longguang;

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptidebased inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... monocyclic peptide, upain-2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across-the-ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic...... burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain-2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain-2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also...

  9. Recent progress in physicochemical characteristics of antimicrobial peptides%抗菌肽理化性质的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈武; 黎定军; 丁彦; 肖启明; 周清明

    2012-01-01

    Antimicrobial peptides (AMPs) comprise an important part of the innate immunity system of host organism and provide effective protection for the host against bacteria, fungi, protozoa and viruses. They are synthesized either by ribosomal or non-ribosomal peptide synthetase. Usually, AMPs are positively charged small molecular weight proteins and have both a hydrophobic and hydrophilic side that enables the molecule to enter the membrane lipid bilayer. In this review, recent discoveries on such physicochemical characteristics of AMPs as conformation, cationicity, hydrophobicity, amphipathicity etc.are discussed.%抗菌肽(antimicrobial peptides,AMPs)是生物先天免疫系统的重要组成部分,由核糖体或非核糖体肽合成酶合成,可协助宿主有效应对细菌、真菌、原生生物和病毒等病原生物的胁迫.AMPs具有相对分子质量小、两亲性结构和携带正电荷等理化性质.综述抗菌肽构象、电荷及阳离子度、疏水性与疏水力矩、两亲性及其他属性等方面的研究进展.

  10. Polymer-Peptide Nanoparticles: Synthesis and Characterization

    Science.gov (United States)

    Dong, He; Shu, Jessica Y.; Xu, Ting

    2010-03-01

    Conjugation of synthetic polymers to peptides offers an efficient way to produce novel supramolecular structures. Herein, we report an attempt to prepare synthetic micellar nanoparticles using amphiphilic peptide-polymer conjugates as molecular building blocks. Spherical nanoparticles were formed upon dissolution of peptides in PBS buffer through the segregation of hydrophobic and hydrophilic segments. Both molecular and nano- structures were thoroughly investigated by a variety of biophysical techniques, including circular dichroism (CD), dynamic light scattering (DLS), size exclusion chromatography (SEC), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The results demonstrate that structural properties of these biohybrid materials depend on both the geometry of the hydrophobic domain and the size of synthetic polymers. Given the diversity of functional peptide sequences, hydrophilic polymers and hydrophobic moieties, these materials would be expected to self-assemble into various types of nanostructures to cover a wide range of biological applications.

  11. Exploring the chemical space of quorum sensing peptides.

    Science.gov (United States)

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species.

  12. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  13. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    Directory of Open Access Journals (Sweden)

    Liliana I. Barbosa-Santillán

    2016-01-01

    Full Text Available We present an Identify Selective Antibacterial Peptides (ISAP approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides. Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2. ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.

  14. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    Science.gov (United States)

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  15. Selection of milk-source Lactic acid bacteria producing antimicrobial peptides and cultivation for antimicrobial activity%产抗菌肽乳源乳酸菌的筛选及定向培养

    Institute of Scientific and Technical Information of China (English)

    乔彬; 高学军; 潘洪宝; 于微; 尹德云

    2012-01-01

    In order to obtain metabolism control methods for high expression of antimicrobial peptides of lactic acid bacteria.In this experiment, Lactobacillus delbrueckii subsp. Bulgaricus etc. seven kinds of lactic acid bacteria were isolated and identified and cultured for antimicrobial activities. Excluding the interference of organic acids and hydrogen peroxide, the high antibacterial activities of these lactic acid bacteria were selected. The fermentation supernatant of these two kinds of lactic acid bacteria lost antimicrobial activity in the presence of trypsin. The fermentation supernatant of Lactobacillus acidophilus and Lactobacillus casei had inhibitory spectrum against Staphylococcus aureus and E.coli. After the series of target cultivation , the antibacterial diameter of Lactobacillus acidophilus was (23.53±0.06)mm, while without the target cultivation Lactobacillus acidophilus antibacterial diameter was (11. 63±0.15)mm, the antibacterial activity rised by 102%. After target cultivation, antibacterial diameter of Lactobacillus casei was (21. 27±0.25)mm, while without target cultivation the antibacterial diameter of Lactobacillus casei was (12. 50±0.10)mm, antimicrobial activity rised by 70.2%.%为了获得乳酸菌高效表达抗菌肽的代谢调控方法,对德氏乳杆菌保加利亚亚种等7种乳酸菌进行了产抗菌肽能力的筛选和定向培养.筛选出具有较高抑菌活性的菌株嗜酸乳杆菌和干酪乳杆菌,它们产生的抑菌物质经排除酸、过氧化氢后,仍具有抑菌活性,然而经蛋白酶处理后其抑菌活性明显下降.结果表明,两种菌发酵上清液对金黄色葡萄球菌和大肠杆菌均有抑制作用.经一系列定向培养嗜酸乳杆菌抑菌直径达到(23.53±0.06)mm,与未经定向培养的抑菌直径(11.63±0.15)mm相比抑菌活性提高了102%;经定向培养的干酪乳杆菌抑菌直径达到(21.27±0.25)mm,与未经定向培养的抑菌直径(12.50±0.10)mm相比抑

  16. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... stems from a synergy between the positive peptide charge and membrane-active acyl moiety, supported by its pH-dependency, whereby the effect increased with decreasing pH and concomitant charge increase. The extent of permeation enhancing effect was highly dependent on acylation chain length and position...

  17. Producing Presences

    OpenAIRE

    Mandagará, Pedro

    2008-01-01

    Resenha de MENDES, Victor K.; ROCHA, João Cezar de Castro (Eds.). Producing Presences: branching out from Gumbrecht’s work. Dartmouth, Massachusetts: University of Massachusetts Dartmouth, 2007. (Adamastor book series, 2)

  18. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  19. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  20. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  2. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  3. APD: the Antimicrobial Peptide Database

    OpenAIRE

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophob...

  4. Peptide pheromone signaling in Streptococcus and Enterococcus.

    Science.gov (United States)

    Cook, Laura C; Federle, Michael J

    2014-05-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.

  5. Antimicrobial cyclic peptides for plant disease control.

    Science.gov (United States)

    Lee, Dong Wan; Kim, Beom Seok

    2015-03-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  6. Antimicrobial Cyclic Peptides for Plant Disease Control

    Directory of Open Access Journals (Sweden)

    Dong Wan Lee

    2015-03-01

    Full Text Available Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  7. Peptide pheromone signaling in Streptococcus and Enterococcus

    Science.gov (United States)

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways. PMID:24118108

  8. Peptide Hormones in the Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2015-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone-producing organ in the body. Modern biology makes it feasi...

  9. An introduction to peptide nucleic acid

    DEFF Research Database (Denmark)

    Nielsen, P E; Egholm, M

    1999-01-01

    Peptide Nucleic Acid (PNA) is a powerful new biomolecular tool with a wide range of important applications. PNA mimics the behaviour of DNA and binds complementary nucleic acid strands. The unique chemical, physical and biological properties of PNA have been exploited to produce powerful...

  10. Insects antiviral and anticancer peptides: new leads for the future?

    Science.gov (United States)

    Slocinska, Malgorzata; Marciniak, Pawel; Rosinski, Grzegorz

    2008-01-01

    Insect produce wide range of protein and peptides as a first fast defense line against pathogen infection. These agents act in different ways including insect immune system activation or by direct impact on the target tumor cells or viruses. It has been shown that some of the insect peptides suppress viral gene and protein expression, rybosilate DNA, whereas others cause membrane lysis, induce apoptosis or arrest cell cycle. Several of the purified and characterized peptides of insect origin are very promising in treating of serious human diseases like human immunodeficiency virus (HIV), herpex simplex virus (HSV) or leukaemia. However, some obstacles need to be overcome. Cytotoxic activity of peptides, susceptibility to proteases or high cost of production remain still unsolved problems. Reports on the peptides antiviral and antitumour mechanisms are scanty. Thus, in this review we present characteristic, mode of action and potential medical applications of insects origin peptides with the antiviral and antitumour activity.

  11. Chimeric mitochondrial peptides from contiguous regular and swinger RNA

    Directory of Open Access Journals (Sweden)

    Hervé Seligmann

    2016-01-01

    Full Text Available Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A, multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200× rarer than swinger peptides (3/100,000 versus 6/1000. Among 186 peptides with >8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  12. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  13. Preparation of Soy Peptides by Liquid Fermentation

    Institute of Scientific and Technical Information of China (English)

    LiLi; YangXiaoqun; ZhaoMouming; LiangShizhong

    2002-01-01

    Many kinds of microorganism can produce a mount of protease which subsequently hydrolysis the protein of the medium into peptides when they grow in protein containing liquid medium.In the present investigation,the conditions of preparing soybean peptides by liquid fermentation were studied,following results were obtained:(1)SPI is a nice nitrogen source and meanwhile an inducible factor of protease production;its concentration can be as high as 3%-4%.(2)Sucrose is the best carbon source;its concentration is 1%-4%.(3)Under the conditions of 28℃,initial pH6.0,inoculum size 4%,cell age 36hr and fermentation time 24hr-30hr,we can obtain soybean peptides or fermentation liquor with good flavor,its DH reaches 25%-30% and the yield rate can be as high as 75%.(4)Mass spectrograph indicate the MW of the fermentation liquid or the soybean peptides mainly distribute at about 4000Dal,these imply a promising prospect of industrial application of submerged fermentation in producing soybean peptides.

  14. Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway

    DEFF Research Database (Denmark)

    Hansen, Raino Kristian; Christensen, Claus; Korshunova, Irina;

    2007-01-01

    A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I-F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 a...

  15. 脾氨肽口服冻干粉对小儿支原体感染肺炎伴哮喘临床效果及C反应蛋白的影响%The Clinical Effect and the Influence of CRP of Spleen Peptide Oral Ammonia Producing for Pediatric Pneumonia Mycoplasma Infection Associated with Asthma

    Institute of Scientific and Technical Information of China (English)

    陈克娅; 冯涛

    2016-01-01

    Objective:To observe the clinical effect and the influence of c-reactive protein of ( CRP ) spleen peptide oral ammonia producing for pediatric pneumonia mycoplasma infection associated with asthma. Methods:The data of 124 children with mycoplasma pneumonia with asthma admitted in our hospital from June 2015 to June 2016 were analyzed. According to the different treatment schemes, all the children were di-vided into controll group and observe group. The control group were treated with anti-inflammatory treatment with azithromycin, and the observation group were treated with spleen peptide oral ammonia producing. The clinical effects and c-reactive protein ( CRP ) expression of two groups were compared. Results: The impro-ving effects of IgA, IgG and T lymphocyte subgroup after cure in the observation group were better than that in the control group. The difference was statistically significant (P<0.05). The level of CRP, WBC and creati-nine in the observation group were lower than the control group ( P<0.05) . Conclusion:Mycoplasma pneumo-nia infection associated with asthma role of spleen peptide oral ammonia producing heal can optimize clinical effect, reduce the children c-reactive protein (CRP) levels, it is worth promoting.%目的:研究支原体感染肺炎伴哮喘患儿行脾氨肽口服冻干粉医治对临床效果和C反应蛋白的影响.方法:前瞻性取2015年6月至2016年6月本院收治支原体感染肺炎伴哮喘124例患儿资料进行分析,按不同医治方案分两组,对照组行阿奇霉素抗炎医治,观察组行脾氨肽口服冻干粉医治,比较两组临床效果和C反应蛋白.结果:两组临床效果比较差异显著具统计意义(P<0.05);观察组医治后IgA、IgG与T淋巴细胞亚群改善效果均比对照组优,比较差异具有统计学意义(P<0.05),且C反应蛋白、白细胞与肌酐水平均比对照组低,差异具有统计学意义(P<0.05).结论:支原体感染肺炎伴哮喘患儿行

  16. ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY

    Directory of Open Access Journals (Sweden)

    KK PULICHERLA

    2013-01-01

    Full Text Available Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMP’s are of greatest potential to represent a new class of antibiotics. These peptides have a good scope in current antibiotic research. During the past two decades several AMPs have been isolated from a wide variety of animals (both vertebrates and invertebrates, and plants as well as from bacteria and fungi. These are relatively small (<10kDa, cationic and amphipathic peptides of variable length, sequence and structure. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, protozoa, yeast, fungi and viruses. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. Antimicrobial peptides encompass a wide variety of structural motifs such as α -helical peptides, β -sheet peptides, looped peptides and extended peptides. Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs in recombinant bacterial expression systems which were produced by cloning. This article aims to review in brief the sources of antimicrobial peptides, diversity in structural features, mode of action, production strategies and insight into the current data on their antimicrobial activity followed by a brief comment on the peptides that have entered clinical trials.

  17. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do....... The scFvs were sequenced and characterized, and specificity was characterized by ELISA. The methods developed in this study are universally applicable for antibody phage display to efficiently produce antibody fragments against small peptides....

  18. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  19. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  20. Anti-antimicrobial Peptides

    Science.gov (United States)

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  1. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  2. Antimicrobial Peptides in Echinoderms

    OpenAIRE

    Li, C; Haug, T; K Stensvåg

    2010-01-01

    Antimicrobial peptides (AMPs) are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, d...

  3. Immunotherapy with Allergen Peptides

    OpenAIRE

    Larché Mark

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cro...

  4. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...... was studied with this hook peptide library via the beadbead adhesion screening approach. The recognition pairs interlocked and formed a complex. (chapter 8) During accessing peptide molecular recognition by combinatorial chemistry, we faced several problems, which were solved by a range of analytical...

  5. A Novel Method for Producing Transgenic Enzymes and Peptides

    Science.gov (United States)

    2006-05-31

    1.48 M) .......................................................................... 9.6 c Trace elements CuSO4 5H2O...4H2O............................................................................. 1.0 CaCl2 2H2O

  6. Glucagon-Like Peptide-1 Gene Therapy

    Directory of Open Access Journals (Sweden)

    Anne M. Rowzee

    2011-01-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.

  7. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    Energy Technology Data Exchange (ETDEWEB)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  8. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    NARCIS (Netherlands)

    J.H.W. Rutten (Joost)

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the f

  9. Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    OpenAIRE

    Rutten, Joost

    2010-01-01

    textabstractIn humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the fi rst natriuretic peptide to be discovered and in humans ANP is predominantly formed in the cardiomyocytes of the atria.2 B-type natriuretic peptide (BNP) was fi rst discovered in porcine brain hen...

  10. Truncated glucagon-like peptide-1 (proglucagon 78-107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH)

    DEFF Research Database (Denmark)

    Orskov, C; Nielsen, Jens Høiriis

    1988-01-01

    We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding was obtai......We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding...

  11. Computational analysis and structure predictions of CHH-related peptides from Litopenaeus vannamei.

    Science.gov (United States)

    Nagaraju, G Purna Chandra; Kumari, N Siva; Prasad, G L V; Naik, B Reddya; Borst, D W

    2011-03-01

    The crustaceans produce several related peptides that belong to the crustacean hyperglycemic hormone (CHH) family. While these peptides have similar amino acid sequences, they have diverse biological functions that must arise, in part, from differences in the 3D shape of these peptides. However, it is generally accepted that peptides with a high degree of sequence similarity also have a similar 3-D structure. We used the solution structure of one peptide in the crustacean hyperglycemic hormone family, the molt-inhibiting hormone of the kuruma prawn (Marsupenaeus japonicus), to predict the shape of the five known peptides related to CHH in the Pacific white shrimp, Litopenaeus vannamei. The high similarity of the 3-D structures of these peptides suggests a common fold for the entire family. Nevertheless, minor differences in the shape of these peptides were observed, which may be the basis for their different biological properties.

  12. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  13. Interactions of Gastrointestinal Peptides: Ghrelin and Its Anorexigenic Antagonists

    Directory of Open Access Journals (Sweden)

    Anna-Sophia Wisser

    2010-01-01

    Full Text Available Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK, bombesin, desacyl ghrelin, peptide YY (PYY, as well as glucagon-like peptide (GLP. Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite.

  14. Interactions of Gastrointestinal Peptides: Ghrelin and Its Anorexigenic Antagonists

    Science.gov (United States)

    Wisser, Anna-Sophia; Habbel, Piet; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2010-01-01

    Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite. PMID:20798884

  15. Interactions of gastrointestinal peptides: ghrelin and its anorexigenic antagonists.

    Science.gov (United States)

    Wisser, Anna-Sophia; Habbel, Piet; Wiedenmann, Bertram; Klapp, Burghard F; Mönnikes, Hubert; Kobelt, Peter

    2010-01-01

    Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite.

  16. Diversity Profile and Dynamics of Peptaibols Produced by Green Mould Trichoderma Species in Interactions with Their Hosts Agaricus bisporus and Pleurotus ostreatus.

    Science.gov (United States)

    Marik, Tamás; Urbán, Péter; Tyagi, Chetna; Szekeres, András; Leitgeb, Balázs; Vágvölgyi, Máté; Manczinger, László; Druzhinina, Irina S; Vágvölgyi, Csaba; Kredics, László

    2017-06-01

    Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes fr...

  18. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    Science.gov (United States)

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  19. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  20. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  1. β-PEPTIDES CYCLOBUTANIQUES

    OpenAIRE

    Fernandez, Carlos

    2008-01-01

    The synthesis of β-amino acids, structural analogues of?-Amino acids, is an issue essential in the development of oligopeptides. A lot of work has been conducted on the behavior of β-peptide (sequence of β-amino acids) as well as peptides mixed (mixed β-and β- amino acids). As a result, the conformational preference of β-amino acids will induce the appearance of a three-dimensional structure of the oligopeptide ordered. Thus, several types of helices, sheets and elbows were observed in β-olig...

  2. Immunotherapy with Allergen Peptides

    Directory of Open Access Journals (Sweden)

    Larché Mark

    2007-06-01

    Full Text Available Specific allergen immunotherapy (SIT is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases.

  3. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  4. Antimicrobial peptides in the brain.

    Science.gov (United States)

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  5. Origin and functional diversification of an amphibian defense peptide arsenal.

    Science.gov (United States)

    Roelants, Kim; Fry, Bryan G; Ye, Lumeng; Stijlemans, Benoit; Brys, Lea; Kok, Philippe; Clynen, Elke; Schoofs, Liliane; Cornelis, Pierre; Bossuyt, Franky

    2013-01-01

    The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  6. Origin and functional diversification of an amphibian defense peptide arsenal.

    Directory of Open Access Journals (Sweden)

    Kim Roelants

    Full Text Available The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs acting as defense toxins against predators, and antimicrobial peptides (AMPs providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization, completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  7. C peptides as entry inhibitors for gene therapy.

    Science.gov (United States)

    Egerer, Lisa; Kiem, Hans-Peter; von Laer, Dorothee

    2015-01-01

    Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.

  8. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    . An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  9. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers.

    Science.gov (United States)

    Raad, Markus de; Teunissen, Erik A; Mastrobattista, Enrico

    2014-07-01

    The therapeutic use of nucleic acids relies on the availability of sophisticated delivery systems for targeted and intracellular delivery of these molecules. Such a gene delivery should possess essential characteristics to overcome several extracellular and intracellular barriers. Peptides offer an attractive platform for nonviral gene delivery, as several functional peptide classes exist capable of overcoming these barriers. However, none of these functional peptide classes contain all the essential characteristics required to overcome all of the barriers associated with successful gene delivery. Combining functional peptides into multifunctional peptide vectors will be pivotal for improving peptide-based gene delivery systems. By using combinatorial strategies and high-throughput screening, the identification of multifunctional peptide vectors will accelerate the optimization of peptide-based gene delivery systems.

  10. Precursor-centric genome-mining approach for lasso peptide discovery.

    Science.gov (United States)

    Maksimov, Mikhail O; Pelczer, István; Link, A James

    2012-09-18

    Lasso peptides are a class of ribosomally synthesized posttranslationally modified natural products found in bacteria. Currently known lasso peptides have a diverse set of pharmacologically relevant activities, including inhibition of bacterial growth, receptor antagonism, and enzyme inhibition. The biosynthesis of lasso peptides is specified by a cluster of three genes encoding a precursor protein and two enzymes. Here we develop a unique genome-mining algorithm to identify lasso peptide gene clusters in prokaryotes. Our approach involves pattern matching to a small number of conserved amino acids in precursor proteins, and thus allows for a more global survey of lasso peptide gene clusters than does homology-based genome mining. Of more than 3,000 currently sequenced prokaryotic genomes, we found 76 organisms that are putative lasso peptide producers. These organisms span nine bacterial phyla and an archaeal phylum. To provide validation of the genome-mining method, we focused on a single lasso peptide predicted to be produced by the freshwater bacterium Asticcacaulis excentricus. Heterologous expression of an engineered, minimal gene cluster in Escherichia coli led to the production of a unique lasso peptide, astexin-1. At 23 aa, astexin-1 is the largest lasso peptide isolated to date. It is also highly polar, in contrast to many lasso peptides that are primarily hydrophobic. Astexin-1 has modest antimicrobial activity against its phylogenetic relative Caulobacter crescentus. The solution structure of astexin-1 was determined revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide.

  11. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  12. Recent Advances in Chemoenzymatic Peptide Syntheses

    Directory of Open Access Journals (Sweden)

    Kenjiro Yazawa

    2014-09-01

    Full Text Available Chemoenzymatic peptide synthesis is the hydrolase-catalyzed stereoselective formation of peptide bonds. It is a clean and mild procedure, unlike conventional chemical synthesis, which involves complicated and laborious protection-deprotection procedures and harsh reaction conditions. The chemoenzymatic approach has been utilized for several decades because determining the optimal conditions for conventional synthesis is often time-consuming. The synthesis of poly- and oligopeptides comprising various amino acids longer than a dipeptide continues to pose a challenge owing to the lack of knowledge about enzymatic mechanisms and owing to difficulty in optimizing the pH, temperature, and other reaction conditions. These drawbacks limit the applications of the chemoenzymatic approach. Recently, a variety of enzymes and substrates produced using recombinant techniques, substrate mimetics, and optimal reaction conditions (e.g., frozen aqueous media and ionic liquids have broadened the scope of chemoenzymatic peptide syntheses. In this review, we highlight the recent advances in the chemoenzymatic syntheses of various peptides and their use in developing new materials and biomedical applications.

  13. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  14. Reduced peptide bond pseudopeptide analogues of neurotensin.

    Science.gov (United States)

    Doulut, S; Rodriguez, M; Lugrin, D; Vecchini, F; Kitabgi, P; Aumelas, A; Martinez, J

    1992-01-01

    Pseudopeptide analogues of the C-terminal hexapeptide of neurotensin (H-Arg-Arg-Pro-Tyr-Ile-Leu-OH) were obtained by replacing each peptide bond by the reduced peptide bond CH2NH. The resulting analogues were then examined for their ability to inhibit binding of labeled neurotensin to new-born mouse brain membranes and for stimulation of guinea pig ileum contraction. Replacement of the Ile12-Leu13, Tyr11-Ile12, Pro10-Tyr11 and Lys9-Pro10 peptide bonds resulted in about 2000-, 3400-, 200- and 3400-fold losses, respectively, in binding affinity and 400-, 750-, 250- and 300-fold losses, respectively, in biological activity. Replacement of both Arg8 and Arg9 by lysine led to an analogue exhibiting the same pharmacological profile as the C-terminal hexapeptide of neurotensin. Interestingly, replacement of the Lys8-Lys9 peptide bond by the CH2NH bond produced an analogue exhibiting the same affinity for neurotensin receptors, but 10 times more potent in stimulating guinea pig ileum contraction. N-terminal protected analogues (by the Boc group) showed decreased potency as compared with their amino-free corresponding compounds.

  15. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  16. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications.

  17. APD: the Antimicrobial Peptide Database.

    Science.gov (United States)

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophobic percentage, key residue, unique sequence motif, structure and activity. APD is a useful tool for studying the structure-function relationship of antimicrobial peptides. The database can be accessed via a web-based browser at the URL: http://aps.unmc.edu/AP/main.html.

  18. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  19. Identification of binding peptides of the ADAM15 disintegrin domain using phage display

    Indian Academy of Sciences (India)

    Jing Wu; Min-Chen Wu; Lian-Fen Zhang; Jian-Yong Lei; Lei Feng; Jian Jin

    2009-06-01

    ADAM15 plays an important role in tumour development by interacting with integrins. In this study, we investigated the target peptides of the ADAM15 disintegrin domain. First, we successfully produced the recombinant human ADAM15 disintegrin domain (RADD) that could inhibit melanoma cell adhesion by using Escherichia coli. Second, four specific binding peptides (peptides A, B, C, and D) were selected using a phage display 12-mer peptide library. The screening protocol involved 4 rounds of positive panning on RADD and 2 rounds of subtractive selection with streptavidin. By using the BLAST software and a relevant protein database, integrin v3 was found to be homologous to peptide A. Synthetic peptide A had a highly inhibitory effect on RADD–integrin v3 binding. The results demonstrate the potential application of short peptides for disrupting high-affinity ADAM–integrin interactions.

  20. Identification of multiple antimicrobial peptides from the skin of fine-spined frog, Hylarana spinulosa (Ranidae).

    Science.gov (United States)

    Yang, Xiaolong; Hu, Yuhong; Xu, Shiqi; Hu, Yonghong; Meng, Hao; Guo, Chao; Liu, Yuliang; Liu, Jingze; Yu, Zhijun; Wang, Hui

    2013-12-01

    In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.

  1. Avian host defense peptides.

    Science.gov (United States)

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  2. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  3. Peptides and Food Intake

    OpenAIRE

    Carmen Sobrino Crespo; Aranzazu Perianes Cachero; Lilian Puebla Jiménez; Vicente eBarrios; Eduardo eArilla

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the r...

  4. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA.

    Science.gov (United States)

    Cheung, Wai Ling; Chen, Maria Y; Maksimov, Mikhail O; Link, A James

    2016-10-26

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop.

  5. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  6. Design of host defence peptides for antimicrobial and immunity enhancing activities.

    Science.gov (United States)

    McPhee, Joseph B; Scott, Monisha G; Hancock, Robert E W

    2005-05-01

    Host defense peptides are a vital component of the innate immune systems of humans, other mammals, amphibians, and arthropods. The related cationic antimicrobial peptides are also produced by many species of bacteria and function as part of the antimicrobial arsenal to help the producing organism reduce competition for resources from sensitive species. The antimicrobial activities of many of these peptides have been extensively characterized and the structural requirements for these activities are also becoming increasingly clear. In addition to their known antimicrobial role, many host defense peptides are also involved in a plethora of immune functions in the host. In this review, we examine the role of structure in determining antimicrobial activity of certain prototypical cationic peptides and ways that bacteria have evolved to usurp these activities. We also review recent literature on what structural components are related to these immunomodulatory effects. It must be stressed however that these studies, and the area of peptide research, are still in their infancy.

  7. Effect of cyanobacterial peptides and proteins on coagulation of kaolinite

    Directory of Open Access Journals (Sweden)

    Kateřina Novotná

    2016-12-01

    Full Text Available Coagulation of peptides and proteins produced by the cyanobacterium Microcystis aeruginosa and their influence on the coagulation of hydrophobic kaolinite particles were investigated. For this purpose, the dose of ferric sulphate used as the coagulant was optimized and jar tests with kaolinite, peptides/proteins and both kaolinite and peptides/proteins were carried out under different pH conditions. At pH 4–5.5, the peptides/proteins were efficiently coagulated and peptides/proteins were also found to contribute to the coagulation of kaolinite particles at this pH. Charge neutralization and adsorption were found to be the dominant coagulation mechanisms. The coagulation efficiency and the character of the prevailing coagulation mechanism were strongly dependent on the charge characteristics of the peptides/proteins, kaolinite and hydrolysis products of iron, thus on the pH value. At a pH of about 6, the coagulation process deteriorated due to the formation of soluble Fe-peptide/protein complexes.

  8. Protein- and peptide-modified synthetic polymeric biomaterials.

    Science.gov (United States)

    Krishna, Ohm D; Kiick, Kristi L

    2010-01-01

    This review presents an overview on bio-hybrid approaches of integrating the structural and functional features of proteins and peptides with synthetic polymers and the resulting unique properties in such hybrids, with a focus on bioresponsive/bioactive systems with biomaterials applications. The review is divided in two broad sections. First, we describe several examples of bio-hybrids produced by combining versatile synthetic polymers with proteins/enzymes and drugs that have resulted in (1) hybrid materials based on responsive polymers, (2) responsive hydrogels based on enzyme-catalyzed reactions, protein-protein interactions and protein-drug sensing, and (3) dynamic hydrogels based on conformational changes of a protein. Next, we present hybrids produced by combining synthetic polymers with peptides, classified based on the properties of the peptide domain: (1) peptides with different conformations, such as alpha-helical, coiled-coil, and beta-sheet; (2) peptides derived from structural protein domains such as silk, elastin, titin, and collagen; and (3) peptides with other biofunctional properties such as cell-binding domains and enzyme-recognized degradation domains. (c) 2010 Wiley Periodicals, Inc.

  9. Chromogranin A-derived peptides are involved in innate immunity.

    Science.gov (United States)

    Aslam, R; Atindehou, M; Lavaux, T; Haïkel, Y; Schneider, F; Metz-Boutigue, M-H

    2012-01-01

    New endogenous antimicrobial peptides (AMPs) derived from chromogranin A (CgA) are secreted by nervous, endocrine and immune cells during stress. They display antimicrobial activities by lytic effects at micromolar range using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. These AMPs can also penetrate quickly into neutrophils (without lytic effects), where, similarly to "cell penetrating peptides", they interact with cytoplasmic calmodulin, and induce calcium influx via Store Operated Channels therefore triggering neutrophils activation. Staphylococcus aureus and Salmonella enteritis are bacteria responsible for severe infections. We investigated here the effects of S. aureus and S. enteritis bacterial proteases on CgA-derived peptides and evaluated their antimicrobial activities. We showed that the Glu-C protease produced by S. aureus V8 induces the loss of the AMPs antibacterial activities and produces new antifungal peptides. In addition, four antimicrobial CGA-derived peptides (chromofungin, procatestatin, human/bovine catestatin) are degraded when treated with bacterial supernatants from S. aureus and S. enteritis, whereas, cateslytin, the short active form of catestatin, resists to this degradation. Finally, we demonstrate that several antimicrobial CgA-derived peptides are able to act synergistically with antibiotics against bacteria and fungi indicating their roles in innate defense.

  10. [C-peptide physiological effects].

    Science.gov (United States)

    Shpakov, A O; Granstrem, O K

    2013-02-01

    In the recent years there were numerous evidences that C-peptide, which was previously considered as a product of insulin biosynthesis, is one of the key regulators of physiological processes. C-peptide via heterotrimeric G(i/o) protein-coupled receptors activates a wide range of intracellular effector proteins and transcription factors and, thus, controls the inflammatory and neurotrophic processes, pain sensitivity, cognitive function, macro- and microcirculation, glomerular filtration. These effects of C-peptide are mainly expressed in its absolute or relative deficiency occurred in type 1 diabetes mellitus and they are less pronounced when the level of C-peptide is close to normal. Replacement therapy with C-peptide prevents many complications of type 1 diabetes, such as atherosclerosis, diabetic peripheral neuropathy, and nephropathy. C-peptide interacts with the insulin hexamer complexes and induces their dissociation and, as a result, regulates the functional activity of the insulin signaling system. At the same time, C-peptide at the concentrations above physiological may demonstrate pro-inflammatory effects on the endothelial cells and cause atherosclerotic changes in the vessels, which should be considered in the study of pathogenic mechanisms of complications of type 2 diabetes mellitus, where the level of C peptide is increased, as well as in the development of approaches for C-peptide application in clinic. This review is devoted contemporary achievements and unsolved problems in the study of C-peptide, as an important regulator of physiological and biochemical processes.

  11. DeNovoID: a web-based tool for identifying peptides from sequence and mass tags deduced from de novo peptide sequencing by mass spectroscopy.

    Science.gov (United States)

    Halligan, Brian D; Ruotti, Victor; Twigger, Simon N; Greene, Andrew S

    2005-07-01

    One of the core activities of high-throughput proteomics is the identification of peptides from mass spectra. Some peptides can be identified using spectral matching programs like Sequest or Mascot, but many spectra do not produce high quality database matches. De novo peptide sequencing is an approach to determine partial peptide sequences for some of the unidentified spectra. A drawback of de novo peptide sequencing is that it produces a series of ordered and disordered sequence tags and mass tags rather than a complete, non-degenerate peptide amino acid sequence. This incomplete data is difficult to use in conventional search programs such as BLAST or FASTA. DeNovoID is a program that has been specifically designed to use degenerate amino acid sequence and mass data derived from MS experiments to search a peptide database. Since the algorithm employed depends on the amino acid composition of the peptide and not its sequence, DeNovoID does not have to consider all possible sequences, but rather a smaller number of compositions consistent with a spectrum. DeNovoID also uses a geometric indexing scheme that reduces the number of calculations required to determine the best peptide match in the database. DeNovoID is available at http://proteomics.mcw.edu/denovoid.

  12. Peptides for radiotherapy of neuroendocrine cancers

    Energy Technology Data Exchange (ETDEWEB)

    Melendez A, L. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n esquina con Jesus Carranza, Colonia Moderna de la Cruz, Toluca, C.P. 50180 (Mexico)]. E-mail: lalafort@nuclear.inin.mx

    2002-07-01

    During the last decade there has been a resurgence of interest in therapeutic nuclear medicine, due to the limitation of conventional or external beam radiotherapy in the treatment of secondary or metastatic cancer sites outside of the primary treatment area. Some of the human tumours that produce metastases express high levels of somatostatin receptors. In order to make possible the diagnostic and radiotherapeutic treatment of these kind of tumours, various somatostatin analogue peptides have been developed in recent years. Peptides have become an important class of radiopharmaceuticals,due to its unique ability to detect specific sites as receptors or enzymes. This paper describes the work with {sup 99m} Tc to establish the labelling and analytical conditions for a somatostatin analogue as a precursor, to undertake a therapeutic radiopharmaceutical labelled with {sup 188} Re for treatment of somatostatin receptor positive tumours. (Author)

  13. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.

    Science.gov (United States)

    Boll, Emmanuelle; Drobecq, Hervé; Ollivier, Nathalie; Blanpain, Annick; Raibaut, Laurent; Desmet, Rémi; Vicogne, Jérôme; Melnyk, Oleg

    2015-02-01

    Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.

  14. The role of antimicrobial peptides in chronic inflammatory skin diseases

    Science.gov (United States)

    Majewski, Sławomir

    2016-01-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  15. Combining UV photodissociation with electron transfer for peptide structure analysis.

    Science.gov (United States)

    Shaffer, Christopher J; Marek, Ales; Pepin, Robert; Slovakova, Kristina; Turecek, Frantisek

    2015-03-01

    The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide...

  17. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  18. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds

    Directory of Open Access Journals (Sweden)

    Andrea Gärtner

    2016-06-01

    Full Text Available During studies on bacteria from the Eastern Mediterranean deep-sea, incubation under in situ conditions (salinity, temperature and pressure and heat treatment were used to selectively enrich representatives of Micromonospora. From sediments of the Ierapetra Basin (4400 m depth and the Herodotos Plain (2800 m depth, 21 isolates were identified as members of the genus Micromonospora. According to phylogenetic analysis of 16S rRNA gene sequences, the Micromonospora isolates could be assigned to 14 different phylotypes with an exclusion limit of ≥ 99.5% sequence similarity. They formed 7 phylogenetic clusters. Two of these clusters, which contain isolates obtained after enrichment under pressure incubation and phylogenetically are distinct from representative reference organism, could represent bacteria specifically adapted to the conditions in situ and to life in these deep-sea sediments. The majority of the Micromonospora isolates (90% contained at least one gene cluster for biosynthesis of secondary metabolites for non-ribosomal polypeptides and polyketides (polyketide synthases type I and type II. The determination of biological activities of culture extracts revealed that almost half of the strains produced substances inhibitory to the growth of Gram-positive bacteria. Chemical analyses of culture extracts demonstrated the presence of different metabolite profiles also in closely related strains. Therefore, deep-sea Micromonospora isolates are considered to have a large potential for the production of new antibiotic compounds.

  19. An improved method for utilization of peptide substrates for antibody characterization and enzymatic assays.

    Science.gov (United States)

    Ghosh, Inca; Sun, Luo; Evans, Thomas C; Xu, Ming-Qun

    2004-10-01

    Synthetic peptides have become an important tool in antibody production and enzyme characterization. The small size of peptides, however, has hindered their use in assays systems, such as Western blots, and as immunogens. Here, we present a facile method to improve the properties of peptides for multiple applications by ligating the peptides to intein-generated carrier proteins. The stoichiometric ligation of peptide and carrier achieved by intein-mediated protein ligation (IPL) results in the ligation product migrating as a single band on a SDS-PAGE gel. The carrier proteins, HhaI methylase (M.HhaI) and maltose-binding protein (MBP), were ligated to various peptides; the ligated carrier-peptide products gave sharp, reproducible bands when used as positive controls for antibodies raised against the same peptides during Western blot analysis. We further show that ligation of the peptide antigens to a different thioester-tagged carrier protein, paramyosin, produced immunogens for the production of antisera in rabbits or mice. Furthermore, we demonstrate the generation of a substrate for enzymatic assays by ligating a peptide containing the phosphorylation site for Abl protein tyrosine kinase to a carrier protein. This carrier-peptide protein was used as a kinase substrate that could easily be tested for phosphorylation using a phosphotyrosine antibody in Western blot analysis. These techniques do not require sophisticated equipment, reagents, or skills thereby providing a simple method for research and development.

  20. [Amphibian skin as a source of therapeutic peptides].

    Science.gov (United States)

    Amiche, Mohamed

    2016-01-01

    The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of "brain-gut-skin" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the

  1. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  2. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  3. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi;

    2016-01-01

    underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...... the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM...

  4. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  5. Antitumor Peptides from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Mi Sun

    2011-10-01

    Full Text Available The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.

  6. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  7. Peptides and Food Intake

    Science.gov (United States)

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  8. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  9. Engineering of immunogenic peptides by co-linear synthesis of determinants recognized by B and T cells.

    Science.gov (United States)

    Borras-Cuesta, F; Petit-Camurdan, A; Fedon, Y

    1987-08-01

    The potential of synthetic peptides as vaccines is restricted by their frequent lack of immunogenicity. As with haptens, coupling to a carrier protein is usually required to provide T cell help to anti-peptide antibody-producing B cells. In spite of their short length, a few natural or synthetic peptides are immunogenic: they all include both a determinant recognized by B cells and a proven or putative determinant recognized by T cells. We speculated that it should be possible to induce immunogenicity in peptide haptens by the inclusion of a well characterized determinant recognized by T cells. We thus synthesized two peptides, corresponding to different regions of the major protein VP6 of bovine rotavirus, co-linearly linked to a peptide of influenza virus hemagglutinin which had been shown to induce T helper cells in BALB/c mice. Both peptides induced anti-rotavirus antibodies and were more immunogenic than the corresponding bovine serum albumin-conjugated peptides.

  10. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small ubiquitin-

  11. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee

    2013-10-01

    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  12. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

    Directory of Open Access Journals (Sweden)

    Ryan Haryadi

    Full Text Available Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig heavy chain (HC and kappa light chain (LC was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells.

  13. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  14. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Science.gov (United States)

    Smadbeck, James; Peterson, Meghan B; Zee, Barry M; Garapaty, Shivani; Mago, Aashna; Lee, Christina; Giannis, Athanassios; Trojer, Patrick; Garcia, Benjamin A; Floudas, Christodoulos A

    2014-01-01

    Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2) maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2. These inhibitors should

  15. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  16. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  17. Parallel Syntheses of Peptides on Teflon-Patterned Paper Arrays (SyntArrays).

    Science.gov (United States)

    Deiss, Frédérique; Yang, Yang; Derda, Ratmir

    2016-01-01

    Screening of peptides to find the ligands that bind to specific targets is an important step in drug discovery. These high-throughput screens require large number of structural variants of peptides to be synthesized and tested. This chapter describes the generation of arrays of peptides on Teflon-patterned sheets of paper. First, the protocol describes the patterning of paper with a Teflon solution to produce arrays with solvophobic barriers that are able to confine organic solvents. Next, we describe the parallel syntheses of 96 peptides on Teflon-patterned arrays using the SPOT synthesis method.

  18. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    Koji Tamura

    2011-12-01

    Proteins, the main players in current biological systems, are produced on ribosomes by sequential amide bond (peptide bond) formations between amino-acid-bearing tRNAs. The ribosome is an exquisite super-complex of RNA-proteins, containing more than 50 proteins and at least 3 kinds of RNAs. The combination of a variety of side chains of amino acids (typically 20 kinds with some exceptions) confers proteins with extraordinary structure and functions. The origin of peptide bond formation and the ribosome is crucial to the understanding of life itself. In this article, a possible evolutionary pathway to peptide bond formation machinery (proto-ribosome) will be discussed, with a special focus on the RNA minihelix (primordial form of modern tRNA) as a starting molecule. Combining the present data with recent experimental data, we can infer that the peptidyl transferase center (PTC) evolved from a primitive system in the RNA world comprising tRNA-like molecules formed by duplication of minihelix-like small RNA.

  19. Endogenous opioid peptides and epilepsy

    NARCIS (Netherlands)

    J. Haffmans (Judith)

    1985-01-01

    textabstractIn recent years a large number of pept:ides, many of which were originall.y characterized in non-neural tissues, have been reported to be present in the central nervous system ( CNS) . The detection of these peptides within the CNS has raised many questions regarding their source and mec

  20. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  1. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...

  2. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the uni

  3. New insights into the bioactivity of peptides from probiotics.

    Science.gov (United States)

    Mandal, Santi M; Pati, Bikas R; Chakraborty, Ranadhir; Franco, Octavio L

    2016-06-01

    Probiotics are unique bacteria that offer several therapeutic benefits to human beings when administered in optimum amounts. Probiotics are able to produce antimicrobial substances, which stimulate the body's immune responses. Here, we review in detail the anti-infective peptides derived from probiotics and their potential immunomodulatory and anti-inflammatory activities, including a major role in cross-talk between probiotics and gut microbiota under adverse conditions. Insights from the engineered cell surface of probiotics may provide novel anti-infective therapy by heterologous expression of receptor peptides of bacterial toxins. It may be possible to use antigenic peptides from viral pathogens as live vaccines. Another possibility is to generate antiviral peptides that bind directly to virus particles, while some peptides exert anti-inflammatory and anticancer effects. Some extracellular polymeric substances might serve as anti-infective peptides. These avenues of treatment have remained largely unexplored to date, despite their potential in generating powerful anti-inflammatory and anti-infective products.

  4. Diversity of peptide toxins from stinging ant venoms.

    Science.gov (United States)

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  6. Towards Bio-inspired and Functionalized Peptide Materials

    NARCIS (Netherlands)

    van der Wal, S.|info:eu-repo/dai/nl/314571671

    2014-01-01

    Peptide-based materials constitute a class of molecules that play an important role in many biological processes and are utilized by many organisms to interact with their environment. One of the most well-known examples is spider silk, a material produced by web-spinning spiders composed of

  7. Non-peptide metabolites from the genus Bacillus.

    Science.gov (United States)

    Hamdache, Ahlem; Lamarti, Ahmed; Aleu, Josefina; Collado, Isidro G

    2011-04-25

    Bacillus species produce a number of non-peptide metabolites that display a broad spectrum of activity and structurally diverse bioactive chemical structures. Biosynthetic, biological, and structural studies of these metabolites isolated from Bacillus species are reviewed. This contribution also includes a detailed study of the activity of the metabolites described, especially their role in biological control mechanisms.

  8. Towards Bio-inspired and Functionalized Peptide Materials

    NARCIS (Netherlands)

    van der Wal, S.

    2014-01-01

    Peptide-based materials constitute a class of molecules that play an important role in many biological processes and are utilized by many organisms to interact with their environment. One of the most well-known examples is spider silk, a material produced by web-spinning spiders composed of repeatin

  9. Intein-mediated peptide arrays for epitope mapping and kinase/phosphatase assays.

    Science.gov (United States)

    Xu, Ming-Qun; Ghosh, Inca; Kochinyan, Samvel; Sun, Luo

    2007-01-01

    Synthetic peptides are widely used for production and analysis of antibodies as well as in the study of protein modification enzymes. To circumvent the technical challenges of the existing techniques regarding peptide quantization and normalization, a new method of producing peptide arrays has been developed. This approach utilizes intein-mediated protein ligation that involves linkage of a carrier protein possessing a reactive carboxyl-terminal thioester to a peptide with an amino-terminal cysteine through a native peptide bond. Ligated protein substrates or enzyme-treated samples are arrayed on nitrocellulose membranes with a standard dot-blot apparatus and analyzed by immunoassay. This technique has improved sensitivity and reproducibility, and is suitable for various peptide-based applications. In this report, several experimental procedures including epitope mapping and the study of protein modifications were described.

  10. The Role Of Milk Peptide As Antimicrobial Agent In Supporting Health Status

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2013-06-01

    Full Text Available Antimicrobial peptide is commonly present in all species as a component of their innate immune defense against infection. Antimicrobial peptides derived from milk such as isracidin, casocidin, casecidin and other fragments with variety of amino acid sequence are released upon enzymatic hydrolysis from milk protein К-casein, α-casein, β-casein, α-lactalbumin and β- lactoglobulin. These peptides were produced by the activity of digestive or microbial protease such as trypsin, pepsin, chymosin or alcalase. The mode of action of these peptides is by interaction of their positive with negative charge of target cell membrane leading to disruption of membrane associated with physiological event such as cell division or translocation of peptide across the membrane to interact with cytoplasmic target. Modification of charged or nonpolar aliphatic residues within peptides can enhance or reduce the activities of the peptides against a number of microbial strains and it seems to be strain dependent. Several peptides act not only as an antimicrobial but also as an angiotensin-converting enzyme inhibitor, antioxidant, immunomodulator, antiinflamation, food and feed preservative. Although the commercial production of these peptides is still limited due to lack of suitable large-scale technologies, fast development of some methods for peptide production will hopefully increase the possibility for mass production.

  11. Characterization of antibodies to synthetic nerve growth factor (NGF) and proNGF peptides.

    Science.gov (United States)

    Ebendal, T; Persson, H; Larhammar, D; Lundströmer, K; Olson, L

    1989-03-01

    Sequence data for the mature nerve growth factor (NGF) protein and its precursor are available from molecular cloning of the NGF gene in several species, including mice, humans, rats, and chickens. Hydrophilicity analysis of the predicted rat and chicken prepro-NGF was carried out to locate putative antigenic determinants. Eight peptides were selected and synthesized based on hydrophilicity profiles. Two peptides represent sequences in the rat (and mouse) pro-NGF, one peptide (our peptide P3) represents a highly conserved region of the mature NGF protein (identical in humans, mice, rats, and chickens), two peptides are specific for the mature chicken NGF, and the remaining three peptides are specific for the mature rat NGF (each with only one amino acid substitution compared with corresponding segments of the mouse NGF). For immunization, the peptides were conjugated to keyhold limpet hemocyanin and used to produce antisera in rabbits. After bleeding, peptide-specific antibodies were purified on affinity columns prepared by coupling each of the synthetic peptides. The different peptide antisera and affinity-purified antibodies then were characterized by enzyme-linked immunoassay (ELISA) and immunohistochemistry of the male mouse submandibular gland, a rich exocrine source of NGF. ELISA analysis showed that all peptide antisera bound two to four orders of magnitude better than normal rabbit serum to a coat of their proper peptide. The higher binding was retained by the purified peptide antibodies compared with normal rabbit immunoglobulin. Specific tests, in which one peptide antiserum was checked against different peptide coats in the ELISA, also showed two to four orders of magnitude higher binding of antibodies to the proper synthetic peptide. The peptide antibodies also were tested for their ability to bind to native mouse beta NGF coated to the immunoplates. Only antibodies raised to the conserved P3 peptide recognized native NGF to an extent similar to that

  12. Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a 3 formylmethionyl group

    DEFF Research Database (Denmark)

    Forsman, Huamei; Winther, Malene; Gabl, Michael

    2015-01-01

    Pathogenic Staphylococcus aureus strains produce N-formylmethionyl containing peptides, of which the tetrapeptide fMIFL is a potent activator of the neutrophil formyl peptide receptor 1 (FPR1) and the PSMα2 peptide is a potent activator of the closely related FPR2. Variants derived from these two...

  13. KirCII- promising tool for polyketide diversification

    DEFF Research Database (Denmark)

    Musiol-Kroll, Ewa Maria; Härtner, Thomas; Kulik, Andreas

    2014-01-01

    Kirromycin is produced by Streptomyces collinus Tü 365. This compound is synthesized by a large assembly line of type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS), encoded by the genes kirAI-kirAVI and kirB. The PKSs KirAI-KirAV have no acyltransferase domains integra...... introducing the non-native substrates in an in vivo context. Thus, KirCII represents a promising tool for polyketide diversification....

  14. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification

    DEFF Research Database (Denmark)

    Blin, Kai; Wolf, Thomas; Chevrette, Marc G.

    2017-01-01

    Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding......, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally...

  15. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    2013-01-01

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in chemoenzyma

  16. BPDA - A Bayesian peptide detection algorithm for mass spectrometry

    Directory of Open Access Journals (Sweden)

    Braga-Neto Ulisses

    2010-09-01

    Full Text Available Abstract Background Mass spectrometry (MS is an essential analytical tool in proteomics. Many existing algorithms for peptide detection are based on isotope template matching and usually work at different charge states separately, making them ineffective to detect overlapping peptides and low abundance peptides. Results We present BPDA, a Bayesian approach for peptide detection in data produced by MS instruments with high enough resolution to baseline-resolve isotopic peaks, such as MALDI-TOF and LC-MS. We model the spectra as a mixture of candidate peptide signals, and the model is parameterized by MS physical properties. BPDA is based on a rigorous statistical framework and avoids problems, such as voting and ad-hoc thresholding, generally encountered in algorithms based on template matching. It systematically evaluates all possible combinations of possible peptide candidates to interpret a given spectrum, and iteratively finds the best fitting peptide signal in order to minimize the mean squared error of the inferred spectrum to the observed spectrum. In contrast to previous detection methods, BPDA performs deisotoping and deconvolution of mass spectra simultaneously, which enables better identification of weak peptide signals and produces higher sensitivities and more robust results. Unlike template-matching algorithms, BPDA can handle complex data where features overlap. Our experimental results indicate that BPDA performs well on simulated data and real MS data sets, for various resolutions and signal to noise ratios, and compares very favorably with commonly used commercial and open-source software, such as flexAnalysis, OpenMS, and Decon2LS, according to sensitivity and detection accuracy. Conclusion Unlike previous detection methods, which only employ isotopic distributions and work at each single charge state alone, BPDA takes into account the charge state distribution as well, thus lending information to better identify weak peptide

  17. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    Science.gov (United States)

    Gresswell, Carolyn Gayle

    -based selection and sequence identification, can be designed to have recognition capability to a given crystal structure, specifically, in this case, of calcium carbonate. Calcite mineralization with the peptides produced vaterite when several of the peptides were used in the synthesis process, many having unique morphologies studied using scanning electron microscopy (SEM). The amount of vaterite crystal percentage in these biomineralized mixtures was calculated and it was found to be closely related to peptide concentration for the aragonite-binding peptides. In the aragonite mineralization experiments, a separate solid phase, namely, calcium nitrate hydrate, was produced for one of the peptides along with the other polymorphs of calcite carbonate (ie., aragonite, calcite and vaterite) in the solution in the form of a flat film. These biomineralization results are examined in the light of the effects of peptide sequences and their related solid-binding characteristics

  18. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  19. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  20. General Approach To Determine Disulfide Connectivity in Cysteine-Rich Peptides by Sequential Alkylation on Solid Phase and Mass Spectrometry.

    Science.gov (United States)

    Albert, Anastasia; Eksteen, J Johannes; Isaksson, Johan; Sengee, Myagmarsuren; Hansen, Terkel; Vasskog, Terje

    2016-10-04

    Within the field of bioprospecting, disulfide-rich peptides are a promising group of compounds that has the potential to produce important leads for new pharmaceuticals. The disulfide bridges stabilize the tertiary structure of the peptides and often make them superior drug candidates to linear peptides. However, determination of disulfide connectivity in peptides with many disulfide bridges has proven to be laborious and general methods are lacking. This study presents a general approach for structure elucidation of disulfide-rich peptides. The method features sequential reduction and alkylation of a peptide on solid phase combined with sequencing of the fully alkylated peptide by tandem mass spectrometry. Subsequently, the disulfide connectivity is assigned on the basis of the determined alkylation pattern. The presented method is especially suitable for peptides that are prone to disulfide scrambling or are unstable in solution with partly reduced bridges. Additionally, the use of small amounts of peptide in the lowest nmol range makes the method ideal for structure elucidation of unknown peptides from the bioprospecting process. This study successfully demonstrates the new method for seven different peptides with two to four disulfide bridges. Two peptides with previous contradicting publications, μ-conotoxin KIIA and hepcidin-25, are included, and their disulfide connectivity is confirmed in accordance with the latest published results.

  1. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... found no extraction of copeptin, proadrenomedullin or proANP over the liver. Copeptin correlated with portal pressure (R=0·50, P

  2. Next generation natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Hunter, Ingrid; Goetze, Jens P

    2012-01-01

    Plasma measurement of natriuretic peptides is a "must" for clinical laboratories. For the next generation measurement, the unraveling of the molecular complexity of the peptides points toward a more qualitative assessment, as the posttranslational processing also changes with disease. Changes...... in the molecular heterogeneity could in itself contain valuable information of clinical status, and the time seems right for industry and dedicated researchers in the field to get together and discuss the next generation natriuretic peptide measurement. In such an environment, new strategies can be developed...

  3. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  4. Discovery and optimization of peptide-based anti-cobratoxins

    DEFF Research Database (Denmark)

    Sola, M.; Laustsen, Andreas Hougaard; Johannesen, J.

    More than 5.5 million people per year are victims of snake envenomation, resulting in 125,000 deaths and 400,000amputations worldwide. Antivenoms are still produced by animal immunization procedures, and they areassociated with a high risk of severe adverse reactions. Alternatively, synthetic pep...... peptides may open the possibility for newtherapies with better efficacy and safety. Here, we report the discovery and optimization of a synthetic peptide directedagainst α-cobratoxin (α-CTX), the most toxic component of Monocled cobra (Naja kaouthia)....

  5. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

    DEFF Research Database (Denmark)

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe

    2016-01-01

    -dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i......This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes...

  6. Quantitative measurements of trefoil factor family peptides: possibilities and pitfalls

    DEFF Research Database (Denmark)

    Samson, Mie Hessellund

    2013-01-01

    as well as in the circulation. They have been linked to both inflammatory diseases and to various types of cancer, and serum concentrations of TFF3 show a more than 47-fold increase during pregnancy. Several both commercial and in-house immunoassays exist, but a number of methodological issues remain......The trefoil factor family (TFF) peptides TFF1, TFF2, and TFF3 are produced and secreted by mucous membranes throughout the body. Their importance for the protection and repair of epithelial surfaces is well established, and the three peptides are present in various amounts in mucosal secretions...

  7. Host defense peptides and their antimicrobial-immunomodulatory duality.

    Science.gov (United States)

    Steinstraesser, Lars; Kraneburg, Ursula; Jacobsen, Frank; Al-Benna, Sammy

    2011-03-01

    Host defence peptides (HDPs) are short cationic molecules produced by the immune systems of most multicellular organisms and play a central role as effector molecules of innate immunity. Host defence peptides have a wide range of biological activities from direct killing of invading pathogens to modulation of immunity and other biological responses of the host. HDPs have important functions in multiple, clinically relevant disease processes and their imbalanced expression is associated with pathology in different organ systems and cell types. Furthermore, HDPs are now evaluated as model molecules for the development of novel natural antibiotics and immunoregulatory compounds. This review provides an overview of HDPs focused on their antimicrobial-immunomodulatory duality.

  8. Targeting the Eph System with Peptides and Peptide Conjugates.

    Science.gov (United States)

    Riedl, Stefan J; Pasquale, Elena B

    2015-01-01

    Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.

  9. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  10. Viral O-GalNAc peptide epitopes

    DEFF Research Database (Denmark)

    Olofsson, Sigvard; Blixt, Klas Ola; Bergström, Tomas

    2016-01-01

    on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural...

  11. Neoglycolipidation for modulating peptide properties

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok

    The alarming increase in the prevalence of obesity and associated comorbidities such as type 2 diabetes emphasizes the urgent need for new drugs with both anorectic and antidiabetic eects. Several peptide hormones secreted from the gastrointestinal tract play an important role in the physiological...... regulation of appetite, food intake, and glucose homeostasis, and many of these peptides display a signicant potential for treatment of obesity and/or type 2 diabetes. This Ph.D. thesis describes three novel approaches for utilizing gut peptides as the starting point for developing obesity and diabetes drugs...... of food intake, which was enhanced compared to native NMU. Project II explored the design, synthesis, and characterization of neoglycolipidated analogs of glucagon-like peptide 1 (GLP-1). Neoglycolipidation reduced lipophilicity and maintained or even improved in vitro potency towards the GLP-1 receptor...

  12. Neoglycolipidation for modulating peptide properties

    DEFF Research Database (Denmark)

    van Witteloostuijn, Søren Blok

    regulation of appetite, food intake, and glucose homeostasis, and many of these peptides display a signicant potential for treatment of obesity and/or type 2 diabetes. This Ph.D. thesis describes three novel approaches for utilizing gut peptides as the starting point for developing obesity and diabetes drugs...... of this thesis contribute to emphasize the tremendous therapeutic potential of gut peptides for treatment of obesity and diabetes.......The alarming increase in the prevalence of obesity and associated comorbidities such as type 2 diabetes emphasizes the urgent need for new drugs with both anorectic and antidiabetic eects. Several peptide hormones secreted from the gastrointestinal tract play an important role in the physiological...

  13. Therapeutical Potential of Venom Peptides

    Directory of Open Access Journals (Sweden)

    İlker Kelle

    2006-01-01

    Full Text Available The term of pharmazooticals is known as a few amount of drugs derived from natural sources such as plants, venomous species of snakes, spiders, scorpions, frogs, lizards and cone snails. Peptide components of venoms are directed against wide variety of pharmacological targets such as ion channels and receptors. At the beginning, a number of these peptides have been used in experimental studies for defining the physiological, biochemical and immunological activities of organisms like mammalians. In recent studies, it has been shown that venom peptides can be valuable in treatment of acute and chronic pain, autoimmune and cardiovascular diseases, neurological disorders and chronic inflammatory and tumoral processes. Therefore particularly in clinical approaches, these peptide molecules or their synthetic analogues are considered as alternative agents that can be used instead of classical drugs for many clinical disorders due to their potent activity besides very few side effects.

  14. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... pathogens, it is a challenge to sustain food production. *Corresponding ... Genetically modified plants (GMPs) resistance to plant pathogens are an .... tically developed peptides have been tested in topic treatments during ...

  15. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  16. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  17. The role of antimicrobial peptides in selected dermatoses

    Directory of Open Access Journals (Sweden)

    Izabela Błażewicz

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs are natural components of the immune system of organisms from the prokaryotic and eukaryotic kingdoms. The human body is equipped with more than 100 antimicrobial peptides that are an integral part of innate immunity. The main AMP families in human skin are β-defensins and cathelicidins. They are produced in cells such as keratinocytes, sweat glands, neutrophils, monocytes, NK cells and mast cells. Their particular function is a broad spectrum of antibacterial as well as antifungal, antiviral and antiprotozoal activity. The ability to kill bacteria involves penetration and destruction of the cell membrane, as opposed to traditional antibiotics that act by binding to specific cell structure. The antimicrobial peptides are involved in the pathogenesis of various skin diseases, including atopic dermatitis, psoriasis, and rosacea. The lack of a specific molecular target in a bacterial cell minimizes the risk of resistance development; hence the AMPs have become the target of intensive research in the last two decades.

  18. Fiber formation of a synthetic spider peptide derived from Nephila clavata.

    Science.gov (United States)

    Hidaka, Yuji; Kontani, Ko-Ichi; Taniguchi, Rina; Saiki, Masatoshi; Yokoi, Sayoko; Yukuhiro, Kenji; Yamaguchi, Hiroshi; Miyazawa, Mitsuhiro

    2011-01-01

    Dragline silk is a high-performance biopolymer with exceptional mechanical properties. Artificial spider dragline silk is currently prepared by a recombinant technique or chemical synthesis. However, the recombinant process is costly and large-sized synthetic peptides are needed for fiber formation. In addition, the silk fibers that are produced are much weaker than a fiber derived from a native spider. In this study, a small peptide was chemically synthesized and examined for its ability to participate in fiber formation. A short synthetic peptide derived from Nephila clavata was prepared by a solid-phase peptide method, based on a prediction using the hydrophobic parameter of each individual amino acid residue. After purification of the spider peptide, fiber formation was examined under several conditions. Fiber formation proceeded in the acidic pH range, and larger fibers were produced when organic solvents such as trifluoroethanol and acetonitrile were used at an acidic pH. Circular dichroism measurements of the spider peptide indicate that the peptide has a beta-sheet structure and that the formation of a beta-sheet structure is required for the spider peptide to undergo fiber formation.

  19. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions.

  20. Bioactive Peptides in Milk and Dairy Products: A Review.

    Science.gov (United States)

    Park, Young Woo; Nam, Myoung Soo

    2015-01-01

    Functionally and physiologically active peptides are produced from several food proteins during gastrointestinal digestion and fermentation of food materials with lactic acid bacteria. Once bioactive peptides (BPs) are liberated, they exhibit a wide variety of physiological functions in the human body such as gastrointestinal, cardiovascular, immune, endocrine, and nervous systems. These functionalities of the peptides in human health and physiology include antihypertensive, antimicrobial, antioxidative, antithrombotic, opioid, anti-appetizing, immunomodulatory and mineral-binding activities. Most of the bioactivities of milk proteins are latent, being absent or incomplete in the original native protein, but full activities are manifested upon proteolytic digestion to release and activate encrypted bioactive peptides from the original protein. Bioactive peptides have been identified within the amino acid sequences of native milk proteins. Due to their physiological and physico-chemical versatility, milk peptides are regarded as greatly important components for health promoting foods or pharmaceutical applications. Milk and colostrum of bovine and other dairy species are considered as the most important source of natural bioactive components. Over the past a few decades, major advances and developments have been achieved on the science, technology and commercial applications of bioactive components which are present naturally in the milk. Although the majority of published works are associated with the search of bioactive peptides in bovine milk samples, some of them are involved in the investigation of ovine or caprine milk. The advent of functional foods has been facilitated by increasing scientific knowledge about the metabolic and genomic effects of diet and specific dietary components on human health.

  1. [Preparation and characterization of the recombinant protein containing immunomimetic peptide of benzo[a]pyrene].

    Science.gov (United States)

    Apal'ko, S V; Lunin, V G; Filipenko, M L; Matveeva, V A; Liashchuk, A M; Lavrova, N V; Sherina, E A; Aver'ianov, A V; Kostianko, M V; Glushkov, A N

    2011-01-01

    Two recombinant plasmids were constructed. The first plasmid contained the hybrid gene composed of immunomimetic peptide of benzo[a]pyrene, of the protein pIII of bacteriophage M13 and of cellulose binding domain encoding sequences. The second plasmid contained the hybrid gene composed of the signal peptide of the protein pIII of bacteriophage M13, of immunomimetic peptide of benzo[a]pyrene, of the protein pill of bacteriophage M13 and of cellulose binding domain sequences. The obtained recombinant plasmids were used in expression of chimeric protein containing immunomimetic peptide ofbenzo[a]pyrene based on strain E. coli M15. The lack of the recombinant protein expression using first plasmid was demonstrated. In the same time, it was shown that accumulation of recombinant protein contained immunomimetic peptide with signal peptide of the protein pIIIl of bacteriophage was present. This chimeric protein was produced in "mature" (without signal peptide) and "unprocessing" (with signal peptide) forms. Using the Western-blot analysis, it was shown that the "mature" form only specifically bound to the B2 monoclonal antibody against benzo[a]pyrene. Thus, we expressed, purified, and characterized the recombinant protein containing immunomimetic peptide of benzo[a]pyrene.

  2. Therapeutic potential of dairy bioactive peptides: A contemporary perspective.

    Science.gov (United States)

    Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar

    2016-02-06

    Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.

  3. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  4. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  5. Rice Bran Protein as a Potent Source of Antimelanogenic Peptides with Tyrosinase Inhibitory Activity.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-10-28

    Rice (Oryza sativa) is consumed as a staple food globally, and rice bran, the byproduct, is an unused biomass that is ultimately discarded as waste. Thus, in the present study, a technique for producing tyrosinase inhibitory peptides from rice bran protein (RBP) was developed. Simultaneous treatment of RBP with chymotrypsin and trypsin produced numerous peptides. Subsequently, six tyrosinase inhibitory peptides were isolated from the hydrolysate fractions in a multistep purification protocol, and their amino acid sequences were determined. Three of these peptides had a C-terminal tyrosine residue and exhibited significant inhibitory effects against tyrosinase-mediated monophenolase reactions. Furthermore, peptide CT-2 (Leu-Gln-Pro-Ser-His-Tyr) potently inhibited melanogenesis in mouse B16 melanoma cells without causing cytotoxicity, suggesting the potential of CT-2 as an agent for melanin-related skin disorder treatment. The present data indicate that RBP is a potent source of tyrosinase inhibitory peptides and that simultaneous treatment of RBP with chymotrypsin and trypsin efficiently produces these peptides.

  6. Versatile Peptide C-Terminal Functionalization via a Computationally Engineered Peptide Amidase

    NARCIS (Netherlands)

    Wu, Bian; Wijma, Hein J.; Song, Lu; Rozeboom, Henriette J.; Poloni, Claudia; Tian, Yue; Arif, Muhammad I.; Nuijens, Timo; Quaedflieg, Peter J. L. M.; Szymanski, Wiktor; Feringa, Ben L.; Janssen, Dick B.

    2016-01-01

    The properties of synthetic peptides, including potency, stability, and bioavailability, are strongly influenced by modification of the peptide chain termini. Unfortunately, generally applicable methods for selective and mild C-terminal peptide functionalization are lacking. In this work, we explore

  7. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    OBJECTIVE: Insulin-like peptide 5 (INSL5) is a recently identified gut hormone that is produced predominantly by L-cells in the colon, but its function is unclear. We have previously shown that colonic expression of the gene for the L-cell hormone GLP-1 is high in mice that lack a microbiota......-D) and antibiotic-treated mice, and also assessed the effect of dietary changes on colonic Insl5 expression. In addition, we characterized the metabolic phenotype of Insl5-/- mice. RESULTS: We showed that colonic Insl5 expression was higher in GF and antibiotic-treated mice than in CONV-R mice, whereas Insl5...

  8. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  9. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  10. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  11. Peptide synthesis using unprotected peptides through orthogonal coupling methods.

    Science.gov (United States)

    Tam, J P; Lu, Y A; Liu, C F; Shao, J

    1995-01-01

    We describe an approach to the synthesis of peptides from segments bearing no protecting groups through an orthogonal coupling method to capture the acyl segment as a thioester that then undergoes an intramolecular acyl transfer to the amine component with formation of a peptide bond. Two orthogonal coupling methods to give the covalent ester intermediate were achieved by either a thiol-thioester exchange mediated by a trialkylphosphine and an alkylthiol or a thioesterification by C alpha-thiocarboxylic acid reacting with a beta-bromo amino acid. With this approach, unprotected segments ranging from 4 to 37 residues were coupled to aqueous solution to give free peptides up to 54 residues long with high efficiency. Images Fig. 1 PMID:8618926

  12. Twilight reloaded: the peptide experience

    Science.gov (United States)

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2017-01-01

    The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallo­graphic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756

  13. Controlling the morphology of metal-triggered collagen peptide assemblies through ligand alteration.

    Science.gov (United States)

    Kotha, Raghavendhar R; Chmielewski, Jean

    2015-07-01

    A number of methods have been explored to promote the higher order assembly of collagen peptide triple helices. In one case, NCoH, a complex hierarchical metal-promoted assembly was observed to form micron-scaled florettes with a ruffled surface topology at the nanoscale. In an effort to elucidate the role of the ligands in this collagen peptide assemblage, we reduced the number of carboxylates within the N-terminal ligand to produce a new peptide, ICoH. A striking difference in the morphology of the metal-triggered material was observed with ICoH, with stacked arrays of nanofibrils predominating. As the peptide to metal ion ratio was increased, the length of the stacks of fibrils was also observed to increase. These data demonstrate that a significantly less complex assembly process occurs with the removal of a single carboxylate moiety from the metal binding ligand at the termini of the collagen peptide. © 2015 Wiley Periodicals, Inc.

  14. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed......Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...

  15. Effect of soy peptide on brewing beer.

    Science.gov (United States)

    Kitagawa, Sayuri; Mukai, Nobuhiko; Furukawa, Yuko; Adachi, Kanako; Mizuno, Akihiro; Iefuji, Haruyuki

    2008-04-01

    Here, we examined the effect of soy peptides (SPs) on the fermentation and growth of Yeast Bank Weihenstephan 34/70 (W34/70), a bottom-fermenting yeast. We compared fermentation for SP with that for a free amino acid (FAA) mixture having the same amino acid composition as SP, as a nitrogen source. Maltose syrup was used as a carbon source, and the medium contained excess amounts of essential minerals and vitamins. We observed that SP was better than FAA mixture at promoting fermentation and growth and that much more beta-phenylethyl alcohol was produced during fermentation with SP than with FAA mixture. Subsequently, we compared fermentations with the FAA mixture and selected mixtures containing various dipeptides of Phe as a nitrogen source. We found that the rates of Phe metabolism and beta-phenylethyl alcohol generation were much higher when Phe was presented as a dipeptide (Phe-Asp, Phe-Leu, or Phe-Phe) than when presented as FAA. These results show that amino acids such as Phe are absorbed more rapidly when presented as a peptide than as FAA, resulting in a more rapid production of beta-phenylethyl alcohol.

  16. Calcitonin gene related peptide and its functions

    Directory of Open Access Journals (Sweden)

    Karimian M

    1998-07-01

    Full Text Available Calcitonin Gene Related Peptide (CGRP was first reported in 1982. This peptide contains 37 amino acids which could be found in Alpha and Beta forms. CGRP shows diversity both in its receptors and biological effects and up to now four different types of receptors have been reported. It can act like a neurotransmitter, local hormone and neuromodulator. They have a variety of effects on different organs such as a potent effect on vasodilation and smooth muscle relaxation. Ability of CGRP for induction of protein extravasation from blood vessels was uncertain. In this study intra-articular infusion of 10^-6 M CGRP to the rat knee joint induced significant protein extravasation into the rat knee joint space. The amount of protein was detected by modified Iawata method which could detect amount of protein between 5-500 mg/L. Higher and lower concentrations failed to induce protein extravasation. Failure in higher concentration was likely due to significant fall in blood pressure. In the presence of an arterial hypotension induced by an ? adenoreceptor antagonist, 10^-6 M of CGRP failed to produce protein extravasation. This effect of CGRP was a specific active effect and not a passive effect due to its potent vasodilation effect, as similar vasodilatory response induced by a ?-adrenoreceptor agonist failed to induce protein extravasation. There is more than 50% of sensory neurons which contain CGRP and they are spread in all over the body and joints, therefore CGRP induced protein extravasation can potentiate inflammation in different organs.

  17. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  18. Expression of a male accessory gland peptide of Leptinotarsa decemlineata in insect cells infected with a recombinant baculovirus.

    NARCIS (Netherlands)

    Smid, H.M.; Schooneveld, H.; Deserno, M.L.L.G.; Put, B.; Vlak, J.M.

    1998-01-01

    The male accessory glands (MAGs) of Leptinotarsa decemlineata produce an 8kDa peptide, designated Led-MAGP, that is recognized by monoclonal antibody MAC-18. The site of synthesis, amino acid sequence and the gene encoding this peptide have been documented (). The primary structure is homologous to

  19. Expression of a male accessory gland peptide of Leptinotarsa decemlineata in insect cells infected with a recombinant baculovirus.

    NARCIS (Netherlands)

    Smid, H.M.; Schooneveld, H.; Deserno, M.L.L.G.; Put, B.; Vlak, J.M.

    1998-01-01

    The male accessory glands (MAGs) of Leptinotarsa decemlineata produce an 8kDa peptide, designated Led-MAGP, that is recognized by monoclonal antibody MAC-18. The site of synthesis, amino acid sequence and the gene encoding this peptide have been documented (). The primary structure is homologous to

  20. IRMPD spectroscopy reveals a novel rearrangement reaction for modified peptides that involves elimination of the N-terminal amino acid

    NARCIS (Netherlands)

    van Stipdonk, M.J.; Patterson, K.; Gibson, J.K.; Berden, G.; Oomens, J.

    2015-01-01

    In this study, peptides were derivatized by reaction with salicylaldehyde to create N-terminal imines (Schiff bases). Collision-induced dissociation of the imine-modified peptides produces a complete series of b and a ions (which reveal sequence). However, an unusual pathway is also observed, one th

  1. In silico and in vitro studies of cytotoxic activity of different peptides derived from vesicular stomatitis virus G protein

    Directory of Open Access Journals (Sweden)

    Fereshte Ghandehari

    2015-01-01

    Conclusion: The results confirmed that P26 and P7 peptides might induce membrane damage and initiate apoptosis. The present study suggested that P26 and P7 peptides could be appropriate candidates for further studies as cytotoxic agents and modifications in the residue at positions 70-280 might potentially produce a more efficient VSVG protein in gene therapy.

  2. Milk peptides increase iron solubility in water but do not affect DMT-1 expression in Caco-2 cells

    Science.gov (United States)

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. Our objectives were to investigate whether these fractions a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells b) enhance iron dialyzability when added in meals. Peptid...

  3. Intracellular peptides: From discovery to function

    Directory of Open Access Journals (Sweden)

    Emer S. Ferro

    2014-06-01

    Full Text Available Peptidomics techniques have identified hundreds of peptides that are derived from proteins present mainly in the cytosol, mitochondria, and/or nucleus; these are termed intracellular peptides to distinguish them from secretory pathway peptides that function primarily outside of the cell. The proteasome and thimet oligopeptidase participate in the production and metabolism of intracellular peptides. Many of the intracellular peptides are common among mouse tissues and human cell lines analyzed and likely to perform a variety of functions within cells. Demonstrated functions include the modulation of signal transduction, mitochondrial stress, and development; additional functions will likely be found for intracellular peptides.

  4. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  5. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an......Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI...

  6. The Two-Peptide (Class-IIb) Bacteriocins: Genetics, Biosynthesis, Structure, and Mode of Action

    Science.gov (United States)

    Nissen-Meyer, Jon; Oppegård, Camilla; Rogne, Per; Haugen, Helen Sophie; Kristiansen, Per Eugen

    The two-peptide (class-IIb) bacteriocins consist of two different peptides, both of which are required to obtain high antimicrobial activity. These bacteriocins kill target-cells by inducing membrane-leakage and they seem to display some specificity with respect to the molecules they transfer across membranes. The genes encoding the two peptides of two-peptide bacteriocins are next to each other on the same operon. In the same or a nearby operon are genes encoding (i) the immunity protein that protects the bacteriocin-producer from its own bacteriocin, (ii) a dedicated ABC-transporter that exports the bacteriocin from cells and cleaves off the N-terminal bacteriocin leader sequence, and (iii) an accessory protein whose exact function has not been fully clarified. Some two-peptide bacteriocins appear to be produced constitutively, whereas the production of other two-peptide bacteriocins is regulated through a three-component regulatory system that consists of a peptide pheromone, a membrane-associated histidine protein kinase, and response regulators. It has recently been proposed that the two peptides of (some) two-peptide bacteriocins may form a membrane-penetrating helix-helix structure involving helix-helix interacting GxxxG-motifs present in all currently characterized two-peptide bacteriocins. It has also been suggested that the helix-helix structure interacts with an integrated membrane (transport) protein, thus inducing a conformational change in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to that of the pediocin-like (class-IIa) bacteriocins and lactococcin A, which bind to a part of the mannose phosphotransferase permease that is embedded in the cell membrane, thereby altering the conformation of the ­permease in a manner that causes membrane-leakage and cell death.

  7. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  8. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... in vitro and in vivo, making them attractive pharmacological tools suitable for drug development for the treatment of neurodegenerative disorders and impaired memory....

  9. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...

  10. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  11. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  12. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  13. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  14. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  15. Major Peptides from Amaranth (Amaranthus cruentus Protein Inhibit HMG-CoA Reductase Activity

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Manólio Soares

    2015-02-01

    Full Text Available The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase, a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC, and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.

  16. Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion.

    Science.gov (United States)

    Dettin, Monica; Zamuner, Annj; Roso, Martina; Iucci, Giovanna; Samouillan, Valerie; Danesin, Roberta; Modesti, Michele; Conconi, Maria Teresa

    2015-10-01

    The development of a biomimetic surface able to promote endothelialization is fundamental in the search for blood vessel substitutes that prevent the formation of thrombi or hyperplasia. This study aims at investigating the effect of functionalization of poly-ε-caprolactone or poly(L-lactic acid-co-ɛ-caprolactone) electrospun scaffolds with a photoreactive adhesive peptide. The designed peptide sequence contains four Gly-Arg-Gly-Asp-Ser-Pro motifs per chain and a p-azido-Phe residue at each terminus. Different peptide densities on the scaffold surface were obtained by simply modifying the peptide concentration used in pretreatment of the scaffold before UV irradiation. Scaffolds of poly-ε-caprolactone embedded with adhesive peptides were produced to assess the importance of peptide covalent grafting. Our results show that the scaffolds functionalized with photoreactive peptides enhance adhesion at 24 h with a dose-dependent effect and control the proliferation of human umbilical vein endothelial cells, whereas the inclusion of adhesive peptide in the electrospun matrices by embedding does not give satisfactory results.

  17. Heteroclitic CD33 peptide with enhanced anti-acute myeloid leukemic immunogenicity.

    Science.gov (United States)

    Bae, Jooeun; Martinson, Jeffrey A; Klingemann, Hans G

    2004-10-15

    The goal of these studies was to engineer a synthetic CD33 peptide with enhanced immunogenicity for the induction of acute myeloid leukemia (AML)-specific CTLs. Eight modified CD33 peptides YLISGDSPV, YIGSGDSPV, YIIIGDSPV, YIILGDSPV, YIISGISPV, YIISGDLPV, YIISGDSWV and YIISGDSPL were designed for increased HLA-A2.1 or T cell receptor affinity and compared with the native CD33(65-73) peptide, AIISGDSPV, for enhanced immunogenicity. The YLISGDSPV peptide was found to be the most immunogenic epitope producing highly cytolytic CTLs against AML target cells. The CTLs generated withYLISGDSPV peptide showed CD33 peptide-specificity through targeting of both native (AIISGDSPV) and modified (YLISGDSPV) peptide presenting EBV-BLCL. The CTL cultures displayed a distinct phenotype consisting of a high percentage of activated memory (CD69(+)/CD45RO(+))-CD8(+)and a low percentage of naive (CD45RA(+)/CCR7(+))-CD8(+)cells. In addition, T-cell clones specific to the YLISGDSPV peptide were isolated and characterized to target AML cells. The clones exhibited both HLA-A2.1-restricted and AML cell-specific cytotoxicity that was mediated through a granule-dependent pathway. More importantly, the CTL clones did not lyse or inhibit the proliferation of normal CD34(+) progenitor cells. In conclusion, we report on the identification of a highly immunogenic heteroclitic YLISGDSPV CD33 epitope that is a promising candidate for immunotherapy targeting AML.

  18. Stitched α-helical peptides via bis ring-closing metathesis.

    Science.gov (United States)

    Hilinski, Gerard J; Kim, Young-Woo; Hong, Jooyeon; Kutchukian, Peter S; Crenshaw, Charisse M; Berkovitch, Shaunna S; Chang, Andrew; Ham, Sihyun; Verdine, Gregory L

    2014-09-03

    Conformationally stabilized α-helical peptides are capable of inhibiting disease-relevant intracellular or extracellular protein-protein interactions in vivo. We have previously reported that the employment of ring-closing metathesis to introduce a single all-hydrocarbon staple along one face of an α-helical peptide greatly increases α-helical content, binding affinity to a target protein, cell penetration through active transport, and resistance to proteolytic degradation. In an effort to improve upon this technology for stabilizing a peptide in a bioactive α-helical conformation, we report the discovery of an efficient and selective bis ring-closing metathesis reaction leading to peptides bearing multiple contiguous staples connected by a central spiro ring junction. Circular dichroism spectroscopy, NMR, and computational analyses have been used to investigate the conformation of these "stitched" peptides, which are shown to exhibit remarkable thermal stabilities. Likewise, trypsin proteolysis assays confirm the achievement of a structural rigidity unmatched by peptides bearing a single staple. Furthermore, fluorescence-activated cell sorting (FACS) and confocal microscopy assays demonstrate that stitched peptides display superior cell penetrating ability compared to their stapled counterparts, suggesting that this technology may be useful not only in the context of enhancing the drug-like properties of α-helical peptides but also in producing potent agents for the intracellular delivery of proteins and oligonucleotides.

  19. Peptidomic identification and biological validation of neuroendocrine regulatory peptide-1 and -2.

    Science.gov (United States)

    Yamaguchi, Hideki; Sasaki, Kazuki; Satomi, Yoshinori; Shimbara, Takuya; Kageyama, Haruaki; Mondal, Muhtashan S; Toshinai, Koji; Date, Yukari; González, Luis J; Shioda, Seiji; Takao, Toshifumi; Nakazato, Masamitsu; Minamino, Naoto

    2007-09-07

    Recent advances in peptidomics have enabled the identification of previously uncharacterized peptides. However, sequence information alone does not allow us to identify candidates for bioactive peptides. To increase an opportunity to discover bioactive peptides, we have focused on C-terminal amidation, a post-translational modification shared by many bioactive peptides. We analyzed peptides secreted from human medullary thyroid carcinoma TT cells that produce amidated peptides, and we identified two novel amidated peptides, designated neuroendocrine regulatory peptide (NERP)-1 and NERP-2. NERPs are derived from distinct regions of the neurosecretory protein that was originally identified as a product of a nerve growth factor-responsive gene in PC12 cells. Mass spectrometric analysis of the immunoprecipitate using specific antibodies as well as reversed phase-high performance liquid chromatography coupled with radioimmunoassay analysis of brain extract demonstrated the endogenous presence of NERP-1 and NERP-2 in the rat. NERPs are abundant in the paraventricular and supraoptic nuclei of the rat hypothalamus and colocalized frequently with vasopressin but rarely with oxytocin. NERPs dose-dependently suppressed vasopressin release induced by intracerebroventricular injection of hypertonic NaCl or angiotensin II in vivo. NERPs also suppressed basal and angiotensin II-induced vasopressin secretion from hypothalamic explants in vitro. Bioactivity of NERPs required C-terminal amidation. Anti-NERP IgGs canceled plasma vasopressin reduction in response to water loading, indicating that NERPs could be potent endogenous suppressors of vasopressin release. These findings suggest that NERPs are novel modulators in body fluid homeostasis.

  20. Design of Responsive Peptide-based Hydrogels as Therapeutics

    Science.gov (United States)

    Schneider, Joel

    2008-03-01

    Hydrogels composed of self-assembled peptides have been designed to allow minimally invasive delivery of cells in-vivo. These peptides undergo sol-gel phase transitions in response to biological media enabling the three-dimensional encapsulation of cells. Peptides are designed such that when dissolved in aqueous solution, exist in an ensemble of random coil conformations rendering them fully soluble. The addition of an exogenous stimulus results in peptide folding into beta-hairpin conformation. This folded structure undergoes rapid self-assembly into a highly crosslinked hydrogel network whose nanostructure is defined and controllable. This mechanism, which links intramolecular peptide folding to self-assembly, allows temporally resolved material formation. In general, peptides can be designed to fold and assemble affording hydrogel in response to changes in pH or ionic strength, the addition of heat or even light. In addition to these stimuli, DMEM cell culture media is able to initiate folding and consequent self-assembly. DMEM-induced gels are cytocompatible towards NIH 3T3 murine fibroblasts, mesenchymal stem cells, hepatocytes, osteoblasts and chondrocytes. As an added bonus, many of these hydrogels possess broad spectrum antibacterial activity suggesting that adventitious bacterial infections that may occur during surgical manipulations and after implantation can be greatly reduced. Lastly, when hydrogelation is triggered in the presence of cells, gels become impregnated and can serve as a delivery vehicle. A unique characteristic of these gels is that when an appropriate shear stress is applied, the gel will shear-thin, becoming an injectable low viscosity gel. However, after the application of shear has stopped, the material quickly self-heals producing a gel with mechanical rigidity nearly identical to the original hydrogel. This attribute allows cell-impregnated gels to be delivered to target tissues via syringe where they quickly recover complementing

  1. Identification of peptides that bind hepatitis C virus envelope protein E2 and inhibit viral cellular entry from a phage-display peptide library.

    Science.gov (United States)

    Lü, Xin; Yao, Min; Zhang, Jian-Min; Yang, Jing; Lei, Ying-Feng; Huang, Xiao-Jun; Jia, Zhan-Sheng; Ma, Li; Lan, Hai-Yun; Xu, Zhi-Kai; Yin, Wen

    2014-05-01

    Hepatitis C virus (HCV) envelope protein E2 is required for the entry of HCV into cells. Viral envelope proteins interact with cell receptors in a multistep process, which may be a promising target for the development of novel antiviral agents. In this study, a heptapeptide M13 phage-display library was screened for peptides that bind specifically to prokaryotically expressed, purified truncated HCV envelope protein E2. ELISA assay was used to quantify the binding of the peptides to HCV E2 protein. Flow cytometry, quantitative reverse-transcription PCR and western blotting were used to investigate the inhibition effect of one peptide on HCV infection in hepatoma cells (Huh7.5) in vitro. Four peptides capable of binding specifically to HCV E2 protein were obtained after three rounds of biopanning. Peptide C18 (WPWHNHR), with the highest affinity for binding HCV E2 protein, was synthesized. The results showed that peptide C18 inhibited the viral infectivity of both HCV pseudotype particles (HCVpp) harboring HCV envelope glycoproteins and cell-culture produced HCV (HCVcc). Thus, this study demonstrated that peptide C18 is a potential candidate for anti-HCV therapy as a novel viral entry inhibitor.

  2. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications.

    Science.gov (United States)

    Papagianni, Maria

    2003-09-01

    Ribosomally synthesized peptides with antimicrobial properties (antimicrobial peptides-AMPs) are produced by eukaryotes and prokaryotes and represent crucial components of their defense systems against microorganisms. Although they differ in structure, they are nearly all cationic and very often amphiphilic, which reflects the fact that many of them attack their target cells by permeabilizing the cell membrane. They can be roughly categorized into those that have a high content of a certain amino acid, most often proline, those that contain intramolecular disulfide bridges, and those with an amphiphilic region in their molecule if they assume an alpha-helical structure. Most of the known ribosomally synthesized peptides with antimicrobial functions have been identified and studied during the last 20 years. As a result of these studies, new knowledge has been acquired into biology and biochemistry. It has become evident that these peptides may be developed into useful antimicrobial additives and drugs. The use of two-peptide antimicrobial peptides as replacement for clinical antibiotics is promising, though their applications in preservation of foods (safe and effective for use in meat, vegetables, and dairy products), in veterinary medicine, and in dentistry are more immediate. This review focuses on the current status of some of the main types of ribosomally synthesized AMPs produced by eucaryotes and procaryotes and discusses the novel antimicrobial functions, new developments, e.g. heterologous production of bacteriocins by lactic acid bacteria, or construction of multibacteriocinogenic strains, novel applications related to these peptides, and future research paradigms.

  3. Producing Against Poverty

    NARCIS (Netherlands)

    Ypeij, Annelou

    2000-01-01

    Producing against Poverty is an anthropological research on micro-entrepreneurs in Lima, Peru. It analyses the way micro-producers accumulate capital. The anthropological approach of the book starts with an analysis of the daily lives of the micro-producers. Its gender approach makes a comparison be

  4. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  5. Part 1. Antimicrobial and Immunomodulatory Peptides

    African Journals Online (AJOL)

    Furthermore, some peptides have been shown to have mineral ... immunopotentiating and antimicrobial properties including .... that this will give a clarion call to focus on the benefits ..... peptide could also be used in cosmetic, eye-care, oral.

  6. The antibacterial peptide ABP-CM4: the current state of its production and applications.

    Science.gov (United States)

    Li, Jian Feng; Zhang, Jie; Xu, Xing Zhou; Han, Yang Yang; Cui, Xian Wei; Chen, Yu Qing; Zhang, Shuang Quan

    2012-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as a promising candidate for a new antibiotic. For pharmaceutical applications, a large quantity of antimicrobial peptides needs to be produced economically. In this communication, the progress in the structural characteristics, heterologous production, and biological evaluation of ABP-CM4 are reviewed.

  7. Dual Toxic-Peptide-Coding Staphylococcus aureus RNA under Antisense Regulation Targets Host Cells and Bacterial Rivals Unequally

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pinel-Marie

    2014-04-01

    Full Text Available Produced from the pathogenicity islands of Staphylococcus aureus clinical isolates, stable SprG1 RNA encodes two peptides from a single internal reading frame. These two peptides accumulate at the membrane, and inducing their expression triggers S. aureus death. Replacement of the two initiation codons by termination signals reverses this toxicity. During growth, cis-antisense RNA SprF1 is expressed, preventing mortality by reducing SprG1 RNA and peptide levels. The peptides are secreted extracellularly, where they lyse human host erythrocytes, a process performed more efficiently by the longer peptide. The two peptides also inactivate Gram-negative and -positive bacteria, with the shorter peptide more effective against S. aureus rivals. Two peptides are secreted from an individual RNA containing two functional initiation codons. Thus, we present an unconventional type I toxin-antitoxin system expressed from a human pathogen producing two hemolytic and antibacterial peptides from a dual-coding RNA, negatively regulated by a dual-acting antisense RNA.

  8. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  9. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21.

    Directory of Open Access Journals (Sweden)

    Valerio Costa

    Full Text Available Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenylated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes--possibly novel miRNA targets or regulatory sites for gene transcription--were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders.

  10. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis.

    Science.gov (United States)

    Gerdol, Marco; Puillandre, Nicolas; De Moro, Gianluca; Guarnaccia, Corrado; Lucafò, Marianna; Benincasa, Monica; Zlatev, Ventislav; Manfrin, Chiara; Torboli, Valentina; Giulianini, Piero Giulio; Sava, Gianni; Venier, Paola; Pallavicini, Alberto

    2015-07-21

    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling.

  11. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de uitdagi

  12. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  13. Water drives peptide conformational transitions

    CERN Document Server

    Nerukh, Dmitry

    2011-01-01

    Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that water is the main driving force of the conformational changes.

  14. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...

  15. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2006-01-01

    The incretin hormones are intestinal polypeptides that enhance postprandial insulin secretion. Gastric inhibitory polypeptide (GIP) was initially thought to regulate gastric acid secretion, whereas glucagon-like peptide-1 (GLP-1) was discovered as a result of a systematic search for intestinal...

  16. The evolution of peptide hormones.

    Science.gov (United States)

    Niall, H D

    1982-01-01

    Despite limitations in our present knowledge it is already possible to discern the main features of peptide hormone evolution, since the same mechanisms (and indeed the same hormone molecules) function in many different ways. This underlying unity of organization has its basis in the tendency of biochemical networks, once established, to survive and diversify. The most surprising recent findings in endocrinology have been the discovery of vertebrate peptide hormones in multiple sites within the same organism, and the reports, persuasive but requiring confirmation, of vertebrate hormones in primitive unicellular organisms (20, 20a). Perhaps the major challenge for the future is to define the roles and interactions of the many peptide hormones identified in brain (18). The most primitive bacteria and the human brain, though an enormous evolutionary distance apart, may have more in common than we have recognized until now. As Axelrod & Hamilton have pointed out in a recent provocative article, "The Evolution of Cooperation" (1), bacteria, though lacking a brain, are capable of adaptive behavior that can be analysed in terms of game theory. It is clear that we can learn a great deal about the whole evolutionary process from a study of the versatile and durable peptide hormones molecules.

  17. Straightforward approach to produce recombinant scorpion toxins-Pore blockers of potassium channels.

    Science.gov (United States)

    Nekrasova, Oksana; Kudryashova, Ksenia; Fradkov, Arkadiy; Yakimov, Sergey; Savelieva, Maria; Kirpichnikov, Mikhail; Feofanov, Alexey

    2017-01-10

    Scorpion venom peptide blockers (KTx) of potassium channels are a valuable tool for structure-functional studies and prospective candidates for medical applications. Low yields of recombinant KTx hamper their wide application. We developed convenient and efficient bioengineering approach to a large-scale KTx production that meets increasing demands for such peptides. Maltose-binding protein was used as a carrier for cytoplasmic expression of folded disulfide-rich KTx in E. coli. TEV protease was applied for in vitro cleavage of the target peptide from the carrier. To produce KTx with retained native N-terminal sequence, the last residue of TEV protease cleavage site (CSTEV) was occupied by the native N-terminal residue of a target peptide. It was shown that decreased efficiency of hydrolysis of fusion proteins with non-canonical CSTEV can be overcome without by-product formation. Disulfide formation and folding of a target peptide occurred in cytoplasm eliminating the need for renaturation procedure in vitro. Advantages of this approach were demonstrated by producing six peptides with three disulfide bonds related to four KTx sub-families and achieving peptide yields of 12-22mg per liter of culture. The developed approach can be of general use for low-cost production of various KTx, as well as other disulfide-rich peptides and proteins.

  18. Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Begley, Máire; Clifford, Tanya; Deasy, Thérèse; Considine, Kiera; O'Connor, Paula; Ross, R Paul; Hill, Colin

    2014-03-01

    This study investigated the potential antimicrobial activity of ten Bacillus licheniformis strains isolated from retail infant milk formulae against a range of indicator (Lactococcus lactis, Lactobacillus bulgaricus and Listeria innocua) and clinically relevant (Listeria monocytogenes, Staphylococcus aureus, Streptococcus agalactiae, Salmonella Typhimurium and Escherichia coli) microorganisms. Deferred antagonism assays confirmed that all B. licheniformis isolates show antimicrobial activity against the Gram-positive target organisms. PCR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses indicated that four of the B. licheniformis isolates produce the bacteriocin lichenicidin. The remaining six isolates demonstrated a higher antimicrobial potency than lichenicidin-producing strains. Further analyses identified a peptide of ~1,422 Da as the most likely bioactive responsible for the antibacterial activity of these six isolates. N-terminal sequencing of the ~1,422 Da peptide from one strain identified it as ILPEITXIFHD. This peptide shows a high homology to the non-ribosomal peptides bacitracin and subpeptin, known to be produced by Bacillus spp. Subsequent PCR analyses demonstrated that the six B. licheniformis isolates may harbor the genetic machinery needed for the synthesis of a non-ribosomal peptide synthetase similar to those involved in production of subpeptin and bacitracin, which suggests that the ~1,422 Da peptide might be a variant of subpeptin and bacitracin.

  19. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  1. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  2. Diverse CLE peptides from cyst nematode species

    Science.gov (United States)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  3. Activity of Cathelicidin Peptides against Chlamydia spp.

    Science.gov (United States)

    Donati, Manuela; Di Leo, Korinne; Benincasa, Monica; Cavrini, Francesca; Accardo, Silvia; Moroni, Alessandra; Gennaro, Renato; Cevenini, Roberto

    2005-01-01

    The in vitro activity of six cathelicidin peptides against 25 strains of Chlamydia was investigated. SMAP-29 proved to be the most active peptide, reducing the inclusion numbers of all 10 strains of Chlamydia trachomatis tested by ≥50% at 10 μg/ml. This peptide was also active against C. pneumoniae and C. felis. PMID:15728927

  4. Single-molecule studies on individual peptides and peptide assemblies on surfaces.

    Science.gov (United States)

    Yang, Yanlian; Wang, Chen

    2013-10-13

    This review is intended to reflect the recent progress in single-molecule studies of individual peptides and peptide assemblies on surfaces. The structures and the mechanism of peptide assembly are discussed in detail. The contents include the following topics: structural analysis of single peptide molecules, adsorption and assembly of peptides on surfaces, folding structures of the amyloid peptides, interaction between amyloid peptides and dye or drug molecules, and modulation of peptide assemblies by small molecules. The explorations of peptide adsorption and assembly will benefit the understanding of the mechanisms for protein-protein interactions, protein-drug interactions and the pathogenesis of amyloidoses. The investigations on peptide assembly and its modulations could also provide a potential approach towards the treatment of the amyloidoses.

  5. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant.

    Science.gov (United States)

    Ndlovu, Thando; Rautenbach, Marina; Vosloo, Johann Arnold; Khan, Sehaam; Khan, Wesaal

    2017-12-01

    Biosurfactants are unique secondary metabolites, synthesised non-ribosomally by certain bacteria, fungi and yeast, with their most promising applications as antimicrobial agents and surfactants in the medical and food industries. Naturally produced glycolipids and lipopeptides are found as a mixture of congeners, which increases their antimicrobial potency. Sensitive analysis techniques, such as liquid chromatography coupled to mass spectrometry, enable the fingerprinting of different biosurfactant congeners within a naturally produced crude extract. Bacillus amyloliquefaciens ST34 and Pseudomonas aeruginosa ST5, isolated from wastewater, were screened for biosurfactant production. Biosurfactant compounds were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Results indicated that B. amyloliquefaciens ST34 produced C13-16 surfactin analogues and their identity were confirmed by high resolution ESI-MS and UPLC-MS. In the crude extract obtained from P. aeruginosa ST5, high resolution ESI-MS linked to UPLC-MS confirmed the presence of di- and monorhamnolipid congeners, specifically Rha-Rha-C10-C10 and Rha-C10-C10, Rha-Rha-C8-C10/Rha-Rha-C10-C8 and Rha-C8-C10/Rha-C10-C8, as well as Rha-Rha-C12-C10/Rha-Rha-C10-C12 and Rha-C12-C10/Rha-C10-C12. The crude surfactin and rhamnolipid extracts also retained pronounced antimicrobial activity against a broad spectrum of opportunistic and pathogenic microorganisms, including antibiotic resistant Staphylococcus aureus and Escherichia coli strains and the pathogenic yeast Candida albicans. In addition, the rapid solvent extraction combined with UPLC-MS of the crude samples is a simple and powerful technique to provide fast, sensitive and highly specific data on the characterisation of biosurfactant compounds.

  6. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  7. Cellular recognition of synthetic peptide amphiphiles in supported bioartificial membranes

    Science.gov (United States)

    Pakalns, Teika

    The goal of this study was to demonstrate that lipidated cell adhesion peptides could form well-ordered biomimetic surfaces that were capable of influencing cellular behavior in a controlled and specific manner. The first step taken was to covalently link synthetic dialkyl tails to the amino-termini of the collagen-derived peptide IV-H1 (amino acid sequence GVKGDKGNPGWPGAP) and the well-known tripeptide Arg-Gly-Asp (RGD) to produce amino-coupled peptide amphiphiles. Other spatial orientations of RGD were also generated by coupling tails to the carboxyl-terminus to give carboxyl-coupled RGD amphiphiles and to both the amino- and carboxyl-termini to give looped RGD amphiphiles. The next step taken was to let the peptide amphiphile self-assemble along with methyl ester-capped dialkyl tails into mixed films. It was found that all the peptide amphiphiles formed stable monolayers at the air-water interface in a Langmuir trough. IV-H1 amphiphiles and carboxyl-coupled and looped RGD amphiphiles deposited well as Langmuir-Blodgett mixed films on solid surfaces at all peptide concentrations, but aminocoupled RGD amphiphiles did not deposit well at high RGD concentrations. FT-IR studies of films containing RGD amphiphiles showed that amino-coupled RGD head groups formed the strongest lateral hydrogen bonds. The final step was to study cellular response to mixed films containing IV-H1 or RGD amphiphiles. The spreading of melanoma cells was influenced by both the molar concentration and spatial orientation of the amphiphilic peptides. Cells spread on IV-H1 and looped RGD films in a concentration-dependent manner, but spread indiscriminately on carboxyl-coupled RGD films and did not spread at all on well-deposited amino-coupled RGD films. The specificity of the cellular response to looped RGD amphiphiles was investigated. Control films of looped Arg-Gly-Glu (RGE) amphiphiles inhibited the adhesion and spreading of melanoma and endothelial cells, and antibody inhibition of the

  8. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  9. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.

    Science.gov (United States)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel; Nielsen, Morten; Buus, Søren; Jungersen, Gregers

    2016-02-01

    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38% were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.

  10. Identification of novel helper epitope peptides of Survivin cancer-associated antigen applicable to developing helper/killer-hybrid epitope long peptide cancer vaccine.

    Science.gov (United States)

    Ohtake, Junya; Ohkuri, Takayuki; Togashi, Yuji; Kitamura, Hidemitsu; Okuno, Kiyotaka; Nishimura, Takashi

    2014-09-01

    We identified novel helper epitope peptides of Survivin cancer antigen, which are presented to both HLA-DRB1*01:01 and DQB1*06:01. The helper epitope also contained three distinct Survivin-killer epitopes presented to HLA-A*02:01 and A*24:02. This 19 amino-acids epitope peptide (SU18) induced weak responses of Survivin-specific CD4(+) and CD8(+) T cells though it contained both helper and killer epitopes. To enhance the vaccine efficacy, we synthesized a long peptide by conjugating SU18 peptide and another DR53-restricted helper epitope peptide (SU22; 12 amino-acids) using glycine-linker. We designated this artificial 40 amino-acids long peptide containing two helper and three killer epitopes as Survivin-helper/killer-hybrid epitope long peptide (Survivin-H/K-HELP). Survivin-H/K-HELP allowed superior activation of IFN-γ-producing CD4(+) Th1 cells and CD8(+) Tc1 cells compared with the mixture of its component peptides (SU18 and SU22) in the presence of OK-432-treated monocyte-derived DC (Mo-DC). Survivin-H/K-HELP-pulsed Mo-DC pretreated with OK-432 also exhibited sustained antigen-presentation capability of stimulating Survivin-specific Th1 cells compared with Mo-DC pulsed with a mixture of SU18 and SU22 short peptides. Moreover, we demonstrated that Survivin-H/K-HELP induced a complete response in a breast cancer patient with the induction of cellular and humoral immune responses. Thus, we believe that an artificially synthesized Survivin-H/K-HELP will become an innovative cancer vaccine.

  11. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines

    OpenAIRE

    Hao, Jihua; Kwissa, Marcin; Pulendran, Bali; Murthy, Niren

    2006-01-01

    This report presents a new and simple methodology for the synthesis of multicomponent peptide vaccines, named the peptide crosslinked micelles (PCMs). The PCMs are core shell micelles designed to deliver peptide antigens and immunostimulatory DNA to antigen-presenting cells (APCs). They are composed of immunostimulatory DNA, peptide antigen, and a thiopyridal derived poly(ethylene glycol)-polylysine block copolymer. The peptide antigen acts as a crosslinker in the PCM strategy, which allows t...

  12. RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer.

    Science.gov (United States)

    Lee, Yeong Mi; Lee, Duhwan; Kim, Jihoon; Park, Hansoo; Kim, Won Jong

    2015-05-10

    CPIEDRPMC (RPM) peptide is a peptide that specifically targets invasive colorectal cancer, which is one of the leading causes of cancer-related deaths worldwide. In this study, we exploited RPM peptide as a targeting ligand to produce a novel and efficient gene delivery system that could potentially be used to treat invasive colon cancer. In order to achieve enhanced specificity to colon cancer cells, the RPM peptide was conjugated to a bioreducible gene carrier consisting of a reducible moiety of disulfide-crosslinked low molecular weight polyethylenimine, IR820 dye, and polyethylene glycol. Here, we examined the physiochemical properties, cytotoxicity, in vitro transfection efficiency, and in vivo biodistribution of the RPM-conjugated polyplex. Our results showed that the RPM-conjugated gene carrier formed a compact polyplex with pDNA that had low toxicity. Furthermore, the RPM-conjugated polymer not only had higher cellular uptake in invasive colon cancer than the non-targeted polymer, but also showed enhanced transfection efficiency in invasive colon cancer cells in vitro and in vivo.

  13. Visualisation and pre-processing of peptide microarray data.

    Science.gov (United States)

    Reilly, Marie; Valentini, Davide

    2009-01-01

    The data files produced by digitising peptide microarray images contain detailed information on the location, feature, response parameters and quality of each spot on each array. In this chapter, we will describe how such peptide microarray data can be read into the R statistical package and pre-processed in preparation for subsequent comparative or predictive analysis. We illustrate how the information in the data can be visualised using images and graphical displays that highlight the main features, enabling the quality of the data to be assessed and invalid data points to be identified and excluded. The log-ratio of the foreground to background signal is used as a response index. Negative control responses serve as a reference against which "detectable" responses can be defined, and slides incubated with only buffer and secondary antibody help identify false-positive responses from peptides. For peptides that have a detectable response on at least one subarray, and no false-positive response, we use linear mixed models to remove artefacts due to the arrays and their architecture. The resulting normalized responses provide the input data for further analysis.

  14. Molecular mechanical properties of short-sequence peptide enzyme mimics.

    Science.gov (United States)

    Takahashi, Tsukasa; Vo Ngo, Bao C; Xiao, Leyang; Arya, Gaurav; Heller, Michael J

    2016-01-01

    While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics.

  15. Solid Phase Formylation of N-Terminus Peptides

    Directory of Open Access Journals (Sweden)

    Anna Lucia Tornesello

    2016-06-01

    Full Text Available Formylation of amino groups is a critical reaction involved in several biological processes including post-translational modification of histones. The addition of a formyl group (CHO to the N-terminal end of a peptide chain generates biologically active molecules. N-formyl-peptides can be produced by different methods. We performed the N-formylation of two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6, carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with N,N-dicyclohexylcarbodiimmide (DCC in liquid phase. The overnight incubation at 4 °C resulted in a significant increase in production yields of formylated peptides compared to the reaction performed at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide chains or amino groups of lysine side-chains in solid phase.

  16. Peptide array-based characterization and design of ZnO-high affinity peptides.

    Science.gov (United States)

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  17. Boosting Farm Produce Supply

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the wake of escalating inflation,securing farm produce supply and stablizing grain prices could help to alleviate economic pressure The Chinese Government has pledged to secure a stable supply of farm produce.According to a document released after the annual Central Rural Work Conference held on December 22-23 in Beijing,preventing short supplies of farm produce and avoiding"ex-

  18. Fabrication of Odor Sensor Using Peptide

    Science.gov (United States)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  19. Brain natriuretic peptide measurement in pulmonary medicine.

    Science.gov (United States)

    Salerno, Daniel; Marik, Paul E

    2011-12-01

    Serum levels of natriuretic peptides are well established as important biomarkers in patients with cardiac disease. Less attention has been placed on the role of natriuretic peptides in patients with pulmonary conditions. In several well-defined groups of patients with pulmonary disease natriuretic peptides provide the clinician with clinically valuable information. A limitation of the interpretation of natriuretic peptides in pulmonary disease is the confounding effect of concurrent conditions such as heart failure, hypoxia, sepsis and renal failure. The present paper reviews the role of natriuretic peptides for diagnosis, risk stratification and prognosis of several pulmonary disorders.

  20. 阳离子多肽CEMA导入棉花引起表型异常及叶绿体降解%Introduction of a Cationic Peptide, CEMA, into Cotton Caused Abnormal Phenotype and Chloroplast Degeneration

    Institute of Scientific and Technical Information of China (English)

    Yu-long GUO; Xiao-ying LUO; Ming-yang LI; Yan PEI; Hao ZHANG

    2002-01-01

    @@ As a strategy for phytopathogen control through transgenic way, antimicrobial peptide genes have been employed over the last two decades.CEMA is a cationic antimicrobial chimeric peptide, which is produced by fusing eight amino acid residues from the antimicrobial peptide ceropin A with a modified meltin. Three transgenic cotton plants were generated by bombardment of cotton shoot tips using BioRad particle gun. The gold particles were coated with a cationic peptide, CEMA, DNA.

  1. Comparison of trapping profiles between d-peptides and glutathione in the identification of reactive metabolites

    Directory of Open Access Journals (Sweden)

    Jaana E. Laine

    2015-01-01

    Full Text Available Qualitative trapping profile of reactive metabolites arising from six structurally different compounds was tested with three different d-peptide isomers (Peptide 1, gly–tyr–pro–cys–pro–his-pro; Peptide 2, gly–tyr–pro–ala–pro–his–pro; Peptide 3, gly–tyr–arg–pro–cys–pro–his–lys–pro and glutathione (GSH using mouse and human liver microsomes as the biocatalyst. The test compounds were classified either as clinically “safe” (amlodipine, caffeine, ibuprofen, or clinically as “risky” (clozapine, nimesulide, ticlopidine; i.e., associated with severe clinical toxicity outcomes. Our working hypothesis was as follows: could the use of short different amino acid sequence containing d-peptides in adduct detection confer any add-on value to that obtained with GSH? All “risky” agents’ resulted in the formation of several GSH adducts in the incubation mixture and with at least one peptide adduct with both microsomal preparations. Amlodipine did not form any adducts with any of the trapping agents. No GSH and peptide 2 and 3 adducts were found with caffeine, but with peptide 1 one adduct with human liver microsomes was detected. Ibuprofen produced one Peptide 1-adduct with human and mouse liver microsomes but not with GSH. In conclusion, GSH still remains the gold trapping standard for reactive metabolites. However, targeted d-peptides could provide additional information about protein binding potential of electrophilic agents, but their clinical significance needs to be clarified using a wider spectrum of chemicals together with other safety estimates.

  2. Fragmentation patterns of Chromophore-Tagged Peptides in Visible Laser Induced Dissociation.

    Science.gov (United States)

    Garcia, Lény; Lemoine, Jérôme; Dugourd, Philippe; Girod, Marion

    2017-09-08

    Tandem mass spectrometry (MS/MS) is the pivotal tool for protein structural characterization and quantification. Identification relies on the fragmentation step of tryptic peptides in bottom-up strategy. Specificity of fragmentation can be obtained using laser induced dissociation (LID) in the visible range, after tagging of the targeted peptides with an adequate chromophore. Backbone fragmentation is required to obtain specific fragments and confident identification. We present herein a study of fragmentation patterns of chromophore-tagged peptides in LID, showing the potential of LID methodology to provide the maximum of fragments for further identification and quantification. 401 cysteine-containing tryptic peptides coming from the human proteome were derivatizated on the thiol group of cysteine with a Dabcyl maleimide chromophore, which has a high photo-absorption cross section at 473 nm. The derivatized peptides were then analyzed by LID at 473 nm on a Q Exactive instrument. LID spectra present a characteristic fragment at m/z 252.112 for all precursors. This product ion arises from the internal dissociation of the dabcyl chromophore. Several peptide-backbone fragment ions are also detected. Results show the quasi absence of fragmentation at the cysteine site. This indicates that part of the energy must be redistributed across the entire system despite excitation initially localized at the chromophore. Indeed, the fragmentation mainly occurs at 3 to 5 amino acids from the derivatized cysteine residue. LID of derivatized cysteine-containing peptides displays the initial fragmentation of the chromophore. As energy is redistributed all along the peptide sequence, fragmentation of the peptide backbone is also observed. Thus, LID of chromophore-tagged peptides produces adequate fragment ions, allowing both good sequence coverage for a greater confidence of identification, and a large choice of transitions for specific quantification. This article is protected by

  3. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  4. Therapeutic uses of gastrointestinal peptides.

    Science.gov (United States)

    Redfern, J S; O'Dorisio, T M

    1993-12-01

    The GI tract is one of nature's great pharmacies. Most, if not all, biologically active peptides can be found there, and it is quite likely that others remain to be discovered. Our ability to exploit this resource has expanded considerably over the past two decades. Advances in analytical techniques have allowed investigators to rapidly isolate and purify new compounds from tissue extracts. Sequencing and de novo synthesis of newly discovered peptides are now routine, and the structural modifications required to alter activity and tailor a compound to a particular use are easily made. A number of gastrointestinal peptides or their analogues for use in clinical studies are available from commercial sources (see Table 7). Somatostatin is the first gut peptide to successfully complete development and yield a pharmaceutical compound with a broad range of action. Several of the peptides discussed in this article have similar potential. TRH stands out as a candidate because of its effectiveness in the treatment of experimental spinal cord injury and a variety of shock states. Such a broad range of action in critical fields may justify the intensive development required to yield potent, long-acting, and highly specific analogues. Similarly, the antimetastatic and immunostimulant properties of the enkephalins offer promise for new therapies in the treatment of AIDS, ARC, and cancer. Studies with amylin may lead to new and more precise regimens of blood sugar control in insulin-dependent diabetics and could in turn, prevent some of the worst long-term effects of the disease. The development of effective intranasal forms of GHRH could spare children with GH-GHRH deficiency the distress of repeated injections and help to prevent excessive GH blood levels. Secretin, glucagon, or CGRP might be used one day in cardiovascular emergencies, and VIP or its analogues could prove effective in the treatment of asthma. Although preliminary results with many of these peptides are

  5. The first salamander defensin antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Ping Meng

    Full Text Available Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its sequence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.

  6. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...... library, to ensure a successful prediction. In contrast, the neural network model, though significantly less explored in relation to antimicrobial peptide design, has proven extremely promising, demonstrating impressive prediction success and ranking of random peptide libraries correlating well...

  7. Biology of the CAPA peptides in insects.

    Science.gov (United States)

    Predel, R; Wegener, C

    2006-11-01

    CAPA peptides have been isolated from a broad range of insect species as well as an arachnid, and can be grouped into the periviscerokinin and pyrokinin peptide families. In insects, CAPA peptides are the characteristic and most abundant neuropeptides in the abdominal neurohemal system. In many species, CAPA peptides exert potent myotropic effects on different muscles such as the heart. In others, including blood-sucking insects able to transmit serious diseases, CAPA peptides have strong diuretic or anti-diuretic effects and thus are potentially of medical importance. CAPA peptides undergo cell-type-specific sorting and packaging, and are the first insect neuropeptides shown to be differentially processed. In this review, we discuss the current knowledge on the structure, distribution, receptors and physiological actions of the CAPA peptides.

  8. Anionic phospholipids modulate peptide insertion into membranes.

    Science.gov (United States)

    Liu, L P; Deber, C M

    1997-05-06

    While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which

  9. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  10. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment...... is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... and toxicity by utilizing of the fruit fly Drosophila melanogaster as a whole animal model. This was carried out by testing of antimicrobial peptides targeting Gram-positive bacteria exemplified by the important human pathogen methicillin resistant S. aureus (MRSA). The peptide BP214 was developed from...

  11. [Heterogenous expression of antimicrobial peptides].

    Science.gov (United States)

    Song, Shanshan; Hu, Guobin; Dong, Xianzhi

    2009-12-01

    Antimicrobial peptides (AMPs), a class of short proteins with a broad spectrum of antibacterial activities, are isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. They are a key component of the innate immune response in most multicellular organisms. Owing to their potent, broad-spectrum antibacterial activities and uneasy developing of drug resistance, these peptides are of great clinical significance. However, preparation of AMPs at a large scale is a severe challenge to the development of the commercial products. Undoubtedly, construction of high-level biological expression systems for the production of AMPs is the key in its clinical application process. Herein, we summarize the progress in researches on heterogenous expression of AMPs in prokaryotic expression systems and eukaryotic expression systems.

  12. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata.

    Science.gov (United States)

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-03-03

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C-C-CC-C-C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides.

  13. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    Directory of Open Access Journals (Sweden)

    John Moon

    2016-03-01

    Full Text Available Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides.

  14. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  15. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.

  16. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides.

    Science.gov (United States)

    Trier, Nicole Hartwig

    2015-01-01

    Characterization of peptide antibodies through identification of their target epitopes is of utmost importance. Understanding antibody specificity at the amino acid level provides the key to understand the specific interaction between antibodies and their epitopes and their use as research and diagnostic tools as well as therapeutic agents. This chapter describes a straightforward strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies: (1) overlapping peptides, used to locate antigenic regions; (2) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (3) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for fine mapping. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-sparing and straightforward approach for characterization of peptide antibodies.

  17. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  18. Peptide Membranes in Chemical Evolution*

    OpenAIRE

    2009-01-01

    Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of protei...

  19. Antimicrobial peptides in human sepsis

    Directory of Open Access Journals (Sweden)

    Lukas eMartin

    2015-08-01

    Full Text Available Nearly 100 years ago, antimicrobial peptides (AMPs were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP 1-3 and human beta-defensins (HBDs 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP -1-3 and HBD-2 in sepsis. The bactericidal/permeability increasing protein (BPI attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP-1-3, lactoferrin, BPI and heparin-binding protein (HBP are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11 possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin (talactoferrin alpha, TLF has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide (LPS. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe

  20. Structural and pharmacological characteristics of chimeric peptides derived from peptide E and beta-endorphin reveal the crucial role of the C-terminal YGGFL and YKKGE motifs in their analgesic properties.

    Science.gov (United States)

    Condamine, Eric; Courchay, Karine; Rego, Jean-Claude Do; Leprince, Jérôme; Mayer, Catherine; Davoust, Daniel; Costentin, Jean; Vaudry, Hubert

    2010-05-01

    Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems.

  1. Recent Advances in Peptide Immunomodulators.

    Science.gov (United States)

    Zerfas, Breanna L; Gao, Jianmin

    2015-01-01

    With the continued rise in antibiotic-resistant bacteria, there is an immense need for the development of new therapeutic agents. Host-defense peptides (HDPs) offer a unique alternative to many of the current approved antibiotics. By targeting the host rather than the pathogen, HDPs offer several benefits over traditional small molecule drug treatments, such as a slower propensity towards resistance, broad-spectrum activity and lower risk of patients developing sepsis. However, natural peptide structures have many disadvantages as well, including susceptibility to proteolytic degradation, significant costs of synthesis and host toxicity. For this reason, much work has been done to examine peptidomimetic structures, in the hopes of finding a structure with all of the desired qualities of an antibiotic drug. Recently, this research has included synthetic constructs that mimic the behavior of HDPs but have no structural similarity to peptides. This review article focuses on the progression of this field of research, beginning with an analysis of a few prominent examples of natural HDPs and moving on to describe how the information learned by studying them have led to the current design platforms.

  2. Study on the Funcitonal Peptides in Low Salt Sufu Making

    Institute of Scientific and Technical Information of China (English)

    ZhangXiaofeng; LiLite; WangJiahuai; MasayoshiSaito; EizoTatsumi

    2002-01-01

    Sufu in this project was prepared with Actinomucor elegans (CICC-3318)as the starter and with soybean as the material.Different with the sufu with 10% salt produced by traditional process,a sufu product with 6% salt was produced in this project by reducing the salt content in salting process.To determine peptides,the water-soluble extracts obtained saparetly from frozen dried powders of soybean,tofu,pehtze pehtze and sufu ripening for 50 days were analyzed by high-pressure lipid chromatography (HPLC).Antioxidative activity and antihypertensive activity of the extract due to the peptides contained were evaluated respectively by radical scavenging ability and angiotensin converting enzyme (ACS) inhibitory activity.According to the HPLC patterns,the peptides content was nearly zero in soybean and tofu,but increassed gradually during maturing in the further process of making pehtze,salted pehtze and final product sufu,Correspondingly,the antioxidative and antihypertensive activities of the extracts strengthened with maturing.For our product,sufu with 6% salt,the antioxidative and antihypertensive activities reached peak values at about 30 d maturing,and still remained medium values in final product sufu.In comarison,the antioxidative and antihypertensive activities for the sufu with 10% salt reached peack values at 40 d maturing,but remained medium values inferior to those for the sufu with 6% salt.

  3. MIPs are ancestral ligands for the sex peptide receptor.

    Science.gov (United States)

    Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J

    2010-04-06

    Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.

  4. Expression pattern of arenicins - the antimicrobial peptides of polychaete Arenicolamarina

    Directory of Open Access Journals (Sweden)

    Arina L. Maltseva

    2014-12-01

    Full Text Available Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins - new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues - coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defence against infections, which implies their important role as key components of both epithelial and systemic branches of host defence.

  5. Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry.

    Science.gov (United States)

    Kurylo, Ievgen; Dupré, Mathieu; Cantel, Sonia; Enjalbal, Christine; Drobecq, Hervé; Szunerits, Sabine; Melnyk, Oleg; Boukherroub, Rabah; Coffinier, Yannick

    2017-02-27

    In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS). XPS allowed us to follow the peptide immobilization and its photorelease by recording the variation of the signal intensities of the different elements present on the SiNW surface. Mass spectrometry was performed without the use of an organic matrix and peptide ions were produced via a photocleavage mechanism. Indeed, thanks to direct photorelease achieved upon laser irradiation, a recorded predictable peak related to the molecular peptide ion has been detected, allowing the identification of the model peptide. Additional MS/MS experiments confirmed the photodissociation site and confirmed the N-terminal immobilization of the peptide on SiNWs.

  6. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.

    Science.gov (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A

    2012-08-15

    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  7. Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach.

    Science.gov (United States)

    Shao, Wenguang; Lam, Henry

    2013-07-05

    With the rapid accumulation of data from shotgun proteomics experiments, it has become feasible to build comprehensive and high-quality spectral libraries of tandem mass spectra of peptides. A spectral library condenses experimental data into a retrievable format and can be used to aid peptide identification by spectral library searching. A key step in spectral library building is spectrum denoising, which is best accomplished by merging multiple replicates of the same peptide ion into a consensus spectrum. However, this approach cannot be applied to "singleton spectra," for which only one observed spectrum is available for the peptide ion. We developed a method, based on a Bayesian classifier, for denoising peptide tandem mass spectra. The classifier accounts for relationships between peaks, and can be trained on the fly from consensus spectra and immediately applied to denoise singleton spectra, without hard-coded knowledge about peptide fragmentation. A linear regression model was also trained to predict the number of useful "signal" peaks in a spectrum, thereby obviating the need for arbitrary thresholds for peak filtering. This Bayesian approach accumulates weak evidence systematically to boost the discrimination power between signal and noise peaks, and produces readily interpretable conditional probabilities that offer valuable insights into peptide fragmentation behaviors. By cross validation, spectra denoised by this method were shown to retain more signal peaks, and have higher spectral similarities to replicates, than those filtered by intensity only.

  8. Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva.

    Science.gov (United States)

    Pei, Zhihua; Sun, Xiaoning; Tang, Yan; Wang, Kai; Gao, Yunhang; Ma, Hongxia

    2014-10-01

    Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram- bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study.

  9. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors.

    Science.gov (United States)

    Dulberger, Charles L; McMurtrey, Curtis P; Hölzemer, Angelique; Neu, Karlynn E; Liu, Victor; Steinbach, Adriana M; Garcia-Beltran, Wilfredo F; Sulak, Michael; Jabri, Bana; Lynch, Vincent J; Altfeld, Marcus; Hildebrand, William H; Adams, Erin J

    2017-06-20

    Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β2m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β2m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Recent trends in the analysis of bioactive peptides in milk and dairy products.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2016-04-01

    Food-derived constituents represent important sources of several classes of bioactive compounds. Among them peptides have gained great attention in the last two decades thanks to the scientific evidence of their beneficial effects on health in addition to their established nutritional value. Several functionalities for bioactive peptides have been described, including antioxidative, antihypertensive, anti-inflammatory, immunomodulatory, and antimicrobial activity. They are now considered as novel and potential dietary ingredients to promote human health, though in some cases they may also have detrimental effects on health. Bioactive peptides can be naturally occurring, produced in vitro by enzymatic hydrolysis, and formed in vivo during gastrointestinal digestion of proteins. Thus, the need to gain a better understanding of the positive health effects of food peptides has prompted the development of analytical strategies for their isolation, separation, and identification in complex food matrices. Dairy products and milk are potential sources of bioactive peptides: several of them possess extra-nutritional physiological functions that qualify them to be classified under the functional food label. In this trends article we briefly describe the state-of-the-art of peptidomics methods for the identification and discovery of bioactive peptides, also considering recent progress in their analysis and highlighting the difficulty in the analysis of short amino acid sequences and endogenous peptides.

  11. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  12. Ingested (oral) SIRS peptide 1-21 inhibits acute EAE by inducing Th2-like cytokines.

    Science.gov (United States)

    Brod, Staley A; Hood, Zachary

    2007-02-01

    Ingested type I IFN inhibits clinical attacks, relapses and inflammation in murine chronic relapsing EAE by inhibiting Th1-like cytokines. Type I IFN activates human suppressor T cells that produce SIRS. We examined whether oral (ingested) SIRS peptide inhibits EAE by decreasing Th1-like cytokines. Parenteral SIRS peptide 1-21 showed a significant inhibition of disease severity in murine EAE. Ingested SIRS peptide at 10 and 100 microg SIRS peptide showed a significant inhibition of disease severity but also a prolonged delay in the onset of disease compared to placebo. There were significantly less inflammatory foci in the SIRS peptide fed group compared to the control mock fed group. Splenocytes from SIRS peptide 1-21 fed mice showed increased production of Th2-like CD30L, IL-13, TCA-3 cytokines/chemokines and decreased production of Th1-like cytokine lymphotactin. Ingested (oral) SIRS peptide significantly inhibits both clinical EAE and inflammation predominately via counter-regulatory type 2-like cytokines/chemokines IL-13, CD30L and TCA-3.

  13. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    Science.gov (United States)

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  14. Study on CCR5 analogs and affinity peptides.

    Science.gov (United States)

    Wu, Yingping; Deng, Riqiang; Wu, Wenyan

    2012-03-01

    The G protein-coupled receptor of human chemokine receptor 5 (CCR5) is a key target in the human immunodeficiency virus (HIV) infection process due to its major involvement in binding to the HIV type 1 (HIV-1) envelope glycoprotein gp120 and facilitating virus entry into the cells. The identification of naturally occurring CCR5 mutations (especially CCR5 delta-32) has allowed us to address the CCR5 molecule as a promising target to prevent or resist HIV infection in vivo. To obtain high-affinity peptides that can be used to block CCR5, CCR5 analogs with high conformational similarity are required. In this study, two recombinant proteins named CCR5 N-Linker-E2 and CCR5 mN-E1-E2 containing the fragments of the CCR5 N-terminal, the first extracellular loop or the second extracellular loop are cloned from a full-length human CCR5 cDNA. The recombinant human CCR5 analogs with self-cleavage activity of the intein Mxe or Ssp in the vector pTwinI were then produced with a high-yield expression and purification system in Escherichia coli. Experiments of extracellular epitope-activity identification (such as immunoprecipitation and indirective/competitive enzyme-linked immunosorbent assay) confirmed the close similarity between the epitope activity of the CCR5 analogs and that of the natural CCR5, suggesting the applicability of the recombinant CCR5 analogs as antagonists of the chemokine ligands. Subsequent screening of high-affinity peptides from the phage random-peptides library acquired nine polypeptides, which could be used as CCR5 peptide antagonists. The CCR5 analogs and affinity peptides elucidated in this paper provide us with a basis for further study of the mechanism of inhibition of HIV-1 infection.

  15. Do glucagonomas always produce glucagon?

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai Jacob; Challis, Benjamin; Damjanov, Ivan;

    2016-01-01

    associated with enteric overexpression of proglucagon-derived peptides are less well recognized and include gastrointestinal dysfunction and hyperinsulinaemic hypoglycaemia. The diverse clinical manifestations associated with glucagon-expressing tumours can be explained, in part, by the repertoire...

  16. Activities of calcitonin gene-related peptide (CGRP) and related peptides at the CGRP receptor

    Energy Technology Data Exchange (ETDEWEB)

    Maton, P.N.; Pradhan, T.; Zhou, Z.C.; Gardner, J.D.; Jensen, R.T. (National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD (USA))

    1990-05-01

    In guinea pig pancreatic acini rat calcitonin gene-related peptide (CGRP) increased amylase release 2-fold, salmon calcitonin had an efficacy of only 44% of that of CGRP and (Tyr0)CGRP(28-37) and human calcitonin had no actions. (Tyr0)CGRP(28-37), but not human calcitonin, antagonized the actions of CGRP in pancreatic acini with an IC50 of 3 microM. (Tyr0)CGRP(28-37) produced a parallel rightward shift in the dose-response curve for CGRP-stimulated amylase secretion. The inhibition was specific for CGRP and was reversible. Studies with 125I-CGRP demonstrated that CGRP, salmon calcitonin and (Tyr0)CGRP, but not human calcitonin, interacted with CGRP receptors on pancreatic acini. These results indicate that various CGRP-related peptides demonstrate different relationships between their abilities to occupy the CGRP receptor and to affect biologic activity, with CGRP itself being a full agonist, salmon calcitonin a partial agonist, (Tyr0)CGRP(28-37) a competitive antagonist, and human calcitonin having no actions.

  17. Bradyrhizobium BclA Is a Peptide Transporter Required for Bacterial Differentiation in Symbiosis with Aeschynomene Legumes.

    Science.gov (United States)

    Guefrachi, Ibtissem; Pierre, Olivier; Timchenko, Tatiana; Alunni, Benoît; Barrière, Quentin; Czernic, Pierre; Villaécija-Aguilar, José-Antonio; Verly, Camille; Bourge, Mickaël; Fardoux, Joël; Mars, Mohamed; Kondorosi, Eva; Giraud, Eric; Mergaert, Peter

    2015-11-01

    Nodules of legume plants are highly integrated symbiotic systems shaped by millions of years of evolution. They harbor nitrogen-fixing rhizobium bacteria called bacteroids. Several legume species produce peptides called nodule-specific cysteine-rich (NCR) peptides in the symbiotic nodule cells which house the bacteroids. NCR peptides are related to antimicrobial peptides of innate immunity. They induce the endosymbionts into a differentiated, enlarged, and polyploid state. The bacterial symbionts, on their side, evolved functions for the response to the NCR peptides. Here, we identified the bclA gene of Bradyrhizobium sp. strains ORS278 and ORS285, which is required for the formation of differentiated and functional bacteroids in the nodules of the NCR peptide-producing Aeschynomene legumes. The BclA ABC transporter promotes the import of NCR peptides and provides protection against the antimicrobial activity of these peptides. Moreover, BclA can complement the role of the related BacA transporter of Sinorhizobium meliloti, which has a similar symbiotic function in the interaction with Medicago legumes.

  18. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens.

    Science.gov (United States)

    Fesenko, Igor A; Arapidi, Georgij P; Skripnikov, Alexander Yu; Alexeev, Dmitry G; Kostryukova, Elena S; Manolov, Alexander I; Altukhov, Ilya A; Khazigaleeva, Regina A; Seredina, Anna V; Kovalchuk, Sergey I; Ziganshin, Rustam H; Zgoda, Viktor G; Novikova, Svetlana E; Semashko, Tatiana A; Slizhikova, Darya K; Ptushenko, Vasilij V; Gorbachev, Alexey Y; Govorun, Vadim M; Ivanov, Vadim T

    2015-03-15

    Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.

  19. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    Science.gov (United States)

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  20. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    Science.gov (United States)

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  1. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H. (UW)

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  2. Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database.

    Science.gov (United States)

    Wang, Guangshun; Watson, Karen M; Peterkofsky, Alan; Buckheit, Robert W

    2010-03-01

    To identify novel anti-HIV-1 peptides based on the antimicrobial peptide database (APD; http://aps.unmc.edu/AP/main.php), we have screened 30 candidates and found 11 peptides with 50% effective concentrations (EC(50)) of 1, increases in the Arg contents of amphibian maximin H5 and dermaseptin S9 peptides and the database-derived GLK-19 peptide improved the TIs. These examples demonstrate that the APD is a rich resource and a useful tool for developing novel HIV-1-inhibitory peptides.

  3. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis.

    Science.gov (United States)

    Finetti, Federica; Basile, Anna; Capasso, Domenica; Di Gaetano, Sonia; Di Stasi, Rossella; Pascale, Maria; Turco, Caterina Maria; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2012-08-01

    Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17-25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.

  4. A Novel Triethylphosphonium Charge Tag on Peptides: Synthesis, Derivatization, and Fragmentation

    Science.gov (United States)

    DeGraan-Weber, Nick; Ward, Sarah A.; Reilly, James P.

    2017-09-01

    Charge tagging is a peptide derivatization process that commonly localizes a positive charge on the N-terminus. Upon low energy activation (e.g., collision-induced dissociation or post-source decay) of charge tagged peptides, relatively few fragment ions are produced due to the absence of mobile protons. In contrast, high energy fragmentation, such as 157 nm photodissociation, typically leads to a series of a-type ions. Disadvantages of existing charge tags are that they can produce mobile protons or that they are undesirably large and bulky. Here, we investigate a small triethylphosphonium charge tag with two different linkages: amide (158 Da) and amidine bonds (157 Da). Activation of peptides labeled with a triethylphosphonium charge tag through an amide bond can lead to loss of the charge tag and the production of protonated peptides. This enables low intensity fragment ions from both the protonated and charge tagged peptides to be observed. Triethylphosphonium charge tagged peptides linked through an amidine bond are more stable. Post-source decay and photodissociation yield product ions that primarily contain the charge tag. Certain amidine induced fragments are also observed. The previously reported tris(trimethoxyphenyl) phosphonium acetic acid N-hydroxysuccinimidyl ester charge tag shows a similar fragment ion distribution, but the mass of the triethylphosphonium tag label is 415 Da smaller. [Figure not available: see fulltext.

  5. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  6. Hemolysis Affects C-Peptide Immunoassay.

    Science.gov (United States)

    Wu, Zhi-Qi; Lu, Ju; Xu, Hua-Guo

    2016-11-01

    C-peptide is used widely as a marker of insulin secretion, and it participates in the inflammatory response and contributes to the development of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). Previous studies have reported that C-peptide measurement was unaffected by hemolysis. However, we found that hemolysis negatively affected C-peptide assay in routine laboratory practice. We further established and validated an individualized hemolysis correction equation to correct and report accurate serum C-peptide results for hemolyzed samples. We studied the effects of hemolysis on C-peptide assay by adding lysed self red blood cells (self-RBCs) to serum. An individualized correction equation was derived. Further, we evaluated the performance of this individualized correction equation by artificially hemolyzed samples. C-peptide concentration decreased with increasing degree and exposure time of hemolysis. The individualized hemolysis correction equation derived: C-Pcorr = C-Pmeas /(0.969-1.5Hbserum/plasma -5.394 ×10(-5) Time), which can correct bias in C-peptide measurement caused by hemolysis. Hemolysis negatively affects C-peptide measurement. We can correct and report accurate serum C-peptide results for a wide range of degrees of sample hemolysis by individualized hemolysis correction equation for C-peptide assay. This correction would improve diagnostic accuracy and reduce inappropriate therapeutic decisions. © 2016 Wiley Periodicals, Inc.

  7. Bioprospecting open reading frames for peptide effectors.

    Science.gov (United States)

    Xiong, Ling; Scott, Charles

    2014-01-01

    Recent successes in the development of small-molecule antagonists of protein-protein interactions designed based on co-crystal structures of peptides bound to their biological targets confirm that short peptides derived from interacting proteins can be high-value ligands for pharmacologic validation of targets and for identification of druggable sites. Evolved sequence space is likely to be enriched for interacting peptides, but identifying minimal peptide effectors within genomic sequence can be labor intensive. Here we describe the use of incremental truncation to diversify genetic material on the scale of open reading frames into comprehensive libraries of constituent peptides. The approach is capable of generating peptides derived from both continuous and discontinuous sequence elements, and is compatible with the expression of free linear or backbone cyclic peptides, with peptides tethered to amino- or carboxyl-terminal fusion partners or with the expression of peptides displayed within protein scaffolds (peptide aptamers). Incremental truncation affords a valuable source of molecular diversity to interrogate the druggable genome or evaluate the therapeutic potential of candidate genes.

  8. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  9. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  10. Agricultural Producer Certificates

    Data.gov (United States)

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  11. Comparative analysis of human milk and infant formula derived peptides following in vitro digestion.

    Science.gov (United States)

    Su, M-Y; Broadhurst, M; Liu, C-P; Gathercole, J; Cheng, W-L; Qi, X-Y; Clerens, S; Dyer, J M; Day, L; Haigh, B

    2017-04-15

    It has long been recognised that there are differences between human milk and infant formulas which lead to differences in health and nutrition for the neonate. In this study we examine and compare the peptide profile of human milk and an exemplar infant formula. The study identifies both similarities and differences in the endogenous and postdigestion peptide profiles of human milk and infant formula. This includes differences in the protein source of these peptides but also with the region within the protein producing the dominant proteins. Clustering of similar peptides around regions of high sequence identity and known bioactivity was also observed. Together the data may explain some of the functional differences between human milk and infant formula, while identifying some aspects of conserved function between bovine and human milks which contribute to the effectiveness of modern infant formula as a substitute for human milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Murine nonvolatile pheromones: isolation of exocrine-gland secreting Peptide 1.

    Science.gov (United States)

    Kimoto, Hiroko; Touhara, Kazushige

    2013-01-01

    Our search for a substance recognized by the vomeronasal neurons revealed that the extra-orbital lacrimal gland (ELG) isolated from adult male mice produced the male-specific peptide pheromone exocrine gland-secreting peptide 1 (ESP1). The following protocol reveals how ESP1 may be extracted from the ELG, purified using anion-exchange and reverse-phase high-performance liquid chromatography (HPLC), and analyzed by mass spectrometry. This protocol has been specifically designed for the purification of ESP1, but may be modified to isolate a variety of peptides from the exocrine glands. Peptides purified in this manner may help further define the molecular mechanisms underlying pheromone communication in the vomeronasal system.

  13. Boost protein expression through co-expression of LEA-like peptide in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shinya Ikeno

    Full Text Available The boost protein expression has been done successfully by simple co-expression with a late embryogenesis abundant (LEA-like peptide in Escherichia coli. Frequently, overexpression of a recombinant protein fails to provide an adequate yield. In the study, we developed a simple and efficient system for overexpressing transgenic proteins in bacteria by co-expression with an LEA-like peptide. The design of this peptide was based on part of the primary structure of an LEA protein that is known hydrophilic protein to suppress aggregation of other protein molecules. In our system, the expression of the target protein was increased remarkably by co-expression with an LEA-like peptide consisting of only 11 amino acid residues. This could provide a practical method for producing recombinant proteins efficiently.

  14. A distinct translation initiation mechanism generates cryptic peptides for immune surveillance.

    Directory of Open Access Journals (Sweden)

    Shelley R Starck

    Full Text Available MHC class I molecules present a comprehensive mixture of peptides on the cell surface for immune surveillance. The peptides represent the intracellular protein milieu produced by translation of endogenous mRNAs. Unexpectedly, the peptides are encoded not only in conventional AUG initiated translational reading frames but also in alternative cryptic reading frames. Here, we analyzed how ribosomes recognize and use cryptic initiation codons in the mRNA. We find that translation initiation complexes assemble at non-AUG codons but differ from canonical AUG initiation in response to specific inhibitors acting within the peptidyl transferase and decoding centers of the ribosome. Thus, cryptic translation at non-AUG start codons can utilize a distinct initiation mechanism which could be differentially regulated to provide peptides for immune surveillance.

  15. Methods for producing diterpenes

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention discloses that by combining different di TPS enzymes of class I and class II different diterpenes may be produced including diterpenes not identified in nature. Surprisingly it is revealed that a di TPS enzyme of class I of one species may be combined with a di TPS enzyme...... of class II from a different species, resulting in a high diversity of diterpenes, which can be produced....

  16. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila

    DEFF Research Database (Denmark)

    Ren, Guilin Robin; Hauser, Frank; Rewitz, Kim Furbo;

    2015-01-01

    The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes with a f......The neuroendocrine peptides CCHamide-1 and -2, encoded by the genes ccha1 and -2, are produced by endocrine cells in the midgut and by neurons in the brain of Drosophila melanogaster. Here, we used the CRISPR/Cas9 technique to disrupt the ccha1 and -2 genes and identify mutant phenotypes...

  17. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  18. Host defense skin peptides vary with color pattern in the highly polymorphic red-eyed treefrog

    Directory of Open Access Journals (Sweden)

    Leyla Rivero Davis

    2016-08-01

    Full Text Available Patterns of phenotypic variation across a geographic range provide important insights into evolutionary processes underlying diversification and speciation. Most evolutionary studies use putatively neutral markers to examine evolutionary diversification. However, functional phenotypes such as gene-encoded host-defense polypeptides (HDPs could provide key insights into the processes of population differentiation, yet they are rarely included in population analyses. The red-eyed treefrog, Agalychnis callidryas (Cope, 1862, exhibits regional variation in multiple traits, including color pattern and body size across a narrow geographic range. This treefrog produces bioactive peptides exuded onto the skin surface, presumably for pathogen and predator defense. However, the geographic patterns of variation in peptides and the factors that mediate intraspecific peptide variation across the range of this species remain untested. Here, we examine the roles of phylogenetic history, geographic barriers, geographic distance, and color-pattern variation as determinants of skin peptide diversity in 54 individuals among 11 populations across Costa Rica and Panama. Each of the five distinct Agalychnis color morphs are represented in our sample. We performed peptide mass fingerprinting and compared mass spectral data from skin peptide secretions to quantify divergence in peptide profiles among individuals, both within and among regions. We used two metrics to estimate genetic variation: genetic distance estimated from microsatellites and patristic distance estimated from mtDNA haplotype diversity. Matrix correspondence tests revealed that skin peptide variation is best predicted by differences in leg color pattern across all regions. In addition, we found that flank color pattern and phylogeny also explain differences in peptide diversity. Patterns of peptide differentiation and phylogenetic topology were incongruent in two regions, indicating a possible role of

  19. Unifying protein inference and peptide identification with feedback to update consistency between peptides.

    Science.gov (United States)

    Shi, Jinhong; Chen, Bolin; Wu, Fang-Xiang

    2013-01-01

    We first propose a new method to process peptide identification reports from databases search engines. Then via it we develop a method for unifying protein inference and peptide identification by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update an adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. Logistic regression (LR) is used to compute the probability of peptide identification with the regularized scores. Protein scores are then calculated with the LR probability of peptides. Instead of selecting the best peptide match for each MS/MS, we select multiple peptides. By testing on two datasets, the results have shown that the proposed method can robustly assign accurate probabilities to peptides, and have a higher discrimination power than PeptideProphet to distinguish correct and incorrect identified peptides. Additionally, not only can our method infer more true positive proteins but also infer less false positive proteins than ProteinProphet at the same false positive rate. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS and the improvement of their scores by the feedback from the inferred proteins.

  20. Effects of oxidation on copper-binding properties of Aβ1-16 peptide: a pulse radiolysis study.

    Science.gov (United States)

    Ramteke, S N; Ginotra, Y P; Walke, G R; Joshi, B N; Kumbhar, A S; Rapole, S; Kulkarni, P P

    2013-12-01

    The reaction of hydroxyl radicals ((•)OH) with Aβ1-16 peptide was carried out using pulse radiolysis to understand the effect of oxidation of peptide on its copper-binding properties. This reaction produced oxidized, dimeric and trimeric Aβ1-16 peptide species. The formation of these products was established with the help of fluorescence spectroscopy and mass spectrometry. The mass spectral data indicate that the major site of oxidation is at His6, while the site for dimerization is at Tyr10. Diethyl pyrocarbonate-treated Aβ1-16 peptide did not produce any trimeric species upon oxidation with (•)OH. The quantitative chemical modification studies indicated that one of the three histidine residues is covalently modified during pulse radiolysis. The copper-binding studies of the oxidized peptide revealed that it has similar copper-binding properties as the unoxidized peptide. Further, the cytotoxicity studies point out that both oxidized and unoxidized Aβ1-16 peptide are equally efficient in producing free radicals in presence of copper and ascorbate that resulted in comparable cell death.

  1. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    Science.gov (United States)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  2. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    Directory of Open Access Journals (Sweden)

    Peter Durand Skottrup

    Full Text Available Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18 by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15, shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48. Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  3. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    Science.gov (United States)

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  4. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Johnson, Eric T

    2012-09-28

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  5. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2012-09-01

    Full Text Available Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX from the wolf spider (Lycosa carolinensis. One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  6. Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides.

    Science.gov (United States)

    Mitsuhashi, Jun; Nakayama, Tsutomu; Narai-Kanayama, Asako

    2015-01-01

    Di-, tri-, and tetra-tyrosine peptides with angiotensin I-converting enzyme inhibitory activity were synthesized by papain-catalyzed polymerization of L-tyrosine ethyl ester in aqueous media at 30 °C. Varying the reaction pH from 6.0 to 7.5 and the initial concentration of the ester substrate from 25 to 100 mM, the highest yield of oligo-tyrosine peptides (79% on a substrate basis) was produced at pH 6.5 and 75 mM, respectively. In the reaction initiated with 100 mM of the substrate, approx. 50% yield of insoluble, highly polymerized peptides accumulated. At less than 15 mM, the reaction proceeded poorly; however, from 30 mM to 120 mM a dose-dependent increase in the consumption rate of the substrate was observed with a sigmoidal curve. Meanwhile, each of the tri- and tetra-tyrosine peptides, even at approx. 5mM, was consumed effectively by papain but was not elongated to insoluble polymers. For deacylation of the acyl-papain intermediate through which a new peptide bond is made, L-tyrosine ethyl ester, even at 5mM, showed higher nucleophilic activity than di- and tri-tyrosine. These results indicate that the mechanism through which papain polymerizes L-tyrosine ethyl ester is as follows: the first interaction between papain and the ester substrate is a rate-limiting step; oligo-tyrosine peptides produced early in the reaction period are preferentially used as acyl donors, while the initial ester substrate strongly contributes as a nucleophile to the elongation of the peptide product; and the balance between hydrolytic fragmentation and further elongation of oligo-tyrosine peptides is dependent on the surrounding concentration of the ester substrate.

  7. Genetic mechanisms of scorpion venom peptide diversification.

    Science.gov (United States)

    Zhijian, Cao; Feng, Luo; Yingliang, Wu; Xin, Mao; Wenxin, Li

    2006-03-01

    The diversity of scorpion venom peptides is well shown by the presence of about 400 such polypeptides with or without disulfide bonds. Scorpion toxins with disulfide bonds present a variety of sequence features and pharmacological functions by affecting different ion channels, while the venom peptides without disulfide bonds represent a new subfamily, having much lower sequence homology among each other and different functions (e.g. bradykinin-potentiating, antimicrobial, molecular cell signal initiating and immune modulating). Interestingly, all scorpion venom peptides with divergent functions may have evolved from a common ancestor gene. Over the lengthy evolutionary time, the diversification of scorpion venom peptides evolved through polymorphism, duplication, trans-splicing, or alternative splicing at the gene level. In order to completely clarify the diversity of scorpion toxins and toxin-like peptides, toxinomics (genomics and proteomics of scorpion toxins and toxin-like peptides) are expected to greatly advance in the near future.

  8. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...... the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution...... of masses up to 5000 Da. VEMSmaldi searches singly charged peptide masses against the local database....

  9. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  10. Clinical Applications of Radiolabeled Peptides for PET.

    Science.gov (United States)

    Jackson, Isaac M; Scott, Peter J H; Thompson, Stephen

    2017-09-01

    Radiolabeled peptides are a valuable class of radiotracer that occupies the space between small molecules and large biologics, and are able to exploit the advantages of both classes of compound. To date, radiolabeled peptides have mainly been utilized in oncology, where the same peptide can often be exploited for diagnostic imaging and targeted radiotherapy by simply varying the radionuclide. In this review, we introduce the main strategies used for synthesis of radiolabeled peptides, and highlight the state of the art for clinical imaging (and therapy) in oncology using the main classes of radiolabeled peptides that have been translated to date. Beyond oncology, radiolabeled peptides are also increasingly being used in other PET applications such as diabetes and cardiac imaging, and we review progress for the new applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Broad spectrum antibiotic compounds and use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  12. Modeling of peptides containing D-amino acids: implications on cyclization

    Science.gov (United States)

    Yongye, Austin B.; Li, Yangmei; Giulianotti, Marc A.; Yu, Yongping; Houghten, Richard A.; Martínez-Mayorga, Karina

    2009-09-01

    Cyclic peptides are therapeutically attractive due to their high bioavailability, potential selectivity, and scaffold novelty. Furthermore, the presence of D-residues induces conformational preferences not followed by peptides consisting of naturally abundant L-residues. Therefore, comprehending how amino acids induce turns in peptides, subsequently facilitating cyclization, is significant in peptide design. Here, we performed 20-ns explicit-solvent molecular dynamics simulations for three diastereomeric peptides with stereochemistries: LLLLL, LLLDL, and LDLDL. Experimentally LLLLL and LDLDL readily cyclize, whereas LLLDL cyclizes in low yield. Simulations at 310 K produced conformations with inter-terminal hydrogen bonds that correlated qualitatively with the experimental cyclization trend. Energies obtained for representative structures from quantum chemical (B3LYP/PCM/cc-pVTZ//HF/6-31G*) calculations predicted pseudo-cyclic and extended conformations as the most stable for LLLLL and LLLDL, respectively, in agreement with the experimental data. In contrast, the most stable conformer predicted for peptide LDLDL was not a pseudo-cyclic structure. Moreover, D-residues preferred the experimentally less populated αL rotamers even when simulations were performed at a higher temperature and with strategically selected starting conformations. Energies calculated with molecular mechanics were consistent only with peptide LLLLL. Thus, the conformational preferences obtained for the all L-amino acid peptide were in agreement with the experimental observations. Moreover, refinement of the force field is expected to provide far-reaching conformational sampling of peptides containing D-residues to further develop force field-based conformational-searching methods.

  13. One-pot, mix-and-read peptide-MHC tetramers.

    Directory of Open Access Journals (Sweden)

    Christian Leisner

    Full Text Available BACKGROUND: Cytotoxic T Lymphocytes (CTL recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC class I molecules presented at the surface of Antigen Presenting Cells (APC. Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL's. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC. Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins. It is simple, robust, and versatile technique with a very broad application

  14. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  15. Acylation of Glucagon-like peptide-2

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon;

    2014-01-01

    These results show that membrane interactions play a prominent role during intestinal translocation of an acylated peptide. Acylation benefits permeation for shorter and medium chains due to increased membrane interactions, however, for longer chains insertion in the membrane becomes dominant and...... and hinders translocation, i.e. the peptides get 'stuck' in the cell membrane. Applying a transcellular absorption enhancer increases the dynamics of membrane insertion and detachment by fluidizing the membrane, thus facilitating its effects primarily on membrane associated peptides....

  16. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  17. Opioid Peptides: Potential for Drug Development

    OpenAIRE

    Aldrich, Jane V.; McLaughlin, Jay P.

    2012-01-01

    Opioid receptors are important targets for the treatment of pain and potentially for other disease states (e.g. mood disorders and drug abuse) as well. Significant recent advances have been made in identifying opioid peptide analogs that exhibit promising in vivo activity for treatment of these maladies. This review focuses on the development and evaluation of opioid peptide analogs demonstrating activity after systemic administration, and recent clinical evaluations of opioid peptides for po...

  18. A Novel Peptide from Buthus Martensii Karch

    Institute of Scientific and Technical Information of China (English)

    Zheng Yu CAO; Xuan XIAO; Xue Mei LIU; Xiao Tian LIANG; De Quan YU

    2004-01-01

    A novel peptide was purified and characterized from Buthus martensii Karch.The peptide,named BmK M6,is a single-chain polypeptide cross-linked by four intramolecular disulfide bridges.The molecular weight of the peptide was determined by MOLDI-TOF-MS as 7034 Da.The partial amino acid sequence of BmK M6 from N-terminal is VRDAYIAKPEN CVYECGITQDCNKLCTENG.

  19. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  20. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    Directory of Open Access Journals (Sweden)

    Kelly eMulder

    2013-10-01

    Full Text Available Cationic antimicrobial peptides (AMPs and host defense peptides (HDPs show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their bio-chemical features, selectivity against extra targets and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the development of production and nano-delivery systems for both classes of cationic peptides and perspectives on improving them will be considered.

  1. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  2. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  3. Use of Galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  4. Synthesis of stabilized alpha-helical peptides.

    Science.gov (United States)

    Bernal, Federico; Katz, Samuel G

    2014-01-01

    Stabilized alpha-helical (SAH) peptides are valuable laboratory tools to explore important protein-protein interactions. Whereas most peptides lose their secondary structure when isolated from the host protein, stapled peptides incorporate an all-hydrocarbon "staple" that reinforces their natural alpha-helical structure. Thus, stapled peptides retain their functional ability to bind their native protein targets and serve multiple experimental uses. First, they are useful for structural studies such as NMR or crystal structures that map and better define binding sites. Second, they can be used to identify small molecules that specifically target that interaction site. Third, stapled peptides can be used to test the importance of specific amino acid residues or posttranslational modifications to the binding. Fourth, they can serve as structurally competent bait to identify novel binding partners to specific alpha-helical motifs. In addition to markedly improved alpha-helicity, stapled peptides also display resistance to protease cleavage and enhanced cell permeability. Most importantly, they are useful for intracellular experiments that explore the functional consequences of blocking particular protein interactions. Because of their remarkable stability, stapled peptides can be applied to whole-animal, in vivo studies. Here we describe a protocol for the synthesis of a peptide that incorporates an all-hydrocarbon "staple" employing a ring-closing olefin metathesis reaction. With proper optimization, stapled peptides can be a fundamental, accurate laboratory tool in the modern chemical biologist's armory.

  5. Polycyclic Peptides: A New Type of Cavitand,

    Science.gov (United States)

    PEPTIDES, MOLECULAR STRUCTURE, MOLECULES, SYNTHESIS, ETHERS, DEXTRINS , PROTEINS, AMINO ACIDS, RESIDUES, CROSSLINKING(CHEMISTRY), DIMERS, CESIUM, CARBON, OXYGEN, NITROGEN, CAVITIES, NUCLEAR MAGNETIC RESONANCE.

  6. Peptide-stabilized, fluorescent silver nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon; Vosch, Tom André Jos; Jensen, Knud Jørgen

    2016-01-01

    . Herein, we demonstrate how solid-phase methods can increase throughput dramatically in peptide ligand screening and in initial evaluation of fluorescence intensity and chemical stability of peptide-stabilized AgNCs (P-AgNCs). 9-Fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis......Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA...

  7. Modulation of autoimmunity with artificial peptides

    Science.gov (United States)

    La Cava, Antonio

    2010-01-01

    The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may not be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided. PMID:20807590

  8. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  9. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past...... these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...

  10. Endomorphins and related opioid peptides.

    Science.gov (United States)

    Okada, Yoshio; Tsuda, Yuko; Bryant, Sharon D; Lazarus, Lawrence H

    2002-01-01

    Opioid peptides and their G-protein-coupled receptors (delta, kappa, mu) are located in the central nervous system and peripheral tissues. The opioid system has been studied to determine the intrinsic mechanism of modulation of pain and to develop uniquely effective pain-control substances with minimal abuse potential and side effects. Two types of endogenous opioid peptides exist, one containing Try-Gly-Gly-Phe as the message domain (enkephalins, endorphins, dynorphins) and the other containing the Tyr-Pro-Phe/Trp sequence (endomorphins-1 and -2). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has high mu receptor affinity (Ki = 0.36 nM) and remarkable selectivity (4000- and 15,000-fold preference over the delta and kappa receptors, respectively), was isolated from bovine and human brain. In addition, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), isolated from the same sources, exhibited high mu receptor affinity (Ki = 0.69 nM) and very high selectivity (13,000- and 7500-fold preference relative to delta and kappa receptors, respectively). Both opioids bind to mu-opioid receptors, thereby activating G-proteins, resulting in regulation of gastrointestinal motility, manifestation of antinociception, and effects on the vascular systems and memory. To develop novel analgesics with less addictive properties, evaluation of the structure-activity relationships of the endomorphins led to the design of more potent and stable analgesics. Opioidmimetics and opioid peptides containing the amino acid sequence of the message domain of endomorphins, Tyr-Pro-Phe/Trp, could exhibit unique binding activity and lead to the development of new therapeutic drugs for controlling pain.

  11. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    Science.gov (United States)

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  12. Glucagon-related peptides and the regulation of food intake in chickens.

    Science.gov (United States)

    Honda, Kazuhisa

    2016-09-01

    The regulatory mechanisms underlying food intake in chickens have been a focus of research in recent decades to improve production efficiency when raising chickens. Lines of evidence have revealed that a number of brain-gut peptides function as a neurotransmitter or peripheral satiety hormone in the regulation of food intake both in mammals and chickens. Glucagon, a 29 amino acid peptide hormone, has long been known to play important roles in maintaining glucose homeostasis in mammals and birds. However, the glucagon gene encodes various peptides that are produced by tissue-specific proglucagon processing: glucagon is produced in the pancreas, whereas oxyntomodulin (OXM), glucagon-like peptide (GLP)-1 and GLP-2 are produced in the intestine and brain. Better understanding of the roles of these peptides in the regulation of energy homeostasis has led to various physiological roles being proposed in mammals. For example, GLP-1 functions as an anorexigenic neurotransmitter in the brain and as a postprandial satiety hormone in the peripheral circulation. There is evidence that OXM and GLP-2 also induce anorexia in mammals. Therefore, it is possible that the brain-gut peptides OXM, GLP-1 and GLP-2 play physiological roles in the regulation of food intake in chickens. More recently, a novel GLP and its specific receptor were identified in the chicken brain. This review summarizes current knowledge about the role of glucagon-related peptides in the regulation of food intake in chickens. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  13. Biodiscovery of Aluminum Binding Peptides

    Science.gov (United States)

    2013-08-01

    for an additional 35-45 min. After induction, 5 µL cells were added to 25µL 250 nM YPet-Mona for 45 min. on ice. Cells were then pelleted and...binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2 ," Anal. Chem. 78(14), 4872-4879 (2006...hydroxyapatite crystals," Langmuir 27(12), 7620-7628 (2011). [15] Dickerson, M. B. A., et al., Peptide-induced room temperature formation of nanostructured TiO2

  14. Production of bioactive soy peptides

    OpenAIRE

    Bissegger, Sonja; Crelier, Simon

    2008-01-01

    Objectif Les antioxidants synthétiques sont souvent utilisés dans l’industrie alimentaire pour empêcher le déterioration des produits. Mais ces ingrédients sont potentiellement nocifs pour la santé, des travaux de recherche sont effectués pour identifier des antioxidants d’origine naturelle. Le but de ce travail de diplôme est de produire des peptides de protéine de soja avec des propriétés antioxidantes, au moyen d’une digestion enzymatique hydrolytique. Résultats Après une digestion enzymat...

  15. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  16. Peptide-Based Polymer Therapeutics

    Directory of Open Access Journals (Sweden)

    Aroa Duro-Castano

    2014-02-01

    Full Text Available Polypeptides are envisaged to achieve a major impact on a number of different relevant areas such as biomedicine and biotechnology. Acquired knowledge and the increasing interest on amino acids, peptides and proteins is establishing a large panel of these biopolymers whose physical, chemical and biological properties are ruled by their controlled sequences and composition. Polymer therapeutics has helped to establish these polypeptide-based constructs as polymeric nanomedicines for different applications, such as disease treatment and diagnostics. Herein, we provide an overview of the advantages of these systems and the main methodologies for their synthesis, highlighting the different polypeptide architectures and the current research towards clinical applications.

  17. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sorensen, Mette A.

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further...

  18. A sulfanyl-PEG derivative of relaxin-like peptide utilizable for the conjugation with KLH and the antibody production.

    Science.gov (United States)

    Katayama, Hidekazu; Mita, Masatoshi

    2016-08-15

    A small peptide-keyhole limpet hemocyanin (KLH) conjugate is generally used as an antigen for producing specific antibodies. However, preparation of a disulfide-rich heterodimeric peptide-KLH conjugates is difficult. In this study, we developed a novel method for preparation of the conjugate, and applied it to the production of specific antibodies against the relaxin-like gonad-stimulating peptide (RGP) from the starfish. In this method, a sulfanyl group necessary for the conjugation with KLH was site-specifically introduced to the peptide after regioselective disulfide bond formation reactions. Using the conjugate, we could obtain specific antibodies with a high antibody titer. This method might also be useful for the production of antibodies against other heterodimeric peptides with disulfide cross-linkages, such as vertebrate relaxins.

  19. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  20. Milk peptides increase iron dialyzability in water but do not affect DMT-1 expression in Caco-2 cells.

    Science.gov (United States)

    Argyri, Konstantina; Tako, Elad; Miller, Dennis D; Glahn, Raymond P; Komaitis, Michael; Kapsokefalou, Maria

    2009-02-25

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. The objectives of this study were to investigate whether these fractions (a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells and (b) enhance iron dialyzability when added in meals. Two milk peptide fractions that solubilize iron were isolated by Sephadex G-25 gel filtration of a milk digest. These peptide fractions did not affect relative gene expression of DMT-1 when incubated with Caco-2 cells for 2 or 48 h. Dialyzability was measured after in vitro simulated gastric and pancreatic digestion. Both peptide fractions enhanced the dialyzability of iron from ferric chloride added to PIPES buffer, but had no effect on dialyzability from milk or a vegetable or fruit meal after in vitro simulated gastric and pancreatic digestion. However, dialyzability from milk was enhanced by the addition of a more concentrated lyophilized peptide fraction.