WorldWideScience

Sample records for non-rem sleep intensity

  1. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM

  2. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    1990-01-01

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM sl

  3. CAN NON-REM SLEEP BE DEPRESSOGENIC

    NARCIS (Netherlands)

    BEERSMA, DGM; VANDENHOOFDAKKER, RH

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects

  4. Can non-REM sleep be depressogenic?

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects

  5. Can non-REM sleep be depressogenic?

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects c

  6. CAN NON-REM SLEEP BE DEPRESSOGENIC

    NARCIS (Netherlands)

    BEERSMA, DGM; VANDENHOOFDAKKER, RH

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects c

  7. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    Science.gov (United States)

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  8. Is the nonREM-REM sleep cycle reset by forced awakenings from REM sleep?

    NARCIS (Netherlands)

    Grozinger, M; Beersma, DGM; Fell, J; Roschke, J

    2002-01-01

    In selective REM sleep deprivation (SRSD), the occurrence of stage REM is repeatedly interrupted by short awakenings. Typically, the interventions aggregate in clusters resembling the REM episodes in undisturbed sleep. This salient phenomenon can easily be explained if the nonREM-REM sleep process i

  9. Parkinsonian tremor loses its alternating aspect during non-REM sleep and is inhibited by REM sleep.

    Science.gov (United States)

    Askenasy, J J; Yahr, M D

    1990-01-01

    Non-REM sleep transforms the waking alternating Parkinsonian tremor into subclinical repetitive muscle contractions whose amplitude and duration decrease as non-REM sleep progresses from stages I to IV. During REM sleep Parkinsonian tremor disappears while the isolated muscle events increase significantly. PMID:2246656

  10. Parkinsonian tremor loses its alternating aspect during non-REM sleep and is inhibited by REM sleep.

    OpenAIRE

    Askenasy, J. J.; Yahr, M D

    1990-01-01

    Non-REM sleep transforms the waking alternating Parkinsonian tremor into subclinical repetitive muscle contractions whose amplitude and duration decrease as non-REM sleep progresses from stages I to IV. During REM sleep Parkinsonian tremor disappears while the isolated muscle events increase significantly.

  11. Retention over a Period of REM or non-REM Sleep.

    Science.gov (United States)

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  12. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice.

    Science.gov (United States)

    Hayashi, Yu; Kashiwagi, Mitsuaki; Yasuda, Kosuke; Ando, Reiko; Kanuka, Mika; Sakai, Kazuya; Itohara, Shigeyoshi

    2015-11-20

    Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.

  13. Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour

    Science.gov (United States)

    Kantelhardt, Jan W.; Penzel, Thomas; Rostig, Sven; Becker, Heinrich F.; Havlin, Shlomo; Bunde, Armin

    2003-03-01

    Healthy sleep can be characterized by several stages: deep sleep, light sleep, and REM sleep. Here we show that these sleep stages lead to different autonomic regulation of breathing. Using the detrended fluctuation analysis up to the fourth order we find that breath-to-breath intervals and breath volumes separated by several breaths are long-range correlated during the REM stages and during wake states. In contrast, in the non-REM stages (deep sleep and light sleep), long-range correlations are absent. This behaviour is very similar to the correlation behaviour of the heart rate during the night and may be related to the phase synchronization between heartbeat and breathing found recently. We speculate that the differences are caused by different cortically influenced control of the autonomic nervous system.

  14. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  15. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  16. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation.

    Science.gov (United States)

    Zielinski, Mark R; Taishi, Ping; Clinton, James M; Krueger, James M

    2012-06-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.

  17. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations.

    Directory of Open Access Journals (Sweden)

    Daniela Dentico

    Full Text Available We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity.High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention.Sound-attenuated sleep research room.Twenty-four long-term meditators and twenty-four meditation-naïve controls.Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation.We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz. There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience.This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.

  18. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    Science.gov (United States)

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  19. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

    Directory of Open Access Journals (Sweden)

    Andrea Pigorini

    2015-04-01

    These results point to bistability as the underlying critical mechanism that prevents the emergence of complex interactions in human thalamocortical networks during NREM sleep. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions(Casali et al., 2013; Rosanova et al., 2012 where cortico-cortical communication and consciousness are impaired in spite of preserved neuronal activity.

  20. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG.

    Science.gov (United States)

    Gibbs, Steve A; Proserpio, Paola; Terzaghi, Michele; Pigorini, Andrea; Sarasso, Simone; Lo Russo, Giorgio; Tassi, Laura; Nobili, Lino

    2016-02-01

    During the last decade, many clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviors have been clarified. Advances have been achieved in part through the use of intracerebral recording methods such as stereo-electroencephalography (S-EEG), which has allowed a unique "in vivo" neurophysiological insight into focal epilepsy. Using S-EEG, the local features of physiological and pathological EEG activity in different cortical and subcortical structures have been better defined during the entire sleep-wake spectrum. For example, S-EEG has contributed to clarify the semiology of sleep-related seizures as well as highlight the specific epileptogenic networks involved during ictal activity. Moreover, intracerebral EEG recordings derived from patients with epilepsy have been valuable to study sleep physiology and specific sleep disorders. The occasional co-occurrence of NREM-related parasomnias in epileptic patients undergoing S-EEG investigation has permitted the recordings of such events, highlighting the presence of local electrophysiological dissociated states and clarifying the underlying pathophysiological substrate of such NREM sleep disorders. Based on these recent advances, the authors review and summarize the current and relevant S-EEG literature on sleep-related hypermotor epilepsies and NREM-related parasomnias. Finally, novel data and future research hypothesis will be discussed.

  1. Five cases of a Joseph disease family with non-REM sleep apnea and MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Junichi; Tsuruta, Kazuhito; Yamamura, Yoshinori; Kurihara, Teruyuki; Matsukura, Shigeru

    1987-09-01

    Four male and one female patients of a new Joseph disease family in southern Kyushu are presented. This disorder is inherited by autosomal dominant trait. The clinical symptoms are characterized by bulging eyes, ophthalmoplegia, dysarthria, rigospasticity of the lower limbs, marked dystonia and bradykinesia. In our cases, extrapyramidal symptoms were improved by amantadine and L-dopa therapy. CSF homovanilic acid (HVA) was markedly reduced. Muscle biopsy and electromyographic studies revealed neurogenic changes. MRI revealed mild atrophy of frontal lobe and cerebellum, and marked atrophy of brain stem. These findings were consistent with the clinical manifestations. Our case had central type sleep apnea by sleep EEG and polygraphic studies. This is the first report about sleep apnea and MRI of Joseph disease.

  2. Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro.

    Science.gov (United States)

    Errington, Adam C; Hughes, Stuart W; Crunelli, Vincenzo

    2012-08-15

    The distribution of T-type Ca2+ channels along the entire somatodendritic axis of sensory thalamocortical (TC) neurons permits regenerative propagation of low threshold spikes (LTS) accompanied by global dendritic Ca2+ influx. Furthermore, T-type Ca2+ channels play an integral role in low frequency oscillatory activity (dynamics of T-type Ca2+ channel-dependent dendritic Ca2+ signalling during slow sleep-associated oscillations remains unknown. Here we demonstrate using patch clamp recording and two-photon Ca2+ imaging of dendrites from cat TC neurons undergoing spontaneous slow oscillatory activity that somatically recorded δ (1–4 Hz) and slow (<1 Hz) oscillations are associated with rhythmic and sustained global oscillations in dendritic Ca2+. In addition, our data reveal the presence of LTS-dependent Ca2+ transients (Δ[Ca2+]) in dendritic spine-like structures on proximal TC neuron dendrites during slow (<1 Hz) oscillations whose amplitudes are similar to those observed in the dendritic shaft. We find that the amplitude of oscillation associated Δ[Ca2+] do not vary significantly with distance from the soma whereas the decay time constant (τdecay) of Δ[Ca2+] decreases significantly in more distal dendrites. Furthermore, τdecay of dendritic Δ[Ca2+] increases significantly as oscillation frequency decreases from δ to slow frequencies where pronounced depolarised UP states are observed. Such rhythmic dendritic Ca2+ entry in TC neurons during sleep-related firing patterns could be an important factor in maintaining the oscillatory activity and associated biochemical signalling processes, such as synaptic downscaling, that occur in non-REM sleep.

  3. Ultrashort sleep-waking schedule. II. Relationship between ultradian rhythms in sleepability and the REM-non-REM cycles and effects of the circadian phase.

    Science.gov (United States)

    Lavie, P; Zomer, J

    1984-01-01

    Eight subjects aged 20-30 years spent two 24 h periods in the sleep laboratory after having an adaptation night. At 16.00 h subjects began a strict 15 min waking-5 min sleeping schedule until 24.00 h. At 24.00 subjects retired for an uninterrupted monitored nocturnal sleep. Subjects were awakened after 6-7 h of sleep, either from REM sleep (in one experimental period) or 25 min after the end of a REM period (in the other experimental period) in a counterbalanced order, and a second 8 h 15 min waking-5 min sleeping schedule was initiated. There were no significant differences between the percentages of sleep stages 1 and 2 in the afternoon, evening and morning experiments. In each, stage 1 occurred in about 10 of the 24 'sleep attempts' and accounted for 15-19% of the total recording time; sleep stage 2 occurred in 2-5 sleep attempts and accounted for 3-8% of total recording time. Four of the 8 subjects showed REM sleep in 8 sleep 'attempts;' only one appeared during an evening period. Orthogonal spectral analysis revealed a dominant ultradian frequency of about 7.2 c/day during both experimental schedules. However, synchronizing the individual morning time series with the last nocturnal REM period resulted in the appearance of a single spectral peak at 14.4 c/day, which is the dominant ultradian frequency of the nocturnal REM-non-REM cycles.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The glycolytic metabolite methylglyoxal induces changes in vigilance by generating low-amplitude non-REM sleep.

    Science.gov (United States)

    Jakubcakova, Vladimira; Curzi, M Letizia; Flachskamm, Cornelia; Hambsch, Boris; Landgraf, Rainer; Kimura, Mayumi

    2013-11-01

    Methylglyoxal (MG), an essential by-product of glycolysis, is a highly reactive endogenous α-oxoaldehyde. Although high levels of MG are cytotoxic, physiological doses of MG were shown to reduce anxiety-related behavior through selective activation of γ-aminobutyric acid type A (GABAA) receptors. Because the latter play a major role in sleep induction, this study examined the potential of MG to regulate sleep. Specifically, we assessed how MG influences sleep-wake behavior in CD1 mice that received intracerebroventricular injections of either vehicle or 0.7 µmol MG at onset of darkness. We used electroencephalogram (EEG) and electromyogram (EMG) recordings to monitor changes in vigilance states, sleep architecture and the EEG spectrum, for 24 h after receipt of injections. Administration of MG rapidly induced non-rapid eye movement sleep (NREMS) and, concomitantly, decreased wakefulness and suppressed EEG delta power during NREMS. In addition, MG robustly enhanced the amount and number of episodes of an unclassified state of vigilance in which EMG, as well as EEG delta and theta power, were very low. MG did not affect overall rapid eye movement sleep (REMS) in a given 24-h period, but significantly reduced the power of theta activity during REMS. Our results provide the first evidence that MG can exert sleep-promoting properties by triggering low-amplitude NREMS.

  5. Validation of non-REM sleep stage decoding from resting state fMRI using linear support vector machines.

    Science.gov (United States)

    Altmann, A; Schröter, M S; Spoormaker, V I; Kiem, S A; Jordan, D; Ilg, R; Bullmore, E T; Greicius, M D; Czisch, M; Sämann, P G

    2016-01-15

    A growing body of literature suggests that changes in consciousness are reflected in specific connectivity patterns of the brain as obtained from resting state fMRI (rs-fMRI). As simultaneous electroencephalography (EEG) is often unavailable, decoding of potentially confounding sleep patterns from rs-fMRI itself might be useful and improve data interpretation. Linear support vector machine classifiers were trained on combined rs-fMRI/EEG recordings from 25 subjects to separate wakefulness (S0) from non-rapid eye movement (NREM) sleep stages 1 (S1), 2 (S2), slow wave sleep (SW) and all three sleep stages combined (SX). Classifier performance was quantified by a leave-one-subject-out cross-validation (LOSO-CV) and on an independent validation dataset comprising 19 subjects. Results demonstrated excellent performance with areas under the receiver operating characteristics curve (AUCs) close to 1.0 for the discrimination of sleep from wakefulness (S0|SX), S0|S1, S0|S2 and S0|SW, and good to excellent performance for the classification between sleep stages (S1|S2:~0.9; S1|SW:~1.0; S2|SW:~0.8). Application windows of fMRI data from about 70 s were found as minimum to provide reliable classifications. Discrimination patterns pointed to subcortical-cortical connectivity and within-occipital lobe reorganization of connectivity as strongest carriers of discriminative information. In conclusion, we report that functional connectivity analysis allows valid classification of NREM sleep stages.

  6. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    Science.gov (United States)

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.

  7. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    Science.gov (United States)

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  8. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    CERN Document Server

    Merica, H

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) - in fitting the data well - successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN...

  9. Sleep in intensive care unit

    DEFF Research Database (Denmark)

    Boyko, Yuliya; Jennum, Poul; Nikolic, Miki

    2017-01-01

    PURPOSE: To determine if improving intensive care unit (ICU) environment would enhance sleep quality, assessed by polysomnography (PSG), in critically ill mechanically ventilated patients. MATERIALS AND METHODS: Randomized controlled trial, crossover design. The night intervention "quiet routine......" protocol was directed toward improving ICU environment between 10pm and 6am. Noise levels during control and intervention nights were recorded. Patients on mechanical ventilation and able to give consent were eligible for the study. We monitored sleep by PSG.The standard (American Association of Sleep...... Medicine) sleep scoring criteria were insufficient for the assessment of polysomnograms. Modified classification for sleep scoring in critically ill patients, suggested by Watson et al. (Crit Care Med 2013;41:1958-1967), was used. RESULTS: Sound level analysis showed insignificant effect...

  10. Pathology of sleep, hormones and depression

    NARCIS (Netherlands)

    Steiger, A.; Dresler, M.; Kluge, M.; Schussler, P.

    2013-01-01

    In patients with depression, characteristic changes of sleep electroencephalogram and nocturnal hormone secretion occur including rapid eye movement (REM) sleep disinhibition, reduced non-REM sleep and impaired sleep continuity. Neuropeptides are common regulators of the sleep electroencephalogram (

  11. Heart rate variability: a tool to explore the sleeping brain?

    Directory of Open Access Journals (Sweden)

    Florian eChouchou

    2014-12-01

    Full Text Available Sleep is divided into two main sleep stages: 1 non-rapid eye movement sleep (non-REMS, characterized among others by reduced global brain activity; and 2 rapid eye movement sleep (REMS, characterized by global brain activity similar to that of wakefulness. Results of heart rate variability (HRV analysis, which is widely used to explore autonomic modulation, have revealed higher parasympathetic tone during normal non-REMS and a shift toward sympathetic predominance during normal REMS. Moreover, HRV analysis combined with brain imaging has identified close connectivity between autonomic cardiac modulation and activity in brain areas such as the amygdala and insular cortex during REMS, but no connectivity between brain and cardiac activity during non-REMS. There is also some evidence for an association between HRV and dream intensity and emotionality. Following some technical considerations, this review addresses how brain activity during sleep contributes to changes in autonomic cardiac activity, organized into three parts: 1 the knowledge on autonomic cardiac control, 2 differences in brain and autonomic activity between non-REMS and REMS, and 3 the potential of HRV analysis to explore the sleeping brain, and the implications for psychiatric disorders.

  12. Sleep in the intensive care unit.

    Science.gov (United States)

    Pisani, Margaret A; Friese, Randall S; Gehlbach, Brian K; Schwab, Richard J; Weinhouse, Gerald L; Jones, Shirley F

    2015-04-01

    Sleep is an important physiologic process, and lack of sleep is associated with a host of adverse outcomes. Basic and clinical research has documented the important role circadian rhythm plays in biologic function. Critical illness is a time of extreme vulnerability for patients, and the important role sleep may play in recovery for intensive care unit (ICU) patients is just beginning to be explored. This concise clinical review focuses on the current state of research examining sleep in critical illness. We discuss sleep and circadian rhythm abnormalities that occur in ICU patients and the challenges to measuring alterations in circadian rhythm in critical illness and review methods to measure sleep in the ICU, including polysomnography, actigraphy, and questionnaires. We discuss data on the impact of potentially modifiable disruptors to patient sleep, such as noise, light, and patient care activities, and report on potential methods to improve sleep in the setting of critical illness. Finally, we review the latest literature on sleep disturbances that persist or develop after critical illness.

  13. What does brain damage tell us about the mechanisms of sleep?

    National Research Council Canada - National Science Library

    Evans, B M

    2002-01-01

    ... the damaged brain. WAKEFULNESS, RAPID EYE MOVEMENT (REM) SLEEP AND NON-REM SLEEP Wakefulness is characterized by a state of arousal with an activated cerebral cortex, high cerebral blood-flow and glucose metabolism, and fast activity in the electroence-- phalogram (EEG); autonomic activity and muscular tone are also high. Non-REM sleep begins at sleep ons...

  14. Sleep in the Intensive Care Unit measured by polysomnography

    DEFF Research Database (Denmark)

    Andersen, J H; Boesen, Hans Christian Toft; Olsen, Karsten Skovgaard

    2013-01-01

    Sleep deprivation has deleterious effects on most organ systems. Patients in the Intensive care unit (ICU) report sleep deprivation as the second worst experience during their stay only superseded by pain. The aim of the review is to provide the clinician with knowledge of the optimal sleep-frien...

  15. Sleep in the intensive care unit

    Science.gov (United States)

    Beltrami, Flávia Gabe; Nguyen, Xuân-Lan; Pichereau, Claire; Maury, Eric; Fleury, Bernard; Fagondes, Simone

    2015-01-01

    ABSTRACT Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion. PMID:26785964

  16. Sleep intensity and the evolution of human cognition.

    Science.gov (United States)

    Samson, David R; Nunn, Charles L

    2015-01-01

    Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans.

  17. Intensive Sleep Re-Training: From Bench to Bedside

    Directory of Open Access Journals (Sweden)

    Leon Lack

    2017-03-01

    Full Text Available Intensive sleep re-training is a promising new therapy for chronic insomnia. Therapy is completed over a 24-h period during a state of sleep deprivation. Improvements of sleep and daytime impairments are comparable to the use of stimulus control therapy but with the advantage of a rapid reversal of the insomnia. The initial studies have been laboratory based and not readily accessible to the patient population. However, new smart phone technology, using a behavioral response to external stimuli as a measure of sleep/wake state instead of EEG determination of sleep, has made this new therapy readily available. Technological improvements are still being made allowing the therapy to provide further improvements in the effectiveness of Intensive Sleep Re-training.

  18. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  19. Models of human sleep regulation

    NARCIS (Netherlands)

    Beersma, Domien G.M.

    1998-01-01

    Non-REM sleep deprivation and REM sleep deprivation both lead to specific rebounds, suggesting that these states fulfil physiological needs. In view of impaired performance after sleep deprivation, a recovery function of sleep seems likely. The timing of this recovery is restricted to a narrow time

  20. Your Guide to Healthy Sleep

    Science.gov (United States)

    ... REM Sleep REM Sleep Stage 1: Stage 2: Stage 3: Light sleep; easily l Usually first occurs awakened; muscles about 90 minutes relax with occasional after you fall asleep, twitches; eye and longer, ... non-REM stages throughout the night. Eyes move rapidly Occurs soon ...

  1. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  2. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Science.gov (United States)

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  3. Posttraining Increases in REM Sleep Intensity Implicate REM Sleep in Memory Processing and Provide a Biological Marker of Learning Potential

    Science.gov (United States)

    Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.

    2004-01-01

    Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…

  4. Effects of unconditioned stimulus intensity and fear extinction on subsequent sleep architecture in an afternoon nap.

    Science.gov (United States)

    Sturm, Anna; Czisch, Michael; Spoormaker, Victor I

    2013-12-01

    Impaired fear extinction and disturbed sleep coincide in post-traumatic stress disorder (PTSD), but the nature of this relationship is unclear. Rapid eye movement (REM) sleep deprivation impairs fear extinction recall in rodents and young healthy subjects, and animal models have demonstrated both disrupted sleep after fear conditioning and normalized sleep after extinction learning. As a correlation between unconditioned stimulus (US) responding and subsequent sleep architecture has been observed in healthy subjects, the goal of this study was to test whether US intensity would causally affect subsequent sleep. Twenty-four young healthy subjects underwent a fear conditioning session with skin conductance response measurements before an afternoon session of polysomnographically recorded sleep (up to 120 min) in the sleep laboratory. Two factors were manipulated experimentally in a 2 × 2 design: US (electrical shock) was set at high or low intensity, and subjects did or did not receive an extinction session after fear conditioning. We observed that neither factor affected REM sleep amount, that high US intensity nominally increased sleep fragmentation (more Stage 1 sleep, stage shifts and wake after sleep onset), and that extinction increased Stage 4 amount. Moreover, reduced Stage 1 and increased Stage 4 and REM sleep were associated with subjective sleep quality of the afternoon nap. These results provide evidence for the notion that US intensity and extinction affect subsequent sleep architecture in young healthy subjects, which may provide a translational bridge from findings in animal studies to correlations observed in PTSD patients.

  5. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle.

    Science.gov (United States)

    Phillips, A J K; Robinson, P A; Klerman, E B

    2013-02-21

    Human sleep episodes are characterized by an approximately 90-min ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed 'homeostatic mechanism', homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed 'circadian mechanism', the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation for the

  6. Sleep and delirium in unsedated patients in the intensive care unit

    DEFF Research Database (Denmark)

    Boesen, H C; Andersen, J H; Bendtsen, A O

    2016-01-01

    BACKGROUND: Sleep deprivation and delirium are major problems in the ICU. We aimed to assess the sleep quality by polysomnography (PSG) in relation to delirium in mechanically ventilated non-sedated ICU patients. METHODS: Interpretation of 24-h PSG and clinical sleep assessment in 14 patients....... Delirium assessment was done using the confusion assessment method for the intensive care unit (CAM-ICU). RESULTS: Of four patients who were delirium free, only one had identifiable sleep on PSG. Sleep was disrupted with loss of circadian rhythm, and diminished REM sleep. In the remaining three patients...... the PSGs were atypical, meaning that no sleep signs were found, and sleep could not be quantified from the PSGs. Clinical total sleep time (ClinTST) ranged from 2.0-13.1 h in patients without delirium. Six patients with delirium all had atypical PSGs, so sleep could not be quantified. Short periods of REM...

  7. Senior Vipassana Meditation practitioners exhibit distinct REM sleep organization from that of novice meditators and healthy controls.

    Science.gov (United States)

    Maruthai, Nirmala; Nagendra, Ravindra P; Sasidharan, Arun; Srikumar, Sulekha; Datta, Karuna; Uchida, Sunao; Kutty, Bindu M

    2016-06-01

    Abstract/Summary The present study is aimed to ascertain whether differences in meditation proficiency alter rapid eye movement sleep (REM sleep) as well as the overall sleep-organization. Whole-night polysomnography was carried out using 32-channel digital EEG system. 20 senior Vipassana meditators, 16 novice Vipassana meditators and 19 non-meditating control subjects participated in the study. The REM sleep characteristics were analyzed from the sleep-architecture of participants with a sleep efficiency index >85%. Senior meditators showed distinct changes in sleep-organization due to enhanced slow wave sleep and REM sleep, reduced number of intermittent awakenings and reduced duration of non-REM stage 2 sleep. The REM sleep-organization was significantly different in senior meditators with more number of REM episodes and increased duration of each episode, distinct changes in rapid eye movement activity (REMA) dynamics due to increased phasic and tonic activity and enhanced burst events (sharp and slow bursts) during the second and fourth REM episodes. No significant differences in REM sleep organization was observed between novice and control groups. Changes in REM sleep-organization among the senior practitioners of meditation could be attributed to the intense brain plasticity events associated with intense meditative practices on brain functions.

  8. Sleep electroencephalography as a biomarker in depression

    OpenAIRE

    Steiger A; Pawlowski M.; Kimura M

    2015-01-01

    Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG) provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM) sleep, and impaired non-REM sleep. Most antidepressants suppress REM...

  9. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep

    Science.gov (United States)

    Bunde, Armin; Havlin, Shlomo; Kantelhardt, Jan W.; Penzel, Thomas; Peter, Jörg-Hermann; Voigt, Karlheinz

    2000-10-01

    Healthy sleep consists of several stages: deep sleep, light sleep, and rapid eye movement (REM) sleep. Here we show that these sleep stages can be characterized and distinguished by correlations of heart rates separated by n beats. Using the detrended fluctuation analysis (DFA) up to fourth order we find that long-range correlations reminiscent to the wake phase are present only in the REM phase. In the non-REM phases, the heart rates are uncorrelated above the typical breathing cycle time, pointing to a random regulation of the heartbeat during non-REM sleep.

  10. Perception of night-time sleep by surgical patients in an intensive care unit.

    Science.gov (United States)

    Nicolás, Ana; Aizpitarte, Eva; Iruarrizaga, Angélica; Vázquez, Mónica; Margall, Angeles; Asiain, Carmen

    2008-01-01

    The night-time sleep of patients hospitalized in intensive care is a very important feature within the health or disease process, as it has a direct repercussion on their adequate recovery. (1) To describe how surgical patients perceive their sleep in the intensive care unit; (2) to compare the subjective perception of patients with the nursing records and analyse these for the degree of agreement. Descriptive research. One hundred and four surgical patients were recruited to the study. Patients completed the Richards-Campbell Sleep Questionnaire, a five-item visual analogue scale, to subjectively measure their perceived level of sleep (range 0-100 mm). The observation of patient sleep by nurses, demographic data, nursing care during the night and use of specific pharmacological treatments were also collected from the nursing records. The total mean score of sleep on the first post-operative night was 51.42 mm, 28% of patients had a good sleep, 46% a regular sleep and 26% a bad sleep. The sleep profile of these patients has been characterized by the patients having a light sleep, with frequent awakening and generally little difficulty to go back to sleep after the awakenings. The agreement between the nurses' perceptions of patients' sleep and the patients' perception of their sleep was tested by means of one-factor analysis of variance (p nurse-patient perception, we obtained 44% of total agreement and 56% of disagreement. When discrepancy was found, the nurse generally overestimated the patients' perception. Surgical patients' perceptions of their sleep in the ICU suggest that this is inadequate. Nurses' perceptions of patients' sleep partially coincides with the latter's perception, but we have also found that the former frequently overestimate patients' sleep.

  11. Changes in sleep habits in adolescents during intensive interdisciplinary pediatric pain rehabilitation.

    Science.gov (United States)

    Logan, Deirdre E; Sieberg, Christine B; Conroy, Caitlin; Smith, Kelly; Odell, Shannon; Sethna, Navil

    2015-02-01

    Sleep behaviors play an important role in the experience of chronic pain in adolescence; less well known is the effect of improved sleep in the context of pain rehabilitation. This study examined changes in sleep habits and their association with pain and functioning following day-hospital interdisciplinary pediatric pain rehabilitation. Participants (84% female) were a cohort of 274 youth (ages 10-18, mean age 14.6 years) with neuropathic or musculoskeletal pain and associated disability who completed measures at admission, discharge, and short term (1-3 month) follow-up. Parents reported on the child's sleep habits; participants reported on pain, functional disability, and school functioning. Results show that sleep habits improved over the course of intensive pain rehabilitation treatment, with continued improvements at follow-up. Sleep habits at discharge correlated with concurrent measures of functional disability and mood symptoms, with healthier sleep habits being associated with less disability and fewer mood symptoms. Furthermore, greater sleep duration, less sleep onset delay, and fewer night wakings correlated with lower pain intensity ratings at discharge. Controlling for change in pain with treatment, baseline sleep habits, age, and concurrent depressive symptoms, sleep habits at discharge predicted global functioning and school functioning measured at follow-up. There was modest support for changes in sleep habits over the course of treatment predicting pain reduction at follow-up, with decreased night wakings significantly predicting reduced pain intensity at follow-up. Improvements in sleep habits may be one mechanism of efficacy for intensive pediatric pain rehabilitation.

  12. [Perception of night-time sleep by the surgical patients in an intensive care unit].

    Science.gov (United States)

    Nicolás, A; Aizpitarte, E; Iruarrizaga, A; Vázquez, M; Margall, M A; Asiain, M C

    2002-01-01

    Night-time rest of the patients hospitalized in Intensive Care is a very important feature within the health/disease process since it has a direct repercussion on their adequate recovery. The objectives of this investigation are: 1) describe how the surgical patients perceive their night-time sleep in the Polyvalent Intensive Care Unit: 2) compare the subjective perception of the patients with the nursing record in the care plan and analyze the degree of agreement between both assessments. Night-time sleep has been studied in 104 patients; surgery patients from emergencies, patients who are intubated, with previous psychiatric treatment, sleep apnea, drinking habit or impossibility of adequate communication were not included. To measure the patient's perception, the five item sleep questionnaire of Richards-Campbell and the assessment of sleep by the nurse, as well as the remaining variables included in a computerized care plan, were used. The total mean score of the sleep on the first post-operative night was 51.42 mm. When the scores obtained in each one of the questionnaire items are analyzed, it is seen that the sleep profile of these patients has been characterized by being light sleep, with frequent wakenings and generally with little difficulty to go back to sleep when woke op or were awakened. The assessment of the night-time sleep performed by the nurse coincides with the perception of the patients on many occasions, and when there is discrepancy, the nurse has overestimated the patient's sleep.

  13. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep.

    Science.gov (United States)

    Lecci, Sandro; Fernandez, Laura M J; Weber, Frederik D; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita

    2017-02-01

    Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non-rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders.

  14. Factors contributing to sleep deprivation in a multidisciplinary intensive care unit in South Africa

    Directory of Open Access Journals (Sweden)

    Valerie J. Ehlers

    2013-02-01

    Full Text Available Patients in intensive care units require rest and sleep to recuperate, but might suffer from sleep deprivation due to ongoing unit activities. The study aimed to identify and describe the factors contributing to sleep deprivation in one multi-disciplinary intensive care unit MDICU in a private hospital in South Africa. Quantitative, descriptive research was conducted to identify factors contributing to sleep deprivation in the research setting, and to make recommendations to enhance these patients’ abilities to sleep. Structured interviewswere conducted with 34 adult non-ventilated patients who had spent at least one night in the MDICU and who gave informed consent. Out of the 34 interviewed patients 70.6% n = 24 indicated that they suffered from sleep deprivation in the MDICU. The five major factors contributing to sleep deprivation in a MDICU were, (1 not knowing nurses’ names, noise caused by alarms, (2 stress, (3 inability to understand medical terms, and (3 blood pressure cuffs that restricted patients’ movements and smelled badly. Patients’ abilities to sleep were enhanced by reassuring nurses whose names they knew and with whom they could communicate. By attending to the identified five major factors, patients’ abilities to sleep in a MDICU could be enhanced enabling patients to recuperate faster. The implementation of such measures need not incur financial costs for the MDICU concerned.

  15. Factors contributing to sleep deprivation in a multidisciplinary intensive care unit in South Africa

    Directory of Open Access Journals (Sweden)

    Valerie J. Ehlers

    2013-01-01

    Full Text Available Patients in intensive care units require rest and sleep to recuperate, but might suffer from sleep deprivation due to ongoing unit activities. The study aimed to identify and describe the factors contributing to sleep deprivation in one multi-disciplinary intensive care unit (MDICU in a private hospital in South Africa. Quantitative, descriptive research was conducted to identify factors contributing to sleep deprivation in the research setting, and to make recommendations to enhance these patients’ abilities to sleep. Structured interviews were conducted with 34 adult non-ventilated patients who had spent at least one night in the MDICU and who gave informed consent. Out of the 34 interviewed patients 70.6% (n = 24 indicated that they suffered from sleep deprivation in the MDICU. The five major factors contributing to sleep deprivation in a MDICU were, (1 not knowing nurses’ names, noise caused by alarms, (2 stress, (3 inability to understand medical terms, and (3 blood pressure cuffs that restricted patients’ movements and smelled badly. Patients’ abilities to sleep were enhanced by reassuring nurses whose names they knew and with whom they could communicate. By attending to the identified five major factors, patients’ abilities to sleep in a MDICU could be enhanced enabling patients to recuperate faster. The implementation of such measures need not incur financial costs for the MDICU concerned.

  16. Characterisation of sleep in intensive care using 24-hour polysomnography: an observational study

    OpenAIRE

    Elliott, Rosalind; McKinley, Sharon; Cistulli, Peter; Fien, Mary

    2013-01-01

    Introduction Many intensive care patients experience sleep disruption potentially related to noise, light and treatment interventions. The purpose of this study was to characterise, in terms of quantity and quality, the sleep of intensive care patients, taking into account the impact of environmental factors. Methods This observational study was conducted in the adult ICU of a tertiary referral hospital in Australia, enrolling 57 patients. Polysomnography (PSG) was performed over a 24-hour pe...

  17. Effect of clomipramine on sleep and EEG power spectra in the diurnal rodent Eutamias sibiricus

    NARCIS (Netherlands)

    Dijk, D.J.; Strijkstra, A.; Daan, S.; Beersma, D.G.M.; Hoofdakker, R.H. van den

    1991-01-01

    Sleep was recorded in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. The tricyclic antidepressant drug clomipramine suppressed the duration of REM sleep and EEG power density in the frequencies between 1.5 and 13.5 Hz in nonREM sleep. During the administrat

  18. Sleep EEG in Boys with Attention Deficit Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-11-01

    Full Text Available Researchers at the University of Montreal, Canada, studied spectral analysis of non-REM sleep (stages 2, 3 and 4 and REM sleep EEG in 6 boys (age 10.3 +/- 1.2 with ADHD compared to 6 healthy controls.

  19. Automated NREM Sleep Staging Using the Electro-oculogram

    NARCIS (Netherlands)

    Garcia-Molina, G.; Abtahi, S.F.; Lagares-Lemos, M.

    2012-01-01

    Automatic sleep staging from convenient and unobtrusive sensors hasreceived considerable attention lately because this can enable a large range of potential applications in the clinical and consumer fields. In this paper the focus is on achieving non REM sleep staging from ocular electrodes. From th

  20. Slow Wave Sleep and Long Duration Spaceflight

    Science.gov (United States)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  1. [Sleep: regulation and phenomenology].

    Science.gov (United States)

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  2. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  3. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    Directory of Open Access Journals (Sweden)

    Suemaru,Katsuya

    2007-12-01

    Full Text Available In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock and psychological stress (non-foot shock induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM sleep and total non-REM sleep were significantly inhibited, whereas psychological stress enhanced hourly total REM sleep but not total non-REM sleep. Further results showed that total REM sleep, total non-REM sleep, total sleep and the total number of REM sleep episodes in 5 h were reduced, and that sleep latency was prolonged compared to the control group. On the other hand, in the psychological stress group, the total REM sleep in 5 h was increased significantly due to the prolongation of the average duration of REM sleep episodes and reduced REM sleep latency. In addition, the plasma of corticosterone increased significantly after physical stress but not after psychological stress. These results suggested that the sleep patterns, particularly the patterns of REM sleep following physical and psychological stress, are probably regulated by 2 different pathways.

  4. Moderate-intensity aerobic exercise improves sleep quality in men older adults

    Directory of Open Access Journals (Sweden)

    Shams Amir

    2013-01-01

    Full Text Available The purpose of present research was to investigate the effect of low and moderate intensity aerobic exercises on sleep quality in older adults. The statistical sample included 45 volunteer elderly men with age range of 60-70 years old that divided randomly in two experimental groups (aerobic exercise with low and moderate intensity and one control group. The maximum heart rate (MaxHR of subjects was obtained by subtracting one's age from 220. Furthermore, based on aerobic exercise type (40-50% MaxHR for low intensity group and 60-70% MaxHR for moderate intensity group the target MaxHR was calculated for each subject. The exercise protocol consisted of 8 weeks aerobic exercises (2 sessions in per-week based on Rockport one-mile walking/running test and the control group continued their daily activities. All subjects in per-test and post-test stages were completed the Petersburg Sleep Quality Index (PSQI. Results in post-test stage showed that there were significant differences between control and experimental groups in sleep quality and its components (P<0.05. Also, the Tukey Post Hoc showed that the moderate intensity group scores in sleep quality and its components were better than other groups (P<0.05. Finally, the low intensity group scores were better than control group (P<0.05. Generally, the present research showed that the aerobic exercises with moderate intensity have a positive and significant effect on sleep quality and its components. Thus, based on these findings, the moderate intensity aerobic exercises as a useful and medical method for improve the sleep quality among community older adults was recommended.

  5. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality.

    Science.gov (United States)

    Myllymäki, Tero; Rusko, Heikki; Syväoja, Heidi; Juuti, Tanja; Kinnunen, Marja-Liisa; Kyröläinen, Heikki

    2012-03-01

    Acute physical exercise may affect cardiac autonomic modulation hours or even days during the recovery phase. Although sleep is an essential recovery period, the information on nocturnal autonomic modulation indicated by heart rate variability (HRV) after different exercises is mostly lacking. Therefore, this study investigated the effects of exercise intensity and duration on nocturnal HR, HRV, HR, and HRV-based relaxation, as well as on actigraphic and subjective sleep quality. Fourteen healthy male subjects (age 36 ± 4 years, maximal oxygen uptake 49 ± 4 ml/kg/min) performed five different running exercises on separate occasions starting at 6 p.m. with HR guidance at home. The effect of intensity was studied with 30 min of exercises at intensities corresponding to HR level at 45% (easy), 60% (moderate) and 75% (vigorous) of their maximal oxygen uptake. The effect of duration was studied with 30, 60, and 90 min of moderate exercises. Increased exercise intensity elevated nocturnal HR compared to control day (p exercises (p exercise day compared to control day (p exercise intensity nor duration had any impact on actigraphic or subjective sleep quality. The results suggest that increased exercise intensity and/or duration cause delayed recovery of nocturnal cardiac autonomic modulation, although long exercise duration was needed to induce changes in nocturnal HRV. Increased exercise intensity or duration does not seem to disrupt sleep quality.

  6. Effect of implementation of Quiet Time Protocol on sleep quality of patients in Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Chamanzari Hamid

    2016-06-01

    Full Text Available Background and Objective: Sleep disorder is considered as one of the major challenges in the Intensive Care Unit. Psychological and physical factors of environment are involved in its development. The adjustment of these factors to meet this need is essential. The current study was conducted to determine the effect of implementation of  Quiet Time Protocol on sleep quality of patients in intensive care unit. Materials and Method: In this clinical trial study, study population was the hospitalized patients in surgical intensive care unit of Ghaem Hospital of Mashhad in 2013. 60 patients were selected by convenience sampling and then were assigned into intervention and control groups.  The quiet time protocol was implemented in intervention group for 3 consecutive nights from 7pm to 5 am. The data were gathered through made-researcher questionnaire about sleep quality in the first, second and third nights. Data analysis was done through Fisher's exact test, chi-square, independent T-test, repeated measures ANOVA in SPSS21. Results: The mean score of sleep quality in effectiveness aspect in intervention group was higher than the control group in all three nights (p<0.001. This mean in sleep disorders aspect after the intervention in intervention group was significantly reduced in the first (p=0.002 the second and third nights (p<0.001 in compare with control group. Conclusion: According to the results, implementation of quiet time protocol is effective on improving the sleep quality of patients in surgical intensive care unit. Nurses can use this protocol to improve the quality of sleep in patients.

  7. Sleep monitoring of a six-day microcycle in strength and high-intensity training.

    Science.gov (United States)

    Kölling, Sarah; Wiewelhove, Thimo; Raeder, Christian; Endler, Stefan; Ferrauti, Alexander; Meyer, Tim; Kellmann, Michael

    2016-08-01

    This study examined the effect of microcycles in eccentric strength and high-intensity interval training (HIT) on sleep parameters and subjective ratings. Forty-two well-trained athletes (mean age 23.2 ± 2.4 years) were either assigned to the strength (n = 21; mean age 23.6 ± 2.1 years) or HIT (n = 21; mean age 22.8 ± 2.6 years) protocol. Sleep monitoring was conducted with multi-sensor actigraphy (SenseWear Armband™, Bodymedia, Pittsburg, PA, USA) and sleep log for 14 days. After a five-day baseline phase, participants completed either eccentric accented strength or high-intensity interval training for six days, with two training sessions per day. This training phase was divided into two halves (part 1 and 2) for statistical analyses. A three-day post phase concluded the monitoring. The Recovery-Stress Questionnaire for Athletes was applied at baseline, end of part 2, and at the last post-day. Mood ratings were decreased during training, but returned to baseline values afterwards in both groups. Sleep parameters in the strength group remained constant over the entire process. The HIT group showed trends of unfavourable sleep during the training phase (e.g., objective sleep efficiency at part 2: mean = 83.6 ± 7.8%, F3,60 = 2.57, P = 0.06, [Formula: see text] = 0.114) and subjective improvements during the post phase for awakenings (F3,60 = 2.96, P = 0.04, [Formula: see text] = 0.129) and restfulness of sleep (F3,60 = 9.21, P strength training, and sufficient sleep time should be emphasised and monitored.

  8. Functional neuroimaging of sleep.

    Science.gov (United States)

    Nofzinger, Eric A

    2005-03-01

    Sleep and sleep disorders have traditionally been viewed from a polysomnographic perspective. Although these methods provide information on the timing of various stages of sleep and wakefulness, they do not provide information regarding function in brain structures that have been implicated in the generation of sleep and that may be abnormal in different sleep disorders. Functional neuroimaging methods provide information regarding changes in brain function across the sleep-wake cycle that provides information for models of sleep dysregulation in a variety of sleep disorders. Early studies show reliable increases in function in limbic and anterior paralimbic cortex in rapid eye movement (REM) sleep and decreases in function in higher-order cortical regions in known thalamocortical networks during non-REM sleep. Although most of the early work in this area has been devoted to the study of normal sleep mechanisms, a collection of studies in diverse sleep disorders such as sleep deprivation, depression, insomnia, dyssomnias, narcolepsy, and sleep apnea suggest that functional neuroimaging methods have the potential to clarify the pathophysiology of sleep disorders and to guide treatment strategies.

  9. The influence of care interventions on the continuity of sleep of intensive care unit patients1

    Science.gov (United States)

    Hamze, Fernanda Luiza; de Souza, Cristiane Chaves; Chianca, Tânia Couto Machado

    2015-01-01

    Objective: to identify care interventions, performed by the health team, and their influence on the continuity of sleep of patients hospitalized in the Intensive Care Unit. Method: descriptive study with a sample of 12 patients. A filming technique was used for the data collection. The awakenings from sleep were measured using the actigraphy method. The analysis of the data was descriptive, processed using the Statistical Package for the Social Sciences software. Results: 529 care interventions were identified, grouped into 28 different types, of which 12 (42.8%) caused awakening from sleep for the patients. A mean of 44.1 interventions/patient/day was observed, with 1.8 interventions/patient/hour. The administration of oral medicine and food were the interventions that caused higher frequencies of awakenings in the patients. Conclusion: it was identified that the health care interventions can harm the sleep of ICU patients. It is recommended that health professionals rethink the planning of interventions according to the individual demand of the patients, with the diversification of schedules and introduction of new practices to improve the quality of sleep of Intensive Care Unit patients. PMID:26487127

  10. Boosting Vocabulary Learning by Verbal Cueing During Sleep.

    Science.gov (United States)

    Schreiner, Thomas; Rasch, Björn

    2015-11-01

    Reactivating memories during sleep by re-exposure to associated memory cues (e.g., odors or sounds) improves memory consolidation. Here, we tested for the first time whether verbal cueing during sleep can improve vocabulary learning. We cued prior learned Dutch words either during non-rapid eye movement sleep (NonREM) or during active or passive waking. Re-exposure to Dutch words during sleep improved later memory for the German translation of the cued words when compared with uncued words. Recall of uncued words was similar to an additional group receiving no verbal cues during sleep. Furthermore, verbal cueing failed to improve memory during active and passive waking. High-density electroencephalographic recordings revealed that successful verbal cueing during NonREM sleep is associated with a pronounced frontal negativity in event-related potentials, a higher frequency of frontal slow waves as well as a cueing-related increase in right frontal and left parietal oscillatory theta power. Our results indicate that verbal cues presented during NonREM sleep reactivate associated memories, and facilitate later recall of foreign vocabulary without impairing ongoing consolidation processes. Likewise, our oscillatory analysis suggests that both sleep-specific slow waves as well as theta oscillations (typically associated with successful memory encoding during wakefulness) might be involved in strengthening memories by cueing during sleep.

  11. The hypocretins (orexins mediate the “phasic” components of REM sleep: A new hypothesis

    Directory of Open Access Journals (Sweden)

    Pablo Torterolo

    2014-03-01

    The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.

  12. Network Homeostasis and State Dynamics of Neocortical Sleep.

    Science.gov (United States)

    Watson, Brendon O; Levenstein, Daniel; Greene, J Palmer; Gelinas, Jennifer N; Buzsáki, György

    2016-05-18

    Sleep exerts many effects on mammalian forebrain networks, including homeostatic effects on both synaptic strengths and firing rates. We used large-scale recordings to examine the activity of neurons in the frontal cortex of rats and first observed that the distribution of pyramidal cell firing rates was wide and strongly skewed toward high firing rates. Moreover, neurons from different parts of that distribution were differentially modulated by sleep substates. Periods of nonREM sleep reduced the activity of high firing rate neurons and tended to upregulate firing of slow-firing neurons. By contrast, the effect of REM was to reduce firing rates across the entire rate spectrum. Microarousals, interspersed within nonREM epochs, increased firing rates of slow-firing neurons. The net result of sleep was to homogenize the firing rate distribution. These findings are at variance with current homeostatic models and provide a novel view of sleep in adjusting network excitability.

  13. Sleep, quality of life and mood of nursing professionals of pediatric intensive care units

    Directory of Open Access Journals (Sweden)

    Priscilla Caetano Guerra

    2016-04-01

    Full Text Available Abstract OBJECTIVE To assess sleep, quality of life and mood of nursing professionals of pediatric intensive care units. METHOD Quantitative, cross-sectional and descriptive study. Professionals grouped by morning, afternoon and evening shifts were assessed by means of the instruments: Morningness-Eveningness Questionnaire; Pittsburgh Sleep Quality Index; Epworth Sleepiness Scale; Generic questionnaire for the assessment of quality of life (SF-36; Beck Depression Inventory; Beck Anxiety Inventory; State-Trait Anxiety Inventory. RESULTS Sample consisted of 168 professionals, with prevalence of neutral typology (57.49%. There was no statistical significance regarding sleep, despite scores showing a poor quality of sleep and excessive daytime sleepiness for the three shifts. Quality of life did not reveal any statistical significance, but in the field "social role functioning" of the evening shift, a lower score was observed (p<0.007. There was no statistical significance regarding levels of anxiety and depression. CONCLUSION The results suggest that these professionals may present sleeping problems, but they do not have lower scores of quality of life or mood disorders. Likely explanations for these findings may include an adaptation to their work type over time and the fact that working with children is rewarding.

  14. Sleep

    Science.gov (United States)

    ... NICHD Research Information Clinical Trials Resources and Publications Sleep: Condition Information Skip sharing on social media links Share this: Page Content What is sleep? Sleep is a period of unconsciousness during which ...

  15. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    Science.gov (United States)

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record

  16. Affect Intensity and Phasic REM Sleep in Depressed Men before and after Treatment with Cognitive-Behavioral Therapy.

    Science.gov (United States)

    Nofzinger, Eric A.; And Others

    1994-01-01

    Explored relationship between daytime affect and REM (rapid eye movement) sleep in 45 depressed men before and after treatment with cognitive-behavioral therapy and in control group of 43 healthy subjects. For depressed subjects only, intensity of daytime affect correlated significantly and positively with phasic REM sleep measures at pre- and…

  17. Sound level intensity severely disrupts sleep in ventilated ICU patients throughout a 24-h period: a preliminary 24-h study of sleep stages and associated sound levels.

    Science.gov (United States)

    Elbaz, Maxime; Léger, Damien; Sauvet, Fabien; Champigneulle, Benoit; Rio, Stéphane; Strauss, Mélanie; Chennaoui, Mounir; Guilleminault, Christian; Mira, Jean Paul

    2017-12-01

    It is well recognized that sleep is severely disturbed in patients in intensive care units (ICU) and that this can compromise their rehabilitation potential. However, it is still difficult to objectively assess sleep quantity and quality and the determinants of sleep disturbance remain unclear. The aim of this study was therefore to evaluate carefully the impact of ICU sound intensity levels and their sources on ICU patients' sleep over a 24-h period. Sleep and sound levels were recorded in 11 ICU intubated patients who met the criteria. Sleep was recorded using a miniaturized multi-channel ambulatory recording device. Sound intensity levels and their sources were recorded with the Nox-T3 monitor. A 30-s epoch-by-epoch analysis of sleep stages and sound data was carried out. Multinomial and binomial logistic regressions were used to associate sleep stages, wakefulness and sleep-wake transitions with sound levels and their sources. The subjects slept a median of 502.2 [283.2-718.9] min per 24 h; 356.9 [188.6-590.9] min at night (22.00-08.00) and 168.5 [142.5-243.3] during daytime (8 am-10 pm). Median sound intensity level reached 70.2 [65.1-80.3] dBC at night. Sound thresholds leading to disturbed sleep were 63 dBC during the day and 59 dBC during the night. With levels above 77 dBC, the incidence of arousals (OR 3.9, 95% CI 3.0-5.0) and sleep-to-wake transitions (OR 7.6, 95% CI 4.1-14) increased. The most disturbing noises sources were monitor alarms (OR 4.5, 95% CI 3.5-5.6) and ventilator alarms (OR 4.2, 95% CI 2.9-6.1). We have shown, in a small group of 11 non-severe ICU patients, that sound level intensity, a major disturbance factor of sleep continuity, should be strictly controlled on a 24-h profile.

  18. Dynamics of Sleep Stage Transitions in Health and Disease

    Science.gov (United States)

    Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu

    2007-07-01

    Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a

  19. Evaluation of the effect of patient-selected music on sleep quality and pain intensity in burn patients

    National Research Council Canada - National Science Library

    Mohaddes Ardabili Fatemeh; Abdi Samira; Najafi Ghezeljeh Tahereh; Hoseini Agha Fatemeh; Teimoori Aref

    2016-01-01

    .... Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients...

  20. Evaluation of the effects of patient-selected music therapy on the sleep quality and pain intensity of burn patients

    National Research Council Canada - National Science Library

    Fatemeh Muhaddith Ardabili; Samira Abdi; Tahereh Najafi Ghezeljeh; Agha Fatemeh Hosseini; Aref Teymoori

    2016-01-01

    .... Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients. Methods...

  1. The influence of upper airways diameter on the intensity of obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Jolanta Szymańska

    2014-03-01

    Full Text Available Introduction and Objective. Obstructive sleep apnea (OSA is characterized by at least 5 ten-second-long episodes of apnea or hypopnea, per hour of sleep. This disease may lead to severe, life-threatening complications. Therefore, risk analysis and its influence on disease intensity is crucial for proper implementation of preventive treatments. Objective. To determine the relation between the intensity of OSA expressed in Apnea-Hypopnea Index (AHI, and the anterior-posterior diameter of upper airways at the levels of soft palate and tongue base. Material and Method. Medical records of 41 patients with sleep apnea (AHI>4 diagnosed through polysomnographic examination obstructive were used for the study. The data consisted of: age and gender, polysomnographic examination results (AHI, lateral cephalogram with cephalomertic analysis, together with measurements of the upper and lower pharyngeal depth according to McNamara. Statistical analysis was carried out in accordance with Pearson’s r correlation coefficient test (Statistica 8.0 software package. Results. Analysis of the influence of upper airways diameter on the intensity of OSA showed that the value of upper Airways diameter at the tongue base level had no statistically significant impact on the value of AHI (p=0.795. However, a statistically significant impact of the value of upper airways diameter on the AHI value (p=0.008 at the soft palate level was observed. Patients with OSA have narrowed upper airways diameter. The value of AHI increases with the decrease of upper diameter and is not dependent on a lower diameter value. Patients with a decreased upper airways diameter should be informed about potential breathing disorders during sleep.

  2. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Science.gov (United States)

    Machado, Ricardo Borges; Tufik, Sergio; Suchecki, Deborah

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  3. Prevalence of Parasomnia in Autistic Children with Sleep Disorders

    OpenAIRE

    Walters, Arthur S.; Michael Brimacombe; Roberto V. Nachajon; Xue Ming; Ye-Ming Sun

    2009-01-01

    The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD). Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children wit...

  4. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent...

  5. [Continuous nocturnal automassage of an acupuncture point modifies sleep in healthy subjects].

    Science.gov (United States)

    Buguet, A; Sartre, M; Le Kerneau, J

    1995-01-01

    To test the somnogenic properties of the automassage of point 7 heart of acupuncture, polygraphic night sleep was studied in six healthy volunteers (age: 27.8 +/- 1.6 years) from 23:00 h to 07:00 h. After one night of adaptation, two PEBA cones (Polyether Block Amides; Isocones) were fixed bilaterally at both points 7 heart (active application, AA) or on the back of hand (placebo application, AP). The alternate application was used 2 weeks later, using a randomized, double-blind, and cross-over protocol. Cyclic alternating patterns (CAP) were also analysed on the electroencephalogram during non-REM sleep. Sleep efficiency increased in AA, due to a decrease in wakefulness, and an increase in total sleep time due to an increase in non-REM sleep. The number of CAP decreased in AA, as did the number of CAP sequences and the ratio of CAP duration to total sleep time (CAP rate) and to the duration of slow-wave sleep. In conclusion, the application of Isocones at point 7 heart during the night induced a decrease in wakefulness and an increase in non-REM sleep during night sleep in healthy subjects.

  6. The relationship of sleep with temperature and metabolic rate in a hibernating primate.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available STUDY OBJECTIVES: It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS: We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS: These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.

  7. Evaluation of the effect of patient-selected music on sleep quality and pain intensity in burn patients

    OpenAIRE

    Mohaddes Ardabili Fatemeh; Abdi Samira; Najafi Ghezeljeh Tahereh; Hoseini Agha Fatemeh; Teimoori Aref

    2016-01-01

    Background and Objective: Sleep disturbances and pain are some of the most common problems among burn patients, which have adverse effects on recovery process and patient comfort. Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients. Materials and Method: This clinical trial was conducted on burn patients hospitalized in one of t...

  8. Evaluation of the effect of patient-selected music on sleep quality and pain intensity in burn patients

    Directory of Open Access Journals (Sweden)

    Mohaddes Ardabili Fatemeh

    2016-08-01

    Full Text Available Background and Objective: Sleep disturbances and pain are some of the most common problems among burn patients, which have adverse effects on recovery process and patient comfort. Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients. Materials and Method: This clinical trial was conducted on burn patients hospitalized in one of the hospitals of Tehran, Iran in 2015. In total, 50 patients were selected using randomized convenience sampling and divided into two intervention (n=25 and control (n=25 groups. Intervention was carried out for the intervention group through playing instrumental music, selected by the patients, in three consecutive 45-minute sessions before sleep. Severity of pain in the participants was evaluated for three nights (before and five minutes after the intervention using visual analog scale (VAS. In addition, sleep quality of the samples was assessed three days before the intervention using Pittsburgh sleep quality index (PSQI and during the post-intervention days through interviews. The mentioned scales were applied for the control group as well. Data analysis was performed in SPSS version 18 using Chi-square, as well as paired and independent t-tests. Results: In this study, a significant improvement was observed in sleep quality (P<0.001  and pain intensity (P=0.012 in the participants of intervention group after listening to music. Moreover, a significant difference was observed between the study groups after the intervention in terms of mean sleep quality score (P<0.001 and pain intensity (P=0.046. Conclusion: According to the results of this study, application of patient-selected music therapy could be associated with a significant improve in sleep quality and decrease in pain intensity in burn patients. Therefore, it is recommended that this intervention

  9. Evaluation of the effects of patient-selected music therapy on the sleep quality and pain intensity of burn patients

    Directory of Open Access Journals (Sweden)

    Fatemeh Muhaddith Ardabili

    2016-02-01

    Full Text Available Background: Sleep disturbances and pain are some of the most common problems among burn patients, which have adverse effects on recovery process and patient comfort. Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients. Methods: This clinical trial was conducted on burn patients hospitalized in one of the hospitals of Tehran, Iran in 2015. In total, 50 patients were selected using randomized convenience sampling and divided into two intervention (n=25 and control (n=25 groups. Intervention was carried out for the intervention group through playing instrumental music, selected by the patients, in three consecutive 45-minute sessions before sleep. Severity of pain in the participants was evaluated for three nights (before and five minutes after the intervention using visual analog scale (VAS. In addition, sleep quality of the samples was assessed three days before the intervention using Pittsburgh sleep quality index (PSQI and during the post-intervention days through interviews. The mentioned scales were applied for the control group as well. Data analysis was performed in SPSS version 18 using Chi-square, as well as paired and independent t-tests. Results: In this study, a significant improvement was observed in sleep quality (P<0.001 and pain intensity (P=0.012 in the participants of intervention group after listening to music. Moreover, a significant difference was observed between the study groups after the intervention in terms of mean sleep quality score (P<0.001 and pain intensity (P=0.046. Conclusion: According to the results of this study, application of patient-selected music therapy could be associated with a significant improve in sleep quality and decrease in pain intensity in burn patients. Therefore, it is recommended that this intervention approach be applied by

  10. Evaluation of the effects of patient-selected music therapy on the sleep quality and pain intensity of burn patients

    OpenAIRE

    Fatemeh Muhaddith Ardabili; Samira Abdi; Tahereh Najafi Ghezeljeh; Agha Fatemeh Hosseini; Aref Teymoori

    2016-01-01

    Background: Sleep disturbances and pain are some of the most common problems among burn patients, which have adverse effects on recovery process and patient comfort. Given the use of music as a non-pharmacological approach to alleviate pain and provide comfort, this study aimed to evaluate the effect of patient-selected music on sleep quality and pain intensity in burn patients. Methods: This clinical trial was conducted on burn patients hospitalized in one of the hospitals of Tehran, Iran...

  11. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals

    OpenAIRE

    Capellini, I.; Nunn, C L; McNamara, P; Preston, B T; Barton, R. A.

    2008-01-01

    Mammalian sleep is composed of two distinct states – rapid-eye-movement (REM) and non-REM (NREM) sleep – that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of ...

  12. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages.

    Science.gov (United States)

    Brandenberger, G; Follenius, M; Muzet, A; Ehrhart, J; Schieber, J P

    1985-08-01

    The 24-h pattern of PRA was studied in 6 supine normal subjects, and the relationship between sleep stages and PRA oscillations was analyzed using 18 nighttime profiles and the concomitant polygraphic recordings of sleep. Blood was collected at 10-min intervals. The slow trends obtained by adjusting a third degree polynomial to the 24-h data were not reproducible among individuals, and no circadian pattern was detected. Sustained oscillations in PRA occurred throughout the day. Spectral analysis revealed that PRA oscillated at a regular periodicity of about 100 min during the night. This periodicity was modified during the daytime by meal intake, which induced PRA peaks with large interindividual variations in size. A close relationship was found between the nocturnal PRA oscillations and the alternance of rapid eye movement (REM) sleep and non-REM sleep. Non-REM sleep invariably coincided with increasing or peaking PRA levels. REM sleep occurred as PRA was declining or at nadirs. More precisely, increases in PRA marked the transition from REM sleep to stage II, whereas stages III and IV usually occurred when PRA was highest. This relationship between the periodic nocturnal oscillations in PRA and the alternance of the REM-non-REM cycles may translate a similar oscillatory process in the central nervous system or may be linked to hemodynamic changes during sleep that might be partly controlled by the renin-angiotensin system.

  13. Effect of sleeping alone on sleep quality in female bed partners of snorers.

    Science.gov (United States)

    Blumen, M; Quera Salva, M A; d'Ortho, M-P; Leroux, K; Audibert, P; Fermanian, C; Chabolle, F; Lofaso, F

    2009-11-01

    The aim of the present study was to objectively measure the effect of sleeping alone for one night on sleep quality in female bed partners of male snorers. Females complaining of poor sleep due to snoring by their bed partner and having no known hearing loss or snoring were included in a prospective multicentre cross-sectional study. 23 females underwent one polysomnography recording while sleeping with their bed partner and another while sleeping alone. Their sleep parameters were compared between the two nights. We excluded seven couples because the female partner snored for >10% of the sleep time (n = 6) or had obstructive sleep apnoea syndrome (n = 1). In the remaining 16 females, sleep time, sleep efficiency, arousal index and percentages of deep sleep (stages 3-4) and rapid eye movement (REM) sleep were not significantly different between the two nights. Percentages of light sleep (non-REM stage 2) and awakening index were lower when sleeping alone (p = 0.023 and p = 0.046, respectively). Sleep quality was decreased and sleep fragmentation increased in females sleeping with male snorers. Some females had unrecognised snoring. However, our data do not suggest that objective sleep quality improves substantially in the female nonsnoring partner when she sleeps alone for one night.

  14. Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?

    Science.gov (United States)

    Raap, Thomas; Sun, Jiachen; Pinxten, Rianne; Eens, Marcel

    2017-09-01

    Light pollution or artificial light at night (ALAN) is an increasing anthropogenic environmental pollutant posing an important potential threat for wildlife. Evidence of its effects on animal physiology and behaviour is accumulating. However, in order to effectively mitigate light pollution it is important to determine which factors contribute to the severity of effects of ALAN. In this experimental study we explored whether there are seasonal-dependent effects of ALAN on sleep in free-living great tits (Parus major), an important model species. Additionally, we looked at whether light intensity determined the severity of effects of ALAN on sleep. We therefore exposed animals to artificial light inside the nest box (3lx) in December (winter) and February (pre-breeding season). Results from February were compared with the results from a previous study in February, using a lower light intensity (1.6lx). We found little evidence for a season-dependent response. Effects of ALAN hardly differed between high and low light intensity. ALAN disrupted sleep with as main effect a decrease in sleep duration (≈-40min) as animals woke up earlier (≈-24min). However, compared to a natural dark situation sleep onset was delayed by high but not by low light intensity of ALAN. Our study underlines earlier found disruptive effects of ALAN on sleep of free-living animals. While we found no conclusive evidence for seasonal or light intensity-dependent effects of ALAN, additional experimental work using lower light intensities might show such differences. Examining potential management options is crucial in mitigating disruptive effects of light pollution, which will be an important focus for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cellular and molecular connections between sleep and synaptic plasticity.

    Science.gov (United States)

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  16. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  17. Assessment of the EEG complexity during activations from sleep.

    Science.gov (United States)

    Chouvarda, I; Rosso, V; Mendez, M O; Bianchi, A M; Parrino, L; Grassi, A; Terzano, M; Cerutti, S

    2011-12-01

    The present study quantitatively analyzes the EEG characteristics during activations (Act) that occur during NREM sleep, and constitute elements of sleep microstructure (i.e. the Cyclic Alternating Pattern). The fractal dimension (FD) and the sample entropy (SampEn) measures were used to study the different sleep stages and the Act that build up the sleep structure. Polysomnographic recordings from 10 good sleepers were analyzed. The complexity indexes of the Act were compared with the non-activation (NAct) periods during non-REM sleep. In addition, complexity measures among the different Act subtypes (A1, A2 and A3) were analyzed. A3 presented a quite similar complexity independently of the sleep stage, while A1 and A2 showed higher complexity in light sleep than during deep sleep. The current results suggest that Act present a hierarchic complexity between subtypes A3 (higher), A2 (intermediate) and A1 (lower) in all sleep stages.

  18. Multifractal Analysis of Human Heartbeat in Sleep

    Science.gov (United States)

    Ding, Liang-Jing; Peng, Hu; Cai, Shi-Min; Zhou, Pei-Ling

    2007-07-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  19. Multifractal Analysis of Human Heartbeat in Sleep

    Institute of Scientific and Technical Information of China (English)

    DING Liang-Jing; PENG Hu; CAI Shi-Min; ZHOU Pei-Ling

    2007-01-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  20. Sleep disturbances in Parkinsonism.

    Science.gov (United States)

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  1. Sleep

    Science.gov (United States)

    ... Families & Friendships Military Sexual Trauma Depression mild Traumatic Brain Injury Life Stress Health & Wellness Anger Stigma Suicide Prevention ... Post-Traumatic Stress Sleep Alcohol & Drugs mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco ...

  2. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    OpenAIRE

    Suemaru, Katsuya; Li, Bingjin; Cui, Ranji; Araki, Hiroaki

    2007-01-01

    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep we...

  3. Sensory detection of threshold intensity resistive loads in severe obstructive sleep apnoea.

    Science.gov (United States)

    Ruehland, Warren R; Rochford, Peter D; Pierce, Robert J; Webster, Kate E; Trinder, John A; Jordan, Amy S; O'Donoghue, Fergal J

    2017-02-01

    Respiratory related evoked potentials (RREPs) were used to investigate whether sensory detection of small mid-inspiratory resistive loads (≈1.2-6.2 cmH2OL(-1)s), delivered during wakefulness, was impaired in obstructive sleep apnoea (OSA). It was reasoned that impaired detection of minor airway patency challenge may lead to difficult-to-remedy further collapse. There was a significant reduction in OSA (n=16) vs. control (n=17) participants in the slope of the relationship between the P1 RREP component amplitude, which reflects arrival of somatosensory information at the cortex, and stimulus intensity, expressed as change in epiglottic pressure (mean [95% confidence intervals]: -0.50 [-0.97, -0.03] vs. -1.78 [-2.54, -1.02]; P=0.004), suggesting a reduction in sensitivity to small respiratory loads. However there was no significant difference in sensitivity after background Pepi was taken into account (P=0.268). Additionally, there were no significant group differences in the threshold of the P1 amplitude/stimulus intensity relationship, or in the P1 latency. These results indicate a reduced sensitivity to detection of small upper airway negative pressure stimuli in OSA related to a reduction in mechanoreceptor activation (likely related to increased airway resistance in OSA vs. controls; P=0.002) rather than defective mechanosensory function. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Science.gov (United States)

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  5. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Jennum, Poul; Koch, Henriette;

    2016-01-01

    Objective: Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) are at high risk of developing Parkinson's disease (PD). As wake/sleep-regulation is thought to involve neurons located in the brainstem and hypothalamic areas, we hypothesize that the neurodegeneration in i...... with periodic leg movement disorder (PLMD) and 23 controls. Measures were computed based on manual scorings and data-driven labeled sleep staging. Results: Patients with PD showed significantly lower REM stability than controls and patients with PLMD. Patients with iRBD had significantly lower REM stability......RBD/PD is likely to affect wake/sleep and REM/non-REM (NREM) sleep transitions. Methods: We determined the frequency of wake/sleep and REM/NREM sleep transitions and the stability of wake (W), REM and NREM sleep as measured by polysomnography (PSG) in 27 patients with PD, 23 patients with iRBD, 25 patients...

  6. Effects of Aromatherapy on the Anxiety, Vital Signs, and Sleep Quality of Percutaneous Coronary Intervention Patients in Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Mi-Yeon Cho

    2013-01-01

    Full Text Available The purpose of this study was to investigate the effects of aromatherapy on the anxiety, sleep, and blood pressure (BP of percutaneous coronary intervention (PCI patients in an intensive care unit (ICU. Fifty-six patients with PCI in ICU were evenly allocated to either the aromatherapy or conventional nursing care. Aromatherapy essential oils were blended with lavender, roman chamomile, and neroli with a 6 : 2 : 0.5 ratio. Participants received 10 times treatment before PCI, and the same essential oils were inhaled another 10 times after PCI. Outcome measures patients' state anxiety, sleeping quality, and BP. An aromatherapy group showed significantly low anxiety (t=5.99, P<.001 and improving sleep quality (t=−3.65, P=.001 compared with conventional nursing intervention. The systolic BP of both groups did not show a significant difference by time or in a group-by-time interaction; however, a significant difference was observed between groups (F=4.63, P=.036. The diastolic BP did not show any significant difference by time or by a group-by-time interaction; however, a significant difference was observed between groups (F=6.93, P=.011. In conclusion, the aromatherapy effectively reduced the anxiety levels and increased the sleep quality of PCI patients admitted to the ICU. Aromatherapy may be used as an independent nursing intervention for reducing the anxiety levels and improving the sleep quality of PCI patients.

  7. Tracking potentiating states of dissociation: An intensive clinical case study of sleep, daydreaming, mood, and depersonalization/derealization

    Directory of Open Access Journals (Sweden)

    Giulia Lara Poerio

    2016-08-01

    Full Text Available This study examined in real time the role of sleep and daydreaming as potentiating states for subsequent dissociation in depersonalization/derealization disorder (DDD. Research and theory suggests that dissociation may be exacerbated and maintained by a labile sleep-wake cycle in which ‘dream-like’ mentation intrudes into waking life and fuels dissociative symptoms. We explore and extend this idea by examining the state of daydreaming in dissociation. Daydreaming is a state of consciousness between dreaming and waking cognition that involves stimulus-independent and task-unrelated mentation. We report the results of a unique intensive N=1 study with an individual meeting diagnostic criteria for DDD. Using experience-sampling methodology, the participant rated (six times daily for 40 days current daydreaming, mood, and dissociative symptoms. At the start of each day sleep quality and duration was also rated. Daydreaming was reported on 45% of occasions and significantly predicted greater dissociation, in particular when daydreams were repetitive and negative (but not fanciful in content. These relationships were mediated by feelings of depression and anxiety. Sleep quality but not duration was a negative predictor of daily dissociation and also negatively predicted depression but not anxiety. Findings offer initial evidence that the occurrence and content of daydreams may act as potentiating states for heightened, in the moment, dissociation. The treatment implications of targeting sleep and daydreaming for dissociative disorders are discussed.

  8. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  9. Heart rate variability during sleep and subsequent sleepiness in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Togo, Fumiharu; Natelson, Benjamin H

    2013-06-01

    We determined whether alterations in heart rate dynamics during sleep in patients with chronic fatigue syndrome (CFS) differed from controls and/or correlated with changes of sleepiness before and after a night in the sleep laboratory. We compared beat-to-beat RR intervals (RRI) during nocturnal sleep, sleep structure, and subjective scores on visual analog scale for sleepiness in 18 CFS patients with 19 healthy controls aged 25-55 after excluding subjects with sleep disorders. A short-term fractal scaling exponent (α1) of RRI dynamics, analyzed by the detrended fluctuation analysis (DFA) method, was assessed after stratifying patients into those who reported more or less sleepiness after the night's sleep (a.m. sleepier or a.m. less sleepy, respectively). Patients in the a.m. sleepier group showed significantly (psleep (Stages 1, 2, and 3 sleep) than healthy controls, although standard polysomnographic measures did not differ between the groups. The fractal scaling index α1 during non-REM sleep was significantly (psleep onset for healthy controls and patients in the a.m. less sleepy group, but did not differ between sleep stages for patients in the a.m. sleepier group. For patients, changes in self-reported sleepiness before and after the night correlated positively with the fractal scaling index α1 during non-REM sleep (psleep might be associated with disrupted sleep in patients with CFS.

  10. Assessment Of Noise-induced Sleep Fragility In Two Age Ranges By Means Of Polysomnographic Microstructure

    Science.gov (United States)

    Terzano, M. G.; Parrino, L.; Spaggiari, M. C.; Buccino, G. P.; Fioriti, G.; Depoortere, H.

    1993-04-01

    The microstructure of sleep, which translates the short-lived fluctuations of the arousal level, is a commonly neglected feature in polysomnographic studies. Specifically arranged microstructural EEG events may provide important information on the dynamic characteristics of the sleep process. CAP (cyclic alternating pattern) and non-CAP are complementary modalities in which arousal-related "phasic" EEG phenomena are organized in non-REM sleep, and they correspond to opposite conditions of unstable and stable sleep depth, respectively. Thus, arousal instability can be measured by the CAP rate, the percentage ratio of total CAP time to total non-REM sleep time. The CAP rate, an age-related physiological variable that increases in several pathological conditions, is highly sensitive to acoustic perturbation. In the present study, two groups of healthy subjects without complaints about sleep, belonging to different age ranges (six young adults, three males and three females, between 20 and 30 years, and six middle-aged individuals, three males and three females, between 40 and 55 years) slept, after adaptation to the sleep laboratory, in a random sequence for two non-consecutive nights either under silent baseline (27·3 dB(A) Lcq) or noise-disturbed (continuous 55 dB(A) white noise) conditions. Age-related and noise-related effects on traditional sleep parameters and on the CAP rate were statistically evaluated by a split-plot test. Compared to young adults, the middle-aged individuals showed a significant reduction of total sleep time, stage 2 and REM sleep and significantly higher values of nocturnal awakenings and the CAP rate. The noisy nights were characterized by similar alterations. The disruptive effects of acoustic perturbation were greater on the more fragile sleep architecture of the older group. The increased fragility of sleep associated with aging probably reflects the decreased capacity of the sleeping brain to maintain steady states of vigilance. Total

  11. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.

    Science.gov (United States)

    Alam, Md Aftab; Kumar, Sunil; McGinty, Dennis; Alam, Md Noor; Szymusiak, Ronald

    2014-01-01

    The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.

  12. Essential Thalamic Contribution to Slow Waves of Natural Sleep

    Science.gov (United States)

    David, François; Schmiedt, Joscha T.; Taylor, Hannah L.; Orban, Gergely; Di Giovanni, Giuseppe; Uebele, Victor N.; Renger, John J.; Lambert, Régis C.; Leresche, Nathalie

    2013-01-01

    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75–1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm. PMID:24336724

  13. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    Full Text Available Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  14. Intensive language learning and increases in rapid eye movement sleep: evidence of a performance factor.

    Science.gov (United States)

    De Koninck, J; Lorrain, D; Christ, G; Proulx, G; Coulombe, D

    1989-09-01

    Ten anglophone students taking a 6-week French immersion course were recorded in the sleep laboratory during 4 consecutive nights before the course, during the course and after the course. There was a positive and significant (P less than 0.05) correlation between language learning efficiency and increases in the percentage of rapid eye movement (REM) sleep from pre-course to course periods. This observation suggests that learning performance may be an important factor in the relationship between information processing and REM sleep.

  15. Increased objectively assessed vigorous-intensity exercise is associated with reduced stress, increased mental health and good objective and subjective sleep in young adults.

    Science.gov (United States)

    Gerber, Markus; Brand, Serge; Herrmann, Christian; Colledge, Flora; Holsboer-Trachsler, Edith; Pühse, Uwe

    2014-08-01

    The role of physical activity as a factor that protects against stress-related mental disorders is well documented. Nevertheless, there is still a dearth of research using objective measures of physical activity. The present study examines whether objectively assessed vigorous physical activity (VPA) is associated with mental health benefits beyond moderate physical activity (MPA). Particularly, this study examines whether young adults who accomplish the American College of Sports Medicine's (ACSM) vigorous-intensity exercise recommendations differ from peers below these standards with regard to their level of perceived stress, depressive symptoms, perceived pain, and subjective and objective sleep. A total of 42 undergraduate students (22 women, 20 men; M=21.24years, SD=2.20) volunteered to take part in the study. Stress, pain, depressive symptoms, and subjective sleep were assessed via questionnaire, objective sleep via sleep-EEG assessment, and VPA via actigraphy. Meeting VPA recommendations had mental health benefits beyond MPA. VPA was associated with less stress, pain, subjective sleep complaints and depressive symptoms. Moreover, vigorous exercisers had more favorable objective sleep pattern. Especially, they had increased total sleep time, more stage 4 and REM sleep, more slow wave sleep and a lower percentage of light sleep. Vigorous exercisers also reported fewer mental health problems if exposed to high stress. This study provides evidence that meeting the VPA standards of the ACSM is associated with improved mental health and more successful coping among young people, even compared to those who are meeting or exceeding the requirements for MPA.

  16. Waking and sleeping following water deprivation in the rat.

    Directory of Open Access Journals (Sweden)

    Davide Martelli

    Full Text Available Wake-sleep (W-S states are affected by thermoregulation. In particular, REM sleep (REMS is reduced in homeotherms under a thermal load, due to an impairment of hypothalamic regulation of body temperature. The aim of this work was to assess whether osmoregulation, which is regulated at a hypothalamic level, but, unlike thermoregulation, is maintained across the different W-S states, could influence W-S occurrence. Sprague-Dawley rats, kept at an ambient temperature of 24°C and under a 12 h∶12 h light-dark cycle, were exposed to a prolonged osmotic challenge of three days of water deprivation (WD and two days of recovery in which free access to water was restored. Two sets of parameters were determined in order to assess: i the maintenance of osmotic homeostasis (water and food consumption; changes in body weight and fluid composition; ii the effects of the osmotic challenge on behavioral states (hypothalamic temperature (Thy, motor activity, and W-S states. The first set of parameters changed in WD as expected and control levels were restored on the second day of recovery, with the exception of urinary Ca(++ that almost disappeared in WD, and increased to a high level in recovery. As far as the second set is concerned, WD was characterized by the maintenance of the daily oscillation of Thy and by a decrease in activity during the dark periods. Changes in W-S states were small and mainly confined to the dark period: i REMS slightly decreased at the end of WD and increased in recovery; ii non-REM sleep (NREMS increased in both WD and recovery, but EEG delta power, a sign of NREMS intensity, decreased in WD and increased in recovery. Our data suggest that osmoregulation interferes with the regulation of W-S states to a much lesser extent than thermoregulation.

  17. Time-dependent sleep stage transition model based on heart rate variability.

    Science.gov (United States)

    Takeda, Toki; Mizuno, Osamu; Tanaka, Tomohiro

    2015-01-01

    A new model is proposed to automatically classify sleep stages using heart rate variability (HRV). The generative model, based on the characteristics that the distribution and the transition probabilities of sleep stages depend on the elapsed time from the beginning of sleep, infers the sleep stage with a Gibbs sampler. Experiments were conducted using a public data set consisting of 45 healthy subjects and the model's classification accuracy was evaluated for three sleep stages: wake state, rapid eye movement (REM) sleep, and non-REM sleep. Experimental results demonstrated that the model provides more accurate sleep stage classification than conventional (naive Bayes and Support Vector Machine) models that do not take the above characteristics into account. Our study contributes to improve the quality of sleep monitoring in the daily life using easy-to-wear HRV sensors.

  18. Automatic SLEEP staging: From young aduslts to elderly patients using multi-class support vector machine

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Sorensen, Helge B. D.

    2013-01-01

    , and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0......Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes...... an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands...

  19. Phase-amplitude investigation of spontaneous low-frequency oscillations of cerebral hemodynamics with near-infrared spectroscopy: A sleep study in human subjects

    Science.gov (United States)

    Pierro, Michele; Sassaroli, Angelo; Bergethon, Peter R.; Ehrenberg, Bruce L.; Fantini, Sergio

    2012-01-01

    We have investigated the amplitude and phase of spontaneous low-frequency oscillations (LFOs) of the cerebral deoxy- and oxy-hemoglobin concentrations ([Hb] and [HbO]) in a human sleep study using near-infrared spectroscopy (NIRS). Amplitude and phase analysis was based on the analytic signal method, and phasor algebra was used to decompose measured [Hb] and [HbO] oscillations into cerebral blood volume (CBV) and flow velocity (CBFV) oscillations. We have found a greater phase lead of [Hb] vs. [HbO] LFOs during non-REM sleep with respect to the awake and REM sleep states (maximum increase in [Hb] phase lead: ~π/2). Furthermore, during non-REM sleep, the amplitudes of [Hb] and [HbO] LFOs are suppressed with respect to the awake and REM sleep states (maximum amplitude decrease: 87%). The associated cerebral blood volume and flow velocity oscillations are found to maintain their relative phase difference during sleep, whereas their amplitudes are attenuated during non-REM sleep. These results show the potential of phase-amplitude analysis of [Hb] and [HbO] oscillations measured by NIRS in the investigation of hemodynamics associated with cerebral physiology, activation, and pathological conditions. PMID:22820416

  20. Sleep spindle density in narcolepsy.

    Science.gov (United States)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-06-01

    Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2 and NREM sleep were evaluated within and between groups. Between-group comparisons in sleep stages revealed no significant differences in any type of SS. Within-group analyses of the SS trends revealed significant decreasing trends for NT1, HC, and C between first and last sleep cycle. Between-group analyses of SS trends between first and last sleep cycle revealed that NT2 differ from NT1 patients in the unspecified SS density in NREM sleep, and from HC in the slow SS density in N2 sleep. SS activity is preserved in NT1, suggesting that the ascending neurons to thalamic activation of SS are not significantly affected by the hypocretinergic system. NT2 patients show an abnormal pattern of SS distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals.

    Science.gov (United States)

    Capellini, I; Nunn, C L; McNamara, P; Preston, B T; Barton, R A

    2008-10-01

    Mammalian sleep is composed of two distinct states - rapid-eye-movement (REM) and non-REM (NREM) sleep - that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of sleep into several bouts per day), as having multiple sleep bouts avoids long periods of unconsciousness, potentially reducing vulnerability.Using phylogenetic comparative methods, we tested these predictions in mammals, and also investigated the relationships among sleep phasing, sleep-cycle length, sleep durations and body mass.Neither sleep-cycle length nor phasing of sleep was significantly associated with three different measures of predation risk, undermining the idea that they represent anti-predator adaptations.Polyphasic sleep was associated with small body size, shorter sleep cycles and longer sleep durations. The correlation with size may reflect energetic constraints: small animals need to feed more frequently, preventing them from consolidating sleep into a single bout. The reduced daily sleep quotas in monophasic species suggests that the consolidation of sleep into one bout per day may deliver the benefits of sleep more efficiently and, since early mammals were small-bodied and polyphasic, a more efficient monophasic sleep pattern could be a hitherto unrecognized advantage of larger size.

  2. Sleep electroencephalography as a biomarker in depression

    Directory of Open Access Journals (Sweden)

    Steiger A

    2015-04-01

    Full Text Available Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM sleep, and impaired non-REM sleep. Most antidepressants suppress REM sleep in depressed patients, healthy volunteers, and in animal models. REM suppression appears to be an important, but not an absolute requirement, for antidepressive effects of a substance. Enhanced REM density, a measure for frequency of REM, characterizes high-risk probands for affective disorders. REM-sleep changes were also found in animal models of depression. Sleep-EEG variables were shown to predict the response to treatment with antidepressants. Furthermore, certain clusters of sleep EEG variables predicted the course of the disorder for several years. Some of the predicted sleep EEG markers appear to be related to hypothalamic–pituitary–adrenal system activity. Keywords: biomarkers, depression, sleep EEG, antidepressants, prediction, animal models

  3. Association between ongoing pain intensity, health-related quality of life, disability and quality of sleep in elderly people with total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    María Dolores Herrero-Sánchez

    2014-06-01

    Full Text Available The scope of this paper was to study the relationship between pain intensity, health-related quality of life, disability, sleep quality and demographic data in elderly people with total knee arthroplasty (TKA. 24 subjects who had been subjected to TKA the previous month (4 females; 66 ± 9years and 21 comparable controls (8 male; 70 ± 9years participated in the study. Intensity of pain, and highest and lowest pain intensity experienced in the preceding week were collected. The Western Ontario and McMaster Universities index function, quality of life (Medical Outcomes Study Short Form 36, and Pittsburgh Sleep Quality Index were assessed. Age, gender, weight, height, body mass index were also collected. Individuals with TKA presented worse physical function (P < 0.01, social role (P = 0.01, physical performance (P < 0.01, pain (P = 0.04, disability (P = 0.04 and sleep quality (P = 0.03 than the controls. Higher intensity of pain was associated with lower physical function, social role, mental health, vitality and general health, and with higher disability and sleep quality. Disability and sleep quality were negatively associated with several quality of life domains. The associations between the intensity of pain, disability, quality of life and sleep reveal the multidimensional experience of TKA.

  4. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo

    Science.gov (United States)

    Bonjean, Maxime; Baker, Tanya; Lemieux, Maxime; Timofeev, Igor; Sejnowski, Terrence; Bazhenov, Maxim

    2011-01-01

    Spindle oscillations are commonly observed during stage two of non-REM sleep. During sleep spindles, the cerebral cortex and thalamus interact through feedback connections. Both initiation and termination of spindle oscillations are thought to originate in the thalamus, based on thalamic recordings and computational models, although some in vivo results suggest otherwise. Here, we have used computer modeling and in vivo multisite recordings from the cortex and the thalamus in cats to examine the involvement of the cortex in spindle oscillations. We found that although the propagation of spindles depended on synaptic interaction within the thalamus, the initiation and termination of spindle sequences critically involved corticothalamic influences. PMID:21697364

  5. Parasomnias and movement disorders of sleep.

    Science.gov (United States)

    Avidan, Alon Y

    2009-09-01

    Neurologists are often enlisted to help diagnose, evaluate, and manage a spectrum of abnormal spells during the night ranging from parasomnias to motor disturbance that span the sleep-wake cycle. Parasomnias are undesirable emotional or physical events that accompany sleep. These events typically occur during entry into sleep from wakefulness, or during arousals from sleep, and are often augmented by the sleep state. Some parasomnias, such as the rapid eye movement (REM) sleep behavior disorder may be extremely undesirable, while others such as somniloquy are often of little concern. The parasomnias include a spectrum of abnormal emotions, movements, behaviors, sensory perceptions, dream mentation, and autonomic activity. Basic physiologic drives, such as sex, hunger, and aggression, may manifest as sleep-related eating, sleep-related sexual behaviors, and sleep-related violence. Parasomnias have a very bizarre nature, but are readily explainable, diagnosable, and treatable. They are hypothesized to be due to changes in brain organization across multiple states of being, and are particularly apt to occur during the incomplete transition or oscillation from one sleep state to another. Parasomnias are often explained on the basis that wakefulness and sleep are not mutually exclusive states, and abnormal intrusion of wakefulness into non-REM (NREM) sleep produces arousal disorders, and intrusion of wakefulness into REM sleep produces REM sleep parasomnias and REM sleep behavior disorder (RBD). Restless legs syndrome (RLS) and periodic limb movement disorder (PLMD), two closely related conditions that often result in disturbed sleep onset and sleep maintenance, are also reviewed in this article. Although the mechanisms that underlie idiopathic RLS or PLMD are not fully understood, there is currently substantial evidence that dopaminergic dysfunction is likely involved in both conditions. The discussion will conclude with the "other parasomnias" and sleep

  6. Cerebral blood flow and metabolism during sleep.

    Science.gov (United States)

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  7. Impact of obstructive sleep apnea on sleep-wake stage ratio.

    Science.gov (United States)

    Ng, Andrew Keong; Guan, Cuntai

    2012-01-01

    Patients with obstructive sleep apnea (OSA) experience fragmented sleep and exhibit different sleep architectures. While polysomnographic metrics for quantifying sleep architecture are studied, there is little information about the impact of OSA on the ratio of different sleep-wake stages (wake, W; rapid eye movement, REM; non-REM stages 1 to 3, N1 to N3). This study, therefore, aims to investigate the relationship between apnea-hypopnea index (AHI, a measure of OSA severity) and all possible ratios of sleep-wake stages. Sleep architectures of 24 adult subjects with suspected OSA were constructed according to the American Academy of Sleep Medicine scoring manual, and subsequently analyzed through various correlation (Pearson, Spearman, and Kendall) and regression (linear, logarithmic, exponential, and power-law) approaches. Results show a statistically significant positive, linear and monotonic correlation between AHI and REM/N3, as well as between AHI and N1/W (p-values sleep, and in light sleep than wake (or less time in deep sleep than REM, and in wake than light sleep). A power-law regression model may possibly explain the relationships of AHI-REM/N3 and AHI-N1/W, and predict the value of AHI using REM/N3 or N1/W.

  8. Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest.

    Science.gov (United States)

    Rattenborg, Niels C; Voirin, Bryson; Vyssotski, Alexei L; Kays, Roland W; Spoelstra, Kamiel; Kuemmeth, Franz; Heidrich, Wolfgang; Wikelski, Martin

    2008-08-23

    The functions of sleep remain an unresolved question in biology. One approach to revealing sleep's purpose is to identify traits that explain why some species sleep more than others. Recent comparative studies of sleep have identified relationships between various physiological, neuroanatomical and ecological traits, and the time mammals spend in rapid eye movement (REM) and non-REM sleep. However, owing to technological constraints, these studies were based exclusively on animals in captivity. Consequently, it is unclear to what extent the unnatural laboratory environment affected time spent sleeping, and thereby the identification and interpretation of informative clues to the functions of sleep. We performed the first electroencephalogram (EEG) recordings of sleep on unrestricted animals in the wild using a recently developed miniaturized EEG recorder, and found that brown-throated three-toed sloths (Bradypus variegatus) inhabiting the canopy of a tropical rainforest only sleep 9.63 h d(-1), over 6 h less than previously reported in captivity. Although the influence of factors such as the age of the animals studied cannot be ruled out, our results suggest that sleep in the wild may be markedly different from that in captivity. Additional studies of various species are thus needed to determine whether the relationships between sleep duration and various traits identified in captivity are fundamentally different in the wild. Our initial study of sloths demonstrates the feasibility of this endeavour, and thereby opens the door to comparative studies of sleep occurring within the ecological context within which it evolved.

  9. Sleep Terrors (Night Terrors)

    Science.gov (United States)

    Sleep terrors (night terrors) Overview By Mayo Clinic Staff Sleep terrors are episodes of screaming, intense fear and flailing while still asleep. Also known as night terrors, sleep terrors often are paired with sleepwalking. Like ...

  10. Sleep-wake cycle of an unrestrained isolated chimpanzee under entrained and free running conditions.

    Science.gov (United States)

    Mcnew, J. J.; Burson, R. C.; Hoshizaki, T.; Adey, W. R.

    1972-01-01

    Biorhythmic patterns of EEG activity - the sleep-wake cycle and the sleep cycle - were investigated in an unrestrained chimpanzee subjected to 30 days of isolation in a 4-ft cubical cage placed in a high performance sound isolation chamber. The animal received 10 days of 12 hours of light and 12 hours of dark, then 10 days of continuous light, followed by 10 more days of 12 hours of light and 12 hours of dark. The circadian sleep-wake rhythm and the wake and sleep phases of this rhythm during entrained and free running conditions were analyzed in terms of duration. The awake and nonREM sleep and REM sleep stages were also analyzed. In addition, the mean duration of the sleep cycle of the sleep phase was computed.

  11. Sleep stage classification based on respiratory signal.

    Science.gov (United States)

    Tataraidze, Alexander; Anishchenko, Lesya; Korostovtseva, Lyudmila; Kooij, Bert Jan; Bochkarev, Mikhail; Sviryaev, Yurii

    2015-01-01

    One of the research tasks, which should be solved to develop a sleep monitor, is sleep stages classification. This paper presents an algorithm for wakefulness, rapid eye movement sleep (REM) and non-REM sleep detection based on a set of 33 features, extracted from respiratory inductive plethysmography signal, and bagging classifier. Furthermore, a few heuristics based on knowledge about normal sleep structure are suggested. We used the data from 29 subjects without sleep-related breathing disorders who underwent a PSG study at a sleep laboratory. Subjects were directed to the PSG study due to suspected sleep disorders. A leave-one-subject-out cross-validation procedure was used for testing the classification performance. The accuracy of 77.85 ± 6.63 and Cohen's kappa of 0.59 ± 0.11 were achieved for the classifier. Using heuristics we increased the accuracy to 80.38 ± 8.32 and the kappa to 0.65 ± 0.13. We conclude that heuristics may improve the automated sleep structure detection based on the analysis of indirect information such as respiration signal and are useful for the development of home sleep monitoring system.

  12. Diurnal Emotional States Impact the Sleep Course.

    Directory of Open Access Journals (Sweden)

    Julien Delannoy

    Full Text Available Diurnal emotional experiences seem to affect several characteristics of sleep architecture. However, this influence remains unclear, especially for positive emotions. In addition, electrodermal activity (EDA, a sympathetic robust indicator of emotional arousal, differs depending on the sleep stage. The present research has a double aim: to identify the specific effects of pre-sleep emotional states on the architecture of the subsequent sleep period; to relate such states to the sympathetic activation during the same sleep period.Twelve healthy volunteers (20.1 ± 1.0 yo. participated in the experiment and each one slept 9 nights at the laboratory, divided into 3 sessions, one per week. Each session was organized over three nights. A reference night, allowing baseline pre-sleep and sleep recordings, preceded an experimental night before which participants watched a negative, neutral, or positive movie. The third and last night was devoted to analyzing the potential recovery or persistence of emotional effects induced before the experimental night. Standard polysomnography and EDA were recorded during all the nights.Firstly, we found that experimental pre-sleep emotional induction increased the Rapid Eye Movement (REM sleep rate following both negative and positive movies. While this increase was spread over the whole night for positive induction, it was limited to the second half of the sleep period for negative induction. Secondly, the valence of the pre-sleep movie also impacted the sympathetic activation during Non-REM stage 3 sleep, which increased after negative induction and decreased after positive induction.Pre-sleep controlled emotional states impacted the subsequent REM sleep rate and modulated the sympathetic activity during the sleep period. The outcomes of this study offer interesting perspectives related to the effect of diurnal emotional influences on sleep regulation and open new avenues for potential practices designed to

  13. cGMP-dependent protein kinase I, the circadian clock, sleep, and learning

    OpenAIRE

    Feil, Robert; Hölter, Sabine M.; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-01-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2 Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consoli...

  14. Dynamics of sleep stage transitions in healthy humans and patients with chronic fatigue syndrome.

    Science.gov (United States)

    Kishi, Akifumi; Struzik, Zbigniew R; Natelson, Benjamin H; Togo, Fumiharu; Yamamoto, Yoshiharu

    2008-06-01

    Physiological and/or pathological implications of the dynamics of sleep stage transitions have not, to date, been investigated. We report detailed duration and transition statistics between sleep stages in healthy subjects and in others with chronic fatigue syndrome (CFS); in addition, we also compare our data with previously published results for rats. Twenty-two healthy females and 22 female patients with CFS, characterized by complaints of unrefreshing sleep, underwent one night of polysomnographic recording. We find that duration of deep sleep (stages III and IV) follows a power-law probability distribution function; in contrast, stage II sleep durations follow a stretched exponential and stage I, and REM sleep durations follow an exponential function. These stage duration distributions show a gradually increasing departure from the exponential form with increasing depth of sleep toward a power-law type distribution for deep sleep, suggesting increasing complexity of regulation of deeper sleep stages. We also find a substantial number of REM to non-REM sleep transitions in humans, while this transition is reported to be virtually nonexistent in rats. The relative frequency of this REM to non-REM sleep transition is significantly lower in CFS patients than in controls, resulting in a significantly greater relative transition frequency of moving from both REM and stage I sleep to awake. Such an alteration in the transition pattern suggests that the normal continuation of sleep in light or REM sleep is disrupted in CFS. We conclude that dynamic transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with pathophysiological implications.

  15. Novel object presentation affects sleep-wake behavior in rats.

    Science.gov (United States)

    Schiffelholz, Thomas; Aldenhoff, Josef B

    2002-08-02

    Sleep is suggested to be crucial for the processing and storage of new information. Several learning tasks have been shown to increase the amount of rapid eye movement sleep (REMS) with its typical theta activity (6-8 Hz) relative to total sleep time. Vice versa, REMS deprivation is able to affect memory consolidation following some, but not all learning tasks. Furthermore, recent studies have shown an increase of spindle activity (12-15 Hz) within the electroencephalogram (EEG) of nonREMS as well. The enhancement of both spindle and theta activity is suggested to serve as background activity for the synchronization of those neuronal pathways that were involved in the registration and, later on, participate in the long-term storage of new information in defined brain regions. In the present study, the presentation of a novel object to rats enhanced the amount of preREMS, an intermediate sleep stage with high spindle activity, within the first 2 h of the subsequent sleeping phase. Four hours later, the amount of REMS was increased as well. However, there were no changes in the EEG power spectra of nonREMS, preREMS and REMS. We therefore hypothesize that the increase of preREMS and REMS amounts and the related spindle and theta activity stand for the processing and storage of new information about the presented novel objects.

  16. Decreased nocturnal awakenings in young adults performing bikram yoga: a low-constraint home sleep monitoring study.

    Science.gov (United States)

    Kudesia, Ravi S; Bianchi, Matt T

    2012-01-01

    This pilot study evaluated the impact of Bikram Yoga on subjective and objective sleep parameters. We compared subjective (diary) and objective (headband sleep monitor) sleep measures on yoga versus nonyoga days during a 14-day period. Subjects (n = 13) were not constrained regarding yoga-practice days, other exercise, caffeine, alcohol, or naps. These activities did not segregate by choice of yoga days. Standard sleep metrics were unaffected by yoga, including sleep latency, total sleep time, and percentage of time spent in rapid eye movement (REM), light non-REM, deep non-REM, or wake after sleep onset (WASO). Consistent with prior work, transition probability analysis was a more sensitive index of sleep architecture changes than standard metrics. Specifically, Bikram Yoga was associated with significantly faster return to sleep after nocturnal awakenings. We conclude that objective home sleep monitoring is feasible in a low-constraint, real-world study design. Further studies on patients with insomnia will determine whether the results generalize or not.

  17. Ambient Light Intensity, Actigraphy, Sleep and Respiration, Circadian Temperature and Melatonin Rhythms and Daytime Performance of Crew Members During Space Flight on STS-90 and STS-95 Missions

    Science.gov (United States)

    Czeisler, Charles A.; Dijk, D.-J.; Neri, D. F.; Hughes, R. J.; Ronda, J. M.; Wyatt, J. K.; West, J. B.; Prisk, G. K.; Elliott, A. R.; Young, L. R.

    1999-01-01

    Sleep disruption and associated waking sleepiness and fatigue are common during space flight. A survey of 58 crew members from nine space shuttle missions revealed that most suffered from sleep disruption, and reportedly slept an average of only 6.1 hours per day of flight as compared to an average of 7.9 hours per day on the ground. Nineteen percent of crewmembers on single shift missions and 50 percent of the crewmembers in dual shift operations reported sleeping pill usage (benzodiazepines) during their missions. Benzodiazepines are effective as hypnotics, however, not without adverse side effects including carryover sedation and performance impairment, anterograde amnesia, and alterations in sleep EEG. Our preliminary ground-based data suggest that pre-sleep administration of 0.3 mg of the pineal hormone melatonin may have the acute hypnotic properties needed for treating the sleep disruption of space flight without producing the adverse side effects associated with benzodiazepines. We hypothesize that pre-sleep administration of melatonin will result in decreased sleep latency, reduced nocturnal sleep disruption, improved sleep efficiency, and enhanced next-day alertness and cognitive performance both in ground-based simulations and during the space shuttle missions. Specifically, we have carried out experiments in which: (1) ambient light intensity aboard the space shuttle is assessed during flight; (2) the impact of space flight on sleep (assessed polysomnographically and actigraphically), respiration during sleep, circadian temperature and melatonin rhythms, waking neurobehavioral alertness and performance is assessed in crew members of the Neurolab and STS-95 missions; (3) the effectiveness of melatonin as a hypnotic is assessed independently of its effects on the phase of the endogenous circadian pacemaker in ground-based studies, using a powerful experimental model of the dyssomnia of space flight; (4) the effectiveness of melatonin as a hypnotic is

  18. Quantitative analysis of wrist electrodermal activity during sleep.

    Science.gov (United States)

    Sano, Akane; Picard, Rosalind W; Stickgold, Robert

    2014-12-01

    We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to the prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of EDA called "storms" were identified by eye in the 1960s, we systematically compare thresholds for automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80% of the EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage 2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms were more likely to occur in the first two quarters of sleep and during SWS and NREM2. We also found from the home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks and high amplitude were sometimes associated with higher skin temperature, but more work is needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior.

  19. Effects of the 5-HT(1A) Receptor Agonist Tandospirone on ACTH-Induced Sleep Disturbance in Rats.

    Science.gov (United States)

    Tsutsui, Ryuki; Shinomiya, Kazuaki; Sendo, Toshiaki; Kitamura, Yoshihisa; Kamei, Chiaki

    2015-01-01

    The aim of this study was to compare the effect of the serotonin (5-HT)1A receptor agonist tandospirone versus that of the benzodiazepine hypnotic flunitrazepam in a rat model of long-term adrenocorticotropic hormone (ACTH)-induced sleep disturbance. Rats implanted with electrodes for recording electroencephalogram and electromyogram were injected with ACTH once daily at a dose of 100 µg/rat. Administration of ACTH for 10 d caused a significant increase in sleep latency, decrease in non-rapid eye movement (non-REM) sleep time, and increase in wake time. Tandospirone caused a significant decrease in sleep latency and increase in non-REM sleep time in rats treated with ACTH. The effect of tandospirone on sleep patterns was antagonized by the 5-HT1A receptor antagonist WAY-100635. In contrast, flunitrazepam had no significant effect on sleep parameters in ACTH-treated rats. These results clearly indicate that long-term administration of ACTH causes sleep disturbance, and stimulating the 5-HT1A receptor by tandospirone may be efficacious for improving sleep in cases in which benzodiazepine hypnotics are ineffective.

  20. Nerve growth factor enhances sleep in rabbits.

    Science.gov (United States)

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  1. Study of sleep – Related breathing disorders in patients admitted to respiratory intensive care unit

    Directory of Open Access Journals (Sweden)

    Mahmoud Ibrahim Mahmoud

    2016-01-01

    Conclusion: In ICU patients, SRBDs are common coexistent findings and every physician should systematically search for them. Type II respiratory failure is the main cause of ICU admission in patients with SRBDs. Quality of sleep in ICU is very disturbed. Most ICU patients with SRBDs have concomitant SHVS mostly due to OHS. Important comorbidities coexist in patients with SRBDs; both influence each other and should be identified and managed properly for the wellbeing of the patient. BiPAP therapy is the cardinal mode of ventilation used in patients with respiratory failure and SRBDs.

  2. A role for cryptochromes in sleep regulation

    Directory of Open Access Journals (Sweden)

    Sancar Aziz

    2002-12-01

    Full Text Available Abstract Background The cryptochrome 1 and 2 genes (cry1 and cry2 are necessary for the generation of circadian rhythms, as mice lacking both of these genes (cry1,2-/- lack circadian rhythms. We studied sleep in cry1,2-/- mice under baseline conditions as well as under conditions of constant darkness and enforced wakefulness to determine whether cryptochromes influence sleep regulatory processes. Results Under all three conditions, cry1,2-/- mice exhibit the hallmarks of high non-REM sleep (NREMS drive (i.e., increases in NREMS time, NREMS consolidation, and EEG delta power during NREMS. This unexpected phenotype was associated with elevated brain mRNA levels of period 1 and 2 (per1,2, and albumin d-binding protein (dbp, which are known to be transcriptionally inhibited by CRY1,2. To further examine the relationship between circadian genes and sleep homeostasis, we examined wild type mice and rats following sleep deprivation and found increased levels of per1,2 mRNA and decreased levels of dbp mRNA specifically in the cerebral cortex; these changes subsided with recovery sleep. The expression of per3, cry1,2, clock, npas2, bmal1, and casein-kinase-1ε did not change with sleep deprivation. Conclusions These results indicate that mice lacking cryptochromes are not simply a genetic model of circadian arrhythmicity in rodents and functionally implicate cryptochromes in the homeostatic regulation of sleep.

  3. Effects of Bright Light Therapy of Sleep, Cognition, Brain Function, and Neurochemistry in Mild Traumatic Brain Injury

    Science.gov (United States)

    2012-01-01

    Organon  Hungarian  I. Bitter, J. Balazs   I. Bitter, J. Balazs  Icelandic      J.G. Stefansson  Italian     I. Bonora, L. Conti, M. Piccinelli, M...Braun, AR, & Balkin, TJ. Positron emission tomography correlates of EEG microarchitecture waveforms during non- REM sleep. International Journal...40. Killgore, WD, Smith, KL, Reichardt, RM., Killgore, DB, & Balkin, TJ. Intellectual capacity is related to REM sleep following sleep

  4. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation

    Science.gov (United States)

    Ngo, Hong-Viet V.; Marshall, Lisa; Born, Jan; Martinetz, Thomas

    2016-01-01

    Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12–15 Hz), slow oscillations (sleep study in humans, where closed-loop auditory stimulation was applied. The model output relates directly to the EEG, which makes it a useful basis to develop new stimulation protocols. PMID:27584827

  5. Hypnogram and sleep parameter computation from activity and cardiovascular data.

    Science.gov (United States)

    Domingues, Alexandre; Paiva, Teresa; Sanches, J Miguel

    2014-06-01

    The automatic computation of the hypnogram and sleep Parameters, from the data acquired with portable sensors, is a challenging problem with important clinical applications. In this paper, the hypnogram, the sleep efficiency (SE), rapid eye movement (REM), and nonREM (NREM) sleep percentages are automatically estimated from physiological (ECG and respiration) and behavioral (Actigraphy) nocturnal data. Two methods are described; the first deals with the problem of the hypnogram estimation and the second is specifically designed to compute the sleep parameters, outperforming the traditional estimation approach based on the hypnogram. Using an extended set of features the first method achieves an accuracy of 72.8%, 77.4%, and 80.3% in the detection of wakefulness, REM, and NREM states, respectively, and the second an estimation error of 4.3%, 9.8%, and 5.4% for the SE, REM, and NREM percentages, respectively.

  6. Effects of quetiapine on sleep architecture in patients with unipolar or bipolar depression

    Directory of Open Access Journals (Sweden)

    Laura Gedge

    2010-08-01

    Full Text Available Laura Gedge1, Lauren Lazowski1, David Murray2, Ruzica Jokic2,3, Roumen Milev2,31Centre for Neuroscience Studies, 2Department of Psychiatry, Queen’s University, Kingston, 3Providence Care-Mental Health Services, Kingston, Ontario, CanadaObjective: To determine the effect of adjunctive quetiapine therapy on the sleep architecture of patients with bipolar or unipolar depression.Methods: This is a prospective, single-blind, repeated measures polysomnographic study. Sleep architecture was analyzed by overnight polysomnography, and subjective sleep quality was measured using the Pittsburgh Sleep Quality Index. The Hamilton Rating Scale for Depression, Montgomery Asberg Depression Rating Scale, Young Mania Rating Scale, and Clinical Global Impression-Severity Scale were employed to quantify changes in illness severity with adjunctive quetiapine treatment. Polysomnographs and clinical measures were administered at baseline, after 2–4 days of treatment, and after 21–28 days of quetiapine treatment. The average dose of quetiapine was 155 mg, ranging from 100–200 mg.Results: Adjunctive quetiapine therapy did not significantly alter sleep efficiency, sleep continuity, or Pittsburgh Sleep Quality Index scores. Respiratory Disturbance Index and percentage of total time in rapid eye movement (REM sleep significantly decreased and the percentage of total time in non-REM sleep, and duration of Stage 2 and non-REM sleep significantly increased after 2–4 days of quetiapine treatment. Illness severity significantly decreased over time.Conclusions: Adjunctive quetiapine treatment alters sleep architecture in patients with major depressive disorder or bipolar disorder, which may partially explain its early antidepressant properties. Changes in sleep architecture are more robust and significant within two to four days of starting treatment.Keywords: quetiapine, sleep architecture, depression, bipolar disorder

  7. The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients

    OpenAIRE

    Van Rompaey, Bart; Elseviers, Monique M; Van Drom, Wim; Fromont, Veronique; Philippe G Jorens

    2012-01-01

    Introduction This study hypothesised that a reduction of sound during the night using earplugs could be beneficial in the prevention of intensive care delirium. Two research questions were formulated. First, does the use of earplugs during the night reduce the onset of delirium or confusion in the ICU? Second, does the use of earplugs during the night improve the quality of sleep in the ICU? Methods A randomized clinical trial included adult intensive care patients in an intervention group of...

  8. Sleep physiology and pathology: pertinence to psychiatry.

    Science.gov (United States)

    Soldatos, Constantin R; Paparrigopoulos, Thomas J

    2005-08-01

    Sleep should not be considered a behavioural state characterized by brain inertia; instead, it is a highly dynamic process involving numerous brainstem areas and all physiological systems of the body. Our understanding of the underlying mechanisms responsible for sleep regulation has considerably advanced since the discovery of rapid eye movement (REM) sleep, about half a century ago. Based on standardized electroencephalographic, electro-oculographic and electromyographic features, two distinct main states periodically alternating throughout the night have been identified: REM and non-REM sleep; the latter is further distinguished into stages 1, 2, 3 and 4. Computerized analysis of sleep recordings yielded more detailed information on sleep physiology and pathology. Although still preliminary, neuroimaging studies promise to elucidate the functional alterations of neuronal substrates during sleep. Regarding sleep disorders, which account for a substantial individual and socio-economic burden, considerable progress has been achieved in terms of their classification, assessment, clinical diagnosis and treatment. Specific sleep disorders within the three major categories, that is, 'dysomnias', 'parasomnias', and 'sleep disorders associated with mental, neurologic, or other medical conditions', exhibit characteristic clinical features; sleep laboratory recordings considerably assist to definitely diagnose several among them. Pertinence of sleep medicine for psychiatrists is obvious, taking into consideration that psychiatric disorders account for the largest diagnostic group of patients with sleep problems. In fact, the basics of this interdisciplinary field should be of special concern both to medical students and clinicians of diverse backgrounds who are interested in acquiring the necessary skills to globally and comprehensively understand and eventually effectively treat their patients.

  9. Effect of aquatic physical therapy on pain and state of sleep and wakefulness among stable preterm newborns in neonatal intensive care units.

    Science.gov (United States)

    Vignochi, Carine Moraes; Teixeira, Patrícia P; Nader, Silvana S

    2010-01-01

    To evaluate the effects of aquatic physical therapy on pain and on the cycle of sleep and wakefulness among stable hospitalized premature infants. This study was characterized as an uncontrolled clinical trial on a time series and included 12 clinically stable newborns of gestational age less than 36 weeks who were hospitalized in a neonatal intensive care unit (NICU). After selection, the newborns were placed in a liquid medium for aquatic physical therapy lasting 10 minutes. Movements to stimulate flexor posture and postural organization were performed. The sleep-wakefulness cycle was assessed using the adapted Brazelton (1973)* scale and pain was assessed by the occurrence of signs of pain according to the Neonatal Facial Coding System (NFCS) scale; and physiological parameters. In relation to states of sleep and wakefulness, before the physical therapy, the newborns' behavior varied from fully awake with vigorous body movements to crying. After the physical therapy, the states of sleep ranged from light sleep with closed eyes to some body movement. These values presented statistically significant differences (paquatic physical therapy can be a simple and effective method for reducing pain and improving sleep quality among preterm infants in NICUs. Controlled studies with larger numbers of subjects are needed in order to generalize the results. Article registered of the Clinical Trials under the NCT00785837.

  10. Effects of chronic stress on sleep in rats.

    Science.gov (United States)

    Kant, G J; Pastel, R H; Bauman, R A; Meininger, G R; Maughan, K R; Robinson, T N; Wright, W L; Covington, P S

    1995-02-01

    The present study was conducted to determine the effects of chronic stress on sleep using a rodent paradigm of around-the-clock signalled intermittent foot shock in which some rats can pull a chain to avoid/escape shock while another group of rats is yoked to the first group. We measured sleep using telemetry; four-channel EEG was collected 24 h/day in rats during 2 prestress days; days 1, 2, 3, 7, and 14 during chronic stress; and 3 poststress days. States of REM sleep, non-REM (NREM) sleep, and waking were scored for each 15-s period of the EEG recordings. During the prestress period, rats slept (REM plus NREM) 55% of available time during the light hours and 34% of the dark hours with the remainder represented by waking. On the first day of stress, total sleep and, especially REM sleep, decreased markedly. By the second day of stress, only REM sleep in the controllable stress group (but not the uncontrollable stress group) was still significantly decreased compared to prestress levels, and REM sleep returned to baseline levels by day 7 of stress. The recovery of sleep quantity was accomplished by increased sleep during the dark hours, resulting in a long-lasting disruption of normal circadian sleep patterning.

  11. Symposium: Normal and abnormal REM sleep regulation: REM sleep in depression-an overview.

    Science.gov (United States)

    Berger; Riemann

    1993-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a major depressive disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous sub-type of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison with other psychopathological groups is challenged as well. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state- or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well-known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  12. Electroencephalogram approximate entropy influenced by both age and sleep

    Directory of Open Access Journals (Sweden)

    Gerick M. H. Lee

    2013-12-01

    Full Text Available The use of information-based measures to assess changes in conscious state is an increasingly popular topic. Though recent results have seemed to justify the merits of such methods, little has been done to investigate the applicability of such measures to children. For our work, we used the approximate entropy (ApEn, a measure previously shown to correlate with changes in conscious state when applied to the electroencephalogram (EEG, and sought to confirm whether previously reported trends in adult ApEn values across wake and sleep were present in children. Besides validating the prior findings that ApEn decreases from wake to sleep (including wake, rapid eye movement [REM] sleep, and non-REM sleep in adults, we found that previously reported ApEn decreases across vigilance states in adults were also present in children (ApEn trends for both age groups: wake > REM sleep > non-REM sleep. When comparing ApEn values between age groups, adults had significantly larger ApEn values than children during wakefulness. After the application of an 8 Hz high-pass filter to the EEG signal, ApEn values were recalculated. The number of electrodes with significant vigilance state effects dropped from all 109 electrodes with the original 1 Hz filter to 1 electrode with the 8 Hz filter. The number of electrodes with significant age effects dropped from ten to four. Our results support the notion that ApEn can reliably distinguish between vigilance states, with low-frequency sleep-related oscillations implicated as the driver of changes between vigilance states. We suggest that the observed differences between adult and child ApEn values during wake may reflect differences in connectivity between age groups, a factor which may be important in the use of EEG to measure consciousness.

  13. Sleep Sleeping Patch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Sleep Sleeping Patch is a new kind of external patch based on modern sleep medicine research achievements, which uses the internationally advanced transdermal therapeutic system (TTS). The Sleep Sleeping Patch transmits natural sleep inducers such as peppermint and liquorice extracts and melatonin through the skin to induce sleep. Clinical research proves that the Sleep Sleeping Patch can effectively improve insomnia and the quality of sleep. Highly effective: With the modern TTS therapy,

  14. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes.

    Science.gov (United States)

    Schmidt, Eva-Maria; Linz, Barbara; Diekelmann, Susanne; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2015-07-01

    Pro-inflammatory cytokines like interleukin-1 beta (IL-1) are major players in the interaction between the immune system and the central nervous system. Various animal studies report a sleep-promoting effect of IL-1 leading to enhanced slow wave sleep (SWS). Moreover, this cytokine was shown to affect hippocampus-dependent memory. However, the role of IL-1 in human sleep and memory is not yet understood. We administered the synthetic IL-1 receptor antagonist anakinra (IL-1ra) in healthy humans (100mg, subcutaneously, before sleep; n=16) to investigate the role of IL-1 signaling in sleep regulation and sleep-dependent declarative memory consolidation. Inasmuch monocytes have been considered a model for central nervous microglia, we monitored cytokine production in classical and non-classical blood monocytes to gain clues about how central nervous effects of IL-1ra are conveyed. Contrary to our expectation, IL-1ra increased EEG slow wave activity during SWS and non-rapid eye movement (NonREM) sleep, indicating a deepening of sleep, while sleep-associated memory consolidation remained unchanged. Moreover, IL-1ra slightly increased prolactin and reduced cortisol levels during sleep. Production of IL-1 by classical monocytes was diminished after IL-1ra. The discrepancy to findings in animal studies might reflect species differences and underlines the importance of studying cytokine effects in humans.

  15. Effect of acupressure with valerian oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome in a cardiac intensive care unit.

    Science.gov (United States)

    Bagheri-Nesami, Masoumeh; Gorji, Mohammad Ali Heidari; Rezaie, Somayeh; Pouresmail, Zahra; Cherati, Jamshid Yazdani

    2015-10-01

    The purpose of this three-group double-blind clinical trial study was to investigate the effect of acupressure ( zhǐ yā) with valerian ( xié cǎo) oil 2.5% on the quality and quantity of sleep in patients with acute coronary syndrome (ACS) in a coronary intensive care unit (CCU). This study was conducted on 90 patients with ACS in Mazandaran Heart Center (Sari, Iran) during 2013. The patients were randomly assigned to one of three groups. Patients in the acupressure with valerian oil 2.5% group (i.e., valerian acupressure group) received bilateral acupoint ( xué wèi) massage with two drops of valerian oil for 2 minutes for three nights; including every point this treatment lasted in total 18 minutes. Patients in the acupressure group received massage at the same points with the same technique but without valerian oil. Patients in the control group received massage at points that were 1-1.5 cm from the main points using the same technique and for the same length of time. The quality and quantity of the patients' sleep was measured by the St. Mary's Hospital Sleep Questionnaire (SMHSQ). After the intervention, there was a significant difference between sleep quality and sleep quantity in the patients in the valerian acupressure group and the acupressure group, compared to the control group (p Gushing Spring ( yǒng quán) acupoints can have therapeutic effects and may improve the quality and quantity of sleep in patients with ACS. Using these techniques in combination with herbal medicines such valerian oil can have a greater impact on improving sleep and reducing waking during the night.

  16. Individual differences in the effects of mobile phone exposure on human sleep: rethinking the problem.

    Science.gov (United States)

    Loughran, Sarah P; McKenzie, Raymond J; Jackson, Melinda L; Howard, Mark E; Croft, Rodney J

    2012-01-01

    Mobile phone exposure-related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full-night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non-rapid eye movement (non-REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone-like emissions affecting the EEG during non-REM sleep. Importantly, this low-level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far-reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field.

  17. The role of sleep in pain and fibromyalgia.

    Science.gov (United States)

    Choy, Ernest H S

    2015-09-01

    Fibromyalgia is a common cause of chronic widespread pain, characterized by reduced pressure pain thresholds with hyperalgesia and allodynia. In addition to pain, common symptoms include nonrestorative sleep, fatigue, cognitive dysfunction, stiffness and mood disturbances. The latest research indicates that the dominant pathophysiology in fibromyalgia is abnormal pain processing and central sensitization. Neuroimaging studies have shown that patients with fibromyalgia have similar neural activation to healthy age-matched and gender-matched individuals; however, they have a lower pressure-pain threshold. Polysomnography data has demonstrated that these patients have reduced short-wave sleep and abnormal α-rhythms, suggestive of wakefulness during non-REM (rapid eye movement) sleep. Sleep deprivation in healthy individuals can cause symptoms of fibromyalgia, including myalgia, tenderness and fatigue, suggesting that sleep dysfunction might be not only a consequence of pain, but also pathogenic. Epidemiological studies indicate that poor sleep quality is a risk factor for the development of chronic widespread pain among an otherwise healthy population. Mechanistically, sleep deprivation impairs descending pain-inhibition pathways that are important in controlling and coping with pain. Clinical trials of pharmacological and nonpharmacological therapies have shown that improving sleep quality can reduce pain and fatigue, further supporting the hypothesis that sleep dysfunction is a pathogenic stimulus of fibromyalgia.

  18. Sleep disorders in Parkinson's disease: a narrative review of the literature.

    Science.gov (United States)

    Raggi, Alberto; Bella, Rita; Pennisi, Giovanni; Neri, Walter; Ferri, Raffaele

    2013-01-01

    Parkinson's disease (PD) is classically considered to be a motor system affliction; however, also non-motor alterations, including sleep disorders, are important features of the disease. The aim of this review is to provide data on sleep disturbances in PD in the following grouping: difficulty initiating sleep, frequent night-time awakening and sleep fragmentation, nocturia, restless legs syndrome/periodic limb movements, sleep breathing disorders, drug induced symptoms, parasomnias associated with rapid eye movements (REM) sleep, sleep attacks, reduced sleep efficiency and excessive daytime sleepiness. Research has characterized some of these disturbances as typical examples of dissociated states of wakefulness and sleep that are admixtures or incomplete declarations of wakefulness, REM sleep, and non-REM (NREM) sleep. Moreover, sleep disorders may precede the typical motor system impairment of PD and their ability to predict disease has important implications for development of neuroprotective treatment; in particular, REM sleep behavior disorder may herald any other clinical manifestation of PD by more than 10 years.

  19. Polysomnographic Features of Sleep Disturbances and REM Sleep Behavior Disorder in the Unilateral 6-OHDA Lesioned Hemiparkinsonian Rat

    Directory of Open Access Journals (Sweden)

    Quynh Vo

    2014-01-01

    Full Text Available Sleep pattern disruption, specifically REM sleep behavior disorder (RBD, is a major nonmotor cause of disability in PD. Understanding the pathophysiology of these sleep pattern disturbances is critical to find effective treatments. 24-hour polysomnography (PSG, the gold standard for sleep studies, has never been used to test sleep dysfunction in the standard 6-OHDA lesioned hemiparkinsonian (HP rat PD model. In this study, we recorded 24-hour PSG from normal and HP rats. Recordings were scored into wake, rapid eye movement (REM, and non-REM (NREM. We then examined EEG to identify REM periods and EMG to check muscle activity during REM. Normal rats showed higher wakefulness (70–80% during the dark phase and lower wakefulness (20% during the light phase. HP rats showed 30–50% sleep in both phases, less modulation and synchronization to the light schedule (P<0.0001, and more long run lengths of wakefulness (P<0.05. HP rats also had more REM epochs with muscle activity than control rats (P<0.05. Our findings that the sleep architecture in the HP rat resembles that of PD patients demonstrate the value of this model in studying the pathophysiological basis of PD sleep disturbances and preclinical therapeutics for PD related sleep disorders including RBD.

  20. Primary sleep enuresis in childhood: polysomnography evidences of sleep stage and time modulation

    Directory of Open Access Journals (Sweden)

    Rubens Reimäo

    1993-03-01

    Full Text Available The objective of this study was to evaluate enuretic events and its relations to sleep stages, sleep cycles and time durations in a selected group of children with primary essential sleep enuresis. We evaluated 18 patients with mean age of 8.2 years old (ranging from 5 to 12 years; 10 were males and 8 females (n.s.. They were referred to the Sleep Disorders Center with the specific complaint of enuresis since the first years of life (primary. Pediatric, urologic and neurologic workup did not show objective abnormalities (essential. The standard all-night polysomnography including an enuresis sensor attached to the shorts in the crotch area was performed. Only enuretic events nights were included. All were drug free patients for two weeks prior to polysomnography. In this report, only one polysomnography per patient was considered. The enuretic events were phase related, occurring predominantly in non-REM (NREM sleep (p<0.05. There was no predominance of enuretic events among the NREM stages (n.s.. A tendency of these events to occur in the first two sleep cycles was detected but may be due to the longer duration of these cycles. The events were time modulated, adjusted to a normal distribution with a mean of 213.4 min of recording time.

  1. Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Michael S. Totty

    2017-07-01

    Full Text Available Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facilitate long-range communication and long-term potentiation (LTP. In the present study, we investigated how the characteristic rhythms found in local field potentials (LFPs during non-REM and REM sleep play a role in emotional memory consolidation. Chronically implanted bipolar electrodes in the lateral amygdala (LA, dorsal and ventral hippocampus (DH, VH, and the infra-limbic (IL, and pre-limbic (PL prefrontal cortex were used to record LFPs across sleep-wake activity following each day of a Pavlovian cued fear conditioning paradigm. This resulted in three principle findings: (1 theta rhythms during REM sleep are highly synchronized between regions; (2 the extent of inter-regional synchronization during REM and non-REM sleep is altered by FC and EX; (3 the mean phase difference of synchronization between the LA and VH during REM sleep predicts changes in freezing after cued fear extinction. These results both oppose a currently proposed model of sleep-dependent memory consolidation and provide a novel finding which suggests that the role of REM sleep theta rhythms in memory consolidation may rely more on the relative phase-shift between neural oscillations, rather than the extent of phase synchronization.

  2. Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions

    Directory of Open Access Journals (Sweden)

    Br

    2011-06-01

    Full Text Available Serge Brand1, Roumen Kirov21Depression and Sleep Research Unit, Psychiatric Hospital of the University of Basel, Basel, Switzerland; 2Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, BulgariaThe authors contributed equally to this workAbstract: Restoring sleep is strongly associated with a better physical, cognitive, and psychological well-being. By contrast, poor or disordered sleep is related to impairment of cognitive and psychological functioning and worsened physical health. These associations are well documented not only in adults but also in children and adolescents. Importantly, adolescence is hallmarked by dramatic maturational changes in sleep and its neurobiological regulation, hormonal status, and many psychosocial and physical processes. Thus, the role of sleep in mental and physical health during adolescence and in adolescent patients is complex. However, it has so far received little attention. This review first presents contemporary views about the complex neurobiology of sleep and its functions with important implications for adolescence. Second, existing complex relationships between common adolescent somatic/organic, sleep-related, and psychiatric disorders and certain sleep alterations are discussed. It is concluded that poor or altered sleep in adolescent patients may trigger and maintain many psychiatric and physical disorders or combinations of these conditions, which presumably hinder recovery and may cross into later stages of life. Therefore, timely diagnosis and management of sleep problems appear critical for growth and development in adolescent patients.Keywords: cognitive, psychological, neurobiology, growth, development, sleep physiology, rapid eye movement, non-REM sleep, behavioral disorders, adolescents

  3. [Depression and sleep--the status of current research].

    Science.gov (United States)

    Riemann, D; Schnitzler, M; Hohagen, F; Berger, M

    1994-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a Major Depressive Disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous subtype of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison to other psychopathological groups is also challenged. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state-markers or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  4. Prevalence of Parasomnia in Autistic Children with Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Arthur S. Walters

    2009-01-01

    Full Text Available The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD. Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children with ASD and 23 age-matched children of a non-autistic comparison group. The results showed significantly more non-REM parasomnias in 14 children with ASD on polysomnograms (PSG and 16 ASD children by questionnaire, a finding that was not associated with medication use, other comorbid medical or psychiatric disorders, or sleep disordered breathing. Of the 14 children with ASD who had PSG evidence of parasomnia, 11 of them had a history suggestive of parasomnia by questionnaire. There was a high sensitivity but a low specificity of parasomnia in ASD by questionnaire in predicting the presence of parasomnia in the PSG. Of the parasomnias recorded in the laboratory, 13 ASD children had Disorders of Partial Arousal, consistent with sleep terrors or confusional arousals. Furthermore, multiple episodes of partial arousal occurred in 11 of the 13 ASD children who had PSG evidence of Disorders of Partial Arousal. Of the 11 ASD children with multiple episodes of partial arousal, 6 ASD children had multiple partial arousals during both nights’ PSG study. Sleep architecture was abnormal in children with ASD, characterized by increased spontaneous arousals, prolonged REM latency and reduced REM percentage. These results suggest a high prevalence of parasomnia in this cohort of children with ASD and a careful history intake of symptoms compatible with parasomnia could be prudent to diagnose parasomnia in ASD children when performing a PSG is not possible.

  5. Prevalence of parasomnia in autistic children with sleep disorders.

    Science.gov (United States)

    Ming, Xue; Sun, Ye-Ming; Nachajon, Roberto V; Brimacombe, Michael; Walters, Arthur S

    2009-01-01

    The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD). Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children with ASD and 23 age-matched children of a non-autistic comparison group. The results showed significantly more non-REM parasomnias in 14 children with ASD on polysomnograms (PSG) and 16 ASD children by questionnaire, a finding that was not associated with medication use, other comorbid medical or psychiatric disorders, or sleep disordered breathing. Of the 14 children with ASD who had PSG evidence of parasomnia, 11 of them had a history suggestive of parasomnia by questionnaire. There was a high sensitivity but a low specificity of parasomnia in ASD by questionnaire in predicting the presence of parasomnia in the PSG. Of the parasomnias recorded in the laboratory, 13 ASD children had Disorders of Partial Arousal, consistent with sleep terrors or confusional arousals. Furthermore, multiple episodes of partial arousal occurred in 11 of the 13 ASD children who had PSG evidence of Disorders of Partial Arousal. Of the 11 ASD children with multiple episodes of partial arousal, 6 ASD children had multiple partial arousals during both nights' PSG study. Sleep architecture was abnormal in children with ASD, characterized by increased spontaneous arousals, prolonged REM latency and reduced REM percentage. These results suggest a high prevalence of parasomnia in this cohort of children with ASD and a careful history intake of symptoms compatible with parasomnia could be prudent to diagnose parasomnia in ASD children when performing a PSG is not possible.

  6. Characterisation of the effects of caffeine on sleep in the rat: a potential model of sleep disruption.

    Science.gov (United States)

    Paterson, L M; Wilson, S J; Nutt, D J; Hutson, P H; Ivarsson, M

    2009-07-01

    Caffeine is known to disrupt sleep and its administration to human subjects has been used to model sleep disruption. We previously showed that its effects on sleep onset latency are comparable between rats and humans. This study evaluated the potential use of caffeine as a model of sleep disruption in the rat, by assessing its effects on sleep architecture and electroencephalogram (EEG) frequency spectrum, and using sleep-promoting drugs to reverse these effects. Rats were implanted with radiotelemetry devices for body temperature, EEG, electromyogram and locomotor activity. Following recovery, animals were dosed with caffeine (10 mg/kg) alone or in combination with zolpidem (10 mg/kg) or trazodone (20 mg/kg). Sleep was scored for the subsequent 12 h using automated analysis software. Caffeine dose-dependently disrupted sleep: it increased WAKE time, decreased NREM (non-REM) sleep time and NREM bout duration (but not bout number), and decreased delta activity in NREM sleep. It also dose-dependently increased locomotor activity and body temperature. When given alone, zolpidem suppressed REM whilst trazodone increased NREM sleep time at the expense of WAKE, increased NREM bout duration, increased delta activity in NREM sleep and reduced body temperature. In combination, zolpidem attenuated caffeine's effects on WAKE, whilst trazodone attenuated its effects on NREM sleep, NREM bout duration, delta activity, body temperature and locomotor activity. Caffeine administration produced many of the signs of insomnia that were improved by two of its most successful current treatments. This model may therefore be useful in the study of new drugs for the treatment of sleep disturbance.

  7. The sleeping brain in Parkinson's disease: A focus on REM sleep behaviour disorder and related parasomnias for practicing neurologists.

    Science.gov (United States)

    Bhidayasiri, Roongroj; Sringean, Jirada; Rattanachaisit, Watchara; Truong, Daniel D

    2017-03-15

    Sleep disorders are identified as common non-motor symptoms of Parkinson's disease (PD) and recently this recognition has been expanded to include parasomnias, encompassing not only REM sleep behaviour disorder (RBD), but also other non-REM forms. RBD, a prototypical parasomnia in PD, exists even in the prodromal stage of the disease, and is characterized by the presence of dream enactment behaviours occurring alongside a loss of normal skeletal muscle atonia during REM sleep. In contrast, non-REM parasomnias are more frequently observed in the late stage PD. However, the development of these disorders often overlaps and it is not uncommon for PD patients to meet the criteria for more than one type of parasomnias, thus making a clinical distinction challenging for practicing neurologists who are not sleep specialists. Indeed, clinical recognition of the predominant form of parasomnia does not just depend on video-polysomnography, but also on an individual physician's clinical acumen in delineating pertinent clinical history to determine the most likely diagnosis and proceed accordingly. In this review article, we highlight the various forms of parasomnias that have been reported in PD, including, but not limited to, RBD, with a focus on clinical symptomatology and implications for clinical practice. In addition, we review the differences in PD-related parasomnias compared to those seen in general populations. With advances in sleep research and better technology for ambulatory home monitoring, it is likely that many unanswered questions on PD-related parasomnias will soon be resolved resulting in better management of this nocturnal challenge in PD.

  8. Nurse-led intensive interventions improve adherence to continuous positive airway pressure therapy and quality of life in obstructive sleep apnea patients

    Directory of Open Access Journals (Sweden)

    Chen XF

    2015-11-01

    Full Text Available Xiaofen Chen,1 Weiting Chen,1 Weijie Hu,2 Kui Huang,3 Jing Huang,4 Yu Zhou5 1Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 2People Hospital of Tiantai, Taizhou, 3Department of Orthodontics, Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 4The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 5Department of Orthodontics, Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Background: Continuous positive airway pressure (CPAP is widely recommended for the treatment of sleep apnea/hypopnea syndrome (SAHS, but its usage by patients is very low. The aim of this study was to assess intensive educational programs and nursing support for the improvement of CPAP use and outcomes in SAHS patients.Methods: Eighty new SAHS patients were randomized to receive nurse-led intensive interventions or usual support at hospital and home. The main outcome measure was CPAP use; changes in sleeping, symptoms, mood, and quality of life were also assessed after 12 months of treatment.Results: All outcome measures were improved after treatment in both groups. However, patients receiving intensive support with significantly higher CPAP use (higher daily CPAP usage by 2.2 hours/day had greater improvements in SAHS symptoms and mood (P<0.05. The intervention group further showed an improvement in the Short Form-36 domains of mental and physical health (P<0.05.Conclusion: The CPAP usage and quality of life can be significantly improved by nurse-led intensive program in obstructive sleep apnea patients. Keywords: CPAP, quality of life, SAHS, compliance

  9. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  10. Catechol-O-methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss.

    Directory of Open Access Journals (Sweden)

    Namni Goel

    Full Text Available BACKGROUND: The COMT Val158Met polymorphism modulates cortical dopaminergic catabolism, and predicts individual differences in prefrontal executive functioning in healthy adults and schizophrenic patients, and associates with EEG differences during sleep loss. We assessed whether the COMT Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD, a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. METHODOLOGY/PRINCIPAL FINDINGS: 20 Met/Met, 64 Val/Met, and 45 Val/Val subjects participated in a protocol of two baseline 10h time in bed (TIB nights followed by five consecutive 4 h TIB nights. Met/Met subjects showed differentially steeper declines in non-REM EEG slow-wave energy (SWE-the putative homeostatic marker of sleep drive-during PSD, despite comparable baseline SWE declines. Val/Val subjects showed differentially smaller increases in slow-wave sleep and smaller reductions in stage 2 sleep during PSD, and had more stage 1 sleep across nights and a shorter baseline REM sleep latency. The genotypes, however, did not differ in performance across various executive function and cognitive tasks and showed comparable increases in subjective and physiological sleepiness in response to chronic sleep loss. Met/Met genotypic and Met allelic frequencies were higher in whites than African Americans. CONCLUSIONS/SIGNIFICANCE: The COMT Val158Met polymorphism may be a genetic biomarker for predicting individual differences in sleep physiology-but not in cognitive and executive functioning-resulting from sleep loss in a healthy, racially-diverse adult population of men and women. Beyond healthy sleepers, our results may also provide insight for predicting sleep loss responses in patients with schizophrenia and other psychiatric disorders, since these groups repeatedly experience chronically-curtailed sleep and demonstrate COMT

  11. Sleep stage classification with ECG and respiratory effort.

    Science.gov (United States)

    Fonseca, Pedro; Long, Xi; Radha, Mustafa; Haakma, Reinder; Aarts, Ronald M; Rolink, Jérôme

    2015-10-01

    Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 142 features were extracted from electrocardiogram and thoracic respiratory effort measured with respiratory inductance plethysmography. To improve the quality of these features, subject-specific Z-score normalization and spline smoothing were used to reduce between-subject and within-subject variability. A modified sequential forward selection feature selector procedure was applied, yielding 80 features while preventing the introduction of bias in the estimation of cross-validation performance. PSG data from 48 healthy adults were used to validate our methods. Using a linear discriminant classifier and a ten-fold cross-validation, we achieved a Cohen's kappa coefficient of 0.49 and an accuracy of 69% in the classification of wake, REM, light, and deep sleep. These values increased to kappa = 0.56 and accuracy = 80% when the classification problem was reduced to three classes, wake, REM sleep, and NREM sleep.

  12. Oscillatory responses representing differential auditory processing in sleep.

    Science.gov (United States)

    Karakaş, Sirel; Cakmak, Emine D; Bekçi, Belma; Aydin, Hamdullah

    2007-07-01

    The goal of the study was to investigate the contribution of the delta and theta responses to the peaks on the event-related potential waveform and specifically to find the possible cognitive correlates of these oscillatory responses in rapid eye movements (REM) sleep and Stage 2 (spindle sleep), Stage 3 (light sleep) and Stage 4 (deep sleep; slow wave sleep) of non-REM sleep. Data on overnight sleep was acquired from 12 healthy, young adult, volunteer males; those on awake stage were obtained from 19 matched males. Brain activity was obtained in response to auditory stimuli (2000 Hz deviant and 1000 Hz standard stimuli: 65 dB, 10 ms r/f time, 50 ms duration) under passive oddball paradigm in sleep, active and passive oddball (OB-a, OB-p, respectively) paradigms in wakefulness. The effect of the experimental variables (stimulus type, sleep stage) was studied using 2 x 4 analysis of variance for repeated measures and stepwise multiple regression analysis. Overall, three types of configurations were obtained for the oscillatory responses which varied according to sleep stage and stimulus type: Large amplitude, differentiated delta and distinct theta response of long duration; distinct theta response with short duration; distinct delta response. As in wakefulness, the morphology of the time-domain peaks was found to be due to the superposition of the delta and theta responses. The configuration in REM resembled the responses to the OB-p paradigm and that NREM stages resembled the responses to the OB-a paradigm in wakefulness. Auditory information processing selectively varied according to sleep stages and took longer in sleep. Comparable peaks were obtained at longer latencies and later components appeared that did not exist under wakefulness. With respect to the long-duration theta activity, and greater differentiation between the deviant- and standard-elicited stimuli, Stage 2 appeared to represent the more effortful cognitive processing.

  13. Hippocampal sleep features: relations to human memory function.

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  14. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia.

    Science.gov (United States)

    Guénolé, Fabian; Chevrier, Elyse; Stip, Emmanuel; Godbout, Roger

    2014-05-01

    This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms.

  15. The benefit of offline sleep and wake for novel object recognition.

    Science.gov (United States)

    McDevitt, Elizabeth A; Rowe, Kelly M; Brady, Mark; Duggan, Katherine A; Mednick, Sara C

    2014-05-01

    How do we segment and recognize novel objects? When explicit cues from motion and color are available, object boundary detection is relatively easy. However, under conditions of deep camouflage, in which objects share the same image cues as their background, the visual system must reassign new functional roles to existing image statistics in order to group continuities for detection and segmentation of object boundaries. This bootstrapped learning process is stimulus dependent and requires extensive task-specific training. Using a between-subject design, we tested participants on their ability to segment and recognize novel objects after a consolidation period of sleep or wake. We found a specific role for rapid eye movement (REM, n = 43) sleep in context-invariant novel object learning, and that REM sleep as well as a period of active wake (AW, n = 35) increased segmentation of context-specific object learning compared to a period of quiet wake (QW, n = 38; p = .007 and p = .017, respectively). Performance in the non-REM nap group (n = 32) was not different from the other groups. The REM sleep enhancement effect was especially robust for the top performing quartile of subjects, or "super learners" (p = .037). Together, these results suggest that the construction and generalization of novel representations through bootstrapped learning may benefit from REM sleep, and more specific object learning may also benefit from AW. We discuss these results in the context of shared electrophysiological and neurochemical features of AW and REM sleep, which are distinct from QW and non-REM sleep.

  16. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  17. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    Science.gov (United States)

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  18. Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging.

    Science.gov (United States)

    Long, Xi; Yang, Jie; Weysen, Tim; Haakma, Reinder; Foussier, Jérôme; Fonseca, Pedro; Aarts, Ronald M

    2014-12-01

    Polysomnography (PSG) has been extensively studied for sleep staging, where sleep stages are usually classified as wake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep (including light and deep sleep). Respiratory information has been proven to correlate with autonomic nervous activity that is related to sleep stages. For example, it is known that the breathing rate and amplitude during NREM sleep, in particular during deep sleep, are steadier and more regular compared to periods of wakefulness that can be influenced by body movements, conscious control, or other external factors. However, the respiratory morphology has not been well investigated across sleep stages. We thus explore the dissimilarity of respiratory effort with respect to its signal waveform or morphology. The dissimilarity measure is computed between two respiratory effort signal segments with the same number of consecutive breaths using a uniform scaling distance. To capture the property of signal morphological dissimilarity, we propose a novel window-based feature in a framework of sleep staging. Experiments were conducted with a data set of 48 healthy subjects using a linear discriminant classifier and a ten-fold cross validation. It is revealed that this feature can help discriminate between sleep stages, but with an exception of separating wake and REM sleep. When combining the new feature with 26 existing respiratory features, we achieved a Cohen's Kappa coefficient of 0.48 for 3-stage classification (wake, REM sleep and NREM sleep) and of 0.41 for 4-stage classification (wake, REM sleep, light sleep and deep sleep), which outperform the results obtained without using this new feature.

  19. [Is the observation of patients with sleep-apnea-syndrome after surgery of the upper airway in an intensive care unit generally necessary?].

    Science.gov (United States)

    Kehrl, W; Schottke-Hennings, H; Offergeld, Ch; Grundmann, T

    2005-04-01

    Although it is known that after surgery of the nose and/or the paranasal sinuses serious complications can arise for patients suffering from Sleep-Apnea-Syndrome (SAS), there exists no general recommendation for postoperative care of these patients. This retrospective analysis is dealing with the question whether it is generally necessary to observe SAS-patients after nasal surgery including intubation in an Intensive Care Unit (ICU). 24 Patients of the ORL-Dept., Marienkrankenhaus Hamburg, suffering from SAS underwent surgery of the nose, the paranasal sinuses and/or the pharynx including total intravenous anesthesia (TIVA) during the period of 1. 10. 2000 until 1. 5. 2004. SAS was diagnosed in 6 cases due to defined clinical criteria and in 18 cases due to the polysomnographic findings in the sleeping laboratory's examination. All patients were observed postoperatively for one night in an ICU. The anesthesia protocol and the intensive care curve of each patient were systematically evaluated with special regard of the following parameters: Risk factors (Body Mass Index; other diseases, ASA-classification), premedication drugs, duration of the surgery, drugs for pain relief, lowest O2-saturation of blood, lowest heartrate, highest systolic blood pressure, adverse effects, intensive care interventions. Intensive care interventions were never needed. 2 patients received a low dosage of oxygeninsufflation via a face mask, in 5 cases calcium-antagonist drugs were administered due to high blood pressure and in 1 case Metamizole administration was necessary due to high temperatures. An accompanying bradycardia of the same patient was treated by administration of Atropine. The lower average O2-saturation was 93.6 +/- 1.7 % (Minimum value: 89 %). The maximum systolic blood pressure was 165.8 +/- 21.2 mm Hg and the lowest average heart rate was 65.4 +/- 13.2 bpm. Patients suffering from a mild to moderate SAS do not need a general postoperative surveillance in an ICU if the

  20. Heart rate variability in normal and pathological sleep

    Directory of Open Access Journals (Sweden)

    Eleonora eTobaldini

    2013-10-01

    Full Text Available Sleep is a physiological process involving different biological systems, from molecular to organ level; its integrity is essential for maintaining health and homeostasis in human beings. Although in the past sleep has been considered a state of quiet, experimental and clinical evidences suggest a noteworthy activation of different biological systems during sleep. A key role is played by the autonomic nervous system (ANS, whose modulation regulates cardiovascular functions during sleep onset and different sleep stages. Therefore, an interest on the evaluation of autonomic cardiovascular control in health and disease is growing by means of linear and non linear heart rate variability (HRV analyses. The application of classical tools for ANS analysis, such as HRV during physiological sleep, showed that the rapid eye movement (REM stage is characterized by a likely sympathetic predominance associated with a vagal withdrawal, while the opposite trend is observed during non-REM sleep. More recently, the use of non linear tools, such as entropy-derived indices, have provided new insight on the cardiac autonomic regulation, revealing for instance changes in the cardiovascular complexity during REM sleep, supporting the hypothesis of a reduced capability of the cardiovascular system to deal with stress challenges. Interestingly, different HRV tools have been applied to characterize autonomic cardiac control in different pathological conditions, from neurological sleep disorders to sleep disordered breathing (SDB. In summary, linear and non linear analysis of HRV are reliable approaches to assess changes of autonomic cardiac modulation during sleep both in health and diseases. The use of these tools could provide important information of clinical and prognostic relevance.

  1. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    Science.gov (United States)

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.

  2. Acute enhancement of non-rapid eye movement sleep in rats after drinking water contaminated with cadmium chloride.

    Science.gov (United States)

    Unno, Katsuya; Yamoto, Kurumi; Takeuchi, Kouhei; Kataoka, Aya; Ozaki, Tomoya; Mochizuki, Takatoshi; Honda, Kazuki; Miura, Nobuhiko; Ikeda, Masayuki

    2014-02-01

    Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl₂ in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl₂ administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl₂ administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl₂ administrations similar to the levels in cultured astrocytes receiving H₂O₂ or CdCl₂ in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.

  3. Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner.

    Science.gov (United States)

    Schwartz, Michael D; Mong, Jessica A

    2013-08-01

    Ovarian hormones are thought to modulate sleep and fluctuations in the hormonal milieu are coincident with sleep complaints in women. In female rats, estradiol increases waking and suppresses sleep. In this study, we asked whether this effect is mediated via circadian or homeostatic regulatory mechanisms. Ovariectomized female rats received daily injections of estradiol benzoate (EB) or sesame oil that mimicked the rapid increase and subsequent decline of circulating estradiol at proestrus. In one experiment, animals were sleep deprived for 6 h starting at lights-on, so that recovery began in the mid-light phase; in the second experiment, animals were sleep deprived starting in the mid-light phase, so that recovery began at lights-off. EB suppressed baseline rapid eye movement (REM) and non-REM (NREM) sleep and increased waking in the dark phase. In both experiments, EB enhanced REM recovery in the light phase while suppressing it in the dark compared with oil; this effect was most pronounced in the first 6 h of recovery. By contrast, NREM recovery was largely unaffected by EB. In summary, EB enhanced waking and suppressed sleep, particularly REM sleep, in the dark under baseline and recovery conditions. These strong temporally dependent effects suggest that EB consolidates circadian sleep-wake rhythms in female rats.

  4. Modeling the effect of sleep regulation on a neural mass model.

    Science.gov (United States)

    Costa, Michael Schellenberger; Born, Jan; Claussen, Jens Christian; Martinetz, Thomas

    2016-08-01

    In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.

  5. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    Science.gov (United States)

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  6. The role of REM sleep theta activity in emotional memory.

    Science.gov (United States)

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  7. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  8. Cerebral glucose utilization during stage 2 sleep in man.

    Science.gov (United States)

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; Franck, G

    1992-01-31

    Using [18F]fluorodeoxyglucose method and positron emission tomography, we performed paired determinations of the cerebral glucose utilization at one week intervals during sleep and wakefulness, in 12 young normal subjects. During 6 of 28 sleep runs, a stable stage 2 SWS was observed that fulfilled the steady-state conditions of the model. The cerebral glucose utilization during stage 2 SWS was lower than during wakefulness, but the variation did not significantly differ from zero (mean variation: -11.5 +/- 25.57%, P = 0.28). The analysis of 89 regions of interest showed that glucose metabolism differed significantly from that observed at wake in 6 brain regions, among them both thalamic nuclei. We conclude that the brain energy metabolism is not homogeneous throughout all the stages of non-REMS but decreases from stage 2 SWS to deep SWS; we suggest that a low thalamic glucose metabolism is a metabolic feature common to both stage 2 and deep SWS, reflecting the inhibitory processes observed in the thalamus during these stages of sleep. Stage 2 SWS might protect the stability of sleep by insulating the subject from the environment and might be a prerequisite to the full development of other phases of sleep, especially deep SWS.

  9. Sleep disturbances and circadian CLOCK genes in borderline personality disorder.

    Science.gov (United States)

    Fleischer, Monika; Schäfer, Michael; Coogan, Andrew; Häßler, Frank; Thome, Johannes

    2012-10-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients frequently report suffering from sleep disturbances. In this review, we overview the evidence that circadian rhythms and sleep are disturbed in BPD, and we explore the possibility that personality traits that are pertinent for BPD may be associated with circadian typology, and perhaps to circadian genotypes. With regards to sleep architecture, we review the evidence that BPD patients display altered non-REM and REM sleep. A possible cue to a deeper understanding of this temporal dysregulation might be an analysis of the circadian clock at the molecular and cellular level, as well as behavioural studies using actigraphy and we suggest avenues for further exploration of these factors.

  10. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  11. Observation on the Changes of Sleep Structure in 82 Patients with Epilepsy by Polysomnography Combined with Long-term Video Electroencephalogram

    Institute of Scientific and Technical Information of China (English)

    Li Hongliang; Li Yan; Jiang Min; Xu Jianyang; Wang Shouyong; Du Junqiu; Shi Xiangsong

    2014-01-01

    Objective:To investigate the effect of epileptiform discharge on changes of sleep structure in patients with epilepsy. Methods:A total of 82 patients diagnosed with epilepsy were performed with polysomnography (PSG) concomitant with long-term video electroencephalogram (LTV EEG) to analyze their sleep structures and epileptic EEG. Results:The PSG in this study was marked by different levels of changes in sleep parameters with increased latency stage and decreased rapid eye movement (REM) sleep as well as increased times of arousals at night, in which 8 patients had no REM sleep. During sleep, epileptiform discharges had evidently inlfuence on phaseⅠ andⅢ~Ⅳ sleep of non-REM (NREM) and discharge group was more signiifcant in the increase of phaseⅠ sleep but decrease of phasesⅢ~Ⅳ sleep of NREM. Conclusion:Patients with epilepsy is often accompanied with disorders of sleep structures, especially those with epileptiform discharges during sleep. Application of PSG concomitant with LTV EEG are more beneifcial for the overall analysis of relationship between sleep structure and epileptiform discharges.

  12. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor.

    Science.gov (United States)

    Nam, Yunyoung; Kim, Yeesock; Lee, Jinseok

    2016-05-23

    Sleep disorders are a common affliction for many people even though sleep is one of the most important factors in maintaining good physiological and emotional health. Numerous researchers have proposed various approaches to monitor sleep, such as polysomnography and actigraphy. However, such approaches are costly and often require overnight treatment in clinics. With this in mind, the research presented here has emerged from the question: "Can data be easily collected and analyzed without causing discomfort to patients?" Therefore, the aim of this study is to provide a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep quality based on measured data, a novel algorithm, which uses numerous physiological parameters, was proposed. Such parameters include non-REM sleep time, the number of apneic episodes, and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three participants were enrolled in this experimental study for a duration of 20 days. From the experimental results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality.

  13. Short-term effects of fluoxetine and trifluoromethylphenylpiperazine on electroencephalographic sleep in the rat.

    Science.gov (United States)

    Pastel, R H; Fernstrom, J D

    1987-12-01

    Fluoxetine and trifluoromethylphenylpiperazine (TFMPP) were studied for their short-term effects on electroencephalographic sleep in male rats. Following single injection, each drug produced a sizeable, dose-related suppression of rapid-eye-movement (REM) sleep that persisted for 4-5 h (fluoxetine, 0.625-5 mg/kg; TFMPP, 0.10-1.25 mg/kg). TFMPP also consistently increased non-REM (NREM) sleep during the second hour after drug injection, though this effect was not dose-related (it was seen at all doses tested). Fluoxetine produced small effects on NREM sleep that varied non-systematically with dose and time after drug injection. TFMPP, but not fluoxetine, also increased at all doses the number of delta waves per minute of NREM sleep in the second hour. A structural analog of TFMPP that is inactive at serotonin (5-HT) receptors [4-(m-trifluoromethylphenyl)piperadine; LY97117] was also tested, and found to be devoid of effects on NREM and REM sleep. Both fluoxetine (a 5-HT reuptake blocker) and TFMPP (a 5-HT agonist) enhance transmission across 5-HT synapses, though by different mechanisms. Because they have the common effect of suppressing REM sleep, and in a dose-related manner, the data support the notion that 5-HT neurons in the brain, when active, can suppress REM sleep.

  14. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study.

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2014-11-01

    Vasomotion is important in the study of vascular disorders, including stroke. Spontaneous low and very low hemodynamic oscillations (3-150 mHz) measured with near-infrared spectroscopy (NIRS) reflect the endothelial (3-20 mHz), neurogenic (20-40 mHz) and myogenic (40-150 mHz) components of vasomotion. We investigated sleep-specific patterns of vasomotion by characterizing hemodynamic oscillations with NIRS in healthy subjects, and tested the feasibility of NIRS as a bedside tool for monitoring vasomotion during whole-night sleep. To characterize local cerebral vasomotion, we compared cerebral NIRS measurements with muscular NIRS measurements and peripheral arterial oxygen saturation (SpO2 ) during different sleep stages in 14 healthy volunteers. Spectral powers of hemodynamic oscillations in the frequency range of endothelial vasomotion were systemically predominant in every sleep stage, and the powers of endothelial and neurogenic vasomotion decreased in deep sleep as compared with light sleep and rapid eye movement (REM) sleep in brain, muscle, and SpO2 . The decrease in the powers of myogenic vasomotion in deep sleep only occurred in brain, and not in muscle. These results point to a predominant role of endothelial function in regulating vasomotion during sleep. The decline in cerebral endothelial and neurogenic vasomotion during progression to deeper non-REM sleep suggests that deep sleep may play a protective role for vascular function. NIRS can be used to monitor endothelial control of vasomotion during nocturnal sleep, thus providing a promising non-invasive bedside tool with which to study the sleep-relevant pathological mechanisms in vascular diseases and stroke.

  15. Sleep Disorders

    Science.gov (United States)

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  16. Sleep Problems

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  17. Biological Rhythms Modelisation of Vigilance and Sleep in Microgravity State with COSINOR and Volterra's Kernels Methods

    Science.gov (United States)

    Gaudeua de Gerlicz, C.; Golding, J. G.; Bobola, Ph.; Moutarde, C.; Naji, S.

    2008-06-01

    The spaceflight under microgravity cause basically biological and physiological imbalance in human being. Lot of study has been yet release on this topic especially about sleep disturbances and on the circadian rhythms (alternation vigilance-sleep, body, temperature...). Factors like space motion sickness, noise, or excitement can cause severe sleep disturbances. For a stay of longer than four months in space, gradual increases in the planned duration of sleep were reported. [1] The average sleep in orbit was more than 1.5 hours shorter than the during control periods on earth, where sleep averaged 7.9 hours. [2] Alertness and calmness were unregistered yield clear circadian pattern of 24h but with a phase delay of 4h.The calmness showed a biphasic component (12h) mean sleep duration was 6.4 structured by 3-5 non REM/REM cycles. Modelisations of neurophysiologic mechanisms of stress and interactions between various physiological and psychological variables of rhythms have can be yet release with the COSINOR method. [3

  18. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    Science.gov (United States)

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  19. Form and Function of Sleep Spindles across the Lifespan

    Directory of Open Access Journals (Sweden)

    Brittany C. Clawson

    2016-01-01

    Full Text Available Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia and during aging (such as neurodegenerative conditions, both types of disorders may benefit from therapies based on a better understanding of spindle function.

  20. Polygraphic Recording Procedure for Measuring Sleep in Mice.

    Science.gov (United States)

    Oishi, Yo; Takata, Yohko; Taguchi, Yujiro; Kohtoh, Sayaka; Urade, Yoshihiro; Lazarus, Michael

    2016-01-25

    Recording of the epidural electroencephalogram (EEG) and electromyogram (EMG) in small animals, like mice and rats, has been pivotal to study the homeodynamics and circuitry of sleep-wake regulation. In many laboratories, a cable-based sleep recording system is used to monitor the EEG and EMG in freely behaving mice in combination with computer software for automatic scoring of the vigilance states on the basis of power spectrum analysis of EEG data. A description of this system is detailed herein. Steel screws are implanted over the frontal cortical area and the parietal area of 1 hemisphere for monitoring EEG signals. In addition, EMG activity is monitored by the bilateral placement of wires in both neck muscles. Non-rapid eye movement (Non-REM; NREM) sleep is characterized by large, slow brain waves with delta activity below 4 Hz in the EEG, whereas a shift from low-frequency delta activity to a rapid low-voltage EEG in the theta range between 6 and 10 Hz can be observed at the transition from NREM to REM sleep. By contrast, wakefulness is identified by low- to moderate-voltage brain waves in the EEG trace and significant EMG activity.

  1. Sleep Architecture in Partially Acclimatized Lowlanders and Native Tibetans at 3800 Meter Altitude: What Are the Differences?

    Science.gov (United States)

    Kong, Fanyi; Liu, Shixiang; Li, Qiong; Wang, Lin

    2015-09-01

    It is not well known whether high altitude acclimatization could help lowlanders improve their sleep architecture as well as Native Tibetans. In order to address this, we investigated the structural differences in sleep between Native Tibetans and partially acclimatized lowlanders and examined the association between sleep architecture and subjective sleep quality. Partially acclimatized soldiers from lowlands and Native Tibetan soldiers stationed at Shangri-La (3800 m) were surveyed using the Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Rating Scale (HAMD). The sleep architecture of those without anxiety (as determined by HAMA>14) and/or depression (HAMD>20) was analyzed using polysomnography and the results were compared between the two groups. One hundred sixty-five male soldiers, including 55 Native Tibetans, were included in the study. After partial acclimatization, lowlanders still exhibited differences in sleep architecture as compared to Native Tibetans, as indicated by a higher PSQI score (8.14±2.37 vs. 3.90±2.85, psleep (458.68±112.63 vs. 501±37.82 min, P=0.03), lower nocturnal arterial oxygen saturation (Spo2; mean 91.39±1.24 vs. 92.71±2.12%, p=0.03), and increased times of Spo2 reduction from 89% to 85% (median 48 vs.17, p=0.04) than Native Tibetans. Sleep onset latency (β=0.08, 95%CI: 0.01 to 0.15), non-REM latency (β=0.011, 95%CI 0.001 to 0.02), mean Spo2 (β=-0.79, 95%CI: -1.35 to -0.23) and time in stage 3+4 sleep (β=-0.014, 95%CI: -0.001 to -0.028) were slightly associated with the PSQI score. Partially acclimatized lowlanders experienced less time in non-REM sleep and had lower arterial oxygen saturation than Native Tibetans at an altitude of 3800 m. The main independent contributors to poor sleep quality are hypoxemia, difficulty in sleep induction, and time in deep sleep.

  2. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    Science.gov (United States)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  3. Characteristics of sleep-wake cycles in mice lacking prostanoid DP receptors%前列腺素DP受体缺乏小鼠的睡眠-觉醒特征

    Institute of Scientific and Technical Information of China (English)

    马张庆; 洪宗元

    2006-01-01

    目的:探讨前列腺素DP受体(DPR)对小鼠睡眠-觉醒调节的影响.方法:在苯巴比妥麻醉下,于DPR基因敲除(KO)小鼠及其野生型(WT)小鼠大脑皮层及颈部肌肉分别植入脑电(Electroencephalogram, EEG)和肌电(Electromyogram, EMG)电极,用EEG/EMG睡眠记录系统于2000时开始连续记录24小时两种小鼠的脑电和肌电波,并用SLEEPSIGN软件进行分析.结果:两种小鼠表现出相同的睡眠-觉醒节律,且明时(800-2000)及暗时(2000-800)时相内两种小鼠的非快动眼(NREM) 睡眠和快动眼(REM)睡眠总量无差异.但与WT 小鼠相比,DPR-KO小鼠明时内的觉醒频率显著增高,NREM睡眠的平均时程显著缩短;且DPR-KO小鼠睡眠呈现低活性的θ波和高活性的δ波.结论:DPR在介导前列腺素D2诱导的睡眠中起着关键性调节作用,缺乏DPR将导致小鼠呈现低强度片段化的NREM睡眠和高警戒状态的REM睡眠.%AIM: To investigate the effect of prostanoid DP receptors (DPR) on sleep-wake regulation in mice. METHODS: Under pentobarbital anesthesia, mice were chronically implanted with electroencephalogram (EEG) and electromyogram (EMG) electrodes for polysomnographic recordings. The spontaneous sleep-wake cycles were monitored continuously by EEG/EMG recording system for 24 h beginning at 800 p.m. and analyzed by SLEEPSIGN software in DPR knock out (KO) and wild type (WT) mice. RESULTS: DPR-KO mice exhibited a similar circadian rhythm of sleep-wake cycles to WT mice. The amounts of rapid eye movement (REM) sleep or non-REM (NREM) sleep during both the light and dark periods were identical between the DPR-KO and WT mice. Whereas, an increase in the episode number of wakefulness and a shortage in the duration of NREM sleep were found in DPR-KO mice during the light period compared with WT mice. Moreover, DPR-KO mice showed lower activity in delta-wave component in NREM sleep and higher activity in theta-wave component in REM sleep than WT mice. CONCLUSION

  4. The value of REM sleep parameters in differentiating Alzheimer's disease from old-age depression and normal aging.

    Science.gov (United States)

    Dykierek, P; Stadtmüller, G; Schramm, P; Bahro, M; van Calker, D; Braus, D F; Steigleider, P; Löw, H; Hohagen, F; Gattaz, W F; Berger, M; Riemann, D

    1998-01-01

    Pseudodementia as a common trait in elderly depressives presents a major problem in gerontopsychiatry, especially for the differential diagnosis between Old-Age Depression (OAD) and Dementia of the Alzheimer Type (DAT). The present polysomnographic study examined parameters of sleep continuity, sleep architecture, and REM sleep to differentiate DAT from OAD. The investigation was based on the theoretical framework of the cholinergic-aminergic imbalance model of depression, the cholinergic deficit hypothesis of Alzheimer's disease and the reciprocal interaction model of Non-REM/REM sleep regulation, according to which REM sleep parameters should have high discriminative value to differentiate OAD and DAT. We investigated 35 DAT patients, 39 OAD patients and 42 healthy controls for two consecutive nights in the sleep laboratory. The DAT patients were in relatively early/mild stages of the disease, the severity of depression in the OAD group was moderate to severe. Depressed patients showed characteristic 'depression-like' EEG sleep alterations, i.e. a lower sleep efficiency, a higher amount of nocturnal awakenings and decreased sleep stage 2. Sleep continuity and architecture in DAT was less disturbed. Nearly all REM sleep measures differentiated significantly between the diagnostic groups. OAD patients showed a shortened REM latency, increased REM density and a high rate of Sleep Onset REM periods (SOREM), whereas in DAT REM density was decreased in comparison to control subjects. REM latency in DAT was not prolonged as expected. To assess the discriminative power of REM sleep variables a series of discriminant analyses were conducted. Overall, 86% of patients were correctly classified, using REM density and REM latency measures. Our findings suggest that REM density as an indicator of phasic activity appears to be more sensitive as a biological marker for the differential diagnosis of OAD and DAT than REM latency. The results support the role of central cholinergic

  5. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    Science.gov (United States)

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep.

  6. Nap sleep preserves associative but not item memory performance.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2015-04-01

    Many studies have shown that sleep improves memory performance, and that even short naps during the day are beneficial. Certain physiological components of sleep such as spindles and slow-wave-sleep are thought to be particularly important for memory consolidation. The aim of this experiment was to reveal the role of naps for hippocampus-dependent associative memory (AM) and hippocampus-independent item memory (IM) alongside their corresponding ERP old/new effects. Participants learnt single words and word-pairs before performing an IM- and an AM-test (baseline). One group was subsequently allowed to nap (∼90min) while the other watched DVDs (control group). Afterwards, both groups performed a final IM- and AM-test for the learned stimuli (posttest). IM performance decreased for both groups, while AM performance decreased for the control group but remained constant for the nap group, consistent with predictions concerning the selective impact of napping on hippocampus-dependent recognition. Putative ERP correlates of familiarity and recollection were observed in the IM posttest, whereas only the later recollection-related effect was present in the AM test. Notably, none of these effects varied with group. Positive correlations were observed between spindle density during slow-wave-sleep and AM posttest performance as well as between spindle density during non-REM sleep and AM baseline performance, showing that successful learning and retrieval both before and after sleep relates to spindle density during nap sleep. Together, these results speak for a selective beneficial impact of naps on hippocampus-dependent memories.

  7. Sleep in depression: the influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Bahro, M; Berger, M

    1994-01-01

    One hundred and eight healthy controls and 178 patients with a major depressive disorder according to DSM-III were investigated in the sleep laboratory after a 7-day drug wash-out period. Subsamples of 36 healthy controls and 56 patients additionally took part in the cholinergic rapid eye movement (REM) sleep induction test with RS 86. Data analysis revealed that age exerted powerful influences on sleep in control subjects and depressed patients. Sleep efficiency and amount of slow wave sleep (SWS) decreased with age, whereas the number of awakenings, early morning awakening, and amounts of wake time and stage 1 increased with age. REM latency was negatively correlated with age only in the group of patients with a major depression. Statistical analysis revealed group differences for almost all parameters of sleep continuity with disturbed indices in the depressed group. Differences in SWS were not detected. REM latency and REM density were altered in depression compared to healthy subjects. Sex differences existed for the amounts of stage 1 and SWS. The cholinergic REM induction test resulted in a significantly more pronounced induction of REM sleep in depressed patients compared with healthy controls, provoking sleep onset REM periods as well in those depressed patients showing baseline REM latencies in the normal range. Depressed patients with or without melancholia (according to DSM-III) did not differ from each other, either concerning baseline sleep or with respect to the results of the cholinergic REM induction test. The results stress the importance of age when comparing sleep patterns of healthy controls with those of depressed patients. Furthermore they underline the usefulness of the cholinergic REM induction test for differentiating depressed patients from healthy controls and support the reciprocal interaction model of nonREM-REM regulation and the cholinergic-aminergic imbalance hypothesis of affective disorders.

  8. Increased Ventricular Premature Contraction Frequency During REM Sleep in Patients with Coronary Artery Disease and Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Mari A. Watanabe

    2008-11-01

    Full Text Available Background Patients with obstructive sleep apnea are reported to have a peak of sudden cardiac death at night, in contrast to patients without apnea whose peak is in the morning. We hypothesized that ventricular premature contraction (VPC frequency would correlate with measures of apnea and sympathetic activity.Methods Electrocardiograms from a sleep study of 125 patients with coronary artery disease were evaluated. Patients were categorized by apnea-hypopnea index (AHI into Moderate (AHI 15 apnea groups. Sleep stages studied were Wake, S1, S2, S34, and rapid eye movement (REM. Parameters of a potent autonomically-based risk predictor for sudden cardiac death called heart rate turbulence were calculated.Results There were 74 Moderate and 51 Severe obstructive sleep apnea patients. VPC frequency was affected significantly by sleep stage (Wake, S2 and REM, F=5.8, p<.005 and by AHI (F=8.7, p<.005. In Severe apnea patients, VPC frequency was higher in REM than in Wake (p=.011. In contrast, patients with Moderate apnea had fewer VPCs and exhibited no sleep stage dependence (p=.19. Oxygen desaturation duration per apnea episode correlated positively with AHI (r2=.71, p<.0001, and was longer in REM than in non-REM (p<.0001. The heart rate turbulence parameter TS correlated negatively with oxygen desaturation duration in REM (r2=.06, p=.014.Conclusions Higher VPC frequency coupled with higher sympathetic activity caused by longer apnea episodes in REM sleep may be one reason for increased nocturnal death in apneic patients.

  9. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.

    Science.gov (United States)

    Diniz Behn, Cecilia G; Booth, Victoria

    2010-04-01

    This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.

  10. Statistical, spectral and non-linear analysis of the heart rate variability during wakefulness and sleep.

    Science.gov (United States)

    Brando, Victoria; Castro-Zaballa, Santiago; Falconi, Atilio; Torterolo, Pablo; Migliaro, Eduardo R

    2014-03-01

    As a first step in a program designed to study the central control of the heart rate variability (HRV) during sleep, we conducted polysomnographic and electrocardiogram recordings on chronically-prepared cats during semi- restricted conditions. We found that the tachogram, i.e. the pattern of heart beat intervals (RR intervals) was deeply modified on passing from alert wakefulness through quiet wakefulness (QW) to sleep. While the tachogram showed a rhythmical pattern coupled with respiratory activity during non-REM sleep (NREM), it turned chaotic during REM sleep. Statistical analyses of the RR intervals showed that the mean duration increased during sleep. HRV measured by the standard deviation of normal RR intervals (SDNN) and by the square root of the mean squared difference of successive intervals (rMSSD) were larger during REM and NREM sleep than during QW. SD-1 (a marker of short- term variability) and SD-2 (a marker of long-term variability) measured by means of Poincaré plots increased during both REM and NREM sleep compared to QW. Furthermore, in the spectral analysis of RR intervals, the band of high frequency (HF) was larger in NREM and REM sleep in comparison to QW, whereas the band of low frequency (LF) was larger only during REM sleep in comparison to QW. The LF/HF ratio was larger during QW compared either with REM or NREM sleep. Finally, sample entropy analysis used as a measure of complexity, was higher during NREM in comparison to REM sleep. In conclusion, HRV parameters, including complexity, are deeply modified across behavioral states.

  11. Abnormal sleep architecture is an early feature in the E46K familial synucleinopathy.

    Science.gov (United States)

    Zarranz, Juan J; Fernández-Bedoya, Anabel; Lambarri, Imanol; Gómez-Esteban, Juan C; Lezcano, Elena; Zamacona, Javier; Madoz, Pedro

    2005-10-01

    We examined 7 patients from a family harboring a novel mutation in the alpha-synuclein gene (E46K) that segregated with a phenotype of parkinsonism and dementia with Lewy bodies. An abnormal restless sleep was the presenting symptom in 2 of them. Polysomnographic (PSG) studies were performed in 4 of the 7 patients and in 2 asymptomatic carriers of the mutation. A severe loss of both rapid eye movement (REM) and non-REM sleep was observed in 2 patients complaining of insomnia and in a third parkinsonian member of the family who did not complain of trouble with sleeping. Another parkinsonian family member had a mild disorganization of the sleep architecture. The 2 asymptomatic carriers also had minor changes in the PSG findings. Episodes of bizarre behavior at night were reported historically in the 2 symptomatic patients, but we did not observed the behaviors during the PSG studies. REM sleep behavior disorder could not be recorded in any case. Our findings expand the spectrum of sleep disorders reported in synucleinopathies whether sporadic or familial.

  12. Relative phase of oscillations of cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations during sleep

    Science.gov (United States)

    Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2012-02-01

    We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.

  13. Nocturnal agitation in Huntington disease is caused by arousal-related abnormal movements rather than by rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Neutel, Dulce; Tchikviladzé, Maya; Charles, Perrine; Leu-Semenescu, Smaranda; Roze, Emmanuel; Durr, Alexandra; Arnulf, Isabelle

    2015-06-01

    Patients with Huntington disease (HD) and their spouses often complain of agitation during sleep, but the causes are mostly unknown. To evaluate sleep and nocturnal movements in patients with various HD stages and CAG repeats length. The clinical features and sleep studies of 29 patients with HD were retrospectively collected (11 referred for genotype-phenotype correlations and 18 for agitation during sleep) and compared with those of 29 age- and sex-matched healthy controls. All patients had videopolysomnography, but the movements during arousals were re-analyzed in six patients with HD with stored video. The patients had a longer total sleep period and REM sleep onset latency, but no other differences in sleep than controls. There was no correlation between CAG repeat length and sleep measures, but total sleep time and sleep efficiency were lower in the subgroup with moderate than milder form of HD. Periodic limb movements and REM sleep behavior disorders were excluded, although 2/29 patients had abnormal REM sleep without atonia. In contrast, they had clumsy and opisthotonos-like movements during arousals from non-REM or REM sleep. Some movements were violent and harmful. They might consist of voluntary movements inappropriately involving the proximal part of the limbs on a background of exaggerated hypotonia. Giant (>65 mcV) sleep spindles were observed in seven (24%) patients with HD and one control. The nocturnal agitation in patients with HD seems related to anosognostic voluntary movements on arousals, rather than to REM sleep behavior disorder and other sleep problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sleep Disturbances

    Science.gov (United States)

    ... PD / Coping with Symptoms & Side Effects / Sleep Disturbances Sleep Disturbances Many people with Parkinson’s disease (PD) have ... stay awake during the day. Tips for Better Sleep People with PD — and their care partners too — ...

  15. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    Science.gov (United States)

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  16. Endocannabinoid modulation of cortical up-states and NREM sleep.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1 with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5-4 Hz power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.

  17. Sleep, its regulation and possible mechanisms of sleep disturbances.

    Science.gov (United States)

    Porkka-Heiskanen, T; Zitting, K-M; Wigren, H-K

    2013-08-01

    The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.

  18. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy.

    Science.gov (United States)

    Antelmi, Elena; Pizza, Fabio; Vandi, Stefano; Neccia, Giulia; Ferri, Raffaele; Bruni, Oliviero; Filardi, Marco; Cantalupo, Gaetano; Liguori, Rocco; Plazzi, Giuseppe

    2017-06-01

    Type 1 narcolepsy is a central hypersomnia due to the loss of hypocretin-producing neurons and characterized by cataplexy, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. In children, close to the disease onset, type 1 narcolepsy has peculiar clinical features with severe cataplexy and a complex admixture of movement disorders occurring while awake. Motor dyscontrol during sleep has never been systematically investigated. Suspecting that abnormal motor control might affect also sleep, we systematically analysed motor events recorded by means of video polysomnography in 40 children with type 1 narcolepsy (20 females; mean age 11.8 ± 2.6 years) and compared these data with those recorded in 22 age- and sex-matched healthy controls. Motor events were classified as elementary movements, if brief and non-purposeful and complex behaviours, if simulating purposeful behaviours. Complex behaviours occurring during REM sleep were further classified as 'classically-defined' and 'pantomime-like' REM sleep behaviour disorder episodes, based on their duration and on their pattern (i.e. brief and vivid-energetic in the first case, longer and with subcontinuous gesturing mimicking daily life activity in the second case). Elementary movements emerging either from non-REM or REM sleep were present in both groups, even if those emerging from REM sleep were more numerous in the group of patients. Conversely, complex behaviours could be detected only in children with type 1 narcolepsy and were observed in 13 patients, with six having 'classically-defined' REM sleep behaviour disorder episodes and seven having 'pantomime-like' REM sleep behaviour disorder episodes. Complex behaviours during REM sleep tended to recur in a stereotyped fashion for several times during the night, up to be almost continuous. Patients displaying a more severe motor dyscontrol during REM sleep had also more severe motor disorder during daytime (i

  19. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.

    Science.gov (United States)

    Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan; Mahoney, Carrie E; Fuller, Patrick M; Arrigoni, Elda; Scammell, Thomas E

    2017-02-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our

  20. Rapid eye movements during sleep in mice: High trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents

    Directory of Open Access Journals (Sweden)

    Fulda Stephany

    2011-11-01

    Full Text Available Abstract Background In humans, rapid eye movements (REM density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies. Methods We obtained standardized electroencephalographic (EEG, electromyographic (EMG and electrooculographic (EOG signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA to detect REM as singularities of the EOG signal, based on wavelet methodology. Results The distribution of wakefulness, non-REM (NREM sleep and rapid eye movement (REM sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep. Conclusions Sleep

  1. Sleep Disorders

    DEFF Research Database (Denmark)

    Rahbek Kornum, Birgitte; Mignot, Emmanuel

    2014-01-01

    Mammalian sleep has evolved under the influence of the day-night cycle and in response to reproductive needs, food seeking, and predator avoidance, resulting in circadian (predictive) and homeostatic (reactive) regulation. A molecular clock characterized by transcription/translation feedback loops...... mediates circadian regulation of sleep. Misalignment with the rhythm of the sun results in circadian disorders and jet lag. The molecular basis of homeostatic sleep regulation is mostly unknown. A network of mutually inhibitory brain nuclei regulates sleep states and sleep-wake transitions. Abnormalities...... in these networks create sleep disorders, including rapid eye movement sleep behavior disorder, sleep walking, and narcolepsy. Physiological changes associated with sleep can be imbalanced, resulting in excess movements such as periodic leg movements during sleep or abnormal breathing in obstructive sleep apneas...

  2. Impact of acetazolamide and CPAP on cortical activity in obstructive sleep apnea patients.

    Directory of Open Access Journals (Sweden)

    Katrin Stadelmann

    Full Text Available STUDY OBJECTIVES: 1 To investigate the impact of acetazolamide, a drug commonly prescribed for altitude sickness, on cortical oscillations in patients with obstructive sleep apnea syndrome (OSAS. 2 To examine alterations in the sleep EEG after short-term discontinuation of continuous positive airway pressure (CPAP therapy. DESIGN: Data from two double-blind, placebo-controlled randomized cross-over design studies were analyzed. SETTING: Polysomnographic recordings in sleep laboratory at 490 m and at moderate altitudes in the Swiss Alps: 1630 or 1860 m and 2590 m. PATIENTS: Study 1: 39 OSAS patients. Study 2: 41 OSAS patients. INTERVENTIONS: Study 1: OSAS patients withdrawn from treatment with CPAP. Study 2: OSAS patients treated with autoCPAP. Treatment with acetazolamide (500-750 mg or placebo at moderate altitudes. MEASUREMENTS AND RESULTS: An evening dose of 500 mg acetazolamide reduced slow-wave activity (SWA; approximately 10% and increased spindle activity (approximately 10% during non-REM sleep. In addition, alpha activity during wake after lights out was increased. An evening dose of 250 mg did not affect these cortical oscillations. Discontinuation of CPAP therapy revealed a reduction in SWA (5-10% and increase in beta activity (approximately 25%. CONCLUSIONS: The higher evening dose of 500 mg acetazolamide showed the "spectral fingerprint" of Benzodiazepines, while 250 mg acetazolamide had no impact on cortical oscillations. However, both doses had beneficial effects on oxygen saturation and sleep quality.

  3. Autobiographical memory and hyperassociativity in the dreaming brain: implications for memory consolidation in sleep

    Science.gov (United States)

    Horton, Caroline L.; Malinowski, Josie E.

    2015-01-01

    In this paper we argue that autobiographical memory (AM) activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography). They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualizing those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of AM to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of AM during sleep. PMID:26191010

  4. Autobiographical memory and hyperassociativity in the dreaming brain: Implications for memory consolidation in sleep

    Directory of Open Access Journals (Sweden)

    Caroline L Horton

    2015-07-01

    Full Text Available In this paper we argue that autobiographical memory activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography. They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualising those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of autobiographical memory to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of autobiographical memory during sleep.

  5. Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats.

    Science.gov (United States)

    Tortella, F C; Echevarria, E; Pastel, R H; Cox, B; Blackburn, T P

    1989-04-24

    The effects of the novel, highly selective serotonin-2 (5-HT2) antagonists, ICI 169,369 and ICI 170,809, on 24 h EEG sleep-wake activity were studied in the rat. Both compounds caused a dose-related increase in the latency to rapid eye movement sleep (REMS) and significantly suppressed cumulative REMS time up to 12 h postinjection. In contrast, neither drug disrupted slow-wave sleep continuity in as much as the latency to non-REMS (NREMS) and cumulative NREMS time were unchanged. However, at the highest dose tested (20 mg/kg) ICI 170,809 did produce a significant increase in total NREMS time during the second half of the sleep-awake cycle. These results demonstrate effects of selective 5-HT2 antagonists on sleep in rats which appear to be specific for REMS behavior, suggesting that the priming influence of serotonin on REMS may involve 5-HT2 receptor subtypes. The relationship between the REMS suppressant actions of these compounds and their consideration as therapeutic agents in depression is discussed.

  6. Coupled flip-flop model for REM sleep regulation in the rat.

    Directory of Open Access Journals (Sweden)

    Justin R Dunmyre

    Full Text Available Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on and REM sleep-inhibiting (REM-off neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data

  7. Coupled flip-flop model for REM sleep regulation in the rat.

    Science.gov (United States)

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  8. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    Directory of Open Access Journals (Sweden)

    Christine eDugovic

    2014-02-01

    Full Text Available In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R and orexin-2 (OX2R receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM and REM sleep following oral dosing (10 and 30 mg/kg at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion. When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  9. Quantitative changes in the sleep EEG at moderate altitude (1630 m and 2590 m.

    Directory of Open Access Journals (Sweden)

    Katrin Stadelmann

    Full Text Available BACKGROUND: Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep. METHODS: Fourty-four healthy men (mean age 25.0 ± 5.5 years underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each in a randomized cross-over design. RESULTS: Comparison of sleep EEG power density spectra of frontal (F3A2 and central (C3A2 derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8-4.6 Hz in non-REM sleep was reduced in an altitude-dependent manner (~4% at 1630 m and 15% at 2590 m, while theta activity (4.6-8 Hz was reduced only at the highest altitude (10% at 2590 m. In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI, oxygen desaturation index (ODI, and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4-8 Hz and 13-14.4 Hz and breathing variables (AHI, ODI; 0.8-4.6 Hz. CONCLUSIONS: The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.

  10. Quantitative Changes in the Sleep EEG at Moderate Altitude (1630 m and 2590 m)

    Science.gov (United States)

    Stadelmann, Katrin; Latshang, Tsogyal D.; Lo Cascio, Christian M.; Tesler, Noemi; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E.; Huber, Reto; Achermann, Peter

    2013-01-01

    Background Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep. Methods Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design. Results Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz). Conclusions The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure. PMID:24167552

  11. Can we still dream when the mind is blank? Sleep and dream mentations in auto-activation deficit.

    Science.gov (United States)

    Leu-Semenescu, Smaranda; Uguccioni, Ginevra; Golmard, Jean-Louis; Czernecki, Virginie; Yelnik, Jerome; Dubois, Bruno; Forgeot d'Arc, Baudouin; Grabli, David; Levy, Richard; Arnulf, Isabelle

    2013-10-01

    Bilateral damage to the basal ganglia causes auto-activation deficit, a neuropsychological syndrome characterized by striking apathy, with a loss of self-driven behaviour that is partially reversible with external stimulation. Some patients with auto-activation deficit also experience a mental emptiness, which is defined as an absence of any self-reported thoughts. We asked whether this deficit in spontaneous activation of mental processing may be reversed during REM sleep, when dreaming activity is potentially elicited by bottom-up brainstem stimulation on the cortex. Sleep and video monitoring over two nights and cognitive tests were performed on 13 patients with auto-activation deficit secondary to bilateral striato-pallidal lesions and 13 healthy subjects. Dream mentations were collected from home diaries and after forced awakenings in non-REM and REM sleep. The home diaries were blindly analysed for length, complexity and bizarreness. A mental blank during wakefulness was complete in six patients and partial in one patient. Four (31%) patients with auto-activation deficit (versus 92% of control subjects) reported mentations when awakened from REM sleep, even when they demonstrated a mental blank during the daytime (n = 2). However, the patients' dream reports were infrequent, short, devoid of any bizarre or emotional elements and tended to be less complex than the dream mentations of control subjects. The sleep duration, continuity and stages were similar between the groups, except for a striking absence of sleep spindles in 6 of 13 patients with auto-activation deficit, despite an intact thalamus. The presence of spontaneous dreams in REM sleep in the absence of thoughts during wakefulness in patients with auto-activation deficit supports the idea that simple dream imagery is generated by brainstem stimulation and is sent to the sensory cortex. However, the lack of complexity in these dream mentations suggests that the full dreaming process (scenario

  12. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats.

    Science.gov (United States)

    Montandon, Gaspard; Horner, Richard L; Kinkead, Richard; Bairam, Aida

    2009-11-15

    Caffeine is commonly used clinically to treat apnoeas and unstable breathing associated with premature birth. Caffeine antagonizes adenosine receptors and acts as an efficient respiratory stimulant in neonates. Owing to its persistent effects on adenosine receptor expression in the brain, neonatal caffeine administration also has significant effects on maturation of the respiratory control system. However, since adenosine receptors are critically involved in sleep regulation, and sleep also modulates breathing, we tested the hypothesis that neonatal caffeine treatment disrupts regulation of sleep and breathing in the adult rat. Neonatal caffeine treatment (15 mg kg(-1) day(-1)) was administered from postnatal days 3-12. At adulthood (8-10 weeks old), sleep and breathing were measured with a telemetry system and whole-body plethysmography respectively. In adult rats treated with caffeine during the neonatal period, sleep time was reduced, sleep onset latency was increased, and non-rapid eye movement (non-REM) sleep was fragmented compared to controls. Ventilation at rest was higher in caffeine-treated adult rats compared to controls across sleep/wake states. Hypercapnic ventilatory responses were significantly reduced in caffeine-treated rats compared to control rats across sleep/wake states. Additional experiments in adult anaesthetized rats showed that at similar levels of arterial blood gases, phrenic nerve activity was enhanced in caffeine-treated rats. This study demonstrates that administration of caffeine in the neonatal period alters respiratory control system activity in awake and sleeping rats, as well as in the anaesthetized rats, and also has persistent disrupting effects on sleep that are apparent in adult rats.

  13. The Fingerprint of Rapid Eye Movement: Its Algorithmic Detection in the Sleep Electroencephalogram Using a Single Derivation.

    Science.gov (United States)

    McCarty, David E; Kim, Paul Y; Frilot, Clifton; Chesson, Andrew L; Marino, Andrew A

    2016-10-01

    The strong associations of rapid eye movement (REM) sleep with dreaming and memory consolidation imply the existence of REM-specific brain electrical activity, notwithstanding the visual similarity of the electroencephalograms (EEGs) in REM and wake states. Our goal was to detect REM sleep by means of algorithmic analysis of the EEG. We postulated that novel depth and fragmentation variables, defined in relation to temporal changes in the signal (recurrences), could be statistically combined to allow disambiguation of REM epochs. The cohorts studied were consecutive patients with obstructive sleep apnea (OSA) recruited from a sleep medicine clinic, and clinically normal participants selected randomly from a national database (N = 20 in each cohort). Individual discriminant analyses were performed, for each subject based on 4 recurrence biomarkers, and used to classify every 30-second epoch in the subject's overnight polysomnogram as REM or NotREM (wake or any non-REM sleep stage), using standard clinical staging as ground truth. The primary outcome variable was the accuracy of algorithmic REM classification. Average accuracies of 90% and 87% (initial and cross-validation analyses) were achieved in the OSA cohort; corresponding results in the normal cohort were 87% and 85%. Analysis of brain recurrence allowed identification of REM sleep, disambiguated from wake and all other stages, using only a single EEG lead, in subjects with or without OSA.

  14. 重症监护室患者睡眠剥夺的集束护理干预对策研究%Intensive care unit patients with sleep deprivation cluster nursing interven-tion countermeasures

    Institute of Scientific and Technical Information of China (English)

    文英花; 王润

    2014-01-01

    Objective To study the analysis to cluster nursing intervention in the clinical nursing of patients with intensive care sleep deprivation effects. Methods From December 2012 to December 2013 were 240 cases of icu patients with severe sleep de-privation as the research object, all patients according to the digital random method can be divided into observation group and control group, 120 cases in each group. Control group patients with routine nursing methods, and on the basis of the observation group in the control group nursing to cluster nursing intervention. Observed two groups of patients in PSQI scores compared with in sleep latency and sleep time. Results The observation group of patients after nursing intervention, PSQI score and total score are significantly better than control group, difference has statistical significance (P<0.05). Observation group of patients after the inter-vention of 3 weeks began to sleep time is significantly higher than the control group, difference has statistical significance (P<0.05). Conclusion Intensive care unit patients with severe sleep deprivation take significant effect on the cluster nursing intervention can effectively shorten the incubation period of sleep, increased in patients with sleep, improve sleep quality, clinical promotion use value.%目的:研究分析采取集束护理干预在重症监护室睡眠剥夺患者的临床护理效果。方法选择我院2012年12月-2013年12月收治的240例重症监护室有睡眠剥夺重症的患者作为研究对象,将所有患者按照数字随机法分为观察组和对照组,每组各120例。对照组患者采取常规护理方法,而观察组在对照组护理的基础上加以集束护理干预。对比观察两组患者在PSQI总分情况与在睡眠潜伏期和睡眠时间情况的比较。结果观察组患者在护理干预后,PSQI各个评分和总分情况都明显优于对照组,差异具有统计学意义(P<0.05)。观

  15. The Big Sleep in the Woods

    Institute of Scientific and Technical Information of China (English)

    王玉峰

    2002-01-01

    Now it's the time of the big sleep for the bees and the bears. Even the buds of the plants whose leaves fall off share in it. But the intensity of this winter sleep, or hibernation, depends on who's doing it.The big sleep of the bears ,for instance ,would probably be thought of as a

  16. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  17. Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep.

    Science.gov (United States)

    Mendez, Martin Oswaldo; Chouvarda, Ioanna; Alba, Alfonso; Bianchi, Anna Maria; Grassi, Andrea; Arce-Santana, Edgar; Milioli, Guilia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-01-01

    An analysis of the EEG signal during the B-phase and A-phases transitions of the cyclic alternating pattern (CAP) during sleep is presented. CAP is a sleep phenomenon composed by consecutive sequences of A-phases (each A-phase could belong to a possible group A1, A2 or A3) observed during the non-REM sleep. Each A-phase is separated by a B-phase which has the basal frequency of the EEG during a specific sleep stage. The patterns formed by these sequences reflect the sleep instability and consequently help to understand the sleep process. Ten recordings from healthy good sleepers were included in this study. The current study investigates complexity, statistical and frequency signal properties of electroencephalography (EEG) recordings at the transitions: B-phase--A-phase. In addition, classification between the onset-offset of the A-phases and B-phase was carried out with a kNN classifier. The results showed that EEG signal presents significant differences (p sleep stages. The statistical analysis of variance shows that more than 80% of the A-phase onset and offset is significantly different from the B-phase. The classification performance between onset or offset of A-phases and background showed classification values over 80% for specificity and accuracy and 70% for sensitivity. Only during the A3-phase, the classification was lower. The results suggest that neural assembles that generate the basal EEG oscillations during sleep present an over-imposed coordination for a few seconds due to the A-phases. The main characteristics for automatic separation between the onset-offset A-phase and the B-phase are the energy at the different frequency bands.

  18. Shift work and quality of sleep:

    DEFF Research Database (Denmark)

    Jensen, Hanne Irene; Markvart, Jakob; Holst, René

    2016-01-01

    Purpose To examine the effect of designed dynamic light on staff’s quality of sleep with regard to sleep efficiency, level of melatonin in saliva, and subjective perceptions of quality of sleep. Methods An intervention group working in designed dynamic light was compared with a control group...... working in ordinary institutional light at two comparable intensive care units (ICUs). The study included examining (1) melatonin profiles obtained from saliva samples, (2) quality of sleep in terms of sleep efficiency, number of awakenings and subjective assessment of sleep through the use of sleep...... monitors and sleep diaries, and (3) subjective perceptions of well-being, health, and sleep quality using a questionnaire. Light conditions were measured at both locations. Results A total of 113 nurses (88 %) participated. There were no significant differences between the two groups regarding personal...

  19. Sleep Paralysis: phenomenology, neurophysiology and treatment

    OpenAIRE

    Solomonova, Elizaveta

    2017-01-01

    Sleep paralysis is an experience of being temporarily unable to move or talk during the transitional periods between sleep and wakefulness: at sleep onset or upon awakening. Feeling of paralysis may be accompanied by a variety of vivid and intense sensory experiences, including mentation in visual, auditory, and tactile modalities, as well as a distinct feeling of presence. This chapter discusses a variety of sleep paralysis experiences from the perspective of enactive cognition and cultural ...

  20. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study.

    Science.gov (United States)

    Sabater, Lidia; Gaig, Carles; Gelpi, Ellen; Bataller, Luis; Lewerenz, Jan; Torres-Vega, Estefanía; Contreras, Angeles; Giometto, Bruno; Compta, Yaroslau; Embid, Cristina; Vilaseca, Isabel; Iranzo, Alex; Santamaría, Joan; Dalmau, Josep; Graus, Francesc

    2014-06-01

    Autoimmunity might be associated with or implicated in sleep and neurodegenerative disorders. We aimed to describe the features of a novel neurological syndrome associated with prominent sleep dysfunction and antibodies to a neuronal antigen. In this observational study, we used clinical and video polysomnography to identify a novel sleep disorder in three patients referred to the Sleep Unit of Hospital Clinic, University of Barcelona, Spain, for abnormal sleep behaviours and obstructive sleep apnoea. These patients had antibodies against a neuronal surface antigen, which were also present in five additional patients referred to our laboratory for antibody studies. These five patients had been assessed with polysomnography, which was done in our sleep unit in one patient and the recording reviewed in a second patient. Two patients underwent post-mortem brain examination. Immunoprecipitation and mass spectrometry were used to characterise the antigen and develop an assay for antibody testing. Serum or CSF from 298 patients with neurodegenerative, sleep, or autoimmune disorders served as control samples. All eight patients (five women; median age at disease onset 59 years [range 52-76]) had abnormal sleep movements and behaviours and obstructive sleep apnoea, as confirmed by polysomnography. Six patients had chronic progression with a median duration from symptom onset to death or last visit of 5 years (range 2-12); in four the sleep disorder was the initial and most prominent feature, and in two it was preceded by gait instability followed by dysarthria, dysphagia, ataxia, or chorea. Two patients had a rapid progression with disequilibrium, dysarthria, dysphagia, and central hypoventilation, and died 2 months and 6 months, respectively, after symptom onset. In five of five patients, video polysomnography showed features of obstructive sleep apnoea, stridor, and abnormal sleep architecture (undifferentiated non-rapid-eye-movement [non-REM] sleep or poorly structured

  1. Circadian modulation of sleep in rodents.

    Science.gov (United States)

    Yasenkov, Roman; Deboer, Tom

    2012-01-01

    Sleep is regulated by circadian and homeostatic processes. The sleep homeostat keeps track of the duration of prior sleep and waking and determines the intensity of sleep. In mammals, the homeostatic process is reflected by the slow waves in the non-rapid eye movement (NREM) sleep electroencephalogram (EEG). The circadian process is controlled by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus and provides the sleep homeostat with a circadian framework. This review summarizes the changes in sleep obtained after different chronobiological interventions (changes in photoperiod, light availability, and running wheel availability), the influence of mutations or lesions in clock genes on sleep, and research on the interaction between sleep homeostasis and the circadian clock. Research in humans shows that the period of consolidated waking during the day is a consequence of the interaction between an increasing homeostatic sleep drive and a circadian signal, which promotes waking during the day and sleep during the night. In the rat, it was shown that, under constant homeostatic sleep pressure, with similar levels of slow waves in the NREM sleep EEG at all time points of the circadian cycle, still a small circadian modulation of the duration of waking and NREM sleep episodes was observed. Under similar conditions, humans show a clear circadian modulation in REM sleep, whereas in the rat, a circadian modulation in REM sleep was not present. Therefore, in the rat, the sleep homeostatic modulation in phase with the circadian clock seems to amplify the relatively weak circadian changes in sleep induced by the circadian clock. Knowledge about the interaction between sleep and the circadian clock and the circadian modulation of sleep in other species than humans is important to better understand the underlying regulatory mechanisms.

  2. Obstructive Sleep Apnea

    Science.gov (United States)

    ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ...

  3. Healthy Sleep Habits

    Science.gov (United States)

    ... Sleep Apnea Testing CPAP Healthy Sleep Habits Healthy Sleep Habits Your behaviors during the day, and especially ... team at an AASM accredited sleep center . Quick Sleep Tips Follow these tips to establish healthy sleep ...

  4. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep.

    Science.gov (United States)

    Oishi, Yo; Huang, Zhi-Li; Fredholm, Bertil B; Urade, Yoshihiro; Hayaishi, Osamu

    2008-12-16

    Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.

  5. Increased Orexin Expression Promotes Sleep/Wake Disturbances in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Institute of Scientific and Technical Information of China (English)

    Rong Liu; Zhao-Fu Sheng; Bing Cai; Yong-He Zhang; Dong-Sheng Fan

    2015-01-01

    Background:Sleep/wake disturbances in patients with amyotrophic lateral sclerosis (ALS) are well-documented,however,no animal or mechanistic studies on these disturbances exist.Orexin is a crucial neurotransmitter in promoting wakefulness in sleep/wake regulation,and may play an important role in sleep disturbances in ALS.In this study,we used SOD1-G93A transgenic mice as an ALS mouse model to investigate the sleep/wake disturbances and their possible mechanisms in ALS.Methods:Electroencephalogram/electromyogram recordings were performed in SOD1-G93A transgenic mice and their littermate control mice at the ages of 90 and 120 days,and the samples obtained from these groups were subjected to quantitative reverse transcriptase-polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay.Results:For the first time in SOD1-G93A transgenic mice,we observed significantly increased wakefulness,reduced sleep time,and up-regulated orexins (prepro-orexin,orexin A and B) at both 90 and 120 days.Correlation analysis confirmed moderate to high correlations between sleep/wake time (total sleep time,wakefulness time,rapid eye movement [REM] sleep time,non-REM sleep time,and deep sleep time) and increase in orexins (prepro-orexin,orexin A and B).Conclusion:Sleep/wake disturbances occur before disease onset in this ALS mouse model.Increased orexins may promote wakefulness and result in these disturbances before and after disease onset,thus making them potential therapeutic targets for amelioration of sleep disturbances in ALS.Further studies are required to elucidate the underlying mechanisms in the future.

  6. Sleep Quiz

    Science.gov (United States)

    ... time and to get into the deep restful stages of sleep decreases with age. Older people have more fragile sleep and are more easily disturbed by light, noise, and pain. They also may have medical ...

  7. Sleep Apnea

    Science.gov (United States)

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  8. Sleep Apnea

    Science.gov (United States)

    ... air or choking that awakens you from sleep Intermittent pauses in your breathing during sleep Excessive daytime ... disease, these multiple episodes of low blood oxygen (hypoxia or hypoxemia) can lead to sudden death from ...

  9. Sleep-related eating disorder in a 29 year-old man: a case report with diagnostic polysomnographic findings.

    Science.gov (United States)

    Yeh, Shih-Bin; Schenck, Carlos H

    2007-06-01

    This is a case of a 29-year-old man with a 6 year history of sleep-related eating disorder (SRED) that occurred with partial consciousness on a nightly basis. His family or wife witnessed up to 5 episodes every night, with each eating episode lasting 8-16 minutes. Polysomnography documented 4 episodes of sleep-related eating arising from stage 2 Non-REM sleep, when he consumed cookies that he had brought to the sleep lab that night. While eating, his EEG remained in stage 2 sleep or else was a wakeful EEG, and the eating episodes lasted for a mean 13.3 minutes. There was no epileptiform EEG activity during the polysomnogrphic study with a seizure montage and fast paper speed. Therapy with clonazepam, 0.5 mg bedtime, did not control the nocturnal eating. The patient tried to limit access to food in his home before bedtime, and this had modest benefit. This case of SRED has both typical and atypical features, which are discussed.

  10. Acute Total and Chronic Partial Sleep Deprivation: Effects on Neurobehavioral Functions, Waking EEG and Renin-Angiotensin System

    Science.gov (United States)

    Dijk, Derk-Jan

    1999-01-01

    protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.

  11. Corticotropin releasing factor (CRF) modulates fear-induced alterations in sleep in mice.

    Science.gov (United States)

    Yang, Linghui; Tang, Xiangdong; Wellman, Laurie L; Liu, Xianling; Sanford, Larry D

    2009-06-18

    Contextual fear significantly reduces rapid eye movement sleep (REM) during post-exposure sleep in mice and rats. Corticotropin releasing factor (CRF) plays a major role in CNS responses to stressors. We examined the influence of CRF and astressin (AST), a non-specific CRF antagonist, on sleep after contextual fear in BALB/c mice. Male mice were implanted with transmitters for recording sleep via telemetry and with a guide cannula aimed into the lateral ventricle. Recordings for vehicle and handling control were obtained after ICV microinjection of saline (SAL) followed by exposure to a novel chamber. Afterwards, the mice were subjected to shock training (20 trials, 0.5 mA, 0.5 s duration) for 2 sessions. After training, separate groups of mice received ICV microinjections of SAL (0.2 microl, n=9), CRF (0.4 microg, n=8), or AST (1.0 microg, n=8) prior to exposure to the shock context alone. Sleep was then recorded for 20 h (8-hour light and 12-hour dark period). Compared to handling control, contextual fear significantly decreased REM during the 8-h light period in mice receiving SAL and in mice receiving CRF, but not in the mice receiving AST. Mice receiving CRF exhibited reductions in REM during the 12-h dark period after contextual fear, whereas mice receiving SAL or AST did not. CRF also reduced non-REM (NREM) delta (slow wave) amplitude in the EEG. Only mice receiving SAL prior to contextual fear exhibited significant reductions in NREM and total sleep. These findings demonstrate a role for the central CRF system in regulating alterations in sleep induced by contextual fear.

  12. Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression.

    Directory of Open Access Journals (Sweden)

    Chadi Touma

    Full Text Available BACKGROUND: Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD. Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR mouse model consists of three separate breeding lines selected for either high (HR, intermediate (IR, or low (LR corticosterone increase in response to stressors. METHODOLOGY/PRINCIPLE FINDINGS: In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period, resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice. CONCLUSION/SIGNIFICANCE: Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may

  13. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG increase REM sleep in hypocretin knockout mice.

    Directory of Open Access Journals (Sweden)

    Satvinder Kaur

    Full Text Available Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT, also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG. The first experiment utilized hypocretin knock-out (HCRT-ko mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8 given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7 or wildtype mice (+177%; n = 9. However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls and it was significantly correlated (r = 0.89 with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.

  14. Sleep and exercise: a reciprocal issue?

    Science.gov (United States)

    Chennaoui, Mounir; Arnal, Pierrick J; Sauvet, Fabien; Léger, Damien

    2015-04-01

    Sleep and exercise influence each other through complex, bilateral interactions that involve multiple physiological and psychological pathways. Physical activity is usually considered as beneficial in aiding sleep although this link may be subject to multiple moderating factors such as sex, age, fitness level, sleep quality and the characteristics of the exercise (intensity, duration, time of day, environment). It is therefore vital to improve knowledge in fundamental physiology in order to understand the benefits of exercise on the quantity and quality of sleep in healthy subjects and patients. Conversely, sleep disturbances could also impair a person's cognitive performance or their capacity for exercise and increase the risk of exercise-induced injuries either during extreme and/or prolonged exercise or during team sports. This review aims to describe the reciprocal fundamental physiological effects linking sleep and exercise in order to improve the pertinent use of exercise in sleep medicine and prevent sleep disorders in sportsmen.

  15. The yin and yang of sleep and attention

    OpenAIRE

    Kirszenblat, Leonie; van Swinderen, Bruno

    2015-01-01

    Sleep is not a single state, but a complex set of brain processes that supports a number of physiological needs. Sleep deprivation is known to affect attention in many animals, suggesting that a key function of sleep is to regulate attention. Conversely, tasks that require more attention drive sleep need and sleep intensity. Attention involves the ability to filter incoming stimuli based on their relative salience, and this is likely to require coordinated synaptic activity across the brain. ...

  16. Total sleep deprivation, chronic sleep restriction and sleep disruption.

    Science.gov (United States)

    Reynolds, Amy C; Banks, Siobhan

    2010-01-01

    Sleep loss may result from total sleep deprivation (such as a shift worker might experience), chronic sleep restriction (due to work, medical conditions or lifestyle) or sleep disruption (which is common in sleep disorders such as sleep apnea or restless legs syndrome). Total sleep deprivation has been widely researched, and its effects have been well described. Chronic sleep restriction and sleep disruption (also known as sleep fragmentation) have received less experimental attention. Recently, there has been increasing interest in sleep restriction and disruption as it has been recognized that they have a similar impact on cognitive functioning as a period of total sleep deprivation. Sleep loss causes impairments in cognitive performance and simulated driving and induces sleepiness, fatigue and mood changes. This review examines recent research on the effects of sleep deprivation, restriction and disruption on cognition and neurophysiologic functioning in healthy adults, and contrasts the similarities and differences between these three modalities of sleep loss.

  17. Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep.

    Science.gov (United States)

    Mariani, Sara; Manfredini, Elena; Rosso, Valentina; Grassi, Andrea; Mendez, Martin O; Alba, Alfonso; Matteucci, Matteo; Parrino, Liborio; Terzano, Mario G; Cerutti, Sergio; Bianchi, Anna M

    2012-04-01

    This study aims to develop an automatic detector of the A phases of the cyclic alternating pattern, periodic activity that generally occurs during non-REM (NREM) sleep. Eight polysomnographic recordings from healthy subjects were examined. From EEG recordings, five band descriptors, an activity descriptor and a variance descriptor were extracted and used to train different machine-learning algorithms. A visual scoring provided by an expert clinician was used as golden standard. Four alternative mathematical machine-learning techniques were implemented: (1) discriminant classifier, (2) support vector machines, (3) adaptive boosting, and (4) supervised artificial neural network. The results of the classification, compared with the visual analysis, showed average accuracies equal to 84.9 and 81.5% for the linear discriminant and the neural network, respectively, while AdaBoost had a slightly lower accuracy, equal to 79.4%. The SVM leads to accuracy of 81.9%. The performance achieved by the automatic classification is encouraging, since an efficient automatic classifier would benefit the practice in everyday clinics, preventing the physician from the time-consuming activity of the visually scoring of the sleep microstructure over whole 8-h sleep recordings. Finally, the classification based on learning algorithms would provide an objective criterion, overcoming the problems of inter-scorer disagreement.

  18. Effects of chronic treatment with two selective 5-HT2 antagonists on sleep in the rat.

    Science.gov (United States)

    Pastel, R H; Echevarria, E; Cox, B; Blackburn, T P; Tortella, F C

    1993-04-01

    The effect of chronic administration of 2(2-dimethylaminoethylthio)-3-phenylquinoline (ICI-169,369) and 2(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline (ICI-170,809), two selective 5-HT2 antagonists, on sleep was studied in rats. As previously shown, the acute effect of ICI-170,809 was to increase latency to rapid eye movement sleep (REMS), decrease the number of REM periods (REMPs), suppress the cumulative amount of REMS over 12 h, and increase the duration of REMPs in the first 6 h, while having no effect on non-REM sleep (NREMS). Administration of ICI-169,369 had similar effects except no change was seen in the duration of REMPs and cumulative REMS was suppressed for 24 h. When given 2 x daily for 5 days, tolerance to the REMS suppressant effects developed in both drugs. After discontinuation of treatment, a REMS rebound occurred after ICI-170,809, but not ICI-169,369. No significant effect on NREMS was seen after administration of ICI-170,809, whereas ICI-169,369 lowered 24-h cumulative NREMS on the fifth day of administration.

  19. Aging changes in sleep

    Science.gov (United States)

    Sleep normally occurs in several stages. The sleep cycle includes: Dreamless periods of light and deep sleep Some periods of active dreaming (REM sleep) The sleep cycle is repeated several times during the night. AGING ...

  20. Sleep and Women

    Science.gov (United States)

    ... hygiene sleep length Sleep Movement Disorders Sleep Need Sleep talking Sleeping Pills sleepwalking Snoring stress Stroke Suicide Supplements surgery Technology Teens Telemedicine television The internet Time change Transportation trauma travel Treatments ...

  1. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA- ... Rate This Content: NEXT >> Updated: June 7, 2017 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  2. Sleep disorders - overview

    Science.gov (United States)

    Insomnia; Narcolepsy; Hypersomina; Daytime sleepiness; Sleep rhythm; Sleep disruptive behaviors; Jet lag ... excessive daytime sleepiness) Problems sticking to a regular sleep schedule (sleep rhythm problem) Unusual behaviors during sleep ( ...

  3. American Sleep Association

    Science.gov (United States)

    ... Sleep Disorders Book Join ASA Press Room American Sleep Association Improving public health by increasing awareness about ... Members Username or Email Password Remember Me Register Sleep Blog Changing Bad Sleep Habits Asthma and Sleep ...

  4. Sleep and Chronic Disease

    Science.gov (United States)

    ... message, please visit this page: About CDC.gov . Sleep About Us About Sleep Key Sleep Disorders Sleep ... Sheets Data & Statistics Projects and Partners Resources Events Sleep and Chronic Disease Recommend on Facebook Tweet Share ...

  5. Effect of trazodone on sleep bruxism in children and adolescents 6-18 years of age, a pilot study

    Directory of Open Access Journals (Sweden)

    Fereshteh Shakibaei

    2008-02-01

    Full Text Available

    • BACKGROUND: Sleep bruxism is a common sleep disorder with unclear etiology and no definitive treatment. Recent
    • suggested medications are not often practically used due to their numerous limitations. Based on the fact that sleep bruxism occurs most often in the second stage of non-REM sleep, this study aimed to assess the effect of trazodone on sleep bruxism.
    • METHODS: This pilot study was conducted as a before-after design on 28 children and adolescents with 6-18 years of age suffering from sleep bruxism referring by children and adolescents mental health clinic, children dental specialists and pediatricians. The treatment started with 0.5mg/kg/day. In non-responders, it was weekly added by 0.5 mg/kg/day (with optimum of 2 mg/kg/day. Frequency of bruxism and related morning face/jaw pain were assessed daily from two weeks before (baseline to four weeks after starting the intervention by the parents/roommate.
    • RESULTS: Findings showed a significant reduction in the frequency of both bruxism and related morning pain from baseline to the 2nd and the 4th weeks of the intervention (P<0.001. Minor side effects such as drowsiness, nausea and dry mouth were seen among approximately one-third of the patients. These side effects were self-limited and tolerable.
    • CONCLUSIONS: Trazodone could be effective in reducing the frequency of sleep bruxism and its related morning face/jaw pain. Well-designed placebo-controlled trials are needed to confirm the results.
    • KEY WORDS: Sleep bruxism, trazodone, teeth clenching, teeth grinding.

  6. A New Measure of Hallucinatory States and a Discussion of REM Sleep Dreaming as a Virtual Laboratory for the Rehearsal of Embodied Cognition.

    Science.gov (United States)

    Speth, Clemens; Speth, Jana

    2017-06-06

    Hallucinatory states are experienced not only in connection with drugs and psychopathologies but occur naturally and spontaneously across the human circadian cycle: Our nightly dreams bring multimodal experiences in the absence of adequate external stimuli. The current study proposes a new, tighter measure of these hallucinatory states: Sleep onset, REM sleep, and non-REM sleep are shown to differ with regard to (a) motor imagery indicating interactions with a rich imaginative world, and (b) cognitive agency that could enable sleepers to recognize their hallucinatory state. Mentation reports from the different states were analysed quantitatively with regard to two grammatical-semantic constructs, motor agency and cognitive agency. The present results support earlier physiological and psychological evidence in revealing a decline in cognitive functions and an increase in simulated interactions with a hallucinatory world, en route to normal REM sleep. This leads us to introduce the hypothesis that REM sleep, which exhibits remarkably high levels of (simulated) sensorimotor processes, may have evolved to serve as a virtual laboratory for the development and rehearsal of embodied cognition. The new measure of hallucinatory states presented here may also hold implications for the study of executive functions and (meta-)cognitions, which might be interesting, for example, for the investigation of lucid dreaming. © 2017 Cognitive Science Society, Inc.

  7. Sleep Disturbances

    Science.gov (United States)

    ... get up in the middle of the night. Sleep in a cool dark place and use the bed only for sleeping and sexual activity. Do not read or watch television in bed. Avoid “screen time” — television, phones, tablets ...

  8. Ancestral sleep.

    Science.gov (United States)

    de la Iglesia, Horacio O; Moreno, Claudia; Lowden, Arne; Louzada, Fernando; Marqueze, Elaine; Levandovski, Rosa; Pilz, Luisa K; Valeggia, Claudia; Fernandez-Duque, Eduardo; Golombek, Diego A; Czeisler, Charles A; Skene, Debra J; Duffy, Jeanne F; Roenneberg, Till

    2016-04-01

    While we do not yet understand all the functions of sleep, its critical role for normal physiology and behaviour is evident. Its amount and temporal pattern depend on species and condition. Humans sleep about a third of the day with the longest, consolidated episode during the night. The change in lifestyle from hunter-gatherers via agricultural communities to densely populated industrialized centres has certainly affected sleep, and a major concern in the medical community is the impact of insufficient sleep on health [1,2]. One of the causal mechanisms leading to insufficient sleep is altered exposure to the natural light-dark cycle. This includes the wide availability of electric light, attenuated exposure to daylight within buildings, and evening use of light-emitting devices, all of which decrease the strength of natural light-dark signals that entrain circadian systems [3].

  9. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.

    Science.gov (United States)

    Wiater, M F; Mukherjee, S; Li, A-J; Dinh, T T; Rooney, E M; Simasko, S M; Ritter, S

    2011-11-01

    Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.

  10. Sleep-wake behavior in the rat: ultradian rhythms in a light-dark cycle and continuous bright light.

    Science.gov (United States)

    Stephenson, Richard; Lim, Joonbum; Famina, Svetlana; Caron, Aimee M; Dowse, Harold B

    2012-12-01

    Ultradian rhythms are a prominent but little-studied feature of mammalian sleep-wake and rest-activity patterns. They are especially evident in long-term records of behavioral state in polyphasic animals such as rodents. However, few attempts have been made to incorporate ultradian rhythmicity into models of sleep-wake dynamics, and little is known about the physiological mechanisms that give rise to ultradian rhythms in sleep-wake state. This study investigated ultradian dynamics in sleep and wakefulness in rats entrained to a 12-h:12-h light-dark cycle (LD) and in rats whose circadian rhythms were suppressed and free-running following long-term exposure to uninterrupted bright light (LL). We recorded sleep-wake state continuously for 7 to 12 consecutive days and used time-series analysis to quantify the dynamics of net cumulative time in each state (wakefulness [WAKE], rapid eye movement sleep [REM], and non-REM sleep [NREM]) in each animal individually. Form estimates and autocorrelation confirmed the presence of significant ultradian and circadian rhythms; maximum entropy spectral analysis allowed high-resolution evaluation of multiple periods within the signal, and wave-by-wave analysis enabled a statistical evaluation of the instantaneous period, peak-trough range, and phase of each ultradian wave in the time series. Significant ultradian periodicities were present in all 3 states in all animals. In LD, ultradian range was approximately 28% of circadian range. In LL, ultradian range was slightly reduced relative to LD, and circadian range was strongly attenuated. Ultradian rhythms were found to be quasiperiodic in both LD and LL. That is, ultradian period varied randomly around a mean of approximately 4 h, with no relationship between ultradian period and time of day.

  11. Narcolepsy with long sleep time: a specific entity?

    Science.gov (United States)

    Vernet, Cyrille; Arnulf, Isabelle

    2009-09-01

    The classical narcolepsy patient reports intense feelings of sleepiness (with/out cataplexy), normal or disrupted nighttime sleep, and takes short and restorative naps. However, with long-term monitoring, we identified some narcoleptics resembling patients with idiopathic hypersomnia. To isolate and describe a new subtype of narcolepsy with long sleep time). University Hospital Controlled, prospective cohort Out of 160 narcoleptics newly diagnosed within the past 3 years, 29 (18%) had a long sleep time (more than 11 h/24 h). We compared narcoleptics with (n = 23) and without (n = 29) long sleep time to 25 hypersomniacs with long sleep time and 20 healthy subjects. Patients and controls underwent face-to face interviews, questionnaires, human leukocyte antigen (HLA) genotype, an overnight polysomnography, multiple sleep latency tests, and 24-h ad libitum sleep monitoring. Narcoleptics with long sleep time had a similar disease course and similar frequencies of cataplexy, sleep paralysis, hallucinations, multiple sleep onset in REM periods, short mean sleep latencies, and HLA DQB1*0602 positivity as narcoleptics with normal sleep time did. However, they had longer sleep time during 24 h, and higher sleep efficiency, lower Epworth Sleepiness Scale scores, and reported their naps were more often unrefreshing. Only 3/23 had core narcolepsy (HLA and cataplexy positive). The subgroup of narcoleptics with a long sleep time comprises 18% of narcoleptics. Their symptoms combine the disabilities of both narcolepsy (severe sleepiness) and idiopathic hypersomnia (long sleep time and unrefreshing naps). Thus, they may constitute a group with multiple arousal system dysfunctions.

  12. Medicines for sleep

    Science.gov (United States)

    Benzodiazepines; Sedatives; Hypnotics; Sleeping pills; Insomnia - medicines; Sleep disorder - medicines ... are commonly used to treat allergies. While these sleep aids are not addictive, your body becomes used ...

  13. The effects of exercise modality and intensity on energy expenditure and cardiorespiratory response in adults with obesity and treated obstructive sleep apnoea.

    Science.gov (United States)

    Evans, Rachael A; Dolmage, Thomas E; Robles, Priscila G; Brooks, Dina; Goldstein, Roger S

    2016-04-13

    To inform recommendations for the exercise component of a healthy lifestyle intervention for adults with obesity and treated obstructive sleep apnoea (OSA), we investigated the total energy expenditure (EE) and cardiorespiratory response to weight-supported (cycling) and unsupported (walking) exercise. Individuals with treated OSA and a body mass index (BMI) > 30 kg/m(2)performed an incremental cardiopulmonary exercise test on a cycle ergometer and a treadmill to determine the peak oxygen uptake[Formula: see text] Participants subsequently completed two endurance tests on each modality, matched at 80% and 60% of the highest[Formula: see text]determined by the incremental tests, to intolerance. The cardiorespiratory response was measured and total EE was estimated from the[Formula: see text] Sixteen participants completed all six tests: mean [SD] age 57 [13] years and median [IQ range] BMI 33.3 [30.8-35.3] kg/m(2) Total EE during treadmill walking was greater than cycling at both high (158 [101] vs. 29 [15] kcal;pobesity and treated OSA.

  14. The predictive value of Muller maneuver in REM-dependent obstructive sleep apnea.

    Science.gov (United States)

    Ozcan, Kursat Murat; Ozcan, Muge; Ozdogan, Fatih; Hizli, Omer; Dere, Huseyin; Unal, Adnan

    2013-09-01

    To our knowledge, no studies up to date have investigated the correlation of rapid eye movement (REM) dependent obstructive sleep apnea syndrome (OSAS) and Muller maneuver. The aim of this study is to investigate whether REM-dependent OSAS is predicted by the findings of the Muller maneuver. The study was conducted on 149 patients with witnessed apnea and daytime sleepiness. Muller maneuver was performed to all patients and the obstruction site was determined using a five-point scale. Then, polysomnography of the patient was obtained and the apnea-hypopnea indexes were determined in total sleep time, REM-dependent sleep and non-REM-dependent sleep. The correlations between the Muller maneuver findings and polysomnographic data were analyzed. The ages of the patients included in the study ranged between 25 and 73 years with a mean age of 49.3 ± 10.1 years. Their mean body mass index was 30.8 ± 5.1 kg/m(2) (range 21.9-55.4 kg/m(2)). The patients' mean apnea-hypopnea indexes in total sleep time was 28.1 and ranged between 5.4 and 124.3. REM-dependent OSAS was determined in 49 patients. When the data were analyzed, it was determined that there were no statistically significant correlations between tongue base or lateral pharyngeal band obstruction at the level of hypopharynx and the REM-dependent OSAS. At the level of the soft palate, the obstruction caused by the lateral pharyngeal bands or soft palate and REM dependency did not show any statistically significant correlation (p > 0.05). In conclusion, Muller maneuver does not provide useful data to predict REM dependency of OSAS.

  15. Sleep disturbances in critically ill patients in ICU

    DEFF Research Database (Denmark)

    Boyko, Yuliya; Ording, H; Jennum, P

    2012-01-01

    Sleep disturbances in the intensive care unit (ICU) seem to lead to development of delirium, prolonged ICU stay, and increased mortality. That is why sufficient sleep is important for good outcome and recovery in critically ill patients. A variety of small studies reveal pathological sleep patterns...

  16. Meditation and Its Regulatory Role on Sleep

    OpenAIRE

    Nagendra, Ravindra P.; Maruthai, Nirmala; Kutty, Bindu M.

    2012-01-01

    Intense meditation practices help to achieve a harmony between body and mind. Meditation practices influence brain functions, induce various intrinsic neural plasticity events, modulate autonomic, metabolic, endocrine, and immune functions and thus mediate global regulatory changes in various behavioral states including sleep. This brief review focuses on the effect of meditation as a self regulatory phenomenon on sleep.

  17. Meditation and its regulatory role on sleep

    Directory of Open Access Journals (Sweden)

    Ravindra P. Nagendra

    2012-04-01

    Full Text Available Intense meditation practices help to achieve a harmony between body and mind. Meditation practices influence brain functions, induce various intrinsic neural plasticity events, modulate autonomic, metabolic, endocrine and immune functions and thus mediate global regulatory changes in various behavioural states including sleep. This brief review focuses on the effect of meditation as a self regulatory phenomenon on sleep.

  18. Meditation and its regulatory role on sleep.

    Science.gov (United States)

    Nagendra, Ravindra P; Maruthai, Nirmala; Kutty, Bindu M

    2012-01-01

    Intense meditation practices help to achieve a harmony between body and mind. Meditation practices influence brain functions, induce various intrinsic neural plasticity events, modulate autonomic, metabolic, endocrine, and immune functions and thus mediate global regulatory changes in various behavioral states including sleep. This brief review focuses on the effect of meditation as a self regulatory phenomenon on sleep.

  19. Sleep Quiz

    Science.gov (United States)

    ... body and brain shut down for rest and relaxation True False Correct! Incorrect! Although it is a time when your body rests and restores its energy levels, sleep is an active state that affects both your physical and mental ...

  20. Sleep Terrors (Night Terrors)

    Science.gov (United States)

    ... sleepwalking. Like sleepwalking, sleep terrors are considered a parasomnia — an undesired occurrence during sleep. Although sleep terrors are more common in children, they can also affect adults. A sleep terror ...

  1. American Sleep Apnea Association

    Science.gov (United States)

    American Sleep Apnea Association Learn About the CPAP Assistance Program About ASAA News about ASAA Who we are Leadership Team Supporting the ASAA Financials Learn Healthy sleep Sleep apnea Other sleep disorders Personal stories Treat Test Yourself ...

  2. Pediatric sleep apnea

    Science.gov (United States)

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... During sleep, all of the muscles in the body become more relaxed. This includes the muscles that help keep ...

  3. Sleep and Aging

    Science.gov (United States)

    ... version of this page please turn Javascript on. Sleep and Aging About Sleep We all look forward to a good night's ... health and quality of life. Two Types of Sleep There are two types of sleep: non-rapid ...

  4. Obstructive sleep apnea - adults

    Science.gov (United States)

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  5. Sleep Apnea (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Obstructive Sleep Apnea KidsHealth > For Parents > Obstructive Sleep Apnea Print ... kids and teens can develop it, too. About Sleep Apnea Sleep apnea happens when a person stops ...

  6. Human REM sleep: influence on feeding behaviour, with clinical implications.

    Science.gov (United States)

    Horne, James A

    2015-08-01

    Rapid eye movement (REM) sleep shares many underlying mechanisms with wakefulness, to a much greater extent than does non-REM, especially those relating to feeding behaviours, appetite, curiosity, exploratory (locomotor) activities, as well as aspects of emotions, particularly 'fear extinction'. REM is most evident in infancy, thereafter declining in what seems to be a dispensable manner that largely reciprocates increasing wakefulness. However, human adults retain more REM than do other mammals, where for us it is most abundant during our usual final REM period (fREMP) of the night, nearing wakefulness. The case is made that our REM is unusual, and that (i) fREMP retains this 'dispensability', acting as a proxy for wakefulness, able to be forfeited (without REM rebound) and substituted by physical activity (locomotion) when pressures of wakefulness increase; (ii) REM's atonia (inhibited motor output) may be a proxy for this locomotion; (iii) our nocturnal sleep typically develops into a physiological fast, especially during fREMP, which is also an appetite suppressant; (iv) REM may have 'anti-obesity' properties, and that the loss of fREMP may well enhance appetite and contribute to weight gain ('overeating') in habitually short sleepers; (v) as we also select foods for their hedonic (emotional) values, REM may be integral to developing food preferences and dislikes; and (vii) REM seems to have wider influences in regulating energy balance in terms of exercise 'substitution' and energy (body heat) retention. Avenues for further research are proposed, linking REM with feeding behaviours, including eating disorders, and effects of REM-suppressant medications.

  7. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    Energy Technology Data Exchange (ETDEWEB)

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.; Amano, T.; Mortel, K.; Karacan, I.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significance was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.

  8. Sleep aspnea

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008057 A multi-center study on the association between sleep apnea and prevalence of hypertension. CHEN Baoyuan(陈宝元), et al. Dept Respir Med, Tianjin Med Univ General Hosp, Tianjin 300052. Chin J Tuberc Respir Dis, 2007;30(12):894-897. Objective To investigate the prevalence of hypertension among sleep apnea patients and the associated factors. Methods A total of 2297 patients (male 1310, female 211) from 20 teaching hospita

  9. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Sonja Langmesser

    Full Text Available Many effects of nitric oxide (NO are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP. cGMP activates cGMP-dependent protein kinases (PRKGs, which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1 in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS duration and in non-REM sleep (NREMS consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG power in the delta frequency range (1-4 Hz under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  10. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Science.gov (United States)

    Langmesser, Sonja; Franken, Paul; Feil, Susanne; Emmenegger, Yann; Albrecht, Urs; Feil, Robert

    2009-01-01

    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  11. Sleep Tips: 7 Steps to Better Sleep

    Science.gov (United States)

    ... turn every night. Consider simple tips for better sleep, from setting a sleep schedule to including physical activity in your daily ... simply worn out? Perhaps the solution is better sleep. Think about all the factors that can interfere ...

  12. A social conflict increases EEG slow-wave activity during subsequent sleep

    NARCIS (Netherlands)

    Meerlo, P; de Bruin, EA; Strijkstra, AM; Daan, S

    2001-01-01

    Electroencephalogram (EEG) slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is widely viewed as an indicator of sleep debt and sleep intensity. In a previous study, we reported a strong increase in SWA during NREM sleep after a social conflict in rats. To test whether this

  13. Smad-dependent alterations of PPT cholinergic neurons as a pathophysiological mechanism of age-related sleep-dependent memory impairments.

    Science.gov (United States)

    George, O; Parducz, A; Dupret, D; Kharouby, M; Le Moal, M; Piazza, P V; Mayo, W

    2006-12-01

    In humans, memory impairments are highly prevalent in the aged population, but their functional and structural origins are still unknown. We hypothesized that circadian rhythm alterations may predict spatial memory impairment in aged rats. We demonstrate an association between sleep/wake circadian rhythm disturbances (non-REM sleep fragmentation) and spatial memory impairments in aged rats. We show by light and electron microscopy that these age-related disruptions in circadian rhythm and spatial memory are also associated with degeneration of cholinergic neurons of the pedunculopontine nucleus (PPT), a structure known to be involved in sleep and cognitive functions and which is altered during aging. Finally, we demonstrate that a trophic deregulation of the PPT occur in aged impaired rats, involving an over activation of the TGFbeta-Smad cascade, a signalling pathway involved in neurodegeneration. In conclusion these results provide a new pathophysiological mechanism for age-related sleep-dependent memory impairments opening the ground for the development of new therapeutic approaches of these pathologies.

  14. Simple and Fast Continuous Estimation Method of Respiratory Frequency During Sleep using the Number of Extreme Points of Heart Rate Time Series

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is reported that frequency component of approximately 0.25Hz of heart rate time series (RSA) is corresponding to the respiratory frequency. In this paper, we proposed that continuous estimation method of respiratory fequency during sleep using the number of extreme points of heart rate time series in real time. Equation for calculation of the method is very simple and the method can continuously calculate frequency by window width of about 18 beats. To evaluate accuracy of proposal method, RSA frequency was calculated using proposal method from the heart rate time series during supine rest. Result, minimum error rate was observed when RSA had time lag for about 11s and error rate was about 13.8%. Result of estimating RSA frequency time series during sleep, it varied regularly during non-REM and varied irregularly during REM. This result is similar as report of previous study about respiratory variability during sleep. Therefore, it is considered that proposal method possible to apply respiratory monitoring system during sleep.

  15. Sleep in Othello

    OpenAIRE

    Dimsdale, Joel E.

    2009-01-01

    Some of our best descriptions of sleep disorders come from literature. While Shakespeare is well known for his references to insomnia and sleep walking, his works also demonstrate a keen awareness of many other sleep disorders. This paper examines sleep themes in Shakespeare's play Othello. The play indicates Shakespeare's astute eye for sleep deprivation, sexual parasomnias, and effects of stress and drugs on sleep.

  16. [Influence of environmental noise on sleep quality and sleeping disorders-implications for health].

    Science.gov (United States)

    Kohlhuber, M; Bolte, G

    2011-12-01

    Environmental noise is a well-known risk factor influencing sleep-wake behavior and sleep quality. Epidemiologic studies have shown that environmental noise is regarded as the most annoying environmental factor. Noise causes modifications in physiologic and mental functions and may result in health outcomes like elevated blood pressure and ischemic heart disease. Reactions to high sound levels during sleep are decreased sleep intensity, arousals, and increased stress hormone secretion. Effects of poor sleep quality are reduced cognitive performance, tiredness, and psychosomatic symptoms. Long-term consequences of recurrent sleep loss due to environmental noise may be heart disease and increased medication intake. Arousals occur especially due to single noise events and intermittent noise. Laboratory and field studies showed no habituation of physiologic parameters to high sound levels. Sleep is especially sensitive to noise; therefore, sound levels during nighttime should be much lower than during daytime.

  17. ERPs studies of cognitive processing during sleep.

    Science.gov (United States)

    Ibáñez, Agustín M; Martín, René San; Hurtado, Esteban; López, Vladimir

    2009-08-01

    In the last few decades, several works on cognitive processing during sleep have emerged. The study of cognitive processing with event related potentials (ERPs) during sleep is a topic of great interest, since ERPs allow the study of stimulation with passive paradigms (without conscious response or behavioural response), opening multiple research possibilities during different sleep phases. We review ERPs modulated by cognitive processes during sleep: N1, Mismatch Negativity (MMN), P2, P3, N400-like, N300-N550, among others. The review shows that there are different cognitive discriminations during sleep related to the frequency, intensity, duration, saliency, novelty, proportion of appearance, meaning, and even sentential integration of stimuli. The fascinating results of cognitive processing during sleep imply serious challenges for cognitive models. The studies of ERPs, together with techniques of neuroimaging, have demonstrated the existence of cognitive processing during sleep. A fundamental question to be considered is if these cognitive phenomena are similar to processing that occurs during wakefulness. Based on this question we discussed the existence of possible mechanisms associated with sleep, as well as the specific cognitive and neurophysiologic differences of wakefulness and sleep. Much knowledge is still required to even understand the conjunction of dramatic changes in cerebral dynamics and the occurrence of cognitive processes. We propose some insights based on ERPs research for further construction of theoretical models for integrating both cognitive processing and specific brain sleep dynamics.

  18. Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii

    Directory of Open Access Journals (Sweden)

    Cirelli Chiara

    2008-05-01

    Full Text Available Abstract Background Sleep is regulated by both a circadian and a homeostatic process. The homeostatic process reflects the duration of prior wakefulness: the longer one stays awake, the longer and/or more intense is subsequent sleep. In mammals, the best marker of the homeostatic sleep drive is slow wave activity (SWA, the electroencephalographic (EEG power spectrum in the 0.5–4 Hz frequency range during non-rapid eye movement (NREM sleep. In mammals, NREM sleep SWA is high at sleep onset, when sleep pressure is high, and decreases progressively to reach low levels in late sleep. Moreover, SWA increases further with sleep deprivation, when sleep also becomes less fragmented (the duration of sleep episodes increases, and the number of brief awakenings decreases. Although avian and mammalian sleep share several features, the evidence of a clear homeostatic response to sleep loss has been conflicting in the few avian species studied so far. The aim of the current study was therefore to ascertain whether established markers of sleep homeostasis in mammals are also present in the white-crowned sparrow (Zonotrichia leucophrys gambelii, a migratory songbird of the order Passeriformes. To accomplish this goal, we investigated amount of sleep, sleep time course, and measures of sleep intensity in 6 birds during baseline sleep and during recovery sleep following 6 hours of sleep deprivation. Results Continuous (24 hours EEG and video recordings were used to measure baseline sleep and recovery sleep following short-term sleep deprivation. Sleep stages were scored visually based on 4-sec epochs. EEG power spectra (0.5–25 Hz were calculated on consecutive 4-sec epochs. Four vigilance states were reliably distinguished based on behavior, visual inspection of the EEG, and spectral EEG analysis: Wakefulness (W, Drowsiness (D, slow wave sleep (SWS and rapid-eye movement (REM sleep. During baseline, SWA during D, SWS, and NREM sleep (defined as D and SWS

  19. Effect of SX-3228, a selective ligand for the BZ1 receptor, on sleep and waking during the light-dark cycle in the rat

    Directory of Open Access Journals (Sweden)

    F. Alvariño

    1999-08-01

    Full Text Available The effects of the benzodiazepine1 (BZ1 receptor agonist SX-3228 were studied in rats (N = 12 implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS during the third recording hour. Moreover, slow wave sleep (SWS was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period reduction of waking (W, whereas SWS and light sleep (LS were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat.

  20. Neuroimmunologic aspects of sleep and sleep loss

    Science.gov (United States)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  1. Neuroimaging of sleep and sleep disorders.

    Science.gov (United States)

    Nofzinger, Eric A

    2006-03-01

    Herein are presented the results of research in the area of sleep neuroimaging over the past year. Significant work has been performed to clarify the basic mechanisms of sleep in humans. New studies also extend prior observations regarding altered brain activation in response to sleep deprivation by adding information regarding vulnerability to sleep deprivation and regarding the influence of task difficulty on aberrant responses. Studies in sleep disorder medicine have yielded significant findings in insomnia, depression, and restless legs syndrome. Extensive advances have been made in the area of sleep apnea where physiologic challenges have been used to probe brain activity in the pathophysiology of sleep apnea syndrome.

  2. Sleep Applications to Assess Sleep Quality.

    Science.gov (United States)

    Fietze, Ingo

    2016-12-01

    This article highlights the potential uses that smartphone applications may have for helping those with sleep problems. Applications in smartphones offer the promised possibility of detection of sleep. From the author's own experience, one can also conclude that sleep applications are approximately as good as polysomnography in detection of sleep time, similar to the conventional wearable actimeters. In the future, sleep applications will help to further enhance awareness of sleep health and to distinguish those who actually poorly and only briefly sleep from those who suffer more likely from paradox insomnia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Changes in the heart rate variability in patients with obstructive sleep apnea and its response to acute CPAP treatment.

    Directory of Open Access Journals (Sweden)

    Ernesto Kufoy

    Full Text Available INTRODUCTION: Obstructive Sleep Apnea (OSA is a major risk factor for cardiovascular disease. The goal of this study was to demonstrate whether the use of CPAP produces significant changes in the heart rate or in the heart rate variability of patients with OSA in the first night of treatment and whether gender and obesity play a role in these differences. METHODS: Single-center transversal study including patients with severe OSA corrected with CPAP. Only patients with total correction after CPAP were included. Patients underwent two sleep studies on consecutive nights: the first night a basal study, and the second with CPAP. We also analyzed the heart rate changes and their relationship with CPAP treatment, sleep stages, sex and body mass index. Twenty-minute segments of the ECG were selected from the sleep periods of REM, no-REM and awake. Heart rate (HR and heart rate variability (HRV were studied by comparing the R-R interval in the different conditions. We also compared samples from the basal study and CPAP nights. RESULTS: 39 patients (15 females, 24 males were studied. The mean age was 50.67 years old, the mean AHI was 48.54, and mean body mass index was 33.41 kg/m(2 (31.83 males, 35.95 females. Our results showed that HRV (SDNN decreased after the use of CPAP during the first night of treatment, especially in non-REM sleep. Gender and obesity did not have any influence on our results. CONCLUSIONS: These findings support that cardiac variability improves as an acute effect, independently of gender or weight, in the first night of CPAP use in severe OSA patients, supporting the idea of continuous use and emphasizing that noncompliance of CPAP treatment should be avoided even if it is just once.

  4. Diagnosing Sleep Disorders

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Sleep Disorders Diagnosing Sleep Disorders Past Issues / Summer 2015 Table of Contents Depending ... several possible tests when trying to diagnose a sleep disorder: Sleep history and sleep log If you believe ...

  5. Novel sleep management method in a toddler displaying fear and trauma: the Boss of My Sleep Book.

    Science.gov (United States)

    Blunden, Sarah

    2017-01-06

    Sleep problems in toddlers occur in ∼40% of children and increase the likelihood of postnatal depression. Most sleep training in toddlers requires contact with a trained professional, and requires a parent to ignore their child's cries, causing distress to many children and parents, increasing attrition and leaving families untreated and at risk. This case study reports success in significantly ameliorating sleep reluctance and bedtime fears in a sleep disturbed toddler with a history of trauma. It uses a novel use of bedtime behaviour management with some positive reinforcement techniques, called the Boss of My Sleep book: a non-cry, online (thus readily and cheaply available without a trained professional) sleep intervention. The system was successful immediately and was sustained after 6 months. The Boss of My Sleep book shows promise as a sleep intervention in toddlers, particularly for those parents who do not want to use cry intensive methods.

  6. Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Directory of Open Access Journals (Sweden)

    Landgraf Rainer

    2011-03-01

    Full Text Available Abstract Background Neuronal mechanisms underlying affective disorders such as major depression (MD are still poorly understood. By selectively breeding mice for high (HR, intermediate (IR, or low (LR reactivity of the hypothalamic-pituitary-adrenocortical (HPA axis, we recently established a new genetic animal model of extremes in stress reactivity (SR. Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS and non-REM sleep (NREMS as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG electrodes. After recovery, EEG and EMG recordings were performed for two days. Results Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz, alpha (10-15 Hz and eta (16-22.75 Hz bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored

  7. Employees with Sleep Disorders

    Science.gov (United States)

    ... Cataplexy (a weakness or paralysis of the muscles), sleep paralysis, and hallucinations are common symptoms of narcolepsy (Neurology Channel, 2005). Hypersomnia: Hypersomnia’s symptoms include excessive ... by extended sleep episodes or by daytime sleep episodes that occur ...

  8. Isolated sleep paralysis

    Science.gov (United States)

    Sleep paralysis - isolated; Parasomnia - isolated sleep paralysis ... Episodes of isolated sleep paralysis last from a few seconds to 1 or 2 minutes. During these episodes the person is unable to move ...

  9. Employees with Sleep Disorders

    Science.gov (United States)

    ... Cataplexy (a weakness or paralysis of the muscles), sleep paralysis, and hallucinations are common symptoms of narcolepsy (Neurology Channel, 2005). Hypersomnia: Hypersomnia’s symptoms include excessive ... by extended sleep episodes or by daytime sleep episodes that occur ...

  10. Sleep Apnea Information Page

    Science.gov (United States)

    ... Page You are here Home » Disorders » All Disorders Sleep Apnea Information Page Sleep Apnea Information Page Search Disorders Search NINDS SEARCH ... Institutes of Health (NIH) conduct research related to sleep apnea in laboratories at the NIH, and also ...

  11. Sleep and your health

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000871.htm Sleep and your health To use the sharing features ... in a number of ways. Why You Need Sleep Sleep gives your body and brain time to ...

  12. Sleep Issues and Sundowning

    Science.gov (United States)

    ... We will not sell or share your name. Sleep Issues and Sundowning Tweet Bookmark this page | Email | ... Sleep Changes Back to top Coping strategies for sleep issues and sundowning If the person is awake ...

  13. Duration of sleep inertia after napping during simulated night work and in extended operations.

    Science.gov (United States)

    Signal, Tracey Leigh; van den Berg, Margo J; Mulrine, Hannah M; Gander, Philippa H

    2012-07-01

    where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ∼45 min after waking.

  14. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    Science.gov (United States)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  15. The 'scanning hypothesis' of rapid eye movements during REM sleep: a review of the evidence.

    Science.gov (United States)

    Arnulf, I

    2011-12-01

    Rapid eye movements (REMs) and visual dreams are salient features of REM sleep. However, it is unclear whether the eyes scan dream images. Several lines of evidence oppose the scanning hypothesis: REMs persist in animals and humans without sight (pontine cats, foetus, neonates, born-blinds), some binocular REMs are not conjugated (no focus point), REMs occur in parallel (not in series) with the stimulation of the visual cortex by ponto-geniculo-occipital spikes, and visual dreams can be obtained in non REM sleep. Studies that retrospectively compared the direction of REMs to dream recall recorded after having awakened the sleeper yielded inconsistent results, with a concordance varying from 9 to 80%. However, this method was subject to methodological flaws, including the bias of retrospection and neck atonia that does not allow the determination of the exact direction of gaze. Using the model of RBD (in which patients are able to enact their dreams due to the absence of muscle atonia) in 56 patients, we directly determined if the eyes moved in the same directions as the head and limbs. When REMs accompanied goal-oriented motor behaviour during RBD (e.g., framing something, greeting with the hand, climbing a ladder), 90% were directed towards the action of the patient (same plane and direction). REMs were however absent in 38% of goal-oriented behaviours. This directional coherence between limbs, head and eye movements during RBD suggests that, when present, REMs imitate the scanning of the dream scene. Because REMs index and complexity were similar in patients with RBD and controls, this concordance can be extended to normal REM sleep. These results are consistent with the model of a brainstem generator activating simultaneously images, sounds, limbs movements and REMs in a coordinated parallel manner, as in a virtual reality.

  16. Tinnitus treatment with sound stimulation during sleep.

    Science.gov (United States)

    M, Pedemonte; D, Drexler; S, Rodio; D, Geisinger; A, Bianco; D, Pol-Fernandes; V, Bernhardt

    2010-01-01

    A new strategy for idiopathic subjective tinnitus treatment - sound stimulation during sleep - has been applied. It was based on the acknowledgement that the auditory system also works during sleep, processing the incoming information. Eleven patients were stimulated every night during 6 months. The stimulus was a sound that mimetized the tinnitus and was fixed at the same tinnitus intensity, applied through an iPod. All patients decreased their tinnitus intensity in the first month of treatment (statistically significant), most of them in the first week. Tinnitus intensity continued decreasing in the following weeks; three patients presented periods of total silence.

  17. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans

    OpenAIRE

    Jung, Christopher M.; Melanson, Edward L.; Frydendall, Emily J; Perreault, Leigh; Eckel, Robert H.; Wright, Kenneth P

    2010-01-01

    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep s...

  18. Sleep Eduction: Treatment & Therapy

    Science.gov (United States)

    ... Overview Testing Process & Results CPAP Overview Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient ...

  19. Sleep Talking (Somniloquy)

    Science.gov (United States)

    ... Overview Testing Process & Results CPAP Overview Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient ...

  20. Sleep Deprivation Impairs the Accurate Recognition of Human Emotions

    Science.gov (United States)

    van der Helm, Els; Gujar, Ninad; Walker, Matthew P.

    2010-01-01

    Study Objectives: Investigate the impact of sleep deprivation on the ability to recognize the intensity of human facial emotions. Design: Randomized total sleep-deprivation or sleep-rested conditions, involving between-group and within-group repeated measures analysis. Setting: Experimental laboratory study. Participants: Thirty-seven healthy participants, (21 females) aged 18–25 y, were randomly assigned to the sleep control (SC: n = 17) or total sleep deprivation group (TSD: n = 20). Interventions: Participants performed an emotional face recognition task, in which they evaluated 3 different affective face categories: Sad, Happy, and Angry, each ranging in a gradient from neutral to increasingly emotional. In the TSD group, the task was performed once under conditions of sleep deprivation, and twice under sleep-rested conditions following different durations of sleep recovery. In the SC group, the task was performed twice under sleep-rested conditions, controlling for repeatability. Measurements and Results: In the TSD group, when sleep-deprived, there was a marked and significant blunting in the recognition of Angry and Happy affective expressions in the moderate (but not extreme) emotional intensity range; differences that were most reliable and significant in female participants. No change in the recognition of Sad expressions was observed. These recognition deficits were, however, ameliorated following one night of recovery sleep. No changes in task performance were observed in the SC group. Conclusions: Sleep deprivation selectively impairs the accurate judgment of human facial emotions, especially threat relevant (Anger) and reward relevant (Happy) categories, an effect observed most significantly in females. Such findings suggest that sleep loss impairs discrete affective neural systems, disrupting the identification of salient affective social cues. Citation: van der Helm E; Gujar N; Walker MP. Sleep deprivation impairs the accurate recognition of human

  1. Sleep disturbance in older ICU patients

    Directory of Open Access Journals (Sweden)

    Sterniczuk R

    2014-06-01

    Full Text Available Roxanne Sterniczuk,1–3 Benjamin Rusak,1,2 Kenneth Rockwood31Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, 2Department of Psychiatry, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, NS, 3Division of Geriatric Medicine, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, CanadaAbstract: Maintaining a stable and adequate sleeping pattern is associated with good health and disease prevention. As a restorative process, sleep is important for supporting immune function and aiding the body in healing and recovery. Aging is associated with characteristic changes to sleep quantity and quality, which make it more difficult to adjust sleep–wake rhythms to changing environmental conditions. Sleep disturbance and abnormal sleep–wake cycles are commonly reported in seriously ill older patients in the intensive care unit (ICU. A combination of intrinsic and extrinsic factors appears to contribute to these disruptions. Little is known regarding the effect that sleep disturbance has on health status in the oldest of old (80+, a group, who with diminishing physiological reserve and increasing prevalence of frailty, is at a greater risk of adverse health outcomes, such as cognitive decline and mortality. Here we review how sleep is altered in the ICU, with particular attention to older patients, especially those aged ≥80 years. Further work is required to understand what impact sleep disturbance has on frailty levels and poor outcomes in older critically ill patients.Keywords: intensive care unit, sleep–wake rhythm, aging, frailty

  2. Effect of sleep-inducing music on sleep in persons with percutaneous transluminal coronary angiography in the cardiac care unit.

    Science.gov (United States)

    Ryu, Min-Jung; Park, Jeong Sook; Park, Heeok

    2012-03-01

    The study compared the effect of earplug-delivered sleep-inducing music on sleep in persons with percutaneous transluminal coronary angiography in the cardiac care unit. Diverse types of music have been claimed to improve sleeping elsewhere, but relatively little is known in South Korea. Most studies investigating the effect of sleep-inducing music on sleep have involved persons with insomnia, even though many persons with cardiovascular disease in the intensive care unit suffer from sleeping problems. There is a need to investigate the effect of sleep-inducing music on sleep disorders in persons with percutaneous transluminal coronary angiography in the cardiac care unit. An experimental research design was used. Data collection was conducted in the cardiac care unit of K University Hospital in D city, from 3 September-4 October 2010. Fifty-eight subjects participated and were randomly assigned to the experimental group (earplug-delivered sleep-inducing music for 52 min beginning at 10:00 pm, while wearing an eyeshield, n = 29) and the control group (no music, but earplugs and eyeshield worn, n = 29). The quantity and quality of sleep were measured using questionnaires at 7 am the next morning for each group. Participants in the experimental group reported that the sleeping quantity and quality were significantly higher than control group (t = 3·181, p = 0·002, t = 5·269, p music significantly improved sleep in patients with percutaneous transluminal coronary angiography at a cardiac care unit. Offering earplugs and playing sleep-inducing music may be a meaningful and easily enacted nursing intervention to improve sleep for intensive care unit patients. Nurses working at cardiac care unit can use music to improve sleeping in clients with percutaneous transluminal coronary angiography. © 2011 Blackwell Publishing Ltd.

  3. Sleep problems in children.

    Science.gov (United States)

    Baweja, R; Calhoun, S; Baweja, R; Singareddy, R

    2013-10-01

    Sleep complaints and sleep disorders are common during childhood and adolescence. The impact of not getting enough sleep may affect children's' physical health as well emotional, cognitive and social development. Insomnia, sleep-disordered breathing, parasomnias and sleep disturbances associated with medical and psychiatric disorders are some of the commonly encountered sleep disorders in this age group. Changes in sleep architecture and the amount of sleep requirement associated with each stage of development should be considered during an evaluation of sleep disorders in children. Behavioral treatments should be used initially wherever possible especially considering that most pharmacologic agents used to treat pediatric sleep disorders are off-label. In this review we address the most common sleep problems in children/adolescents as they relate to prevalence, presentation and symptoms, evaluation and management.

  4. Sleep: A Health Imperative

    Science.gov (United States)

    Luyster, Faith S.; Strollo, Patrick J.; Zee, Phyllis C.; Walsh, James K.

    2012-01-01

    Chronic sleep deficiency, defined as a state of inadequate or mistimed sleep, is a growing and underappreciated determinant of health status. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiological factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents. The American Academy of Sleep Medicine and the Sleep Research Society have developed this statement to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health. Citation: Luyster FS; Strollo PJ; Zee PC; Walsh JK. Sleep: a health imperative. SLEEP 2012;35(6):727-734. PMID:22654183

  5. SLEEP DISORDERS, SLEEP APNEA. AND STROKE

    Institute of Scientific and Technical Information of China (English)

    ANTONIO CULEBRAS, M.D

    2000-01-01

    @@Sleep is the natural suspension of consciousness during which the powers of the body are restored Sleep recurs with remarkable periodicity in alliance with the geocosmic cycle and in compliance with the circadian rhythms of the body.

  6. Sleep for cognitive enhancement

    Directory of Open Access Journals (Sweden)

    Susanne eDiekelmann

    2014-04-01

    Full Text Available Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i cueing memory reactivation during sleep, (ii stimulating sleep-specific brain oscillations, and (iii targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.

  7. Alcohol disrupts sleep homeostasis.

    Science.gov (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  8. The Yin and Yang of Sleep and Attention.

    Science.gov (United States)

    Kirszenblat, Leonie; van Swinderen, Bruno

    2015-12-01

    Sleep is not a single state, but a complex set of brain processes that supports several physiological needs. Sleep deprivation is known to affect attention in many animals, suggesting that a key function of sleep is to regulate attention. Conversely, tasks that require more attention drive sleep need and sleep intensity. Attention involves the ability to filter incoming stimuli based on their relative salience, and this is likely to require coordinated synaptic activity across the brain. This capacity may have only become possible with the evolution of related neural mechanisms that support two key sleep functions: stimulus suppression and synaptic plasticity. We argue here that sleep and attention may have coevolved as brain states that regulate each other.

  9. Adolescents' Sleep Behaviors and Perceptions of Sleep

    Science.gov (United States)

    Noland, Heather; Price, James H.; Dake, Joseph; Telljohann, Susan K.

    2009-01-01

    Background: Sleep duration affects the health of children and adolescents. Shorter sleep durations have been associated with poorer academic performance, unintentional injuries, and obesity in adolescents. This study extends our understanding of how adolescents perceive and deal with their sleep issues. Methods: General education classes were…

  10. Physical Activity Contributes to Several Sleep-Cardiometabolic Health Relationships.

    Science.gov (United States)

    Kanagasabai, Thirumagal; Riddell, Michael C; Ardern, Chris I

    2017-02-01

    To estimate the contribution of accelerometer-derived physical activity to the relationship between sleep and cardiometabolic health. Data from the 2005 to 2006 US National Health and Nutritional Examination Survey were used (N = 1226; 20 years+). Metabolic syndrome (MetS) was defined by the Joint Interim Statement, and sleep quality and quantity by the Sleep Disorders Questionnaire. Physical activity intensities were defined by activity thresholds (counts per minute) as sedentary activity (0-99), light intensity (100-759), lifestyle activity (760-2019), moderate intensity (2020-5996), and vigorous intensity (≥5999). Outcomes were MetS, number of MetS components, waist circumference (WC), systolic and diastolic blood pressure (BP), triglycerides, HDL-cholesterol, fasting plasma glucose, and fasting insulin concentration. The bootstrap method was used to estimate the amount of mediation or contribution of activity intensities (ab) to the sleep-cardiometabolic health relationships, which were quantified as large (≥0.25) or moderate (≥0.09). Lifestyle activity level contributes to several sleep duration and cardiometabolic health relationships, most notably for WC (ab: 0.28), systolic BP (0.39), and fasting insulin concentration (0.85). While moderate intensity and lifestyle activity intensities were large contributors to the sleep quality-fasting insulin concentration relationship (0.47 and 0.48, respectively), light intensity activity only moderately contributed to the relationship between sleep duration and quality with abdominal obesity (0.15). Lifestyle and moderate intensity physical activity have a large effect on the relationship between sleep and cardiometabolic health, including WC, BP, and fasting insulin concentration. Appropriate sleep hygiene, in combination with regular physical activity should be considered mutually beneficial targets for cardiometabolic health.

  11. Sleeping with an Android

    Science.gov (United States)

    2017-01-01

    Sleep quality and duration are strong indicators of an individual’s health and quality of lifebut they are difficult to track in everyday life. Mobile apps such as Sleep as Android leverage smartphone sensors to track sleep patterns and make recommendations to improve sleeping habits. PMID:28293622

  12. Sleep and Infant Learning

    Science.gov (United States)

    Tarullo, Amanda R.; Balsam, Peter D.; Fifer, William P.

    2011-01-01

    Human neonates spend the majority of their time sleeping. Despite the limited waking hours available for environmental exploration, the first few months of life are a time of rapid learning about the environment. The organization of neonate sleep differs qualitatively from adult sleep, and the unique characteristics of neonatal sleep may promote…

  13. Sleep and Stroke.

    Science.gov (United States)

    Mims, Kimberly Nicole; Kirsch, Douglas

    2016-03-01

    Evidence increasingly suggests sleep disorders are associated with higher risk of cardiovascular events, including stroke. Strong data correlate untreated sleep apnea with poorer stroke outcomes and more recent evidence implicates sleep disruption as a possible etiology for increased cerebrovascular events. Also, sleep duration may affect incidence of cardiovascular events. In addition, sleep-disordered breathing, insomnia, restless legs syndrome, and parasomnias can occur as a result of cerebrovascular events. Treatment of sleep disorders improve sleep-related symptoms and may also improve stroke recovery and risk of future events.

  14. Movement disorders and sleep.

    Science.gov (United States)

    Driver-Dunckley, Erika D; Adler, Charles H

    2012-11-01

    This article summarizes what is currently known about sleep disturbances in several movement disorders including Parkinson disease, essential tremor, parkinsonism, dystonia, Huntington disease, myoclonus, and ataxias. There is an association between movement disorders and sleep. In some cases the prevalence of sleep disorders is much higher in patients with movement disorder, such as rapid eye movement sleep behavior disorder in Parkinson disease. In other cases, sleep difficulties worsen the involuntary movements. In many cases the medications used to treat patients with movement disorder disturb sleep or cause daytime sleepiness. The importance of discussing sleep issues in patients with movement disorders cannot be underestimated.

  15. Isolated sleep paralysis elicited by sleep interruption.

    Science.gov (United States)

    Takeuchi, T; Miyasita, A; Sasaki, Y; Inugami, M; Fukuda, K

    1992-06-01

    We elicited isolated sleep paralysis (ISP) from normal subjects by a nocturnal sleep interruption schedule. On four experimental nights, 16 subjects had their sleep interrupted for 60 minutes by forced awakening at the time when 40 minutes of nonrapid eye movement (NREM) sleep had elapsed from the termination of rapid eye movement (REM) sleep in the first or third sleep cycle. This schedule produced a sleep onset REM period (SOREMP) after the interruption at a high rate of 71.9%. We succeeded in eliciting six episodes of ISP in the sleep interruptions performed (9.4%). All episodes of ISP except one occurred from SOREMP, indicating a close correlation between ISP and SOREMP. We recorded verbal reports about ISP experiences and recorded the polysomnogram (PSG) during ISP. All of the subjects with ISP experienced inability to move and were simultaneously aware of lying in the laboratory. All but one reported auditory/visual hallucinations and unpleasant emotions. PSG recordings during ISP were characterized by a REM/W stage dissociated state, i.e. abundant alpha electroencephalographs and persistence of muscle atonia shown by the tonic electromyogram. Judging from the PSG recordings, ISP differs from other dissociated states such as lucid dreaming, nocturnal panic attacks and REM sleep behavior disorders. We compare some of the sleep variables between ISP and non-ISP nights. We also discuss the similarities and differences between ISP and sleep paralysis in narcolepsy.

  16. Sleep, sleep disturbance, and fertility in women.

    Science.gov (United States)

    Kloss, Jacqueline D; Perlis, Michael L; Zamzow, Jessica A; Culnan, Elizabeth J; Gracia, Clarisa R

    2015-08-01

    Sleep and sleep disturbances are increasingly recognized as determinants of women's health and well-being, particularly in the context of the menstrual cycle, pregnancy, and menopause. At present, however, little is known about whether fertility is affected by sleep quantity and quality. That is, to what degree, and by what mechanisms, do sleep and/or its disturbances affect fertility? The purpose of this review is to synthesize what is known about sleep disturbances in relation to reproductive capacity. A model is provided, whereby stress, sleep dysregulation, and circadian misalignment are delineated for their potential relevance to infertility. Ultimately, if it is the case that sleep disturbance is associated with infertility, new avenues for clinical intervention may be possible.

  17. Sleep and Student Achievement

    OpenAIRE

    Eric R. Eide; Mark H. Showalter

    2012-01-01

    We explore the relationship between sleep and student performance on standardized tests. We model test scores as a nonlinear function of sleep, which allows us to compute the hours of sleep associated with maximum test scores. We refer to this as “optimal” hours of sleep. We also evaluate how the sleep and student performance relationship changes with age. We use the Panel Study of Income Dynamics-Child Development Supplement, which includes excellent control variables that are not usually av...

  18. Childhood epilepsy and sleep

    OpenAIRE

    Al-Biltagi, Mohammed A

    2014-01-01

    Sleep and epilepsy are two well recognized conditions that interact with each other in a complex bi-directional way. Some types of epilepsies have increased activity during sleep disturbing it; while sleep deprivation aggravates epilepsy due to decreased seizure threshold. Epilepsy can deteriorate the sleep-related disorders and at the same time; the parasomnias can worsen the epilepsy. The secretion of sleep-related hormones can also be affected by the occurrence of seizures and supplementat...

  19. Sleep quantity and quality in elite youth soccer players: a pilot study.

    Science.gov (United States)

    Robey, Elisa; Dawson, Brian; Halson, Shona; Gregson, Warren; Goodman, Carmel; Eastwood, Peter

    2014-01-01

    This study examined the effect of early evening high-intensity training on the sleep of elite male youth soccer players (n = 12) using wrist actigraphy. High-intensity training (TRAIN) nights were compared with a home environment (HOME) condition, created by averaging sleep variables on the night before and after TRAIN nights. Additionally, after TRAIN athletes alternately used cold water immersion (TRAIN+CWI) or none, to assess whether cold water immersion (CWI) had any impact on sleep quality and quantity. Ratings of perceived exertion, fatigue and recovery were recorded after training. Actigraphy sleep measures were bedtime, wake time, sleep duration, sleep onset latency, sleep efficiency and wake after sleep onset. Self-rated scores of sleepiness at bedtime and wake, plus overall sleep quality were also recorded. Only fatigue ratings were higher in TRAIN compared to TRAIN+CWI at bedtime, there were no other differences in training data. Both TRAIN and TRAIN+CWI conditions had significant later (07:45 ± 1:09 h p sleep (actigraphy and self-reported) measures. Across all conditions, time spent asleep was ∼7:30 (±0:52) h:min and sleep efficiency was ∼89% (±6.1). In conclusion, early evening high-intensity training had no impact on subsequent sleep quality and quantity, nor was there any effect on sleep after performing CWI post-training.

  20. Sleep and cognitive (memory) function: research and clinical perspectives.

    Science.gov (United States)

    Roth, T; Costa e Silva, J A; Chase, M H

    2001-09-01

    The field of memory and sleep is controversial and extremely interesting, and the relationships between thought processes, i.e. cognition and sleep, have recently been examined in a variety of clinical and basic research settings, as well as being the object of intense interest by the general public. For example, there are data which demonstrate that insomnia, as well as specific sleep disorders, can have a negative impact on sleep cognition as well as affect daytime patterns of cognitive functioning. Thus, sleep, disturbed sleep and the lack of sleep appear to affect cognitive and memory functions. An International Workshop dealing with Sleep and Cognitive Function: Research and Clinical Perspectives was convened in Cancún, Mexico, 1-4 March 1999 under the auspices of the World Health Organization Worldwide Project on Sleep and Health and the World Federation of Sleep Research Societies. A great number of areas of intersection between sleep and cognitive function were examined during the course of the Workshop, such as aging, cognition and sleep and the dream process and sleep. The results of these discussions are included in a WHO publication (WHO Doc.: MSD/MBD/00.8). In the present report we concentrate on presenting a summary of a coherent set of data which examine memory consolidation during sleep and the impact of insomnia on cognitive functions. Based upon these data, a review of memory and drug effects that are sleep-related, and an examination of the relationship between hypnotics and cognitive function are included. Finally, a summary of recommendations of the Workshop participants is presented.

  1. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans.

    Science.gov (United States)

    Jung, Christopher M; Melanson, Edward L; Frydendall, Emily J; Perreault, Leigh; Eckel, Robert H; Wright, Kenneth P

    2011-01-01

    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep schedules for 1 week before the study and consumed a weight-maintenance diet for 3 days prior to and during the laboratory protocol. Following a habituation night, subjects lived in a whole-room indirect calorimeter for 3 days. The first 24 h served as baseline – 16 h wakefulness, 8 h scheduled sleep – and this was followed by 40 h sleep deprivation and 8 h scheduled recovery sleep. Findings show that, compared to baseline, 24 h EE was significantly increased by ∼7% during the first 24 h of sleep deprivation and was significantly decreased by ∼5% during recovery, which included hours awake 25-40 and 8 h recovery sleep. During the night time, EE was significantly increased by ∼32% on the sleep deprivation night and significantly decreased by ∼4% during recovery sleep compared to baseline. Small differences in EE were observed among sleep stages, but wakefulness during the sleep episode was associated with increased energy expenditure. These findings provide support for the hypothesis that sleep conserves energy and that sleep deprivation increases total daily EE in humans.

  2. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans

    Science.gov (United States)

    Jung, Christopher M; Melanson, Edward L; Frydendall, Emily J; Perreault, Leigh; Eckel, Robert H; Wright, Kenneth P

    2011-01-01

    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep schedules for 1 week before the study and consumed a weight-maintenance diet for 3 days prior to and during the laboratory protocol. Following a habituation night, subjects lived in a whole-room indirect calorimeter for 3 days. The first 24 h served as baseline – 16 h wakefulness, 8 h scheduled sleep – and this was followed by 40 h sleep deprivation and 8 h scheduled recovery sleep. Findings show that, compared to baseline, 24 h EE was significantly increased by ∼7% during the first 24 h of sleep deprivation and was significantly decreased by ∼5% during recovery, which included hours awake 25–40 and 8 h recovery sleep. During the night time, EE was significantly increased by ∼32% on the sleep deprivation night and significantly decreased by ∼4% during recovery sleep compared to baseline. Small differences in EE were observed among sleep stages, but wakefulness during the sleep episode was associated with increased energy expenditure. These findings provide support for the hypothesis that sleep conserves energy and that sleep deprivation increases total daily EE in humans. PMID:21059762

  3. Relations Between Toddler Sleep Characteristics, Sleep Problems, and Temperament

    OpenAIRE

    Molfese, Victoria J.; Rudasill, Kathleen M.; Prokasky, Amanda; Champagne, Carly; Holmes, Molly; Molfese, Dennis; Bates, Jack

    2015-01-01

    Two sources of information (parent reported sleep diaries and actigraph records) were used to investigate how toddler sleep characteristics (bed time/sleep onset, wake time/sleep offset, total nighttime sleep and total sleep time) are related to sleep problems and temperament. There were 64 toddler participants in the study. Consistent with studies of older children, parent reports differed from actigraph based records. The findings that parent reported and actigraph recorded sleep characteri...

  4. Infant sleep, parental sleep and parenting stress in families of mothers on maternity leave and in families of working mothers.

    Science.gov (United States)

    Sinai, Dana; Tikotzky, Liat

    2012-04-01

    The purpose of the present study was to investigate the links between infants' sleep and their parents' sleep and to assess the links between infant/parent sleep and parenting stress. Furthermore, we explored whether the links between sleep and parenting stress are moderated by maternal leave status. Participants were 50 families with an infant between the ages of 4-5 months. Half of the mothers were on maternity leave while the others returned to work. Parents completed daily sleep logs about infants' and their own sleep for 4 consecutive nights. Each parent also completed the Parenting Stress Index. Infant sleep was associated with sleep of both mothers and fathers, but the correlations with maternal sleep were stronger. Parental perceptions of their infant's sleep as problematic were associated with higher parenting stress. Poorer infant and maternal sleep patterns were associated with parenting stress only in families with mothers on maternity leave, probably because these mothers need to provide intensive caregiving "around the clock" without sufficient opportunities to rest.

  5. Methylxanthines and sleep.

    Science.gov (United States)

    Porkka-Heiskanen, Tarja

    2011-01-01

    Caffeine is widely used to promote wakefulness and counteract fatigue induced by restriction of sleep, but also to counteract the effects of caffeine abstinence. Adenosine is a physiological molecule, which in the central nervous system acts predominantly as an inhibitory neuromodulator. Adenosine is also a sleep-promoting molecule. Caffeine binds to adenosine receptors, and the antagonism of the adenosinergic system is believed to be the mechanism through which caffeine counteracts sleep in humans as well as in other species. The sensitivity for caffeine varies markedly among individuals. Recently, genetic variations in genes related to adenosine metabolism have provided at least a partial explanation for this variability. The main effects of caffeine on sleep are decreased sleep latency, shortened total sleep time, decrease in power in the delta range, and sleep fragmentation. Caffeine may also decrease the accumulation of sleep propensity during waking, thus inducing long-term harmful effects on sleep quality.

  6. Are You Getting Enough Sleep?

    Science.gov (United States)

    ... Past Emails CDC Features Are you getting enough sleep? Recommend on Facebook Tweet Share Compartir Sleep is ... sleep guidelines for different age groups. How much sleep do you need? Newborns 16-18 hours Preschool- ...

  7. Shift Work: Improving Daytime Sleep

    Science.gov (United States)

    ... sleeping during the day. Do you have any sleep tips for shift workers? Answers from Timothy Morgenthaler, ... to be awake during the day and to sleep at night. Good daytime sleep is possible, though, ...

  8. The Phenomenon of Sleep Paralysis

    Science.gov (United States)

    ... of sleep where vivid dreams occur (known as REM sleep), your arms and legs are temporarily paralyzed so ... alien abductions." Since breathing can be irregular during REM sleep, those experiencing sleep paralysis may feel like they' ...

  9. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats.

    Science.gov (United States)

    Deurveilher, S; Rusak, B; Semba, K

    2012-06-15

    To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.

  10. Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression.

    Science.gov (United States)

    Kluge, Michael; Schüssler, Petra; Dresler, Martin; Schmidt, Doreen; Yassouridis, Alexander; Uhr, Manfred; Steiger, Axel

    2011-03-01

    Ghrelin showed antidepressant-like effects in mice. Furthermore, ghrelin influences sleep and the activity of hypothalamic-pituitary-adrenal (HPA) and somatotropic axis in healthy humans as indicated by increased cortisol and growth hormone (GH) plasma levels. Both sleep and the activity of these endocrine axes are disturbed in depression. We therefore studied the impact of ghrelin on psychopathology, sleep and secretion of cortisol and GH in patients with major depression. Depressive symptoms as assessed by a validated self rating scale ('Befindlichkeits-Skala', [mental state scale]), secretion profiles of cortisol and GH and sleep-EEGs were determined in 14 unmedicated patients with major depression (7 women) twice, receiving 50 μg ghrelin or placebo at 22:00, 23:00, 00:00, and 01:00 hours. Overall, depressive symptoms did not change significantly after ghrelin administration (placebo: 37 ± 8; ghrelin: 33 ± 10, p = 0.178). However, there was an improvement at trend level in men (placebo: 36 ± 9 to ghrelin: 30 ± 9, p = 0.093) but not in women. In men, ghrelin was associated with less time awake (placebo: 149.0 ± 11.1; ghrelin: 88.0 ± 12.2 min, p = 0.029) and more non-REM sleep (placebo: 263.2 ± 24.1; ghrelin: 304.9 ± 14.1 min, p = 0.027), in women with less REM sleep (placebo: 108.6 ± 15.7; ghrelin: 74.1 ± 13.8 min, p = 0.031) and longer REM latency (placebo: 49.9 ± 6.5; ghrelin: 85.6 ± 14.1 min, p = 0.019). In both sexes, ghrelin caused strong transient increases of GH and cortisol. In conclusion, our study may provide some initial indication that ghrelin can exert antidepressant effects in patients with major depression. Ghrelin strongly affected sleep and secretion of GH and cortisol in a partly different way as previously reported in healthy subjects.

  11. Cognitive processes in comorbid poor sleep and chronic pain.

    Science.gov (United States)

    Byers, Haley D; Lichstein, Kenneth L; Thorn, Beverly E

    2016-04-01

    We examined the unique and shared contributions of pain catastrophizing, cognitive pre-sleep arousal, and somatic pre-sleep arousal, to the prediction of insomnia severity in chronic pain. Forty-eight adults with chronic pain completed self-report measures of these study variables, health, and mood. Hierarchical regression showed that pain catastrophizing accounted for unique variance in insomnia severity, independent of pain intensity, depression, restless legs symptoms, and demographics. However, when cognitive and somatic pre-sleep arousal were also taken into account, the significance of cognitive pre-sleep arousal rendered pain catastrophizing non-significant. We identify research and clinical implications of this study.

  12. Sleep from an Islamic perspective

    OpenAIRE

    BaHammam, Ahmed S.

    2011-01-01

    Sleep medicine is a relatively new scientific specialty. Sleep is an important topic in Islamic literature, and the Quran and Hadith discuss types of sleep, the importance of sleep, and good sleep practices. Islam considers sleep as one of the signs of the greatness of Allβh (God) and encourages followers to explore this important sign. The Quran describes different types of sleep, and these correspond with sleep stages identified by modern science. The Quran discusses the beneficial effects ...

  13. Sleep Disruption Medical Intervention Forecasting (SDMIF) Module for the Integrated Medical Model

    Science.gov (United States)

    Lewandowski, Beth; Brooker, John; Mallis, Melissa; Hursh, Steve; Caldwell, Lynn; Myers, Jerry

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fatigue due to sleep disruption is a condition that could lead to operational errors, potentially resulting in loss of mission or crew. Pharmacological consumables are mitigation strategies used to manage the risks associated with sleep deficits. The likelihood of medical intervention due to sleep disruption was estimated with a well validated sleep model and a Monte Carlo computer simulation in an effort to optimize the quantity of consumables. METHODS: The key components of the model are the mission parameter program, the calculation of sleep intensity and the diagnosis and decision module. The mission parameter program was used to create simulated daily sleep/wake schedules for an ISS increment. The hypothetical schedules included critical events such as dockings and extravehicular activities and included actual sleep time and sleep quality. The schedules were used as inputs to the Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) Model (IBR Inc., Baltimore MD), which calculated sleep intensity. Sleep data from an ISS study was used to relate calculated sleep intensity to the probability of sleep medication use, using a generalized linear model for binomial regression. A human yes/no decision process using a binomial random number was also factored into sleep medication use probability. RESULTS: These probability calculations were repeated 5000 times resulting in an estimate of the most likely amount of sleep aids used during an ISS mission and a 95% confidence interval. CONCLUSIONS: These results were transferred to the parent IMM for further weighting and integration with other medical conditions, to help inform operational decisions. This model is a potential planning tool for ensuring adequate sleep during sleep disrupted periods of a mission.

  14. [Actigraphy in sleep medicine and sleep research].

    Science.gov (United States)

    Tamura, Yoshiyuki; Matsuda, Mika; Chiba, Shigeru

    2009-08-01

    Actigraphy is a method that utilizes a miniaturized computerized wristwatch-like device to monitor and collect data generated by body movements over extended periods of time. It allows estimation of sleep and wakefulness based on motor activity. It provides a noninvasive, objective, and longitudinal method for the diagnostic and post-treatment evaluation of patients with sleep disorders in the ambulatory setting. It has been used for researchers to study sleep disturbances in a variety of populations, most frequently for the evaluation of insomnia, paradoxical insomnia, and circadian rhythm sleep disorders. In addition, it is particularly useful in populations where polysomnography would be difficult to record, such as in patients with dementia and delirium. Actigraphy should be extensively carried out in sleep medicine as well as sleep research.

  15. Sleep and sleep disorders in Don Quixote.

    Science.gov (United States)

    Iranzo, Alex; Santamaria, Joan; de Riquer, Martín

    2004-01-01

    In Don Quijote de la Mancha, Miguel de Cervantes presents Don Quixote as an amazing character of the 17th century who suffers from delusions and illusions, believing himself to be a medieval knight errant. Besides this neuropsychiatric condition, Cervantes included masterful descriptions of several sleep disorders such as insomnia, sleep deprivation, disruptive loud snoring and rapid eye movement sleep behaviour disorder. In addition, he described the occurrence of physiological, vivid dreams and habitual, post-prandial sleepiness--the siesta. Cervantes' concept of sleep as a passive state where all cerebral activities are almost absent is in conflict with his description of abnormal behaviours during sleep and vivid, fantastic dreams. His concept of sleep was shared by his contemporary, Shakespeare, and could have been influenced by the reading of the classical Spanish book of psychiatry Examen de Ingenios (1575).

  16. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles.

    Science.gov (United States)

    Gardner, Richard J; Hughes, Stuart W; Jones, Matthew W

    2013-11-20

    The 8-15 Hz thalamocortical oscillations known as sleep spindles are a universal feature of mammalian non-REM sleep, during which they are presumed to shape activity-dependent plasticity in neocortical networks. The cortex is hypothesized to contribute to initiation and termination of spindles, but the mechanisms by which it implements these roles are unknown. We used dual-site local field potential and multiple single-unit recordings in the thalamic reticular nucleus (TRN) and medial prefrontal cortex (mPFC) of freely behaving rats at rest to investigate thalamocortical network dynamics during natural sleep spindles. During each spindle epoch, oscillatory activity in mPFC and TRN increased in frequency from onset to offset, accompanied by a consistent phase precession of TRN spike times relative to the cortical oscillation. In mPFC, the firing probability of putative pyramidal cells was highest at spindle initiation and termination times. We thus identified "early" and "late" cell subpopulations and found that they had distinct properties: early cells generally fired in synchrony with TRN spikes, whereas late cells fired in antiphase to TRN activity and also had higher firing rates than early cells. The accelerating and highly structured temporal pattern of thalamocortical network activity over the course of spindles therefore reflects the engagement of distinct subnetworks at specific times across spindle epochs. We propose that early cortical cells serve a synchronizing role in the initiation and propagation of spindle activity, whereas the subsequent recruitment of late cells actively antagonizes the thalamic spindle generator by providing asynchronous feedback.

  17. The Renin-Angiotensin-Aldosterone system in patients with depression compared to controls – a sleep endocrine study

    Directory of Open Access Journals (Sweden)

    Künzel Heike

    2003-10-01

    Full Text Available Abstract Background Hypercortisolism as a sign of hypothamamus-pituitary-adrenocortical (HPA axis overactivity and sleep EEG changes are frequently observed in depression. Closely related to the HPA axis is the renin-angiotensin-aldosterone system (RAAS as 1. adrenocorticotropic hormone (ACTH is a common stimulus for cortisol and aldosterone, 2. cortisol release is suppressed by mineralocorticoid receptor (MR agonists 3. angiotensin II (ATII releases CRH and vasopressin from the hypothalamus. Furthermore renin and aldosterone secretion are synchronized to the rapid eyed movement (REM-nonREM cycle. Methods Here we focus on the difference of sleep related activity of the RAAS between depressed patients and healthy controls. We studied the nocturnal plasma concentration of ACTH, cortisol, renin and aldosterone, and sleep EEG in 7 medication free patients with depression (1 male, 6 females, age: (mean +/-SD 53.3 ± 14.4 yr. and 7 age matched controls (2 males, 5 females, age: 54.7 ± 19.5 yr.. After one night of accommodation a polysomnography was performed between 23.00 h and 7.00 h. During examination nights blood samples were taken every 20 min between 23.00 h and 7.00 h. Area under the curve (AUC for the hormones separated for the halves of the night (23.00 h to 3.00 h and 3.00 h to 7.00 h were used for statistical analysis, with analysis of co variance being performed with age as a covariate. Results No differences in ACTH and renin concentrations were found. For cortisol, a trend to an increase was found in the first half of the night in patients compared to controls (p Conclusion Hyperaldosteronism could be a sensitive marker for depression. Further our findings point to an altered renal mineralocorticoid sensitivity in patients with depression.

  18. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis

    Science.gov (United States)

    Kang, D.; Ding, M.; Topchiy, I.; Shifflett, L.

    2015-01-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2–12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. PMID:26354315

  19. Sleep deprivation, pain and prematurity: a review study

    Directory of Open Access Journals (Sweden)

    Kelly Cristina Santos de Carvalho Bonan

    2015-02-01

    Full Text Available The aim was to describe current reports in the scientific literature on sleep in the intensive care environment and sleep deprivation associated with painful experiences in premature infant. A systematic search was conducted for studies on sleep, pain, premature birth and care of the newborn. Web of Knowledge, MEDLINE, LILACS, Cochrane Library, PubMed, EMBASE, Scopus, VHL and SciELO databases were consulted. The association between sleep deprivation and pain generates effects that are observed in the brain and the behavioral and physiological activity of preterm infants. Polysomnography in intensive care units and pain management in neonates allow comparison with the first year of life and term infants. We have found few references and evidence that neonatal care programs can influence sleep development and reduce the negative impact of the environment. This evidence is discussed from the perspective of how hospital intervention can improve the development of premature infants.

  20. [Sleep changes with aging].

    Science.gov (United States)

    Arbus, Christophe; Cochen, Valérie

    2010-03-01

    Many factors contribute to the alteration of sleep in older adults. Most of their complaints can be explained by the modifications of the sleep organisation observed in this population. Sleep architecture is altered with aging. Insomnia and excessive daytime sleepiness can reflect an alteration of the circadian rhythm. This population is also frequently exposed to specific sleep disorders such as the restless leg syndrome, periodic limb movements or obstructive sleep apnea syndrome. Sleep disorders in patients with Alzheimer's disease is a daily preoccupation at home or in institution. Circadian rhythm modifications and sleep disorders are frequent in this frail population and can induce disturbing behavior disorders. Before the prescription of hypnotics and psychotropic drugs, facing a sleep complaint practitioners should take into account the risks induced by these treatments that should no longer be the unique and reflex treatment in these situations.

  1. Teenagers and sleep

    Science.gov (United States)

    ... and with their health , including: Depression and low self esteem Sleepiness and trouble concentrating Decline in school performance ... associated with improved sleep and daytime functioning in adolescents. Sleep . 2011;34(6):797-800. PMID: 21629368 ...

  2. Sleep Disorders (PDQ)

    Science.gov (United States)

    ... time. A sleep disorder assessment includes a physical exam, health history, and sleep history. Your doctor will ... before bedtime. Avoid foods and drinks that have caffeine , including dietary supplements to control appetite . Other habits ...

  3. Sleep and Eating Disorders.

    Science.gov (United States)

    Allison, Kelly C; Spaeth, Andrea; Hopkins, Christina M

    2016-10-01

    Insomnia is related to an increased risk of eating disorders, while eating disorders are related to more disrupted sleep. Insomnia is also linked to poorer treatment outcomes for eating disorders. However, over the last decade, studies examining sleep and eating disorders have relied on surveys, with no objective measures of sleep for anorexia nervosa or bulimia nervosa, and only actigraphy data for binge eating disorder. Sleep disturbance is better defined for night eating syndrome, where sleep efficiency is reduced and melatonin release is delayed. Studies that include objectively measured sleep and metabolic parameters combined with psychiatric comorbidity data would help identify under what circumstances eating disorders and sleep disturbance produce an additive effect for symptom severity and for whom poor sleep would increase risk for an eating disorder. Cognitive behavior therapy for insomnia may be a helpful addition to treatment of those with both eating disorder and insomnia.

  4. Sleep in postmenopausal women.

    Science.gov (United States)

    Vigeta, Sônia Maria Garcia; Hachul, Helena; Tufik, Sergio; de Oliveira, Eleonora Menicucci

    2012-04-01

    The aim of this study was to identify factors that most influence the perception of sleep quality in postmenopausal women. We used the methodological strategy of the Collective Subject Discourse (CSD), which is based on a theoretical framework of social representations theory. We obtained the data by interviewing 22 postmenopausal Brazilian women who were experiencing insomnia. The women gave accounts of their difficulties with sleep; a variety of dimensions were identified within the data. The onset of sleep disorders might have occurred during childhood or in situations considered to be stressful, and were not necessarily associated with menopause. We found that hormonal alterations occurring during menopause, psychosocial factors, and sleep-breathing disorders triggered occasional sleep disturbances during this time of life. Participants were aware of the consequences of sleep deprivation. In addition, inadequate sleep hygiene habits figured prominently as determinants in the persistence of sleep disturbances.

  5. Central sleep apnea

    Science.gov (United States)

    ... diagnose an underlying medical condition. A sleep study (polysomnography) can confirm sleep apnea. Other tests that may ... MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow us Disclaimers Copyright Privacy ...

  6. Polysomnography (Sleep Study)

    Science.gov (United States)

    ... make symptoms of some sleep disorders worse. During polysomnography You arrive at the sleep center in the ... t required to obtain accurate polysomnography results. After polysomnography In the morning, the sensors are removed, and ...

  7. Sleep and Newborns

    Science.gov (United States)

    ... AAP introduced this recommendation in 1992. Use a firm sleep surface. Cover the mattress with a sheet ... Sleep and Your 1- to 2-Year-Old Communication and Your Newborn Medical Care and Your Newborn ...

  8. Metformin and sleep disorders

    OpenAIRE

    2012-01-01

    Metformin is a widely used anti-diabetic drug. Deterioration of sleep is an important unwanted side effect of metformin. Here, the authors review and present the details on metformin and sleep problem.

  9. Sleep & the metabolic syndrome

    National Research Council Canada - National Science Library

    Lam, Jamie C M; Ip, Mary S M

    2010-01-01

    Sleep is an essential part of our daily living, and sleep disturbances may intervene with the biological and physiological processes in human body leading to the development of metabolic dysfunction...

  10. Sleep and Newborns

    Science.gov (United States)

    ... 12-Month-Old Bed-Sharing All About Sleep Sleep and Your 1- to 2-Year-Old Communication and Your Newborn Medical Care and Your Newborn Your Newborn's Growth Choosing Safe Baby Products: Cribs Flat Head Syndrome ( ...

  11. Sleep hygiene and sleep quality in Italian and American adolescents.

    Science.gov (United States)

    LeBourgeois, Monique K; Giannotti, Flavia; Cortesi, Flavia; Wolfson, Amy; Harsh, John

    2004-06-01

    This study investigated cross-cultural differences in adolescent sleep hygiene and sleep quality. Participants were 1348 students (655 males; 693 females) aged 12-17 years from public school systems in Rome, Italy (n = 776) and Southern Mississippi (n = 572). Participants completed the Adolescent Sleep-Wake Scale and the Adolescent Sleep Hygiene Scale. Reported sleep hygiene and sleep quality were significantly better for Italian than American adolescents. A moderate linear relationship was observed between sleep hygiene and sleep quality in both samples (Italians: R =.40; Americans: R =.46). Separate hierarchical multiple regression analyses showed that sleep hygiene accounted for significant variance in sleep quality, even after controlling for demographic and health variables (Italians: R(2) =.38; Americans: R(2) =.44). The results of this study suggest that there are cultural differences in sleep quality and sleep hygiene practices, and that sleep hygiene practices are importantly related to adolescent sleep quality.

  12. Sleep disorders - resistant forms

    OpenAIRE

    Koláčková, Pavla

    2016-01-01

    Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Biological and Medical Sciences Candidate: Pavla Koláčková Supervisor: Doc. RNDr. Vladimír Semecký, CSc. Name of dissertation: Sleep disorders - resistant forms The diploma thesis is about sleep disorders. Sleep disorders are a global problem, lots of people have these problems. This diploma thesis focuses on American International Classification of Sleep Disorders (ICSD) and its application in clinical practice...

  13. Sleep hygiene and actigraphically evaluated sleep characteristics in children with ADHD and chronic sleep onset insomnia.

    Science.gov (United States)

    van der Heijden, Kristiaan B; Smits, Marcel G; Gunning, W Boudewijn

    2006-03-01

    In the present study we investigated sleep hygiene and actigraphically evaluated sleep in 74 medication-naïve children, aged 6-12 years, with rigorously diagnosed attention-deficit/hyperactivity disorder (ADHD) and chronic sleep onset insomnia (ADHD-SOI) and 23 ADHD controls without insomnia (ADHD-noSOI). Between-group differences were analysed for lights out (sleep log), actigraphically evaluated sleep onset, sleep latency, total sleep duration, actual sleep time and sleep hygiene as measured with the Children's Sleep Hygiene Scale. We found a significant difference (P sleep hygiene score between the ADHD-SOI (56.4 +/- 10.5) and ADHD-noSOI groups (53.0 +/- 10.6). We conclude that there were differences in sleep onset and sleep latency in ADHD children with chronic SOI and those without insomnia; however, sleep hygiene practices were similar and did not relate to sleep characteristics.

  14. Epigenetics of sleep and chronobiology.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-03-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.

  15. Sleep and Metabolism: An Overview

    Directory of Open Access Journals (Sweden)

    Sunil Sharma

    2010-01-01

    Full Text Available Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways involving sympathetic overstimulation, hormonal imbalance, and subclinical inflammation. This paper reviews sleep and metabolism, and how sleep deprivation and sleep disorders may be altering human metabolism.

  16. Estimating individual optimal sleep duration and potential sleep debt

    OpenAIRE

    Shingo Kitamura; Yasuko Katayose; Kyoko Nakazaki; Yuki Motomura; Kentaro Oba; Ruri Katsunuma; Yuri Terasawa; Minori Enomoto; Yoshiya Moriguchi; Akiko Hida; Kazuo Mishima

    2016-01-01

    In this study, we hypothesized that dynamics of sleep time obtained over consecutive days of extended sleep in a laboratory reflect an individual’s optimal sleep duration (OSD) and that the difference between OSD and habitual sleep duration (HSD) at home represents potential sleep debt (PSD). We found that OSD varies among individuals and PSD showed stronger correlation with subjective/objective sleepiness than actual sleep time, interacting with individual’s vulnerability of sleep loss. Furt...

  17. Neuroimaging and sleep medicine.

    Science.gov (United States)

    Nofzinger, Eric A

    2005-06-01

    In sleep medicine, patients with sleep disorders are evaluated and treated. The primary assessment tool of the field has traditionally been polysomnography. While polysomnography has been helpful in the evaluation of some sleep disorders, such as sleep apnea syndrome and periodic limb movement disorder, it has been less helpful in others, such as the insomnias, or sleep disorders secondary to mental disorders. These disorders are presumed to stem from some alteration in brain function that disrupts sleep. The development of functional neuroimaging methods provides a means to understand brain function in patients with sleep disorders in a manner not accessible to polysomnography. This paper summarizes functional neuroimaging findings during healthy sleep, then, reviews available studies in sleep disorders patients, and studies addressing the pharmacology of sleep and sleep disorders. Areas in which functional neuroimaging methods may be helpful in sleep medicine, and in which future development is advised, include: (1) clarification of pathophysiology; (2) aid in differential diagnosis; (3) assessment of treatment response; (4) guiding new drug development; and (5) monitoring treatment response.

  18. The Functions of Sleep

    Directory of Open Access Journals (Sweden)

    Samson Z Assefa

    2015-08-01

    Full Text Available Sleep is a ubiquitous component of animal life including birds and mammals. The exact function of sleep has been one of the mysteries of biology. A considerable number of theories have been put forward to explain the reason(s for the necessity of sleep. To date, while a great deal is known about what happens when animals sleep, there is no definitive comprehensive explanation as to the reason that sleep is an inevitable part of animal functioning. It is well known that sleep is a homeostatically regulated body process, and that prolonged sleep deprivation is fatal in animals. In this paper, we present some of the theories as to the functions of sleep and provide a review of some hypotheses as to the overall physiologic function of sleep. To better understand the purpose for sleeping, we review the effects of sleep deprivation on physical, neurocognitive and psychic function. A better understanding of the purpose for sleeping will be a great advance in our understanding of the nature of the animal kingdom, including our own.

  19. Treatments for Sleep Changes

    Science.gov (United States)

    ... use the bed only for sleep Discourage watching television during periods of wakefulness Medications for sleep changes In some cases, non-drug approaches fail to work or the sleep changes are accompanied by disruptive nighttime behaviors. For those individuals who do require medication, experts ...

  20. Sleep and Your Preschooler

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Sleep and Your Preschooler KidsHealth > For Parents > Sleep and Your Preschooler Print A A A What's ... Preschoolers need about 11 to 12 hours of sleep each day, which can include a nap. There's ...

  1. Physiology of Sleep.

    Science.gov (United States)

    Carley, David W; Farabi, Sarah S

    2016-02-01

    IN BRIEF Far from a simple absence of wakefulness, sleep is an active, regulated, and metabolically distinct state, essential for health and well-being. In this article, the authors review the fundamental anatomy and physiology of sleep and its regulation, with an eye toward interactions between sleep and metabolism.

  2. What Is Sleep Apnea?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Sleep Apnea? Español Sleep apnea (AP-ne-ah) is ... many people. Rate This Content: NEXT >> Featured Video Sleep Apnea Research: The HeartBeat Study 06/07/2012 ...

  3. Monitoring sleep depth: analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation.

    Science.gov (United States)

    Giménez, Sandra; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miguel Ángel; Pujol, Anna; Baxarias, Pilar; Antonijoan, Rosa Maria

    2017-02-01

    The assessment and management of sleep are increasingly recommended in the clinical practice. Polysomnography (PSG) is considered the gold standard test to monitor sleep objectively, but some practical and technical constraints exist due to environmental and patient considerations. Bispectral index (BIS) monitoring is commonly used in clinical practice for guiding anesthetic administration and provides an index based on relationships between EEG components. Due to similarities in EEG synchronization between anesthesia and sleep, several studies have assessed BIS as a sleep monitor with contradictory results. The aim of this study was to evaluate objectively both the feasibility and reliability of BIS for sleep monitoring through a robust methodology, which included full PSG recordings at a baseline situation and after 40 h of sleep deprivation. Results confirmed that the BIS index was highly correlated with the hypnogram (0.89 ± 0.02), showing a progressive decrease as sleep deepened, and an increase during REM sleep (awake: 91.77 ± 8.42; stage N1: 83.95 ± 11.05; stage N2: 71.71 ± 11.99; stage N3: 42.41 ± 9.14; REM: 80.11 ± 8.73). Mean and median BIS values were lower in the post-deprivation night than in the baseline night, showing statistical differences for the slow wave sleep (baseline: 42.41 ± 9.14 vs. post-deprivation: 39.49 ± 10.27; p = 0.02). BIS scores were able to discriminate properly between deep (N3) and light (N1, N2) sleep. BIS values during REM overlapped those of other sleep stages, although EMG activity provided by the BIS monitor could help to identify REM sleep if needed. In conclusion, BIS monitors could provide a useful measure of sleep depth in especially particular situations such as intensive care units, and they could be used as an alternative for sleep monitoring in order to reduce PSG-derived costs and to increase capacity in ambulatory care.

  4. Sleep and sleep disorders in menopausal women.

    Science.gov (United States)

    Guidozzi, F

    2013-04-01

    Sleep disorders in the menopause are common. Although these disorders may be due to the menopause itself and/or the associated vasomotor symptoms, the etiology is multifactorial and includes a number of other associated conditions. They may simply arise as part of the aging process and not be specifically related to the decrease in estrogen levels or, alternatively, because of breathing or limb movement syndromes, depression, anxiety, co-morbid medical diseases, medication, pain and/or psychosocial factors. The most commonly encountered sleep disorders in menopausal women include insomnia, nocturnal breathing disturbances and the associated sleep disorders that accompany the restless leg syndrome, periodic leg movement syndrome, depression and anxiety. This review article addresses sleep and the sleep disorders associated with menopause and briefly the role that hormone therapy may play in alleviating these disorders.

  5. Menopause related sleep disorders.

    Science.gov (United States)

    Eichling, Philip S; Sahni, Jyotsna

    2005-07-15

    Sleep difficulty is one of the hallmarks of menopause. Following recent studies showing no cardiac benefit and increased breast cancer, the question of indications for hormonal therapy has become even more pertinent. Three sets of sleep disorders are associated with menopause: insomnia/depression, sleep disordered breathing and fibromyalgia. The primary predictor of disturbed sleep architecture is the presence of vasomotor symptoms. This subset of women has lower sleep efficiency and more sleep complaints. The same group is at higher risk of insomnia and depression. The "domino theory" of sleep disruption leading to insomnia followed by depression has the most scientific support. Estrogen itself may also have an antidepressant as well as a direct sleep effect. Treatment of insomnia in responsive individuals may be a major remaining indication for hormone therapy. Sleep disordered breathing (SDB) increases markedly at menopause for reasons that include both weight gain and unclear hormonal mechanisms. Due to the general under-recognition of SDB, health care providers should not assume sleep complaints are due to vasomotor related insomnia/depression without considering SDB. Fibromyalgia has gender, age and probably hormonal associations. Sleep complaints are almost universal in FM. There are associated polysomnogram (PSG) findings. FM patients have increased central nervous system levels of the nociceptive neuropeptide substance P (SP) and lower serotonin levels resulting in a lower pain threshold to normal stimuli. High SP and low serotonin have significant potential to affect sleep and mood. Treatment of sleep itself seems to improve, if not resolve FM. Menopausal sleep disruption can exacerbate other pre-existing sleep disorders including RLS and circadian disorders.

  6. [Sleep and sexuality].

    Science.gov (United States)

    Abraham, G; Vlatkovic, D

    2006-03-22

    Our knowledge about the multiple aspects of sleep functions are still insufficient. Concerning the relationship between sleep and sexuality there are four points of view to take into account. Two observations: a spontaneous sexual excitement during REM sleep and that some anxious dreams can produce also sexual arousal. Two hypotheses: the erotic pleasure could be easier to perceive in a sleeping or dreaming state than in a waking state and some sleeping troubles could have an important influence on the sexual life of a couple.

  7. The neurology of sleep.

    Science.gov (United States)

    Swick, Todd J

    2005-11-01

    Neurology, by virtue of its study of the brain, is the primary medical science for the elucidation of the anatomy, physiology, pathology and, ultimately, the function of sleep. There has been nothing short of a revolution in the science of sleep over the past 50 years. From the discovery of REM sleep to the identification of Hypocretin/Orexin the basic science and clinical field of sleep medicine has blossomed. This article will explore the anatomy, physiology, biochemistry and, to a limited extent, pathophysiology of the sleep/wake centers of the brain. The field of chronobiology will also be touched upon.

  8. Circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Morgenthaler TI

    2012-05-01

    Full Text Available Bhanu P Kolla,1,2 R Robert Auger,1,2 Timothy I Morgenthaler11Mayo Center for Sleep Medicine, 2Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USAAbstract: Misalignment between endogenous circadian rhythms and the light/dark cycle can result in pathological disturbances in the form of erratic sleep timing (irregular sleep–wake rhythm, complete dissociation from the light/dark cycle (circadian rhythm sleep disorder, free-running type, delayed sleep timing (delayed sleep phase disorder, or advanced sleep timing (advanced sleep phase disorder. Whereas these four conditions are thought to involve predominantly intrinsic mechanisms, circadian dysrhythmias can also be induced by exogenous challenges, such as those imposed by extreme work schedules or rapid transmeridian travel, which overwhelm the ability of the master clock to entrain with commensurate rapidity, and in turn impair approximation to a desired sleep schedule, as evidenced by the shift work and jet lag sleep disorders. This review will focus on etiological underpinnings, clinical assessments, and evidence-based treatment options for circadian rhythm sleep disorders. Topics are subcategorized when applicable, and if sufficient data exist. The length of text associated with each disorder reflects the abundance of associated literature, complexity of management, overlap of methods for assessment and treatment, and the expected prevalence of each condition within general medical practice.Keywords: circadian rhythm sleep disorders, assessment, treatment

  9. Autism and sleep disorders

    Directory of Open Access Journals (Sweden)

    Preeti A Devnani

    2015-01-01

    Full Text Available “Autism Spectrum Disorders” (ASDs are neurodevelopment disorders and are characterized by persistent impairments in reciprocal social interaction and communication. Sleep problems in ASD, are a prominent feature that have an impact on social interaction, day to day life, academic achievement, and have been correlated with increased maternal stress and parental sleep disruption. Polysomnography studies of ASD children showed most of their abnormalities related to rapid eye movement (REM sleep which included decreased quantity, increased undifferentiated sleep, immature organization of eye movements into discrete bursts, decreased time in bed, total sleep time, REM sleep latency, and increased proportion of stage 1 sleep. Implementation of nonpharmacotherapeutic measures such as bedtime routines and sleep-wise approach is the mainstay of behavioral management. Treatment strategies along with limited regulated pharmacotherapy can help improve the quality of life in ASD children and have a beneficial impact on the family. PubMed search was performed for English language articles from January 1995 to January 2015. Following key words: Autism spectrum disorder, sleep disorders and autism, REM sleep and autism, cognitive behavioral therapy, sleep-wise approach, melatonin and ASD were used. Only articles reporting primary data relevant to the above questions were included.

  10. Family Disorganization, Sleep Hygiene, and Adolescent Sleep Disturbance

    Science.gov (United States)

    Billows, Michael; Gradisar, Michael; Dohnt, Hayley; Johnston, Anna; McCappin, Stephanie; Hudson, Jennifer

    2009-01-01

    The link between sleep hygiene and adolescent sleep is well documented, though evidence suggests contributions from other factors, particularly the family environment. The present study examined whether sleep hygiene mediated the relationship between family disorganization and self-reported sleep onset latency, total sleep time, and daytime…

  11. Sleep and Sleep Problems: From Birth to 3

    Science.gov (United States)

    Du Mond, Courtney; Mindell, Jodi A.

    2011-01-01

    Sleep is an important aspect of a child's early development and is essential to family well-being. During their first 3 years, infants and toddlers spend more than 50% of their lives sleeping. However, concerns about sleep and sleep problems are among the most common issues brought to the attention of pediatricians. Although sleep is one of the…

  12. Sleep and Sleep Problems: From Birth to 3

    Science.gov (United States)

    Du Mond, Courtney; Mindell, Jodi A.

    2011-01-01

    Sleep is an important aspect of a child's early development and is essential to family well-being. During their first 3 years, infants and toddlers spend more than 50% of their lives sleeping. However, concerns about sleep and sleep problems are among the most common issues brought to the attention of pediatricians. Although sleep is one of the…

  13. Study of Sleep Habits and Sleep Problems Among Medical Students ...

    African Journals Online (AJOL)

    sleep quality, sleep latency, sleep duration, sleep efficiency, ... Sleep duration of less than. 6 hours was seen in ... Regular exercise was done by 36/150 (24%) students, of .... Jean‑Louis G, Von Gizycky H, Zizi F, Nunes J. Mood states and.

  14. Sleep and Salivary Cortisol

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Karlson, Bernt; Hansen, Åse Marie

    2011-01-01

    The aim of the present chapter was to analyze whether measures of cortisol in saliva were associated with measures of sleep and to explore if divergent results were related to underlying differences in theoretic assumptions and methods. Measures of sleep quality included sleep duration, overall...... sleep quality, difficulty falling asleep, disturbed sleep, and sleep deprivation. Twenty-three papers were found to fulfill the inclusion criteria. Cortisol measures were grouped into single time points at different times during the day, deviations at different time periods during the day, reactivity...... and recovery after a standardized laboratory test, area under the curve and response to dexamethasone test. A large proportion of the studies included showed non-significant findings, which, in several cases, may be a result of low power. The most consistent results were a positive association between sleep...

  15. Sleep Fragmentation Hypersensitizes Healthy Young Women to Deep and Superficial Experimental Pain.

    Science.gov (United States)

    Iacovides, Stella; George, Kezia; Kamerman, Peter; Baker, Fiona C

    2017-07-01

    The effect of sleep deprivation on pain sensitivity has typically been studied using total and partial sleep deprivation protocols. These protocols do not mimic the fragmented pattern of sleep disruption usually observed in individuals with clinical pain conditions. Therefore, we conducted a controlled experiment to investigate the effect of sleep fragmentation on pain perception (deep pain: forearm muscle ischemia, and superficial pain: graded pin pricks applied to the skin) in 11 healthy young women after 2 consecutive nights of sleep fragmentation, compared with a normal night of sleep. Compared with normal sleep, sleep fragmentation resulted in significantly poorer sleep quality, morning vigilance, and global mood. Pin prick threshold decreased significantly (increased sensitivity), as did habituation to ischemic muscle pain (increased sensitivity), over the course of the 2 nights of sleep fragmentation compared with the night of normal sleep. Sleep fragmentation did not increase the maximum pain intensity reported during muscle ischemia (no increase in gain), and nor did it increase the number of spontaneous pains reported by participants. Our data show that sleep fragmentation in healthy, young, pain-free women increases pain sensitivity in superficial and deep tissues, indicating a role for sleep disruption, through sleep fragmentation, in modulating pain perception. Our findings that pain-free, young women develop hyperalgesia to superficial and deep muscle pain after short-term sleep disruption highlight the need for effective sleep management strategies in patients with pain. Findings also suggest the possibility that short-term sleep disruption associated with recurrent acute pain could contribute to increased risk for future chronic pain conditions. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in Drosophila.

    Science.gov (United States)

    Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y; Van Dongen, Hans P A; Sehgal, Amita

    2016-05-01

    Sleep rebound-the increase in sleep that follows sleep deprivation-is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. We identified two lines that consistently exhibit a blunted increase in the duration and depth of sleep after

  17. Sleep from an islamic perspective

    Directory of Open Access Journals (Sweden)

    Ahmed S BaHammam

    2011-01-01

    Full Text Available Sleep medicine is a relatively new scientific specialty. Sleep is an important topic in Islamic literature, and the Quran and Hadith discuss types of sleep, the importance of sleep, and good sleep practices. Islam considers sleep as one of the signs of the greatness of Allβh (God and encourages followers to explore this important sign. The Quran describes different types of sleep, and these correspond with sleep stages identified by modern science. The Quran discusses the beneficial effects of sleep and emphasizes the importance of maintaining a pattern of light and darkness. A mid-day nap is an important practice for Muslims, and the Prophet Muhammad peace be upon him (pbuh promoted naps as beneficial. In accordance with the practice and instructions of Muhammad (pbuh, Muslims have certain sleep habits and these sleep habits correspond to some of the sleep hygiene rules identified by modern science. Details during sleep include sleep position, like encouraging sleep on the right side and discouraging sleep in the prone position. Dream interpretation is an established science in the Islamic literature and Islamic scholars have made significant contributions to theories of dream interpretation. We suggest that sleep scientists examine religious literature in general and Islamic literature in particular, to understand the views, behaviors, and practices of ancient people about the sleep and sleep disorders. Such studies may help to answer some unresolved questions in sleep science or lead to new areas of inquiry.

  18. Sleep from an Islamic perspective.

    Science.gov (United States)

    Bahammam, Ahmed S

    2011-10-01

    Sleep medicine is a relatively new scientific specialty. Sleep is an important topic in Islamic literature, and the Quran and Hadith discuss types of sleep, the importance of sleep, and good sleep practices. Islam considers sleep as one of the signs of the greatness of Allνh (God) and encourages followers to explore this important sign. The Quran describes different types of sleep, and these correspond with sleep stages identified by modern science. The Quran discusses the beneficial effects of sleep and emphasizes the importance of maintaining a pattern of light and darkness. A mid-day nap is an important practice for Muslims, and the Prophet Muhammad peace be upon him (pbuh) promoted naps as beneficial. In accordance with the practice and instructions of Muhammad (pbuh), Muslims have certain sleep habits and these sleep habits correspond to some of the sleep hygiene rules identified by modern science. Details during sleep include sleep position, like encouraging sleep on the right side and discouraging sleep in the prone position. Dream interpretation is an established science in the Islamic literature and Islamic scholars have made significant contributions to theories of dream interpretation. We suggest that sleep scientists examine religious literature in general and Islamic literature in particular, to understand the views, behaviors, and practices of ancient people about the sleep and sleep disorders. Such studies may help to answer some unresolved questions in sleep science or lead to new areas of inquiry.

  19. Chronic sleep reduction in adolescents

    NARCIS (Netherlands)

    Dewald-Kaufmann, J.F.

    2012-01-01

    Based on the results of this thesis, it can be concluded that sleep problems and chronic sleep reduction have a high impact on adolescents’ daytime functioning. Additionally, this research shows that gradual sleep extension can improve adolescents’ sleep and especially their chronic sleep reduction.

  20. A systematic review of variables associated with sleep paralysis.

    Science.gov (United States)

    Denis, Dan; French, Christopher C; Gregory, Alice M

    2017-06-08

    Sleep paralysis is a relatively common but under-researched phenomenon. While the causes are unknown, a number of studies have investigated potential risk factors. In this article, we conducted a systematic review on the available literature regarding variables associated with both the frequency and intensity of sleep paralysis episodes. A total of 42 studies met the inclusion criteria. For each study, sample size, study site, sex and age of participants, sleep paralysis measure, and results of analyses looking at the relationship(s) between sleep paralysis and associated variable(s) were extracted. A large number of variables were associated with sleep paralysis and a number of themes emerged. These were: substance use, stress and trauma, genetic influences, physical illness, personality, intelligence, anomalous beliefs, sleep problems and disorders (both in terms of subjective sleep quality and objective sleep disruption), symptoms of psychiatric illness in non-clinical samples (particularly anxiety symptoms), and psychiatric disorders. Sleep paralysis appears to be particularly prevalent in post-traumatic stress disorder, and to a less degree, panic disorder. Limitations of the current literature, directions for future research, and implications for clinical practice are discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cardiovascular physiology and sleep.

    Science.gov (United States)

    Murali, Narayana S; Svatikova, Anna; Somers, Virend K

    2003-05-01

    Sleep is a natural periodic suspension of consciousness during which processes of rest and restoration occur. The cognitive, reparative and regenerative accompaniments of sleep appear to be essential for maintenance of health and homeostasis. This brief overview will examine the cardiovascular responses to normal and disordered sleep, and their physiologic and pathologic implications. In the past, sleep was believed to be a passive state. The tableau of sleep as it unfolds is anything but a passive process. The brain's activity is as complex as wakefulness, never "resting" during sleep. Following the demise of the 'passive theory of sleep' (the reticular activating system is fatigued during the waking day and hence becomes inactive), there arose the 'active theory of sleep' (sleep is due to an active general inhibition of the brain) (1). Hess demonstrated the active nature of sleep in cats, inducing "physiological sleep" with electrical stimulation of the diencephalon (2). Classical experiments of transection of the cat brainstem (3) at midpontine level inhibited sleep completely, implying that centers below this level were involved in the induction of sleep (1, 4). For the first time, measurement of sleep depth without awakening the sleeper using the electroencephalogram (EEG) was demonstrated in animals by Caton and in humans, by Berger (1). This was soon followed by discovery of the rapid eye movement sleep periods (REM) by Aserinski and Kleitman (5), demonstration of periodical sleep cycles and their association with REM sleep (6, 7). Multiple studies and steady discoveries (4) made polysomnography, with its ability to perform simultaneous whole night recordings of EEG, electromyogram (EMG), and electrooculogram (EOC), a major diagnostic tool in study of sleep disorders. This facility has been of further critical importance in allowing evaluation of the interaction between sleep and changes in hemodynamics and autonomic cardiovascular control. Consequently the

  2. Sleep disorders and acute nocturnal delirium in the elderly: a comorbidity not to be overlooked.

    Science.gov (United States)

    Terzaghi, Michele; Sartori, Ivana; Rustioni, Valter; Manni, Raffaele

    2014-04-01

    Delirium is a disturbance of consciousness and cognition that results in a confusional state. It tends to fluctuate in intensity and is often observed in older patients. Sleep is a window of vulnerability for the occurrence of delirium and sleep disorders can play a role in its appearance. In particular, delirious episodes have been associated with obstructive sleep apnoea syndrome, which is reported to be frequent in the elderly. Hereby, we present a case-report documenting the sudden onset of a confusional state triggered by obstructive sleep apnoea-induced arousal, together with a review of the literature on the topic. We emphasise that, among the many pathogenic factors implicated in delirium, it is worth considering the possible link between nocturnal delirium and the occurrence of impaired arousals. Indeed, the complex confusional manifestations of delirium could be due, in part, to persistence of dysfunctional sleep activity resulting in an inability to sustain full arousal during behavioural wakefulness. Arousals can be triggered by sleep disturbances or other medical conditions. Clinicians should be aware that older patients may present disordered sleep patterns, and make investigation of sleep patterns and disorders potentially affecting sleep continuity a key part of their clinical workup, especially in the presence of cognitive comorbidities. Correct diagnosis and optimal treatment of sleep disorders and disrupted sleep can have a significant impact in the elderly, improving sleep quality and reducing the occurrence of abnormal sleep-related behaviours.

  3. Modeling Neurocognitive Decline and Recovery During Repeated Cycles of Extended Sleep and Chronic Sleep Deficiency.

    Science.gov (United States)

    St Hilaire, Melissa A; Rüger, Melanie; Fratelli, Federico; Hull, Joseph T; Phillips, Andrew J K; Lockley, Steven W

    2017-01-01

    Intraindividual night-to-night sleep duration is often insufficient and variable. Here we report the effects of such chronic variable sleep deficiency on neurobehavioral performance and the ability of state-of-the-art models to predict these changes. Eight healthy males (mean age ± SD: 23.9 ± 2.4 years) studied at our inpatient intensive physiologic monitoring unit completed an 11-day protocol with a baseline 10-hour sleep opportunity and three cycles of two 3-hour time-in-bed (TIB) and one 10-hour TIB sleep opportunities. Participants received one of three polychromatic white light interventions (200 lux 4100K, 200 or 400 lux 17000K) for 3.5 hours on the morning following the second 3-hour TIB opportunity each cycle. Neurocognitive performance was assessed using the psychomotor vigilance test (PVT) administered every 1-2 hours. PVT data were compared to predictions of five group-average mathematical models that incorporate chronic sleep loss functions. While PVT performance deteriorated cumulatively following each cycle of two 3-hour sleep opportunities, and improved following each 10-hour sleep opportunity, performance declined cumulatively throughout the protocol at a more accelerated rate than predicted by state-of-the-art group-average mathematical models. Subjective sleepiness did not reflect performance. The light interventions had minimal effect. Despite apparent recovery following each extended sleep opportunity, residual performance impairment remained and deteriorated rapidly when rechallenged with subsequent sleep loss. None of the group-average models were capable of predicting both the build-up in impairment and recovery profile of performance observed at the group or individual level, raising concerns regarding their use in real-world settings to predict performance and improve safety.

  4. The effects of sleep extension on sleep and cognitive performance in adolescents with chronic sleep reduction: an experimental study

    NARCIS (Netherlands)

    Dewald-Kaufmann, J.F.; Oort, F.J.; Meijer, A.M.

    2013-01-01

    Objective: To investigate the effects of gradual sleep extension in adolescents with chronic sleep reduction. Outcome variables were objectively measured sleep and cognitive performance. Methods: Participants were randomly assigned to either a sleep extension group (gradual sleep extension by advanc

  5. A "Sleep 101" Program for College Students Improves Sleep Hygiene Knowledge and Reduces Maladaptive Beliefs about Sleep.

    Science.gov (United States)

    Kloss, Jacqueline D; Nash, Christina O; Walsh, Colleen M; Culnan, Elizabeth; Horsey, Sarah; Sexton-Radek, Kathy

    2016-01-01

    Sensitizing young adults about sleep hygiene knowledge and helpful sleep attitudes may have the potential to instill long-lasting healthy sleep practices. Towards these ends, evaluation of psychoeducational program "Sleep 101" tailored to college students was undertaken. Following two weeks of sleep-log recordings, participants were randomly assigned to a Sleep 101 (experimental) condition or a sleep monitoring (control) condition. The Sleep 101 condition was comprised of two 90-minute workshops aimed to educate students about healthy sleep practices, helpful thoughts about sleep, and ways to improve sleep. The sleep monitoring group received a sleep hygiene handout and completed sleep logs for the study duration. Sleep 101 participants endorsed fewer maladaptive beliefs and attitudes about sleep, increased sleep hygiene knowledge, and reduced sleep onset latency compared to the sleep monitoring participants. Brief psychoeducational courses may be a cost-effective way to alleviate current, and/or prevent future, sleep problems in young adults.

  6. The effects of sleep extension on sleep and cognitive performance in adolescents with chronic sleep reduction: an experimental study

    NARCIS (Netherlands)

    Dewald-Kaufmann, J.F.; Oort, F.J.; Meijer, A.M.

    2013-01-01

    Objective: To investigate the effects of gradual sleep extension in adolescents with chronic sleep reduction. Outcome variables were objectively measured sleep and cognitive performance. Methods: Participants were randomly assigned to either a sleep extension group (gradual sleep extension by

  7. Headache, drugs and sleep.

    Science.gov (United States)

    Nesbitt, Alexander D; Leschziner, Guy D; Peatfield, Richard C

    2014-09-01

    Headache and sleep mechanisms share multiple levels of physiological interaction. Pharmacological treatment of headache syndromes may be associated with a broad range of sleep disturbances, either as a direct result of the pharmacology of the drug used, or by unmasking physiological alterations in sleep propensity seen as part of the headache symptom complex. This review summarises known sleep and circadian effects of various drugs commonly used in the management of headache disorders, with particular attention paid to abnormal sleep function emerging as a result of treatment. Literature searches were performed using MEDLINE, PubMed, and the Cochrane database using search terms and strings relating to generic drug names of commonly used compounds in the treatment of headache and their effect on sleep in humans with review of additional pre-clinical evidence where theoretically appropriate. Medications used to treat headache disorders may have a considerable impact on sleep physiology. However, greater attention is needed to characterise the direction of the changes of these effects on sleep, particularly to avoid exacerbating detrimental sleep complaints, but also to potentially capitalise on homeostatically useful properties of sleep which may reduce the individual burden of headache disorders on patients. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  9. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Science.gov (United States)

    Bellesi, Michele; Riedner, Brady A; Garcia-Molina, Gary N; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

  10. Sleeping on the wing.

    Science.gov (United States)

    Rattenborg, Niels C

    2017-02-06

    Wakefulness enables animals to interface adaptively with the environment. Paradoxically, in insects to humans, the efficacy of wakefulness depends on daily sleep, a mysterious, usually quiescent state of reduced environmental awareness. However, several birds fly non-stop for days, weeks or months without landing, questioning whether and how they sleep. It is commonly assumed that such birds sleep with one cerebral hemisphere at a time (i.e. unihemispherically) and with only the corresponding eye closed, as observed in swimming dolphins. However, the discovery that birds on land can perform adaptively despite sleeping very little raised the possibility that birds forgo sleep during long flights. In the first study to measure the brain state of birds during long flights, great frigatebirds (Fregata minor) slept, but only during soaring and gliding flight. Although sleep was more unihemispheric in flight than on land, sleep also occurred with both brain hemispheres, indicating that having at least one hemisphere awake is not required to maintain the aerodynamic control of flight. Nonetheless, soaring frigatebirds appeared to use unihemispheric sleep to watch where they were going while circling in rising air currents. Despite being able to engage in all types of sleep in flight, the birds only slept for 0.7 h d(-1) during flights lasting up to 10 days. By contrast, once back on land they slept 12.8 h d(-1). This suggests that the ecological demands for attention usually exceeded that afforded by sleeping unihemispherically. The ability to interface adaptively with the environment despite sleeping very little challenges commonly held views regarding sleep, and therefore serves as a powerful system for examining the functions of sleep and the consequences of its loss.

  11. Association Between Sleep Hygiene and Sleep Quality in Medical Students

    OpenAIRE

    Brick, Cameron A.; Seely, Darbi L.; Palermo, Tonya M.

    2010-01-01

    The aim of this study was to determine whether subjective sleep quality was reduced in medical students, and whether demographics and sleep hygiene behaviors were associated with sleep quality. A Web-based survey was completed by 314 medical students, containing questions about demographics, sleep habits, exercise habits, caffeine, tobacco and alcohol use, and subjective sleep quality (using the Pittsburgh Sleep Quality Index). Correlation and regression analyses tested for associations among...

  12. Sleep Hygiene and Sleep Quality in Italian and American Adolescents

    OpenAIRE

    2004-01-01

    This study investigated cross-cultural differences in adolescent sleep hygiene and sleep quality. Participants were 1348 students (655 males; 693 females) aged 12–17 years from public school systems in Rome, Italy (n = 776) and Southern Mississippi (n = 572). Participants completed the Adolescent Sleep-Wake Scale and the Adolescent Sleep Hygiene Scale. Reported sleep hygiene and sleep quality were significantly better for Italian than American adolescents. A moderate linear relationship was o...

  13. SLEEP TIMING AND CIRCADIAN PHASE IN DELAYED SLEEP PHASE

    OpenAIRE

    2009-01-01

    Delayed sleep phase syndrome (DSPS) is a circadian rhythm sleep disorder in which the timing of the sleep episode occurs later than desired and is associated with difficulty falling asleep, problems awakening on time (e.g., to meet work or school obligations), and daytime sleepiness. The phase relationship between the timing of sleep and endogenous circadian rhythms is critical to the initiation and maintenance of sleep, and significant alteration leads to impairment of sleep quality and dura...

  14. Efeitos da fisioterapia aquática na dor e no estado de sono e vigília de recém-nascidos pré-termo estáveis internados em unidade de terapia intensiva neonatal Effect of aquatic physical therapy on pain and state of sleep and wakefulness among stable preterm newborns in neonatal intensive care units

    Directory of Open Access Journals (Sweden)

    Carine Vignochi

    2010-06-01

    Full Text Available OBJETIVOS: Avaliar os efeitos da fisioterapia aquática na dor e no ciclo de sono e vigília de bebês prematuros estáveis hospitalizados. MÉTODOS: A pesquisa caracterizou-se como ensaio clínico não controlado de séries temporais. Foram incluídos 12 recém-nascidos clinicamente estáveis com idade gestacional inferior a 36 semanas internados em unidade de terapia intensiva neonatal. Após serem selecionados, os recém-nascidos foram colocados no meio líquido, onde foi iniciada a fisioterapia aquática, com duração de 10 minutos, na qual foram realizados movimentos que estimulam as posturas flexoras e a organização postural. Foram avaliados os ciclos sono e vigília por meio da escala de avaliação do ciclo de sono e vigília adaptada de Brazelton (1973*, a presença de sinais de dor por meio da escala Sistema de Codificação da Atividade Facial Neonatal (NFCS, além de parâmetros fisiológicos. RESULTADOS: Em relação aos estados de sono e vigília, antes da fisioterapia, os recém-nascidos apresentaram comportamentos que variaram entre totalmente acordados, com movimentos corporais vigorosos e choro. Após a fisioterapia, os estados de sono variaram entre sono leve com olhos fechados e algum movimento corporal. Esses valores apresentaram diferenças estatisticamente significativas (pOBJECTIVES: To evaluate the effects of aquatic physical therapy on pain and on the cycle of sleep and wakefulness among stable hospitalized premature infants. METHODS: This study was characterized as an uncontrolled clinical trial on a time series and included 12 clinically stable newborns of gestational age less than 36 weeks who were hospitalized in a neonatal intensive care unit (NICU. After selection, the newborns were placed in a liquid medium for aquatic physical therapy lasting 10 minutes. Movements to stimulate flexor posture and postural organization were performed. The sleep-wakefulness cycle was assessed using the adapted Brazelton (1973

  15. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity

    National Research Council Canada - National Science Library

    Irwin, Michael R; Opp, Mark R

    2017-01-01

    ...://www.neuropsychopharmacologyreviews.org Web End =www.neuropsychopharmacologyreviews.org 129 Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity [notdef][notdef][notdef][notdef][notdef...

  16. Obstructive Sleep Apnea Hypopnea Syndrome

    African Journals Online (AJOL)

    hanumantp

    and is seen in both central sleep apnea (CSA) and obstructive sleep apnea .... weight.[1]. Perioperative and postoperative. Patients with OSAHS may have an increased perioperative risks. ... deprivation, and adjustment of sleeping positions.

  17. Cutaneous warming promotes sleep onset

    National Research Council Canada - National Science Library

    Roy J. E. M. Raymann; Dick F. Swaab; Eus J. W. Van Someren

    2005-01-01

    Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining...

  18. Common Sleep Problems (For Teens)

    Science.gov (United States)

    ... sleep when a person has the most vivid dreams. Why Do Teens Have Trouble Sleeping? Research shows ... will look at your overall health and sleep habits. In addition to doing a physical examination, the ...

  19. American Academy of Sleep Medicine

    Science.gov (United States)

    ... the field of sleep medicine. Join the American Academy of Sleep Medicine to further your career and ... MD Sept. 21 - As president of the American Academy of Sleep Medicine, I am keenly aware of ...

  20. Sleep Changes in Older Adults

    Science.gov (United States)

    ... of the chemicals and hormones that help us sleep well (growth hormone and melatonin).Some lifestyle habits (such as smoking and drinking alcohol or caffeinated drinks) can cause sleep problems.Sleep problems may be caused by illness, ...

  1. Sleep in cluster headache

    DEFF Research Database (Denmark)

    Barloese, M C J; Jennum, P J; Lund, N T

    2015-01-01

    BACKGROUND AND PURPOSE: Cluster headache (CH) is a primary headache disorder characterized by severe attacks of unilateral pain following a chronobiological pattern. There is a close connection with sleep as most attacks occur during sleep. Hypothalamic involvement and a particular association...... with rapid eye movement (REM) sleep have been suggested. Sleep in a large, well-characterized population of CH patients was investigated. METHODS: Polysomnography (PSG) was performed on two nights in 40 CH patients during active bout and one night in 25 age, sex and body mass index matched controls...... in hospital. Macrostructure and other features of sleep were analyzed and related to phenotype. Clinical headache characterization was obtained by semi-structured interview. RESULTS: Ninety-nine nights of PSG were analyzed. Findings included a reduced percentage of REM sleep (17.3% vs. 23.0%, P = 0...

  2. Iii. Sleep assessment methods.

    Science.gov (United States)

    Sadeh, Avi

    2015-03-01

    Sleep is a complex phenomenon that could be understood and assessed at many levels. Sleep could be described at the behavioral level (relative lack of movements and awareness and responsiveness) and at the brain level (based on EEG activity). Sleep could be characterized by its duration, by its distribution during the 24-hr day period, and by its quality (e.g., consolidated versus fragmented). Different methods have been developed to assess various aspects of sleep. This chapter covers the most established and common methods used to assess sleep in infants and children. These methods include polysomnography, videosomnography, actigraphy, direct observations, sleep diaries, and questionnaires. The advantages and disadvantages of each method are highlighted.

  3. Heart rate variability, sleep and sleep disorders.

    Science.gov (United States)

    Stein, Phyllis K; Pu, Yachuan

    2012-02-01

    Heart rate (HR) is modulated by the combined effects of the sympathetic and parasympathetic nervous systems. Therefore, measurement of changes in HR over time (heart rate variability or HRV) provides information about autonomic functioning. HRV has been used to identify high risk people, understand the autonomic components of different disorders and to evaluate the effect of different interventions, etc. Since the signal required to measure HRV is already being collected on the electrocardiogram (ECG) channel of the polysomnogram (PSG), collecting data for research on HRV and sleep is straightforward, but applications have been limited. As reviewed here, HRV has been applied to understand autonomic changes during different sleep stages. It has also been applied to understand the effect of sleep-disordered breathing, periodic limb movements and insomnia both during sleep and during the daytime. HRV has been successfully used to screen people for possible referral to a Sleep Lab. It has also been used to monitor the effects of continuous positive airway pressure (CPAP). A novel HRV measure, cardiopulmonary coupling (CPC) has been proposed for sleep quality. Evidence also suggests that HRV collected during a PSG can be used in risk stratification models, at least for older adults. Caveats for accurate interpretation of HRV are also presented.

  4. Sleep scoring using artificial neural networks.

    Science.gov (United States)

    Ronzhina, Marina; Janoušek, Oto; Kolářová, Jana; Nováková, Marie; Honzík, Petr; Provazník, Ivo

    2012-06-01

    Rapid development of computer technologies leads to the intensive automation of many different processes traditionally performed by human experts. One of the spheres characterized by the introduction of new high intelligence technologies substituting analysis performed by humans is sleep scoring. This refers to the classification task and can be solved - next to other classification methods - by use of artificial neural networks (ANN). ANNs are parallel adaptive systems suitable for solving of non-linear problems. Using ANN for automatic sleep scoring is especially promising because of new ANN learning algorithms allowing faster classification without decreasing the performance. Both appropriate preparation of training data as well as selection of the ANN model make it possible to perform effective and correct recognizing of relevant sleep stages. Such an approach is highly topical, taking into consideration the fact that there is no automatic scorer utilizing ANN technology available at present.

  5. Sleep Deprivation and Neurobehavioral Dynamics

    OpenAIRE

    Basner, Mathias; Rao, Hengyi; Goel, Namni; David F. Dinges

    2013-01-01

    Lifestyles involving sleep deprivation are common, despite mounting evidence that both acute total sleep deprivation and chronically restricted sleep degrade neurobehavioral functions associated with arousal, attention, memory and state stability. Current research suggests dynamic differences in the way the central nervous system responds to acute versus chronic sleep restriction, which is reflected in new models of sleep-wake regulation. Chronic sleep restriction likely induces long-term neu...

  6. Perspective on Sleep and Aging

    OpenAIRE

    Monjan, Andrew A.

    2010-01-01

    There is a strong body of data directly interrelating sleep problems with mood disorders. There is a growing data base directly associating sleep disorders with attention and memory problems. Motor disorders, especially involving the dopaminergic system, may produce sleep problems, including a possible association between disordered sleep and nocturnal falls. Sleep disorders may be causal conditions for metabolic diseases and increased risk for morbidity and mortality. Sleep and health ar...

  7. Perspective on Sleep and Aging

    OpenAIRE

    Monjan, Andrew A.

    2010-01-01

    There is a strong body of data directly interrelating sleep problems with mood disorders. There is a growing data base directly associating sleep disorders with attention and memory problems. Motor disorders, especially involving the dopaminergic system, may produce sleep problems, including a possible association between disordered sleep and nocturnal falls. Sleep disorders may be causal conditions for metabolic diseases and increased risk for morbidity and mortality. Sleep and health are di...

  8. Isolated sleep paralysis

    OpenAIRE

    Sawant, Neena S.; Parkar, Shubhangi R.; Tambe, Ravindra

    2005-01-01

    Sleep paralysis (SP) is a cardinal symptom of narcolepsy. However, little is available in the literature about isolated sleep paralysis. This report discusses the case of a patient with isolated sleep paralysis who progressed from mild to severe SP over 8 years. He also restarted drinking alcohol to be able to fall asleep and allay his anxiety symptoms. The patient was taught relaxation techniques and he showed complete remission of the symptoms of SP on follow up after 8 months.

  9. Stress, Sleep, and Allergy

    OpenAIRE

    Jernelöv, Susanna

    2010-01-01

    Allergic diseases have recently increased dramatically in the western world, now affecting about 30% of the Swedish population. The reasons for this increase are unclear, but some of the suspects are behavioral factors, such as stress and sleep. Problems with stress are also common today, and stress may change the set-points for the functioning of the body, for instance in the immune system. Sleep, on the other hand, is important for recuperation, and disturbed sleep acts a ...

  10. Isolated sleep paralysis

    OpenAIRE

    Sawant, Neena S.; Shubhangi R Parkar; Tambe, Ravindra

    2005-01-01

    Sleep paralysis (SP) is a cardinal symptom of narcolepsy. However, little is available in the literature about isolated sleep paralysis. This report discusses the case of a patient with isolated sleep paralysis who progressed from mild to severe SP over 8 years. He also restarted drinking alcohol to be able to fall asleep and allay his anxiety symptoms. The patient was taught relaxation techniques and he showed complete remission of the symptoms of SP on follow up after 8 months.

  11. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    Science.gov (United States)

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  12. Sleep loss and recovery after administration of drugs related to different arousal systems in rats.

    Science.gov (United States)

    Hajnik, T; Tóth, A; Szalontai, Ö; Pethő, M; Détári, L

    2016-09-01

    Sleep is homeostatically regulated suggesting a restorative function. Sleep deprivation is compensated by an increase in length and intensity of sleep. In this study, suppression of sleep was induced pharmacologically by drugs related to different arousal systems. All drugs caused non-rapid eye movement (NREM) sleep loss followed by different compensatory processes. Apomorphine caused a strong suppression of sleep followed by an intense recovery. In the case of fluoxetine and eserine, recovery of NREM sleep was completed by the end of the light phase due to the biphasic pattern demonstrated for these drugs first in the present experiments. Yohimbine caused a long-lasting suppression of NREM sleep, indicating that either the noradrenergic system has the utmost strength among the examined systems, or that restorative functions occurring normally during NREM sleep were not blocked. Arousal systems are involved in the regulation of various wakefulness-related functions, such as locomotion and food intake. Therefore, it can be hypothesized that activation of the different systems results in qualitatively different waking states which might affect subsequent sleep differently. These differences might give some insight into the homeostatic function of sleep in which the dopaminergic and noradrenergic systems may play a more important role than previously suggested.

  13. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    Directory of Open Access Journals (Sweden)

    Gabriela Hurtado-Alvarado

    2013-01-01

    Full Text Available A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis. Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013 on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss.

  14. Cystic fibrosis and sleep.

    Science.gov (United States)

    Katz, Eliot S

    2014-09-01

    Sleep disturbances are frequently observed in cystic fibrosis (CF). The resultant sleep fragmentation, short sleep duration, and gas-exchange abnormalities are postulated to contribute to the neurocognitive, cardiovascular, and metabolic abnormalities associated with CF. There are no outcomes data to establish the optimal procedure for screening and treating CF patients for sleep-related respiratory abnormalities. Therapy with supplemental oxygen and bilevel ventilation are widely considered to be effective in the short term, but there are few evidence-based data to support long-term improvements in morbidity and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Nonepileptic paroxysmal sleep disorders.

    Science.gov (United States)

    Frenette, Eric; Guilleminault, Christian

    2013-01-01

    Events occurring during nighttime sleep in children can be easily mislabeled, as witnesses are usually not immediately available. Even when observers are present, description of the events can be sketchy, as these individuals are frequently aroused from their own sleep. Errors of perception are thus common and can lead to diagnosis of epilepsy where other sleep-related conditions are present, sometimes initiating unnecessary therapeutic interventions, especially with antiepileptic drugs. Often not acknowledged, paroxysmal nonepileptic behavioral and motor episodes in sleep are encountered much more frequently than their epileptic counterpart. The International Classification of Sleep Disorders (ICSD) 2nd edition displays an extensive list of such conditions that can be readily mistaken for epilepsy. The most prevalent ones are reviewed, such as nonrapid eye movement (NREM) sleep parasomnias, comprised of sleepwalking, confusional arousals and sleep terrors, periodic leg movements of sleep, repetitive movement disorders, benign neonatal myoclonus, and sleep starts. Apnea of prematurity is also briefly reviewed. Specific issues regarding management of these selected disorders, both for diagnostic consideration and for therapeutic intervention, are addressed.

  16. The Association of Testosterone Levels with Overall Sleep Quality, Sleep Architecture, and Sleep-Disordered Breathing

    OpenAIRE

    Barrett-Connor, Elizabeth; Dam, Thuy-Tien; Stone, Katie; Harrison, Stephanie Litwack; Redline, Susan; Orwoll, Eric

    2008-01-01

    Context: Little is known about the association of low endogenous testosterone levels and abnormal sleep patterns in older men, although pharmacological doses of testosterone are associated with increased severity of sleep apnea and other sleep disturbances.

  17. Association between sleep hygiene and sleep quality in medical students.

    Science.gov (United States)

    Brick, Cameron A; Seely, Darbi L; Palermo, Tonya M

    2010-01-01

    The aim of this study was to determine whether subjective sleep quality was reduced in medical students, and whether demographics and sleep hygiene behaviors were associated with sleep quality. A Web-based survey was completed by 314 medical students, containing questions about demographics, sleep habits, exercise habits, caffeine, tobacco and alcohol use, and subjective sleep quality (using the Pittsburgh Sleep Quality Index). Correlation and regression analyses tested for associations among demographics, sleep hygiene behaviors, and sleep quality. As hypothesized, medical students' sleep quality was significantly worse than a healthy adult normative sample (t = 5.13, p sleep quality in medical students was predicted by several demographic and sleep hygiene variables, and future research directions are proposed.

  18. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, E

    2007-07-01

    sleep deprivation induced increase in the markers of sleep homeostasis, namely theta (5-8 Hz) power in waking and delta (1-4 Hz) power in the namuron sleep. These effects were not observed in the subjects who received caffeine. Correlation analysis revealed no relationship between {sup 18}F-CPFPX binding and theta and delta EEG power in waking and nonREM sleep. However, significant negative associations were found between the {sup 18}F-CPFPX uptake and alpha (8-12 Hz) power in both wakefulness and nonREM sleep under baseline conditions (before sleep deprivation). Moreover, in the placebo group a positive correlation was observed between the change in radioligand binding and the change in waking EEG alpha power during sleep deprivation. Such correlations were not found in the caffeine group. Our findings confirm high A{sub 1}AR concentration in brain regions involved in sleep. The results suggest that sleep deprivation and caffeine have no significant effects on A{sub 1}AR occupancy, and challenge the hypothesis of a prominent involvement of the A{sub 1}AR in the homeostatic regulation of sleep. However, they indicate an association between the EEG alpha power density and cerebral A{sub 1}AR binding. EEG alpha activity is known to exhibit high interindividual variability, and power within the alpha frequency range in waking is modulated by the level of alertness. The correlations found for {sup 18}F-CPFPX binding and alpha activity support a role of the A{sub 1}AR in modulating vigilance in humans, but the A{sub 1}AR does not appear to be responsible for the effects of caffeine on waking and sleep EEG. A test and retest study in a larger group of volunteers would be necessary in order to demonstrate reproducibility and also to consolidate the statistical significance of the data. Furthermore, a PET study with the selective A{sub 2A}AR antagonist {sup 11}C-TMSX could be an important step forward in specifying the functions of the A{sub 2A}AR in the regulation of the sleep

  19. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    Science.gov (United States)

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.

  20. To sleep or not to sleep: The ecology of sleep in artificial organisms

    OpenAIRE

    Nunn Charles L; McNamara Patrick; Acerbi Alberto

    2008-01-01

    Abstract Background All animals thus far studied sleep, but little is known about the ecological factors that generate differences in sleep characteristics across species, such as total sleep duration or division of sleep into multiple bouts across the 24-hour period (i.e., monophasic or polyphasic sleep activity). Here we address these questions using an evolutionary agent-based model. The model is spatially explicit, with food and sleep sites distributed in two clusters on the landscape. Ag...

  1. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    Directory of Open Access Journals (Sweden)

    Mascetti GG

    2016-07-01

    Full Text Available Gian Gastone Mascetti Department of General Psychology, University of Padova, Padova, Italy Abstract: Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use

  2. Cardiorespiratory adaptation during sleep in infants and children.

    Science.gov (United States)

    Gaultier, C

    1995-02-01

    The cardiorespiratory control system undergoes functional maturation after birth. Until this process is completed, the cardiorespiratory system is unstable, placing infants at risk for cardiorespiratory disturbances, especially during sleep. The profound influence of states of alertness on respiratory and cardiac control has been the focus of intense scrutiny during the last decade. The effects of rapid-eye movement (REM) sleep on various mechanisms involved in cardiorespiratory control are of particular significance during the postnatal period since newborns spend much of their time in this sleep state. In fullterm newborns, REM sleep occupies more than 50% of total sleep time, and this percentage is even greater in preterm newborns. From term to six months of age, the proportion of REM sleep decreases. Since respiratory and cardiac disturbances are known to occur selectively during REM sleep, the predominance of REM sleep may be a risk factor for abnormal sleep-related events during early infancy. Awareness of these developmental changes in sleep patterns is important for clinicians dealing with problems such as apparent life-threatening events (ALTE), sudden infant death syndrome (SIDS), and/or cardiorespiratory responses to respiratory disorders. Our current understanding of respiratory and cardiac control rests mainly on studies conducted during the first months of life. There is a paucity of data on late infancy and early childhood. The present paper will review available data on how sleep affects 1) ventilatory mechanics, in particular of the upper airways and the chest wall; ventilation and apnea; gas exchange; chemoreceptor function; and arousal responses; 2) changes in heart rate and heart rate variability, and the occurrence and mechanisms of bradycardia.

  3. Factors influencing sleep for parents of critically ill hospitalised children: a qualitative analysis.

    Science.gov (United States)

    Stremler, Robyn; Dhukai, Zahida; Wong, Lily; Parshuram, Christopher

    2011-02-01

    The aim of this study was to describe factors affecting the sleep of parents of critically ill children and to determine strategies used to improve their sleep. One hundred and eighteen parents of 91 children recruited during their child's paediatric intensive care unit stay responded in writing to open-ended questions assessing their experiences with sleep and eliciting ideas for strategies to promote sleep to be used by parents and provided by hospital staff. Patterns and concepts were coded and organised into themes using a qualitative descriptive approach. Seven themes emerged related to influences on and strategies to improve sleep: (1) the child's condition; (2) being at the bedside or not; (3) difficult thoughts and feelings; (4) changes to usual sleep; (5) caring for self and family; (6) the hospital environment and (7) access to sleep locations. Parents described multiple, often competing, demands that affected their ability to achieve sleep, regardless of location. Many more factors that influenced sleep were described than strategies to improve sleep, highlighting the need for nurses to explore with parents the unique barriers and facilitators to sleep they encounter and to develop and rigorously test interventions to improve sleep.

  4. The effects of moderate to vigorous aerobic exercise on the sleep need of sedentary young adults.

    Science.gov (United States)

    Wong, Shi N; Halaki, Mark; Chow, Chin-Moi

    2013-01-01

    Exercise has been recommended for enhancing sleep; a claim linked to the belief that sleep need - defined by sleep duration and depth - is increased post-exercise to allow tissue recovery. Objective studies investigating exercise-sleep responses have produced mixed outcomes, and the disparity in results between studies may be due to differences in individual characteristics and/or exercise protocol, emphasising the importance of carefully controlled trials. We investigated the role of exercise on the sleep need of sedentary adults, after controlling for exercise mode, timing and duration. Twelve healthy volunteers (25.2 ± 4.0 years, 9 females, [Vdot]O(2)max 35.4 ± 8.8 ml· kg(-1) · min(-1)) were randomised to no-exercise or to a bout of treadmill exercise at 45%, 55%, 65% or 75% [Vdot]O(2)max in a crossover design. Sleep on no-exercise and exercise nights were assessed by polysomnography. Participants spent a greater proportion of sleep in light sleep (stage 1 + stage 2) after exercise at both 65% and 75% [Vdot]O(2)max (P sleep with increased exercise intensity (P = 0.067). No other changes were observed in any other sleep variables. Two findings emerged: vigorous exercise did not increase sleep need; however, this level of exercise increased light sleep.

  5. Chronic sleep disorders in survivors of the acute respiratory distress syndrome.

    Science.gov (United States)

    Lee, Christie M; Herridge, Margaret S; Gabor, Jonathan Y; Tansey, Catherine M; Matte, Andrea; Hanly, Patrick J

    2009-02-01

    Sleep disruption is well recognized in the Intensive Care Unit. Poor sleep quality likely continues following discharge from hospital in several patients and becomes a chronic disorder in some. The aim of this study was to describe the etiology of chronic sleep complaints in survivors of ARDS. Seven ARDS survivors with no previous sleep complaints who reported difficulty sleeping 6 months or more following discharge from hospital were evaluated. Sleep quality was assessed subjectively with a sleep history and the Insomnia Severity Index and objectively with polysomnography. Daytime sleepiness was assessed with the Epworth Sleepiness Scale. A chronic sleep disorder was identified in each patient who reported difficulty sleeping. The primary sleep disorder was chronic conditioned insomnia (5 patients), parasomnia (1 patient) and obstructive sleep apnea (1 patient). In addition, 4 patients had periodic leg movements, which was of uncertain clinical significance. Chronic sleep disorders, which originate during the acute illness, are present in some ARDS survivors several months after discharge from hospital. If unrecognized, lack of treatment may contribute to impaired quality of life and incomplete rehabilitation from their critical illness.

  6. Disrupted Nighttime Sleep in Narcolepsy

    Science.gov (United States)

    Roth, Thomas; Dauvilliers, Yves; Mignot, Emmanuel; Montplaisir, Jacques; Paul, Josh; Swick, Todd; Zee, Phyllis

    2013-01-01

    Study Objectives: Characterize disrupted nighttime sleep (DNS) in narcolepsy, an important symptom of narcolepsy. Methods: A panel of international narcolepsy experts was convened in 2011 to build a consensus characterization of DNS in patients with narcolepsy. A literature search of the Medline (1965 to date), Medline In-Process (latest weeks), Embase (1974 to date), Embase Alert (latest 8 weeks), and Biosis (1965 to date) databases was conducted using the following search terms: narcolepsy and disrupted nighttime sleep, disturbed nighttime sleep, fragmented sleep, consolidated sleep, sleep disruption, and narcolepsy questionnaire. The purpose of the literature search was to identify publications characterizing the nighttime sleep of patients with narcolepsy. The panel reviewed the literature. Nocturnal sleep can also be disturbed by REM sleep abnormalities such as vivid dreaming and REM sleep behavior disorder; however, these were not reviewed in the current paper, as we were evaluating for idiopathic sleep disturbances. Results: The literature reviewed provide a consistent characterization of nighttime sleep in patients with narcolepsy as fragmented, with reports of frequent, brief nightly awakenings with difficulties returning to sleep and associated reports of poor sleep quality. Polysomnographic studies consistently report frequent awakenings/arousals after sleep onset, more stage 1 (S1) sleep, and more frequent shifts to S1 sleep or wake from deeper stages of sleep. The consensus of the International Experts' Panel on Narcolepsy was that DNS can be distressing for patients with narcolepsy and that treatment of DNS warrants consideration. Conclusions: Clinicians involved in the management of patients with narcolepsy should investigate patients' quality of nighttime sleep, give weight and consideration to patient reports of nighttime sleep experience, and consider DNS a target for treatment. Citation: Roth T; Dauvilliers Y; Mignot E; Montplaisir J; Paul J

  7. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    Science.gov (United States)

    Mascetti, Gian Gastone

    2016-01-01

    Sleep is a behavior characterized by a typical body posture, both eyes’ closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep). PMID:27471418

  8. BDNF in sleep, insomnia, and sleep deprivation.

    Science.gov (United States)

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  9. [The NHG guideline 'Sleep problems and sleeping pills'

    NARCIS (Netherlands)

    Damen-van Beek, Z.; Lucassen, P.L.; Gorgels, W.J.M.J.; Smelt, A.F.; Knuistingh Neven, A.; Bouma, M.

    2015-01-01

    - The Dutch College of General Practitioners' (NHG) guideline 'Sleep problems and sleeping pills' provides recommendations for the diagnosis and treatment of the most prevalent sleep problems and for the management of chronic users of sleeping pills.- The preferred approach for sleeplessness is not

  10. [The NHG guideline 'Sleep problems and sleeping pills'

    NARCIS (Netherlands)

    Damen-van Beek, Z.; Lucassen, P.L.; Gorgels, W.J.M.J.; Smelt, A.F.; Knuistingh Neven, A.; Bouma, M.

    2015-01-01

    - The Dutch College of General Practitioners' (NHG) guideline 'Sleep problems and sleeping pills' provides recommendations for the diagnosis and treatment of the most prevalent sleep problems and for the management of chronic users of sleeping pills.- The preferred approach for sleeplessness is not

  11. [Chronobiologic organization of sleep].

    Science.gov (United States)

    Tiberge, M; Arbus, L

    1989-01-01

    Interrelations between sleep and chronobiology as been studied in isolated experimental situations. A succession of hormonal regulations has been described to explain these mechanisms. Some disruptions of these regulations might be at the beginning of a lot of sleep pathologies (jet lag syndrome, burn out syndrome, insomnia...).

  12. Changing your sleep habits

    Science.gov (United States)

    ... effects they may have on your sleep. Find ways to manage stress. Learn about relaxation techniques, such as guided imagery, listening to music, or practicing yoga or meditation. Listen to your body when it tells you to slow down or take a break. Change Your Bedtime Habits Your bed is for sleeping. ...

  13. Sleep Terrors in Twins

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-12-01

    Full Text Available In an attempt to clarify the genetic and environmental causes of sleep terrors in childhood, reasearchers in Canada followed 390 pairs of monozygotic and dizygotic twins by assessing the frequency of sleep terrors at 18 and 30 months of age using a questionnaire administered to the biological mothers.

  14. Stress, arousal, and sleep

    NARCIS (Netherlands)

    Sanford, Larry D.; Suchecki, Deborah; Meerlo, Peter; Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with

  15. Schizophrenia, Sleep and Acupuncture

    NARCIS (Netherlands)

    Bosch, M.P.C.; Noort, M.W.M.L. van den

    2008-01-01

    This book is an introduction for professionals in Western medicine and for acupuncturists on the use of acupuncture in treatment of schizophrenia and sleep disorders. Acupuncture has long been used in Traditional Chinese Medicine (TCM) in mental health and sleep disorders. This book aims to build a

  16. Sleep deprivation and depression

    NARCIS (Netherlands)

    Elsenga, Simon

    1992-01-01

    The association between depression and sleep disturbances is perhaps as old as makind. In view of the longstanding experience with this association it is amazing that only some 20 years ago, a few depressed patients attracted attention to the fact that Total Sleep Deprivation (TSD) had

  17. Sleep deprivation and depression

    NARCIS (Netherlands)

    Elsenga, Simon

    1992-01-01

    The association between depression and sleep disturbances is perhaps as old as makind. In view of the longstanding experience with this association it is amazing that only some 20 years ago, a few depressed patients attracted attention to the fact that Total Sleep Deprivation (TSD) had antidepressan

  18. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  19. Obstructive sleep apnea therapy

    NARCIS (Netherlands)

    Hoekema, A.; Stegenga, B.; Wijkstra, P. J.; van der Hoeven, J. H.; Meinesz, A. F.; de Bont, L. G. M.

    2008-01-01

    In clinical practice, oral appliances are used primarily for obstructive sleep apnea patients who do not respond to continuous positive airway pressure (CPAP) therapy. We hypothesized that an oral appliance is not inferior to CPAP in treating obstructive sleep apnea effectively. We randomly assigned

  20. Sleep, Exercise, and Nutrition.

    Science.gov (United States)

    Harrelson, Orvis A.; And Others

    The first part of this booklet concerns why sleep and exercise are necessary. It includes a discussion of what occurs during sleep and what dreams are. It also deals with the benefits of exercise, fatigue, posture, and the correlation between exercise and personality. The second part concerns nutrition and the importance of food. This part covers…

  1. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.

    Science.gov (United States)

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-08-23

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep-wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans.

  2. Total sleep deprivation study in delayed sleep-phase syndrome

    Directory of Open Access Journals (Sweden)

    Md Dilshad Manzar

    2011-01-01

    Full Text Available Delayed sleep-phase syndrome (DSPS is characterized by delayed sleep onset against the desired clock time. It often presents with symptoms of sleep-onset insomnia or difficulty in awakening at the desired time. We report the finding of sleep studies after 24 h total sleep deprivation (TSD in a 28-year-old DSPS male patient. He had characteristics of mild chronic DSPS, which may have been precipitated by his frequent night shift assignments. The TSD improved the patients sleep latency and efficiency but all other sleep variables showed marked differences.

  3. Sleep debt and obesity.

    Science.gov (United States)

    Bayon, Virginie; Leger, Damien; Gomez-Merino, Danielle; Vecchierini, Marie-Françoise; Chennaoui, Mounir

    2014-08-01

    Short sleep duration has been shown to be associated with elevated body mass index (BMI) in many epidemiological studies. Several pathways could link sleep deprivation to weight gain and obesity, including increased food intake, decreased energy expenditure, and changes in levels of appetite-regulating hormones, such as leptin and ghrelin. A relatively new factor that is contributing to sleep deprivation is the use of multimedia (e.g. television viewing, computer, and internet), which may aggravate sedentary behavior and increase caloric intake. In addition, shift-work, long working hours, and increased time commuting to and from work have also been hypothesized to favor weight gain and obesity-related metabolic disorders, because of their strong link to shorter sleep times. This article reviews the epidemiological, biological, and behavioral evidence linking sleep debt and obesity.

  4. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  5. Sleep effects on breathing and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Choudhary Sumer

    2009-01-01

    Full Text Available To understand normal sleep pattern and physiological changes during sleep, sleep and breathing interaction, nomenclature and scales used in sleep study, discuss the effect of rapid eye movements and non-rapid eye movements while sleep and to review the effects of obstructive and restrictive lung disease on gas exchange during sleep and sleep architecture.

  6. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2014-10-01

    of the study. Sleep diaries and actigraphy monitored adherence with this schedule, and anyone deviating 15 min on 2 nights was not stud- ied...Czisch M, Spoormaker VI (2013) Effects of unconditioned stim- ulus intensity and fear extinction on subsequent sleep architecture in an afternoon nap. J...Annual 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for

  7. Sleep and the endocrine system.

    Science.gov (United States)

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sleep disorders in Parkinson's disease.

    Science.gov (United States)

    Schrempf, Wiebke; Brandt, Moritz D; Storch, Alexander; Reichmann, Heinz

    2014-01-01

    Sleep disorders in patients with Parkinson's disease (PD) are very common and have an immense negative impact on their quality of life. Insomnia, daytime sleepiness with sleep attacks, restless-legs syndrome (RLS) and REM-sleep behaviour disorder (RBD) are the most frequent sleep disorders in PD. Neurodegenerative processes within sleep regulatory brain circuitries, antiparkinsonian (e.g., levodopa and dopamine agonists) and concomitant medication (e.g., antidepressants) as well as comorbidities or other non-motor symptoms (such as depression) are discussed as causative factors. For the diagnosis of sleep disturbances we recommend regular screening using validated questionnaires such as the Pittsburgh Sleep Quality Index (PSQI) or the Medical Outcomes Study Sleep Scale (MOS), for evaluating daytime sleepiness we would suggest to use the Epworth Sleepiness Scale (ESS), the inappropriate sleep composite score (ISCS) or the Stanford sleepiness scale (SSS). All of these questionnaires should be used in combination with a detailed medical history focusing on common sleep disorders and medication. If necessary, patients should be referred to sleep specialists or sleep laboratories for further investigations. Management of sleep disorders in PD patients usually starts with optimization of (dopaminergic) antiparkinsonian therapy followed by specific treatment of the sleep disturbances. Aside from these clinical issues of sleep disorders in PD, the concept of REM-sleep behaviour disorder (RBD) as an early sign for emerging neurodegenerative diseases is of pivotal interest for future research on biomarkers and neuroprotective treatment strategies of neurodegenerative diseases, and particularly PD.

  9. The Neuroprotective Aspects of Sleep.

    Science.gov (United States)

    Eugene, Andy R; Masiak, Jolanta

    2015-03-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle.

  10. Sleep Disturbances in Mood Disorders.

    Science.gov (United States)

    Rumble, Meredith E; White, Kaitlin Hanley; Benca, Ruth M

    2015-12-01

    The article provides an overview of common and differentiating self-reported and objective sleep disturbances seen in mood-disordered populations. The importance of considering sleep disturbances in the context of mood disorders is emphasized, because a large body of evidence supports the notion that sleep disturbances are a risk factor for onset, exacerbation, and relapse of mood disorders. In addition, potential mechanisms for sleep disturbance in depression, other primary sleep disorders that often occur with mood disorders, effects of antidepressant and mood-stabilizing drugs on sleep, and the adjunctive effect of treating sleep in patients with mood disorders are discussed.

  11. [Sleep disorders and their treatment].

    Science.gov (United States)

    Holsboer-Trachsler, E

    1995-04-11

    Disturbed or inadequate sleep is a frequent complaint, often with a chronic course, requiring adequate treatment. To choose an appropriate therapy it is necessary to develop a useful, reliable valid and specific diagnostic procedure. Primary care physicians can recognize and treat most sleep disorders. For special diagnostic cases sleep centers are recommended. Sleep disorders may be managed by adequate pharmacological as well as nonpharmacological treatments. Besides specific pharmacological interventions, education in sleep/wake hygiene and several psychotherapeutic strategies may be valuable.

  12. Functional neuroimaging of sleep disorders.

    Science.gov (United States)

    Nofzinger, Eric A

    2008-01-01

    Functional neuroimaging methods provide a means to understand brain function in patients with sleep disorders. This paper summarizes functional neuroimaging findings in sleep disorders patients, and studies addressing the pharmacology of sleep and sleep disorders. Areas in which functional neuroimaging methods may be helpful in sleep medicine, and in which future development is advised, include: 1) clarification of pathophysiology; 2) aid in differential diagnosis; 3) assessment of treatment response; 4) guiding new drug development; and 5) monitoring treatment response.

  13. Sleep in the Pediatric Population.

    Science.gov (United States)

    Hintze, Jonathan P; Paruthi, Shalini

    2016-03-01

    This article provides an overview of common pediatric sleep disorders encountered in the neurology clinic, including restless legs syndrome, narcolepsy, parasomnias, sleep-related epilepsy, and sleep and headaches. An overview of each is provided, with an emphasis on accurate diagnosis and treatment. It is important in comprehensive neurologic care to also obtain a sleep history, because treating the underlying sleep condition may improve the neurologic disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sleep, vigilance, and thermosensitivity.

    Science.gov (United States)

    Romeijn, Nico; Raymann, Roy J E M; Møst, Els; Te Lindert, Bart; Van Der Meijden, Wisse P; Fronczek, Rolf; Gomez-Herrero, German; Van Someren, Eus J W

    2012-01-01

    The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs.

  15. [Circadian rhythm sleep disorder].

    Science.gov (United States)

    Mishima, Kazuo

    2013-12-01

    Primary pathophysiology of circadian rhythm sleep disorders(CRSDs) is a misalignment between the endogenous circadian rhythm phase and the desired or socially required sleep-wake schedule, or dysfunction of the circadian pacemaker and its afferent/efferent pathways. CRSDs consist of delayed sleep phase type, advanced sleep phase type, free-running type, irregular sleep-wake type, shift work type and jet lag type. Chronotherapy using strong zeitgebers (time cues), such as bright light and melatonin/ melatonin type 2 receptor agonist, is effective when administered with proper timing. Bright light is the strongest entraining agent of circadian rhythms. Bright light therapy (appropriately-timed exposure to bright light) for CRSDs is an effective treatment option, and can shift the sleep-wake cycle to earlier or later times, in order to correct for misalignment between the circadian system and the desired sleep-wake schedule. Timed administration of melatonin, either alone or in combination with light therapy has also been shown to be useful in the treatment of CRSDs.

  16. Insomnia and sleep misperception.

    Science.gov (United States)

    Bastien, C H; Ceklic, T; St-Hilaire, P; Desmarais, F; Pérusse, A D; Lefrançois, J; Pedneault-Drolet, M

    2014-10-01

    Sleep misperception is often observed in insomnia individuals (INS). The extent of misperception varies between different types of INS. The following paper comprised sections which will be aimed at studying the sleep EEG and compares it to subjective reports of sleep in individuals suffering from either psychophysiological insomnia or paradoxical insomnia and good sleeper controls. The EEG can be studied without any intervention (thus using the raw data) via either PSG or fine quantitative EEG analyses (power spectral analysis [PSA]), identifying EEG patterns as in the case of cyclic alternating patterns (CAPs) or by decorticating the EEG while scoring the different transient or phasic events (K-Complexes or sleep spindles). One can also act on the on-going EEG by delivering stimuli so to study their impact on cortical measures as in the case of event-related potential studies (ERPs). From the paucity of studies available using these different techniques, a general conclusion can be reached: sleep misperception is not an easy phenomenon to quantify and its clinical value is not well recognized. Still, while none of the techniques or EEG measures defined in the paper is available and/or recommended to diagnose insomnia, ERPs might be the most indicated technique to study hyperarousal and sleep quality in different types of INS. More research shall also be dedicated to EEG patterns and transient phasic events as these EEG scoring techniques can offer a unique insight of sleep misperception.

  17. Health effects of sleep deprivation on nurses working shifts

    Directory of Open Access Journals (Sweden)

    Stanojević Čedomirka

    2016-01-01

    Full Text Available Introduction. Atypical work schedules cause reduced sleep, leading to drowsiness, fatigue, decline of cognitive performance and health problems among the members of the nursing staff. The study was aimed at reviewing current knowledge and attitudes concerning the impact of sleep disorders on health and cognitive functions among the members of the nursing staff. Sleep and Interpersonal Relations in Modern Society. The modern 24-hour society involves more and more employees (health services, police departments, public transport in non-standard forms of work. In European Union countries, over 50% of the nursing staff work night shifts, while in the United States of America 55% of nursing staff work more than 40 hours a week, and 30-70% of nurses sleep less than six hours before their shift. Cognitive Effects of Sleep Deprivation. Sleep deprivation impairs the performance of tasks that require intensive and prolonged attention which increases the number of errors in patients care, and nurses are subject to increased risk of traffic accidents. Sleep Deprivation and Health Disorders. Sleep deprived members of the nursing staff are at risk of obesity, diabetes, gastrointestinal disorders and cardio­vascular disease. The risk factors for breast cancer are increased by 1.79 times, and there is a significantly higher risk for colorectal carcinoma. Conclusion. Too long or repeated shifts reduce the opportunity for sleep, shorten recovery time in nurses, thus endangering their safety and health as well as the quality of care and patients’ safety. Bearing in mind the significance of the problem it is necessary to conduct the surveys of sleep quality and health of nurses in the Republic of Serbia as well in order to tackle this issue which is insufficiently recognized.

  18. The two-process model of sleep regulation: a reappraisal.

    Science.gov (United States)

    Borbély, Alexander A; Daan, Serge; Wirz-Justice, Anna; Deboer, Tom

    2016-04-01

    In the last three decades the two-process model of sleep regulation has served as a major conceptual framework in sleep research. It has been applied widely in studies on fatigue and performance and to dissect individual differences in sleep regulation. The model posits that a homeostatic process (Process S) interacts with a process controlled by the circadian pacemaker (Process C), with time-courses derived from physiological and behavioural variables. The model simulates successfully the timing and intensity of sleep in diverse experimental protocols. Electrophysiological recordings from the suprachiasmatic nuclei (SCN) suggest that S and C interact continuously. Oscillators outside the SCN that are linked to energy metabolism are evident in SCN-lesioned arrhythmic animals subjected to restricted feeding or methamphetamine administration, as well as in human subjects during internal desynchronization. In intact animals these peripheral oscillators may dissociate from the central pacemaker rhythm. A sleep/fast and wake/feed phase segregate antagonistic anabolic and catabolic metabolic processes in peripheral tissues. A deficiency of Process S was proposed to account for both depressive sleep disturbances and the antidepressant effect of sleep deprivation. The model supported the development of novel non-pharmacological treatment paradigms in psychiatry, based on manipulating circadian phase, sleep and light exposure. In conclusion, the model remains conceptually useful for promoting the integration of sleep and circadian rhythm research. Sleep appears to have not only a short-term, use-dependent function; it also serves to enforce rest and fasting, thereby supporting the optimization of metabolic processes at the appropriate phase of the 24-h cycle.

  19. Deep sleep and parietal cortex gene expression changes are related to cognitive deficits with age.

    Directory of Open Access Journals (Sweden)

    Heather M Buechel

    Full Text Available BACKGROUND: Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. METHODOLOGY: We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep and active (enhanced wake periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. PRINCIPAL FINDINGS: Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. CONCLUSIONS: The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive

  20. Relationship of sleep hygiene awareness, sleep hygiene practices, and sleep quality in university students.

    Science.gov (United States)

    Brown, Franklin C; Buboltz, Walter C; Soper, Barlow

    2002-01-01

    College students are known for their variable sleep schedules. Such schedules, along with other common student practices (e.g., alcohol and caffeine consumption), are associated with poor sleep hygiene. Researchers have demonstrated in clinical populations that improving sleep hygiene knowledge and practices is an effective treatment for insomnia. However, researchers who have examined relationships between sleep hygiene and practices in nonclinical samples and overall sleep quality have produced inconsistent findings, perhaps because of questionable measures. In this study, the authors used psychometrically sound instruments to examine these variables and to counter the shortcomings in previous investigations. Their findings suggest that knowledge of sleep hygiene is related to sleep practices, which, in turn, is related to overall sleep quality. The data from their regression modeling indicated that variable sleep schedules, going to bed thirsty, environmental noise, and worrying while falling asleep contribute to poor sleep quality.

  1. Sleep and Diabetes

    Directory of Open Access Journals (Sweden)

    Swetha Bopparaju

    2010-01-01

    Full Text Available Sleep apnea is clinically recognized as a heterogeneous group of disorders characterized by recurrent apnea and/or hypopnea. Its prevalence ranges from 4% to 24%. It has been implicated as an independent risk factor for several conditions such as hypertension, stroke, arrhythmia, and myocardial infarction. Recently data has been emerging which suggests an independent association of obstructive sleep apnea with several components of the metabolic syndrome, particularly insulin resistance and abnormalities in lipid metabolism. We hereby review the salient features of the association between sleep and diabetes.

  2. Obstructive Sleep Apnea

    OpenAIRE

    Brass, Steven D.; Ho, Matthew L.

    2006-01-01

    Obstructive sleep apnea (OSA) affects millions of Americans and is estimated to be as prevalent as asthma and diabetes. Given the fact that obesity is a major risk factor for OSA, and given the current global rise in obesity, the prevalence of OSA will increase in the future. Individuals with sleep apnea are often unaware of their sleep disorder. It is usually first recognized as a problem by family members who witness the apneic episodes or is suspected by their primary care doctor because o...

  3. Influence on working hours among shift workers and effects on sleep quality - An intervention study

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Nabe-Nielsen, Kirsten; Aust, Birgit

    2011-01-01

    ), and low intensity intervention (meetings and discussions) and reference. Sleep quality was assessed by Karolinska Sleep Questionnaire (KSQ) at baseline and follow-up (12 months). To elucidate the process of the intervention interviews were conducted. Influence on one's own working hours increased only...

  4. Validation of the DynaPort MiniMod during sleep : A pilot study

    NARCIS (Netherlands)

    Bossenbroek, Linda; Kosse, Nienke; ten Hacken, Nick; Gordijn, Marijke; van der Hoeven, Johannes; de Greef, Mathieu

    2010-01-01

    To measure activity during sleep, polysomnography and actigraphy are often used. The DynaPort MiniMod measures movement intensity and body position day and night. The goal was to examine the validity of the DynaPort MiniMod in assessing physical activity and body posture during sleep. In Study A, 10

  5. Pain and Sleep-Wake Disturbances in Adolescents with Depressive Disorders

    Science.gov (United States)

    Murray, Caitlin B.; Murphy, Lexa K.; Palermo, Tonya M.; Clarke, Gregory M.

    2012-01-01

    The aims of this study were to (a) assess and compare sleep disturbances (including daytime and nighttime sleep patterns) in adolescents with depressive disorders and healthy peers, (b) examine the prevalence of pain in adolescents with depressive disorders and healthy peers, and (c) examine pubertal development, pain intensity, and depressive…

  6. Sleep architecture following a weight loss intervention in overweight and obese patients with obstructive sleep apnea and type 2 diabetes: relationship to apnea-hypopnea index.

    Science.gov (United States)

    Shechter, Ari; St-Onge, Marie-Pierre; Kuna, Samuel T; Zammit, Gary; RoyChoudhury, Arindam; Newman, Anne B; Millman, Richard P; Reboussin, David M; Wadden, Thomas A; Jakicic, John M; Pi-Sunyer, F Xavier; Wing, Rena R; Foster, Gary D

    2014-11-15

    To determine if weight loss and/ or changes in apnea-hypopnea index (AHI) improve sleep architecture in overweight/ obese adults with type 2 diabetes (T2D) and obstructive sleep apnea (OSA). This was a randomized controlled trial including 264 overweight/ obese adults with T2D and OSA. Participants were randomized to an intensive lifestyle intervention (ILI) or a diabetes and support education (DSE) control group. Measures included anthropometry, AHI, and sleep at baseline and year-1, year-2, and year-4 follow-ups. Changes in sleep duration (total sleep time [TST]), continuity [wake after sleep onset (WASO)], and architecture stage 1, stage 2, slow wave sleep, and REM sleep) from baseline to year 1, 2, and 4 did not differ between ILI and DSE. Repeated-measure mixed-model analyses including data from baseline through year-4 for all participants demonstrated a significant positive association between AHI and stage 1 sleep (p architecture changes are more strongly related to reductions in AHI than body weight, whereas WASO may be more influenced by weight than AHI. NCT00194259. © 2014 American Academy of Sleep Medicine.

  7. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia.

    Science.gov (United States)

    Profitt, Maxine F; Deurveilher, Samuel; Robertson, George S; Rusak, Benjamin; Semba, Kazue

    2016-09-01

    Disruption of sleep/wake cycles is common in patients with schizophrenia and correlates with cognitive and affective abnormalities. Mice deficient in stable tubule only polypeptide (STOP) show cognitive, behavioral, and neurobiological deficits that resemble those seen in patients with schizophrenia, but little is known about their sleep phenotype. We characterized baseline sleep/wake patterns and recovery sleep following sleep deprivation in STOP null mice. Polysomnography was conducted in adult male STOP null and wild-type (WT) mice under a 12:12 hours light:dark cycle before, during, and after 6 hours of sleep deprivation during the light phase. At baseline, STOP null mice spent more time awake and less time in non-rapid eye movement sleep (NREMS) over a 24-hour period, with more frequent transitions between wake and NREMS, compared to WT mice, especially during the dark phase. The distributions of wake, NREMS and REMS across the light and the dark phases differed by genotype, and so did features of the electroencephalogram (EEG). Following sleep deprivation, both genotypes showed homeostatic increases in sleep duration, with no significant genotype differences in the initial compensatory increase in sleep intensity (EEG delta power). These results indicate that STOP null mice sleep less overall, and their sleep and wake periods are more fragmented than those of WT mice. These features in STOP null mice are consistent with the sleep patterns observed in patients with schizophrenia.

  8. Sleep Habits and Sleep Problems in Healthy Preschoolers.

    Science.gov (United States)

    Murthy, C L Srinivasa; Bharti, Bhavneet; Malhi, Prahbhjot; Khadwal, Alka

    2015-07-01

    To describe the sleep patterns and problems in children aged between 12 and 36 mo of age. This cross sectional survey was collected over a span of 1 y in Advanced Pediatric Centre, PGIMER, Chandigarh and crèches of Chandigarh. Children in the age group of 12 to 36 mo were included in study. Children with chronic illness, developmental delay, seizure disorder and lack of consent were excluded. A total of 368 children were enrolled. Main outcome measures were sleep duration over 1 to 3 y of life; sleep behavior at onset, during and waking of sleep and parent reported sleep problems and their predictors. The average duration of sleep was 12.5 h (S.D = 1.9). The mean total sleep duration and mean day time sleep duration decreased, while mean night time sleep increased as the age advanced from 12 to 36 mo. Following were the frequency of sleep habits seen in the index study; bed time routine was seen only in 68(18.5 %), a regular bed time ritual was seen in 281(76.4 %), 329(89.4 %) children frequently required 0-20 min time to fall asleep, 11(3 %) parents used sleep inducing drugs. Night waking (1 to 3 times a night) was seen in 297(80.7 %) and its frequency declined with age. Parent reported sleep problems were seen in 12.8 % (47/368). Lack of co-sleeping and night waking were considered as strongest predictors of parent reported sleep problems. Toddlers' sleep duration, night waking behavior, and day time naps decrease as the age progress while night time sleep duration increases with age. Lack of co-sleeping and night waking are considered as strongest predictors of parent reported sleep problems.

  9. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.

    Directory of Open Access Journals (Sweden)

    Diego Robles Mazzotti

    Full Text Available Slow wave oscillations in the electroencephalogram (EEG during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations in the Epidemiologic Sleep Study (EPISONO sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG.

  10. Sleep after laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Skarbye, M; Wildschiødtz, G

    1996-01-01

    The sleep pattern and oxygenation of 10 patients undergoing laparoscopic cholecystectomy were studied on the night before operation and the first night after operation. Operations were performed during general anaesthesia and postoperative analgesia was achieved without the administration...... of opioids. There were no significant changes in the total time awake or the number of arousals on the postoperative night compared with the night before operation. During the postoperative night, we found a decrease (P = 0.02) in slow wave sleep (SWS) with a corresponding increase in stage 2 sleep (P = 0.......01). SWS was absent in four of the patients after operation, whereas in six patients it was within the normal range (5-20% of the night). The proportion of rapid eye movement (REM) sleep was not significantly changed after operation. There were no changes in arterial oxygen saturation on the postoperative...

  11. Plasma Trytophan and Sleep

    Science.gov (United States)

    Chen, C. N.; Kalucy, R. S.; Hartmann, M. K.; Lacey, J. H.; Crisp, A. H.; Bailey, J. E.; Eccleston, E. G.; Coppen, A.

    1974-01-01

    Free, bound, and total plasma tryptophan (F.P.T., B.P.T., and T.P.T.) levels have been measured throughout the night in six young female volunteers. All-night polygraphic sleep recordings were also made. No direct temporal relationship was found between plasma tryptophan levels and specific sleep stages. The mean F.P.T. levels, however, were found to have a positive correlation with rapid-eye-movement (R.E.M.) sleep and a negative correlation with non-R.E.M. sleep. An inverse relationship existed between the F.P.T. and B.P.T. levels. There appeared to be a diurnal variation in F.P.T. levels, with high readings in the first half of the night. PMID:4373116

  12. National Sleep Foundation

    Science.gov (United States)

    ... Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish ... Test your knowledge, take our symptom screener, and learn more about narcolepsy. Sleep and Melatonin It can ...

  13. Sleep apnea syndrome

    African Journals Online (AJOL)

    abp

    2012-10-10

    Oct 10, 2012 ... quality of life and also a diminished risk of cardiovascular morbidity and mortality [14]. ... concentration, depression, irritability) and nocturnal symptoms (snoring ..... O. Sleep-disordered breathing in community-dwelling elderly.

  14. Sleep and Aging: Insomnia

    Science.gov (United States)

    ... Aging Insomnia Insomnia is the most common sleep complaint at any age. It affects almost half of ... A-Z | videos A-Z | training | about us | Customer Support | site map National Institute on Aging | U.S. ...

  15. Key sleep neurologic disorders

    Science.gov (United States)

    St. Louis, Erik K.

    2014-01-01

    Summary Sleep disorders are frequent comorbidities in neurologic patients. This review focuses on clinical aspects and prognosis of 3 neurologic sleep disorders: narcolepsy, restless legs syndrome/Willis-Ekbom disease (RLS/WED), and REM sleep behavior disorder (RBD). Narcolepsy causes pervasive, enduring excessive daytime sleepiness, adversely affecting patients' daily functioning. RLS/WED is characterized by an uncomfortable urge to move the legs before sleep, often evolving toward augmentation and resulting in daylong bothersome symptoms. RBD causes potentially injurious dream enactment behaviors that often signify future evolution of overt synucleinopathy neurodegeneration in as many as 81% of patients. Timely recognition, referral for polysomnography, and longitudinal follow-up of narcolepsy, RLS/WED, and RBD patients are imperatives for neurologists in providing quality comprehensive patient care. PMID:24605270

  16. Problems sleeping during pregnancy

    Science.gov (United States)

    ... trips to the bathroom. Increased heart rate. Your heart rate increases during pregnancy to pump more blood. This may make it harder to sleep. Shortness of breath. At first, pregnancy hormones can ...

  17. What Are Sleep Studies?

    Science.gov (United States)

    ... a finger. These sensors record your brain waves, heart rate, breathing effort and rate, oxygen levels, and muscle movements before, during, and after sleep. There is a small risk of irritation from ...

  18. Functions and Mechanisms of Sleep

    Directory of Open Access Journals (Sweden)

    Mark R. Zielinski

    2016-04-01

    Full Text Available Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep.

  19. Impaired sleep and allostatic load

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis

    2014-01-01

    Objective: Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load...... Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Results: Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated...... with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL...

  20. Impaired sleep and allostatic load

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis

    2014-01-01

    Objective: Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load...... Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Results: Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated...... with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL...